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We give the asymptotic distribution of the length of partial coalescent
trees for Beta and related coalescents. This allows us to give the asymptotic
distribution of the number of (neutral) mutations in the partial tree. This is a
first step to study the asymptotic distribution of a natural estimator of DNA
mutation rate for species with large families.

1. Introduction.

1.1. Motivations. The Kingman coalescent, see [17, 18], allows to describe
the genealogy of n individuals in a Wright–Fisher model, when the size of the
whole population is very large and time is well rescaled. In what follows, we
consider only neutral DNA mutations and the infinite sites model introduced by
Kimura [16], where each mutation occurs at a new site. In particular, if an in-
dividual is affected by a mutation, all the descendants of this individual carry this
mutation. Notice the total number of mutations observed among n individuals alive
today, S(n), corresponds to the number of segregating sites. The Watterson estima-
tor [24] based on S(n) allows to estimate the rate of mutation for the DNA, θ . This
estimator is consistent and converges at rate 1/

√
log(n).

Other models of population where one individual can produce a large number
of children give rise to more general coalescent processes than the Kingman coa-
lescent, where multiple collisions appear, see Sagitov [22] and Schweinsberg [23]
(such models may be relevant for oysters and some fish species [8, 11]). In Birkner
et al. [6] and in Schweinsberg [23] a natural family of one parameter coalescent
processes arise to describe the genealogy of such populations: the Beta-(2 − α,α)

coalescent with parameter α ∈ (1,2). Results from Berestycki et al. [3] give a con-
sistent estimator, based on the observed total number, S(n), of mutations for the
rate θ of mutation of DNA. This paper is a first step to study the convergence rate
of this estimator or equivalently to the study of the asymptotic distribution of S(n).
Results are also known for the asymptotic distribution of S(n) for other coalescent
processes, see Drmota et al. [10] and Möhle [19].
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For the Beta coalescent, the asymptotic distribution of S(n) depends on θ but
also on the parameter α. In particular, if the mutation rate of the DNA is known,
the asymptotic distribution of S(n) allows to deduce an estimation and a confidence
interval for α, which in a sense characterize the size of a typical family according
to [23].

1.2. The coalescent tree and mutation rate. We denote by N
∗ the set of pos-

itive integers. We consider at time t = 0 a number n ∈ N
∗ of individuals, and we

look backward in time. Let Pn be the set of partitions of {1, . . . , n}. For t ≥ 0, let
�

(n)
t be an element of Pn such that each block of �

(n)
t corresponds to the initial

individuals which have a common ancestor at time −t . We assume that if we con-
sider b blocks, k of them merge into 1 at rate λb,k , independently of the current
number of blocks. Using this property and the compatibility relation implied when
one considers a larger number of initial individuals, Pitman [21], see also Sagitov
[22] for a more biological approach, showed the transition rates are given by

λb,k =
∫
[0,1]

xk−2(1 − x)b−k�(dx), 2 ≤ k ≤ b,

for some finite measure � on [0,1], and that �(n) is the restriction of the so-called
coalescent process defined on the set of partitions of N

∗. The Kingman coalescent
corresponds to the case where � is the Dirac mass at 0, see [17]. In particular,
in the Kingman coalescent, only two blocks merge at a time. The Bolthausen–
Sznitman [7] coalescent corresponds to the case where � is the Lebesgue measure
on [0,1]. The Beta-coalescent introduced in Birkner et al. [6] and in Schweinsberg
[23], see also Bertoin and Le Gall [5] and Berestycki et al. [2], corresponds to
�(dx) = C0x

α−1(1 − x)1−α1(0,1)(x) dx for some constant C0 > 0.

Notice �(n) = (�
(n)
t , t ≥ 0) is a Markov process starting at the trivial partition

of {1, . . . , n} into n singletons. We denote by R
(n)
t the number of blocks of �

(n)
t .

We have, R
(n)
0 = n, and R

(n)
t can be seen as the number of ancestors alive at

time −t . The apparition time of the most recent common ancestor (MRCA) is
inf{t > 0;R(n)

t = 1}. We shall omit the superscript (n) when there is no confusion.
The process R = (Rt , t ≥ 0) is a continuous time Markov process taking values
in N

∗. The number of possible choices of � + 1 blocks among k is
( k
�+1

)
(for

1 ≤ � ≤ k − 1) and each group of �+ 1 blocks merge at rate λk,�+1. So the waiting
time of R in state k is an exponential random variable with parameter

gk =
k−1∑
�=1

(
k

� + 1

)
λk,�+1 =

∫
(0,1)

(
1 − (1 − x)k − kx(1 − x)k−1)�(dx)

x2(1)

and is distributed as E/gk , where E is an exponential random variable with
mean 1.
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Let Y = (Yk, k ≥ 1) be the different states of the process R. It is defined by Y0 =
R0 and for k ≥ 1, Yk = RTk

, where the sequence of jumping time (Tk, k ≥ 0) is de-
fined inductively by T0 = 0 and for k ≥ 1, Tk = inf{t > Tk−1;Rt �= RTk−1}. We use
the convention that inf ∅ = +∞ and Yk = 1 for k ≥ τn, where τn = inf{k;RTk

= 1}
is the number of jumps of the process R until it reach the absorbing state 1. The
number τn is the number of coalescences.

We shall write Y (n) instead of Y when it will be convenient to stress that Y starts
at time 0 at point n. Notice Y is an N

∗-valued discrete time Markov chain, with
probability transition

P(k, k − �) =
( k
�+1

)
λk,�+1

gk

.(2)

The sum of the lengths of all branches in the coalescent tree until the MRCA is
distributed as

L(n) =
τn−1∑
k=0

Y
(n)
k

g
Y

(n)
k

Ek,

where (Ek, k ≥ 0) are independent exponential random variables with expecta-
tion 1.

In the infinite sites model, one assumes that (neutral) mutations appear in the
genealogy at random with rate θ . In particular, conditionally on the length of the
coalescent tree L(n), the total number S(n) of mutations is distributed according to

a Poisson r.v. with parameter θL(n). Therefore, we have that S(n)−θL(n)√
θL(n)

converges
in distribution to a standard Gaussian r.v. (with mean 0 and variance 1). If the as-
ymptotic distribution of L(n) is known, one can deduce the asymptotic distribution
of S(n).

1.3. Known results.

1.3.1. Kingman coalescence. For Kingman coalescence, a coalescence corre-
sponds to the apparition of a common ancestor of only two individuals. In partic-
ular, we have for 0 ≤ k ≤ n − 1, Y

(n)
k = n − k. Thus, we get τn = n − 1 as well as

g
Y

(n)
k

= (n − k)(n − k − 1)/2. We also have

L(n)

2
=

n−2∑
k=0

1

n − k − 1
Ek =

n−1∑
k=1

1

k
En−k−1.

The r.v. L(n)/2 is distributed as the sum of independent exponential r.v. with pa-
rameter 1 to n − 1, that is as the maximum on n − 1 independent exponential
r.v. with mean 1; see Feller [12], Section I.6. An easy computation gives that

L(n)/(2 log(n)) converges in probability to 1 and that L(n)

2 − log(n) converges in
distribution to the Gumbel distribution (with density e−x−exp−x) when n goes to
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infinity. It is then easy to deduce that S(n)−θE[L(n)]√
θE[L(n)] converges in distribution to the

standard Gaussian distribution. This provides the weak convergence and the as-

ymptotic normality of the Watterson [24] estimator of θ : S(n)

E[L(n)] = S(n)∑n−1
k=1 1/k

. See

also the Appendix in [10].

1.3.2. Bolthausen–Sznitman coalescence. In Drmota et al. [10], the authors
consider the Bolthausen–Sznitman coalescence: � is the Lebesgue measure on
[0,1]. In this case, they prove that 1

n
log(n)L(n) converges in probability to 1 and

that L(n)−an

bn
converges in distribution to a stable r.v. Z with Laplace transform

E[e−λZ] = eλ log(λ) for λ > 0, where

an = n

log(n)
+ n log(log(n))

log(n)2 and bn = n

log(n)2 .

It is then easy to deduce that S(n)−θan

θbn
converges to Z.

1.3.3. The case
∫
(0,1] x−1�(dx) < ∞. In Möhle [19], the author investigates

the case where x−1�(dx) is a finite measure and consider directly the asymptotic
distribution of S(n). In particular, he obtains that S(n)/nθ converges in distribution
to a nonnegative r.v. Z uniquely determined by its moments: for k ≥ 1,

E[Zk] = k!∏k
i=1 	(i)

, with 	(i) =
∫
[0,1]

(
1 − (1 − x)i

)
x−2�(dx).

There is an equation in law for Z when � is a simple measure, that is when∫
(0,1] x−2�(dx) < ∞.

1.3.4. Beta coalescent. The Beta-(2−α,α) coalescent corresponds to the case
where � is the Beta(2 − α,α) distribution, with α ∈ (1,2):

�(dx) = 1


(2 − α)
(α)
x1−α(1 − x)α−1 dx.

The Kingman coalescent can be viewed as the asymptotic case α = 2 and the
Bolthausen–Sznitman coalescence as the asymptotic case α = 1.

The first-order asymptotic behavior of L(n) is given in [3], Theorem 1.9:
nα−2L(n) converges in probability to 
(α)α(α−1)

2−α
. We shall now investigate the as-

ymptotic distribution of L(n).

1.4. Main result. In this paper we shall state a partial result concerning the
asymptotic distribution of L(n). We shall only give the asymptotic distribution of
the total length of the coalescent tree up to the 	nt
th coalescence:

L
(n)
t =

	nt
∧(τn−1)∑
k=0

Y
(n)
k

g
Y

(n)
k

Ek,(3)
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where 	x
 is the largest integer smaller or equal to x for x ≥ 0.
We say g = O(f ), where f is a nonnegative function and g a real valued func-

tion defined on a set E (mainly here E = [0,1] or E = N
∗ or E = N

∗ × [0,1]), if
there exists a finite constant C > 0 such that |g(x)| ≤ Cf (x) for all x ∈ E.

Let ν(dx) = x−2�(dx) and ρ(t) = ν((t,1]). We assume that ρ(t) = C0t
−α +

O(t−α+ζ ) for some α ∈ (1,2), C0 > 0 and ζ > 1−1/α. This includes the Beta(2−
α,α) distribution for �. We have (see Lemma 2.2) that

gn = C0
(2 − α)nα + O
(
nα−min(ζ,1)).

Let γ = α − 1. Let V = (Vt , t ≥ 0) be a α-stable Lévy process with no positive
jumps (see Chapter VII in [4]) with Laplace exponent ψ(u) = uα/γ : for all u ≥ 0,
E[e−uVt ] = etuα/γ .

We first give in Proposition 3.1 the asymptotic for the number of coalescences,
τn:

n−1/α

(
n − τn

γ

)
(d)−→

n→∞Vγ .

See also Gnedin and Yakubovich [13] and Iksanov and Möhle [14] for different
proofs of this results under slightly different or stronger hypothesis. Then we give
the asymptotics of L̂

(n)
t defined as C0
(2 − α)L

(n)
t but for the exponential r.v. Ek

which are replaced by their mean that is 1 and for g
Y

(n)
k

which is replaced by its

equivalent C0
(2 − α)(Y
(n)
k )2−α :

L̂
(n)
t =

	nt
∧(τn−1)∑
k=0

(
Y

(n)
k

)1−α
.(4)

For t ∈ [0, γ ], we set

v(t) =
∫ t

0

(
1 − r

γ

)−γ

dr.

Theorem 5.1 gives that the following convergence in distribution holds for all t ∈
(0, γ )

n−1+α−1/α(
L̂

(n)
t − n2−αv(t)

) (d)−→
n→∞(α − 1)

∫ t

0
dr

(
1 − r

γ

)−α

Vr .(5)

Then we deduce our main result, Theorem 6.1. Let α ∈ (1, 1+√
5

2 ). Then for all
t ∈ (0, γ ), we have the following convergence in distribution

n−1+α−1/α

(
L

(n)
t − n2−α v(t)

C0
(2 − α)

)
(6)

(d)−→
n→∞

α − 1

C0
(2 − α)

∫ t

0
dr

(
1 − r

γ

)−α

Vr .
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We also have that nα−2L
(n)
t converges in probability to v(t)

C0
(2−α)
for α ∈ (1,2)

uniformly on [0, t0] for any t0 ∈ [0, γ ). See also analogous results in [1] for the
Bolthausen–Sznitman coalescent. For t = γ , intuitively we have L

(n)
γ close to L(n)

as τn is close to n/γ . In particular, one expects that nα−2L(n) converges in proba-
bility to v(γ )

C0
(2−α)
. For the Beta-coalescent,

�(dx) = 1


(2 − α)
(α)
x1−α(1 − x)α−1 dx,

we have C0 = 1/α
(2 − α)
(α) and indeed, Theorem 1.9 in [3] gives that
nα−2L(n) converges in probability to


(α)α(α − 1)

2 − α
= v(γ )

C0
(2 − α)
.

Notice Theorem 1.9 in [3] is stated for more general coalescents than the Beta-
coalescent.

In Corollary 6.2, we give the asymptotic distribution of the total number S
(n)
t

of mutations on the coalescent tree up to the 	nt
th coalescent for α ∈ (1,2). In
particular, for α >

√
2, the approximations of the exponential r.v. by their mean

are more important than the fluctuations of L̂(n), and the asymptotic distribution is
Gaussian.

1.5. Organization of the paper. In Section 2 we give estimates (distribution,
Laplace transform) for the number of individuals involved in the first coalescence
in a population of n individuals. We prove the asymptotic distribution of the num-
ber of collisions, τn, in Section 3, as well as an invariance principle for the coa-
lescent process Y (n), see Corollary 3.5. In Section 4, we give error bounds on the
approximation of L

(n)
t by L̂

(n)
t /C0
(2−α). Section 5 is devoted to the asymptotic

distribution of L̂
(n)
t . Eventually, our main result, Theorem 6.1, on the asymptotic

distribution of L
(n)
t , and Corollary 6.2, on the asymptotic distribution of the num-

ber of mutations S
(n)
t , and their proofs are given in Section 6.

In what follows, c is a nonimportant constant which value may vary from line
to line.

2. Law of the first jump. Let Y be a discrete time Markov chain on N
∗ with

transition kernel P given by (2) and started at Y0 = n. Let Y = (Yk, k ≥ 0) be
the filtration generated by Y . We set X

(n)
k = Yk−1 − Yk for k ≥ 1. We give some

estimates on the moment of X
(n)
1 and its Laplace transform.

For n ≥ 1, x ∈ (0,1), let Bn,x be a binomial r.v. with parameter (n, x). Recall
that for 1 ≤ k ≤ n, we have

P(Bn,x ≥ k) = n!
(k − 1)!(n − k)!

∫ x

0
tk−1(1 − t)n−k dt.(7)
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Recall that ν(dx) = x−2�(dx) and ρ(t) = ν((t,1]). Use the first equality in (1)
and (7) to get

gn =
∫ 1

0

n∑
k=2

(
n

k

)
xk(1 − x)n−kν(dx)

=
∫ 1

0
P(Bn,x ≥ 2)ν(dx)(8)

= n(n − 1)

∫ 1

0
(1 − t)n−2tρ(t) dt.

Notice also that

P
(
X

(n)
1 = k

) = P(n,n − k) = 1

gn

∫ 1

0
P(Bn,x = k + 1)ν(dx)

and thus

P
(
X

(n)
1 ≥ k

) =
∫ 1

0 P(Bn,x ≥ k + 1)ν(dx)

gn
(9)

= (n − 2)!
k!(n − k − 1)!

∫ 1
0 (1 − t)n−k−1tkρ(t) dt∫ 1

0 (1 − t)n−2tρ(t) dt
.

Let α ∈ (1,2) and γ = α−1. The following result on the asymptotic distribution
of (X

(n)
1 , n ≥ 2) is essentially in [5], Lemma 4.

LEMMA 2.1. Assume that ρ(t) = t−αL(t), where L(t), t ∈ (0,1] is slowly
varying at 0. Then (X

(n)
1 , n ≥ 2) converges in distribution to the r.v. X taking values

in N
∗ and such that for all k ≥ 1,

P(X ≥ k) = 1


(2 − α)


(k + 1 − α)

k! .

We have E[X] = 1/γ , E[X2] = +∞ and its Laplace transform φ is given by: for
u ≥ 0,

φ(u) = E[e−uX] = 1 + eu − 1

α − 1
[(1 − e−u)α−1 − 1].

We shall use repeatedly the identity of the Beta distribution: for a > 0 and b > 0,
we have ∫ 1

0
ta−1(1 − t)b−1 dt = 
(a)
(b)


(a + b)
.(10)

PROOF OF LEMMA 2.1. Following Lemma 4 from [5], it is easy to get that
for fixed k ≥ 1, as n goes to infinity, we have

lim
n→∞nk+1−αL(1/n)−1

∫ 1

0
(1 − t)n−k−1tkρ(t) dt = 
(k + 1 − α).
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Therefore, we get that, for k ∈ N
∗,

lim
n→∞P

(
X

(n)
1 ≥ k

) = lim
n→∞

(n − 2)!
k!(n − k − 1)!

∫ 1
0 (1 − t)n−k−1tkρ(t) dt∫ 1

0 (1 − t)n−2tρ(t) dt

= 1


(2 − α)


(k + 1 − α)

k! .

This ends the first part of the lemma. Since

P(X ≥ k) = 1


(α)
(2 − α)

∫ 1

0
tk−α(1 − t)α−1 dt,

we deduce that

E[X] = ∑
k≥1

P(X ≥ k) = 1


(α)
(2 − α)

∫ 1

0

∑
k≥1

tk−α(1 − t)α−1 dt = 1

α − 1
.

Notice that P(X = k) = P(X ≥ k) − P(X ≥ k + 1) and thus

P(X = k) = 1


(α)
(2 − α)

∫ 1

0
tk−α(1 − t)α dt

(11)

= α


(2 − α)


(k + 1 − α)

(k + 1)! .

The asymptotic expansion


(z) = √
2πzz−1/2e−z

(
1 + 1

12z
+ o

(
1

z

))
(12)

implies P(X = k) ∼+∞ α

(2−α)

k−α−1. Therefore, we have E[X2] = +∞. We com-
pute the Laplace transform of X. Let u ≥ 0, we have

φ(u) = E[e−uX] = α


(2 − α)

∑
k≥1

1

(k + 1)!e
−ku

∫ ∞
0

xk−αe−x dx

= αeu


(2 − α)

∫ ∞
0

∑
k≥2

1

k!e
−kuxk−1−αe−x dx

= αeu


(2 − α)

∫ ∞
0

x−1−αe−x(exe−u − xe−u − 1) dx

= 1 + eu − 1

α − 1
[(1 − e−u)α−1 − 1],

where we used (11) with


(k + 1 − α) =
∫ ∞

0
xk−αe−x dx

for the first equality and two integrations by parts for the last. �



ASYMPTOTIC RESULTS ON THE LENGTH OF COALESCENT TREES 1005

We give bounds on gn.

LEMMA 2.2. Assume that ρ(t) = C0t
−α + O(t−α+ζ ) for some C0 > 0 and

ζ > 0. Then we have, for n ≥ 2,

gn = C0
(2 − α)nα + O
(
nα−min(ζ,1)).(13)

PROOF. Notice that

gn = n(n − 1)

∫ 1

0
(1 − t)n−2t

(
C0t

−α + O(t−α+ζ )
)
dt

= C0n(n − 1)

(2 − α)
(n − 1)


(n + 1 − α)
+ hn,

where

hn = n(n − 1)

∫ 1

0
(1 − t)n−2t−α+ζ+1O(1) dt.

In particular, using (12), we have for n ≥ 2

|hn| ≤ cn(n − 1)

∫ 1

0
(1 − t)n−2t−α+ζ+1

= cn(n − 1)

(2 − α + ζ )
(n − 1)


(n + 1 − α + ζ )
≤ cnα−ζ .

Using (12) again, we get that 
(n − 1)/
(n + 1 − α) = nα−2 + O(nα−3). This
implies that

gn = C0
(2 − α)nα + O
(
nmax(α−1,α−ζ )). �

We give an expansion of the first moment of X
(n)
1 .

LEMMA 2.3. Assume that ρ(t) = C0t
−α + O(t−α+ζ ) for some C0 > 0 and

ζ > 0. Let ε0 > 0. We set

ϕn =
⎧⎨
⎩

n−ζ , if ζ < α − 1,
n1−α+ε0, if ζ = α − 1,
n1−α, if ζ > α − 1.

(14)

There exists a constant C15 s.t. for all n ≥ 2, we have∣∣∣∣E[
X

(n)
1

] − 1

γ

∣∣∣∣ ≤ C15ϕn.(15)
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PROOF. We have

E
[
X

(n)
1

] = ∑
k≥1

P
(
X

(n)
1 ≥ k

) =
∫ 1

0
∑

k≥1 P(Bn,x ≥ k + 1)ν(dx)

gn

=
∫ 1

0 (E[Bn,x] − P(Bn,x ≥ 1))ν(dx)

gn

(16)

=
∫ 1

0 nxν(dx) − ∫ 1
0 (1 − (1 − x)n)ν(dx)

gn

= n
∫ 1

0 [1 − (1 − t)n−1]ρ(t) dt

gn

(17)

=
∫ 1

0 (1 − t)n−2(
∫ 1
t ρ(r) dr) dt∫ 1

0 (1 − t)n−2tρ(t) dt
,

using (9) for the first equality and (8) for the last. Notice that∫ 1

t
ρ(r) dr = 1

γ
tρ(t) + O(1) +

∫ 1

t
O(r−α+ζ ) dr + O(t−α+ζ+1)

= 1

γ
tρ(t) + O

(
tmin(−α+ζ+1,0)) + O(| log(t)|)1{α−ζ=1}

= 1

γ
tρ(t) + O

(
tmin(−α+ζ+1,0)) + O(t−ε0)1{α−ζ=1}.

This implies that

E
[
X

(n)
1

] = 1

γ
+ n(n − 1)

gn

∫ 1

0
(1 − t)n−2(

O
(
tmin(−α+ζ+1,0))

+ O(t−ε0)1{α−ζ=1}
)
dt.

Using (10), (12) and Lemma 2.2, we get∣∣∣∣E[
X

(n)
1

] − 1

γ

∣∣∣∣ ≤ c
n(n − 1)

gn

∫ 1

0
(1 − t)n−2(

tmin(−α+ζ+1,0) + t−ε01{α−ζ=1}
)
dt

≤ cn2−α(
n−1−min(−α+ζ+1,0) + n−1+ε01{α−ζ=1}

)
≤ cϕn. �

We give an upper bound for the second moment of X
(n)
1 .

LEMMA 2.4. Assume that ρ(t) = O(t−α). Then there exists a constant C18
s.t. for all n ≥ 2, we have

E
[(

X
(n)
1

)2] ≤ C18
n2

gn

.(18)
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PROOF. Using the identity E[Y 2] = ∑
k≥1(2k −1)P(Y ≥ k) for N-valued ran-

dom variables, we get

E
[(

X
(n)
1

)2]

=
∫ 1

0
∑

k≥1(2k − 1)P(Bn,x ≥ k + 1)ν(dx)

gn

=
∫ 1

0 (
∑

k≥1(2(k + 1) − 1)P(Bn,x ≥ k + 1) − 2
∑

k≥1 P(Bn,x ≥ k + 1))ν(dx)

gn

=
∫ 1

0 (E[B2
n,x] − 2E[Bn,x] + P(Bn,x ≥ 1))ν(dx)

gn

=
∫ 1

0 (E[B2
n,x] − E[Bn,x])ν(dx)

gn

− E
[
X

(n)
1

]

=
∫ 1

0 n(n − 1)x2ν(dx)

gn

− E
[
X

(n)
1

]

= 2n(n − 1)

∫ 1
0 tρ(t) dt

gn

− E
[
X

(n)
1

]
,

where we have used (16) for the fourth equality. Use
∫ 1

0 tρ(t) dt < ∞ and

E[X(n)
1 ] ≥ 0 to conclude. �

We consider φn the Laplace transform of X
(n)
1 : for u ≥ 0, φn(u) = E[e−uX

(n)
1 ].

LEMMA 2.5. Assume that ρ(t) = C0t
−α + O(t−α+ζ ) for some C0 > 0 and

ζ > 0. Let ε0 > 0. Recall ϕn given by (14). Then we have, for n ≥ 2,

φn(u) = 1 − u

γ
+ uα

γ
+ R(n,u),(19)

where R(n,u) = (uϕn + u2)h(n,u) with supu∈[0,K],n≥2 |h(n,u)| < ∞ for all
K > 0.

PROOF. We have

φn(u) = E
[
e−uX

(n)
1

] =
n−1∑
k=1

e−uk
P

(
X

(n)
1 = k

)

=
n−1∑
k=1

e−uk
P

(
X

(n)
1 ≥ k

) −
n∑

k=2

e−u(k−1)
P

(
X

(n)
1 ≥ k

)
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= e−u +
n−1∑
k=2

e−uk(1 − eu)P
(
X

(n)
1 ≥ k

)

= e−u + (1 − eu)

n−1∑
k=2

e−uk

gn

∫ 1

0

n!
k!(n − k − 1)! t

k(1 − t)n−k−1ρ(t) dt

= e−u + (1 − eu)
n

gn

∫ 1

0

[(
1 − t (1 − e−u)

)n−1

− (1 − t)n−1 − (n − 1)e−ut (1 − t)n−2]
ρ(t) dt

= 1 + (1 − eu)
n

gn

∫ 1

0

[(
1 − t (1 − e−u)

)n−1 − (1 − t)n−1]
ρ(t) dt,

where we used (8) for the last equality. Using (17), this implies

φn(u) = 1 + (1 − eu)
n

gn

A + (1 − eu)E
[
X

(n)
1

]
.(20)

with

A =
∫ 1

0

[(
1 − t (1 − e−u)

)n−1 − 1
]
ρ(t) dt.

Thanks to Lemma 2.3, we have that

(1 − eu)E
[
X

(n)
1

] = −u

γ
+ (u2 + uϕn)h1(n,u),(21)

where, for all K > 0, supu∈[0,K],n≥2 |h1(n,u)| < ∞.
To compute A, we set a = (1−e−u) and f (t) = t−max(α−1−ζ,0)+ t−ε01{α−ζ=1}.

An integration by part gives

A = −a(n − 1)

∫ 1

0
(1 − at)n−2

(∫ 1

t
ρ(r) dr

)
dt

= −a(n − 1)C0

∫ 1

0
(1 − at)n−2

(
t1−α

γ
+ O(f (t))

)
dt

= −A1 + A2,

with

A1 = a(n − 1)

γ
C0

∫ 1

0
(1 − at)n−2t1−α dt

and

A2 = a(n − 1)

∫ 1

0
(1 − at)n−2O(f (t)) dt.



ASYMPTOTIC RESULTS ON THE LENGTH OF COALESCENT TREES 1009

We have

A1 = aα−1(n − 1)

γ
C0

∫ a

0
(1 − t)n−2t1−α dt

= aα−1(n − 1)

γ
C0

∫ 1

0
(1 − t)n−2t1−α dt

− aα−1(n − 1)

γ
C0

∫ 1

a
(1 − t)n−2t1−α dt

= aα−1(n − 1)

γ
C0


(n − 1)
(2 − α)


(n + 1 − α)

− aα−1(n − 1)

γ
C0

∫ 1

a
(1 − t)n−2t1−α dt.

Since a ≥ 0, we have for u ∈ [0,K] and n ≥ 2

0 ≤ aα−1(n − 1)

γ

∫ 1

a
(1 − t)n−2t1−α dt ≤ (n − 1)

γ

∫ 1

a
(1 − t)n−2 dt ≤ 1

γ
.

Using (12) and Lemma 2.2, we get

∣∣∣∣A1 − aα−1

γ

gn

n

∣∣∣∣ ≤ c(1 + nα−1−min(ζ,1)) ≤ cnmax(α−1−ζ,0),

where c does not depend on n and u ≥ 0. We also have, using (10) and (12),

|A2| ≤ ca(n − 1)

∫ 1

0
(1 − at)n−2f (t) dt ≤ c

(
nmax(α−1−ζ,0) + nε01{α−ζ=1}

)
.

We deduce, using Lemma 2.2 twice, that

∣∣∣∣A + aα−1

γ

gn

n

∣∣∣∣ ≤ c
(
nmax(α−1−ζ,0) + nε01{α−ζ=1}

) ≤ c
gn

n
ϕn.

We deduce that

(1 − eu)
n

gn

A = (1 − eu)

(
−(1 − e−u)α−1

γ
+ ϕnO(1)

)
(22)

= uα

γ
+ (uα+1 + uϕn)h2(n,u),

where supu∈[0,K],n≥2 |h2(n,u)| < ∞ for all K > 0. Then use the expression of φn

given by (20) as well as (21) and (22) to end the proof. �
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3. Asymptotics for the number of jumps. Let α ∈ (1,2). We assume that
ρ(t) = C0t

−α + O(t−α+ζ ) for some C0 > 0 and ζ > 1 − 1/α.
Let V = (Vt , t ≥ 0) be a α-stable Lévy process with no positive jumps (see

Chapter VII in [4]) with Laplace exponent ψ(u) = uα/γ : for all u ≥ 0, E[e−uVt ] =
etuα/γ .

Lemma 2.1 implies that (X
(n)
1 , . . . ,X

(n)
k ) converges in distribution to (X1, . . . ,

Xk) where (Xk , k ≥ 1) is a sequence of independent random variables distributed
as X. Using Lemma 2.1 and (12), we get that P(X ≥ k) ∼+∞ 1


(2−α)
k−α . Hence,

Proposition 9.39 in [9] implies that the law of X is in the domain of attraction of
the α-stable distribution. We set

W
(n)
t = n−1/α

	nt
∑
k=1

(
Xk − 1

γ

)
for t ∈ [0, γ ].

An easy calculation using the Laplace transform of X shows that for fixed t the
sequence W

(n)
t converges in distribution to Vt . Then using Theorem 16.14 in [15],

we get that the process (W
(n)
t , t ∈ [0, γ ]) converges in distribution to V = (Vt , t ∈

[0, γ ]). We shall give in Corollary 3.5 a similar result with Xk replaced by X
(n)
k .

We first give a proof of the convergence of τn; see also [13] and [14] for a
different proof. We will use that

τn∑
i=1

(
X

(n)
i − 1

γ

)
= n − 1 − τn

γ
.

PROPOSITION 3.1. We assume that ζ > 1 − 1/α. We have the following con-
vergence in distribution:

n−1/α

(
n − τn

γ

)
(d)−→

n→∞Vγ .

PROOF. Using [20], it is enough to prove that limn→∞ E[e−un−1/α(n−τn/γ )] =
euα

for all u ≥ 0. Recall Y = (Yk, k ≥ 0) is the filtration generated by Y . Notice
τn is an Y-stopping time. Recall that for m ≥ 1, φm denotes the Laplace transform
of X

(m)
1 . For fixed n, and for any v ≥ 0, the process (Mv,k, k ≥ 0) defined by

Mv,k =
k∏

i=1

exp
(−vX

(n)
i − logφ

Y
(n)
i−1

(v)
)

is a bounded martingale w.r.t. the filtration Y. Notice that E[Mv,k] = 1. As Xi = 0
for i > τn, we also have

Mv,k =
k∧τn∏
i=1

exp
(−vX

(n)
i − logφ

Y
(n)
i−1

(v)
)
.(23)
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Let u ≥ 0 and consider a nonnegative sequence (an, n ≥ 1) which converges
to 0. Using (19), we get that

Muan,k = exp

(
−uan

k∧τn∑
i=1

X
(n)
i −

k∧τn∑
i=1

(
−uan

γ
+ uαaα

n

γ
+ R

(
Y

(n)
i−1, uan

)))
.

In particular, we have

Muan,τn = exp

(
−uan

(
n − 1 − τn

γ

)
− uατna

α
n

γ
−

τn∑
i=1

R
(
Y

(n)
i−1, uan

))
.(24)

We first give an upper bound for
∑τn

i=1 R(Y
(n)
i−1, uan).

LEMMA 3.2. We assume that ζ > 1 − 1/α. Let K > 0. Let η ≥ 1
α

. There exist
ε1 > 0 and C25(K) a finite constant such that for all n ≥ 1 and u ∈ [0,K], a.s.
with an = n−η,

τn∑
i=1

∣∣R(
Y

(n)
i−1, uan

)∣∣ ≤ C25(K)n−ε1 .(25)

PROOF. Notice that τn ≤ n − 1. We have seen in Lemma 2.5 that R(n,u) =
(uϕn + u2)h(n,u) with h̄(K) = supu∈[0,K],n≥2 |h(n,u)| < ∞ and ϕn given
by (14). We have 2 − α − 1

α
= −α(1 − 1/α)2 < 0. As ε0 > 0 is arbitrary in (14),

we can take ε0 small enough so that 1 −α + ε0 < 0 and 2 −α + ε0 − 1/α < 0. We
have

an

τn∑
i=1

ϕ
Y

(n)
i−1

≤ n−1/α
n∑

j=1

ϕj ≤ c

⎧⎨
⎩

n1−ζ−1/α, if ζ < α − 1,
n2−α+ε0−1/α, if ζ = α − 1,
n2−α−1/α, if ζ > α − 1.

For ε1 > 0 less than the two positive quantities −1 + ζ + 1
α

and −2 + α − ε0 + 1
α

,
we have an

∑τn

i=1 ϕ
Y

(n)
i−1

≤ cn−ε1 . We deduce that, for u ∈ [0,K],
τn∑

i=1

∣∣R(
Y

(n)
i−1, uan

)∣∣ ≤ h̄(K)

τn∑
i=1

(
ϕ

Y
(n)
i−1

uan + (uan)
2)

≤ h̄(K)

n∑
j=1

(
ϕjKan + (Kan)

2)

≤ ch̄(K)(Kn−ε1 + K2n1−2/α),

for some constant c independent of n, u and K . Taking ε1 > 0 small enough so
that ε1 < 2

α
− 1, we then get (25). �

Next we prove the following lemma.
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LEMMA 3.3. We assume that ζ > 1 − 1/α. Let ε > 0. The sequence
(n−(1/α)−ε(n − 1 − τn

γ
), n ≥ 1) converges in probability to 0.

PROOF. We set an = n−1/α−ε . Notice that

e−uan(n−1−τn/γ ) = Muan,τne
uατnan/γ+∑τn

i=1 R(Y
(n)
i−1,uan).

As τn ≤ n − 1, we have 0 ≤ τna
α
n ≤ n−αε . Using (25), we get for u ≥ 0

E[Muan,τn]e−C25(u)n−ε1 ≤ E
[
e−uan(n−1−τn/γ )]

≤ E[Muan,τn]eC25(u)n−ε1+uαn−αε/γ
.

As τn is bounded, the stopping time theorem gives E[Muan,τn] = 1. We deduce that,
for all u ≥ 0, limn→∞ E[e−uan(n−1−τn/γ )] = 1. Using [20], we get the convergence
in law of an(n − 1 − τn

γ
) to 0, and then in probability as the limit is constant. �

Let an = n−1/α and u ≥ 0. We have

E
[
e−uan(n−1−τn/γ )] = E

[
e−uan(n−1−τn/γ )(1 − e−uαaα

n (τn/γ−n))]
+ E

[
e−uan(n−1−τn/γ )e−uαaα

n (τn/γ−n)](26)

= I1 + I2,

with

I1 = E
[
e−uan(n−1−τn/γ )(1 − e−uαaα

n (τn/γ−n))]
and

I2 = E
[
Muan,τne

uα+∑τn
i=1 R(Y

(n)
i−1,uan)].

Using (25) and E[Muan,τn] = 1, we get

e
uα−C25(u)n−ε1 ≤ I2 ≤ e

uα+C25(u)n−ε1
.

This implies that limn→∞ I2 = euα
.

We now prove that limn→∞ I1 = 0. Recall that τn ≤ n − 1 so that τna
α
n ≤ 1 and

thanks to (25), we get

E
[
e−uan(n−1−τn/γ )] = E

[
Muan,τne

uατnaα
n /γ+∑τn

i=1 R(Y
(n)
i−1,uan)]

≤ M(u)E[Muan,τn] = M(u),

where M(u) is a constant which does not depend on n. By the Cauchy–Schwarz
inequality, we get that

I 2
1 = E

[
e−uan(n−1−τn/γ )(1 − e−uαaα

n (τn/γ−n))]2

≤ E
[
e−2uan(n−1−τn/γ )]

E
[(

1 − e−uαaα
n (τn/γ−n))2]

≤ M(2u)E
[(

1 − e−uα(1/n)(τn/γ−n))2]
.
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Notice ( 1
n
(τn

γ
− n),n ≥ 1) is bounded from below and above by finite constants,

and thanks to Lemma 3.3 it converges to 0 in probability. Hence, we deduce that

lim
n→∞E

[(
1 − e−uα1/n(τn/γ−n))2] = 0.

This implies that limn→∞ I1 = 0.
From the convergence of I1 and I2, we deduce from (26) that

lim
n→∞ E

[
e−uan(n−1−τn/γ )] = euα

.

This ends the proof of the proposition. �

We now give a general result.

PROPOSITION 3.4. We assume that ζ > 1 − 1/α. Let fn : R+ → R+ be uni-
formly bounded functions such that

κ = lim
n→∞

1

n

	nγ 
∑
k=1

fn(k/n)α

exists. Then we have the following convergence in distribution:

V (n)(fn) := n−1/α
τn∑

k=1

fn(k/n)

(
X

(n)
k − 1

γ

)
(d)−→

n→∞κ1/αV1.(27)

In particular, if f : R+ → R+ is a bounded locally Riemann integrable function,
then

V (n)(f ) = n−1/α
τn∑

k=1

f (k/n)

(
X

(n)
k − 1

γ

)
(d)−→

n→∞

∫ γ

0
f (t) dVt ,(28)

where the distribution of
∫ γ

0 f (t) dVt is characterized by its Laplace transform:
for u ≥ 0,

E

[
exp

(
−u

∫ γ

0
f (t) dVt

)]
= exp

(
uα

γ

∫ γ

0
f α(t) dt

)
.(29)

If we apply this Proposition with step functions, we deduce the following result.

COROLLARY 3.5. We assume that ζ > 1 − 1/α. Let V
(n)
t = V (n)(1[0,t]) =

n−1/α ∑	nt
∧τn

k=1 (X
(n)
k − 1

γ
) for t ∈ [0, γ ), and V

(n)
γ = V (n)(1) = n−1/α(n−1− τn

γ
).

The finite-dimensional marginals of the process (V
(n)
t , t ∈ [0, γ ]) converges in law

to those of the process (Vt , t ∈ [0, γ ]).
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PROOF. Thanks to [20], it is enough to prove that

E
[
exp

(−uV (n)(fn)
)] →

n→∞ eκuα/γ .

Taking ufn as fn, we shall only consider the case u = 1.
We set a = supn≥1,x≥0 |fn(x)| and for any bounded function g,

An(g) = exp
τn∑

k=1

(−n−1/αg(k/n)X
(n)
k − logφ

Y
(n)
k−1

(
n−1/αg(k/n)

))
.

A martingale argument provides that E[An(g)] = 1. Using (19), we get that

An(g) = exp

(
−n−1/α

τn∑
k=1

g(k/n)

(
X

(n)
k − 1

γ

)

− n−1
τn∑

k=1

gα(k/n)

γ
−

τn∑
k=1

R
(
Y

(n)
k−1, n

−1/αg(k/n)
))

= exp

(
−V (n)(g) − n−1

τn∑
k=1

gα(k/n)

γ
−

τn∑
k=1

R
(
Y

(n)
k−1, n

−1/αg(k/n)
))

.

Let

�n = n−1
	nγ 
∑
k=1

f α
n (k/n)

γ
− n−1

τn∑
k=1

f α
n (k/n)

γ

and write

E
[
e−V (n)(fn)] = I1 + I2

with

I1 = E
[
e−V (n)(fn)(1 − e�n)

]
and I2 = E

[
e−V (n)(fn)e�n

]
.

First of all, let us prove that I1 converges to 0 when n tends to ∞. Recall that
the functions fn are uniformly bounded by a. Thanks to (25), we have

E
[
e−2V (n)(fn)] = E

[
e−V (n)(2fn)]

= E
[
An(2fn)e

n−1 ∑τn
k=1 (2αf α

n (k/n))/γ+∑τn
k=1 R(Y

(n)
k−1,n

−1/α2fn(k))] ≤ M,

where M is a finite constant which does not depend on n. By Cauchy–Schwarz’
inequality, we get that

(I1)
2 ≤ (

E
[
e−V (n)(fn)|1 − e�n |])2

≤ E
[
e−V (n)(2fn)]

E[(1 − e�n)2]
≤ ME[(1 − e�n)2].
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Moreover, as |1 − ex | ≤ e|x| − 1 and �n ≤ aα

nγ
|	nγ 
 − τn|, we get

E[(1 − e�n)2] ≤ E

[(
1 − e|	nγ 
−τn|aα/(nγ )

)2]
.(30)

The quantity |	nγ 
−τn|aα

nγ
is bounded and goes to 0 in probability when n goes to

infinity. Therefore, the right-hand side of (30) converges to 0. This implies that
limn→∞ I1 = 0.

Let us now consider the convergence of I2. Remark that

I2 = E

[
An(fn) exp

(
n−1

	nγ 
∑
k=1

f α
n (k/n)

γ
+

τn∑
k=1

R
(
Y

(n)
k−1, n

−1/αfn(k)
))]

.

Recall that fn is bounded by a and that E[An(fn)] = 1. Using Lemma 3.2, we get
for some ε > 0

exp

(
−C25(a)n−ε1 − n−1

	nγ 
∑
k=1

f α
n (k/n)

γ

)

≤ E

[
An(fn) exp

(
n−1

	nγ 
∑
k=1

f α
n (k/n)

γ
+

τn∑
k=1

R
(
Y

(n)
k−1, n

−1/αfn(k)
))]

(31)

≤ exp

(
C25(a)n−ε1 + n−1

	nγ 
∑
k=1

f α
n (k/n)

γ

)
.

As

lim
n→∞

1

n

	nγ 
∑
k=1

f α
n (k/n) = κ,

we get that limn→∞ I2 = eκ/γ , which achieves the proof of (27). To get (28), notice
that

κ = lim
n→∞

1

n

	nγ 
∑
k=1

f (k/n)α =
∫ γ

0
f (t)α dt.

�

4. First approximation of the length of the coalescent tree. Let α ∈ (1,2).
We assume that ρ(t) = C0t

−α + O(t−α+ζ ) for some C0 > 0 and ζ > 1 − 1/α.
Recall that the length of the coalescent tree up to the 	nt
th coalescence is, for

t ≥ 0, given by (3). The next lemma gives an upper bound on the error when one
replaces the exponential random variables by their mean.

LEMMA 4.1. For t ≥ 0, let

L̃
(n)
t =

	nt
∧(τn−1)∑
k=0

Y
(n)
k

g
Y

(n)
k

.
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There exists a finite constant C32 such that, we have

E

[
sup
t≥0

(
L

(n)
t − L̃

(n)
t

)2
]

≤ C32

⎧⎨
⎩

n3−2α, if α < 3/2,
log(n), if α = 3/2,
1, if α > 3/2.

(32)

PROOF. Recall that Y = (Yk, k ≥ 0) denotes the filtration generated by Y .

Conditionally on Y, the random variables
Y

(n)
k

g
Y

(n)
k

(Ek − 1) are independent with zero

mean. We deduce that

E

[
sup
t≥0

(
L

(n)
t − L̃

(n)
t

)2|Y
]

= E

[
sup
t≥0

(	nt
∧(τn−1)∑
k=0

Y
(n)
k

g
Y

(n)
k

(Ek − 1)

)2

|Y
]

≤ 4
τn−1∑
k=0

(
Y

(n)
k

g
Y

(n)
k

)2

≤ 4
n∑

�=1

(
�

g�

)2

,

where we used Doob inequality for martingale in the first inequality. Thanks to
(13), we get

E

[
sup
t≥0

(
Ln

t − L̃
(n)
t

)2|Y
]

≤ c

n∑
�=1

�2−2α ≤ c

⎧⎨
⎩

n3−2α, if α < 3/2,
log(n), if α = 3/2,
1, if α > 3/2,

where c is nonrandom. This implies the result. �

LEMMA 4.2. For t ≥ 0, let

L̂
(n)
t =

	nt
∧(τn−1)∑
k=0

(
Y

(n)
k

)−γ
.

There exists a finite constant C33 such that for all t ≥ 0, we have

∣∣∣∣L̃(n)
t − L̂

(n)
t

C0
(2 − α)

∣∣∣∣ ≤ C33

⎧⎨
⎩

n2−α−ζ , if ζ < 2 − α,
log(n), if ζ = 2 − α,
1, if ζ > 2 − α.

(33)

PROOF. Use (13) to get that

L̃
(n)
t − L̂

(n)
t

C0
(2 − α)
=

	nt
∧(τn−1)∑
k=0

(
Y

(n)
k

)−γ
O

((
Y

(n)
k

)−min(ζ,1))
.
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We deduce that∣∣∣∣L̃(n)
t − L̂

(n)
t

C0
(2 − α)

∣∣∣∣ ≤ c

n∑
�=1

�−α+1−min(ζ,1)

≤ c

⎧⎨
⎩

n2−α−ζ , if ζ < 2 − α,
log(n), if ζ = 2 − α,
1, if ζ > 2 − α. �

5. Limit distribution of L̂
(n)
t . Let α ∈ (1,2) and γ = α − 1. For t ∈ [0, γ ],

we set

v(t) =
∫ t

0

(
1 − r

γ

)−γ

dr.

THEOREM 5.1. We assume that ρ(t) = C0t
−α + O(t−α+ζ ) for some C0 > 0

and ζ > 1 − 1/α.

(i) Let t0 ∈ [0, γ ) and δ > 0. The following convergence in probability holds:

n(α−1)/2−δ sup
0≤t≤t0

∣∣n−2+αL̂
(n)
t − v(t)

∣∣ P−→
n→∞ 0.(34)

(ii) Let t ∈ [0, γ ). The following convergence in distribution holds:

n−1+α−1/α(
L̂

(n)
t − n2−αv(t)

) (d)−→
n→∞(α − 1)

∫ t

0
dr

(
1 − r

γ

)−α

Vr .(35)

PROOF. Let ε2 ∈ (0, γ ), t0 = γ −ε2 and t ∈ [0, t0]. We use a Taylor expansion
to get

L̂
(n)
t =

	nt
∧(τn−1)∑
k=0

(
n −

k∑
i=1

X
(n)
i

)−γ

=
	nt
∧(τn−1)∑

k=0

(
n − k

γ
−

k∑
i=1

(
X

(n)
i − 1

γ

))−γ

(36)

=
	nt
∧(τn−1)∑

k=0

(
n − k

γ

)−γ

(1 − �n,k)
−γ

= In(t) + γ Jn(t) + γ (γ + 1)Rn(t)

with �n,k =
∑k

i=1(X
(n)
i −1/γ )

n−k/γ
and

In(t) =
	nt
∧(τn−1)∑

k=0

(
n − k

γ

)−γ

,
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Jn(t) =
	nt
∧(τn−1)∑

k=1

(
n − k

γ

)−γ−1 k∑
i=1

(
X

(n)
i − 1

γ

)
,

Rn(t) =
	nt
∧(τn−1)∑

k=1

(
n − k

γ

)−γ ∫ �n,k

0
(�n,k − s)(1 − s)−γ−2 ds.

Notice that a.s. �n,k < 1, so that Rn(t) is well defined.
Convergence of In(t). We write

In(t) = n2−αIn,1(t)1{nt<τn} + In(t)1{nt≥τn}

with In,1(t) = 1

n

	nt
∑
k=0

(
1 − k

nγ

)−γ

.

Standard computation yields

In,1(t) = v(t) + 1

n
h3(n, t),

where supt∈[0,t0],n≥1 |h3(n, t)| < ∞. Hence, we have for ε > 0

P

(
n−1+α−1/α sup

0≤t≤t0

|In(t) − n2−αv(t)| ≥ ε

)

= P

(
n1−1/α sup

0≤t≤t0

|In,1(t) − v(t)| ≥ ε, nt0 < τn

)

+ P

(
n−1+α−1/α sup

0≤t≤t0

|In(t) − n2−αv(t)| ≥ ε, nt0 ≥ τn

)

≤ P

(
n−1/α sup

0≤t≤t0

|h3(n, t)| ≥ ε

)
+ P(nt0 ≥ τn).

According to Lemma 3.3, τn/n converges in probability to γ . This implies that for
all t ∈ [0, γ )

lim
n→∞ P(nt ≥ τn) = 0.(37)

As n−1/α sup0≤t≤t0
|h3(n, t)| < ε for n large enough, we deduce the following con-

vergence in probability:

n−1+α−1/α sup
0≤t≤t0

|In(t) − n2−αv(t)| P−→
n→∞ 0.(38)

Convergence of Jn(t). Let t ∈ [0, t0]. To get the convergence of Jn(t), notice
that

Jn(t) =
	nt
∧(τn−1)∑

i=1

(
X

(n)
i − 1

γ

) 	nt
∧(τn−1)∑
k=i

(
n − k

γ

)−α

(39)
= n1−αJn,11{nt<τn} + Jn(t)1{nt≥τn},
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with

Jn,1 =
	nt
∧(τn−1)∑

i=1

fn(i/n)

(
X

(n)
i − 1

γ

)

and

fn(r) = 1

n

	nt
∑
j=	nr


(
1 − j

nγ

)−α

.

The functions fn are finite and uniformly bounded as for n ≥ 2/ε2,

0 ≤ fn(r) ≤ fn(0) = 1

n

	nt
∑
k=0

(
1 − k

nγ

)−α

≤
∫ γ−ε2/2

0

(
1 − s

γ

)−α

ds < ∞.

Notice that

κ = lim
n→∞

1

n

	nγ 
∑
k=1

fn(k/n)α =
∫ t

0
dr

(∫ t

r

(
1 − s

γ

)−α

ds

)α

.

We deduce from Proposition 3.4 that (n−1/αJn,1, n ≥ 2) converges in distribu-
tion to κ1/αV1. For ε′ > 0, we have P(1{nt≥τn}|Jn(t)| ≥ ε′) ≤ P(nt ≥ τn). Then we
use (39) and (37) to conclude that the following convergence in distribution holds:

n−1+α−1/αJn(t)
(d)−→

n→∞κ1/αV1.(40)

Convergence of Rn(t). Let t ∈ [0, t0]. We shall now prove that n−1+α−1/αRn(t)

converges to 0 in probability. Let ε ∈ (0, γ ). We have Rn(t) = Rn,1 + Rn,2, with

Rn,1 =
	nt
∑
k=1

(
n − k

γ

)−γ

1{k<τn}Rn,1,k,

Rn,1,k = 1{�n,k<1−ε}
∫ �n,k

0
(�n,k − s)(1 − s)−γ−2 ds,

Rn,2 =
	nt
∑
k=1

(
n − k

γ

)−γ

1{k<τn}1{�n,k≥1−ε}
∫ �n,k

0
(�n,k − s)(1 − s)−γ−2 ds.

We have

E[|Rn,1,k|] ≤ ε−γ−2

2
E[(�n,k)

2] ≤ c

n2 E

[(
k∑

i=1

(
X

(n)
i − 1

γ

))2]
,

where we used that k ≤ n(γ −ε2) for the last inequality and c depends on ε and ε2.
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Recall Y = (Yk, k ≥ 0) is the filtration generated by Y . We consider the
Y-martingale Nr = ∑r

j=1 �Nr , with �Nr = X
(n)
r − E[X(n)

r |Yr−1]. We have

E

[(
k∑

i=1

(
X

(n)
i − 1

γ

))2]
≤ 2E[N2

k ] + 2E

[(
k∑

i=1

(
E

[
X

(n)
i |Yi−1

] − 1

γ

))2]
.

Notice that

E[N2
k ] = E

[
k∑

i=1

(�Ni)
2

]
≤ E

[
k∑

i=1

E
[(

X
(n)
i

)2|Yi−1
]] ≤ E

[
k∑

i=1

(
X

(n)
i

)2
]
.

Using that, conditionally on Yi−1, X
(n)
i and X

(Yi−1)

1 have the same distribution, we
get that

E[N2
k ] ≤

n∑
j=1

E
[(

X
(j)
1

)2]
.

Thanks to (18) and (13), we deduce that

E[N2
k ] ≤ C18

n∑
j=1

j2

gj

≤ c

n∑
j=1

j2−α ≤ cn3−α.

Using (15) and (13), we get

E

[(
k∑

i=1

(
E

[
X

(n)
i |Yi−1

] − 1

γ

))2]
≤ E

[(
k∑

i=1

∣∣∣∣E[
X

(n)
i |Yi−1

] − 1

γ

∣∣∣∣
)2]

≤ E

[(
k∑

i=1

C15ϕYi−1

)2]

≤ c

(
n∑

j=1

ϕj

)2

≤ cn3−α,

where for the last inequality we used (14) with ε0 > 0 small enough (such that
1 + 2ε0 < α) and the fact that ζ > 1 − 1/α implies 2 − 2ζ ≤ 3 − α as α ∈ (1,2).
This implies that for k ≤ n(γ − ε2) = nt0

E

[(
k∑

i=1

(
X

(n)
i − 1

γ

))2]
≤ cn3−α(41)

therefore E[|Rn,1,k|] ≤ cn1−α and E[|Rn,1|] ≤ cn3−2α . Thus, we get that
(n−1+α−1/αRn,1, n ≥ 1) converges in probability to 0 since −1 + α − 1/α + 3 −
2α = −(α − 1)2/α < 0 for α > 1.
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We now consider Rn,2. Suppose that k ≤ 	nt
 − 1 satisfies �n,k ≥ 1 − ε on
{nt < τn}. Then on {nt < τn}, we have

�n,k+1 = �n,k + X
(n)
k+1 − 1/γ + �n,k/γ

n − (k + 1)/γ

≥ �n,k + X
(n)
k+1 − ε/γ

n − (k + 1)/γ
≥ �n,k,

where we used that γ > ε for the first inequality and X
(n)
k+1 ≥ 1 for the last. In

particular, on {nt < τn}, if �n,k ≥ 1−ε for some k ≤ 	nt
, then we have �n,	nt
 ≥
1−ε. This implies that 1{nt<τn}Rn,2 = 1{�n,	nt
≥1−ε}1{nt<τn}Rn,2. With the notation
of Corollary 3.5, we have

{nt < τn} ∩ {
�n,	nt
 ≥ 1 − ε

} ⊂
{
V

(n)
t ≥ (1 − ε)

(
n − 	nt


γ

)
n−1/α

}

⊂ {
n−1+1/αV

(n)
t ≥ c

}
,

and then for any ε′ > 0

P(n−1+α−1/α|Rn,2| ≥ ε′, nt < τn)

= P
(
1{�n,	nt
≥1−ε}n−1+α−1/α|Rn,2| ≥ ε′, nt < τn

)
≤ P

(
�n,	nt
 ≥ 1 − ε, nt < τn

)
≤ P

(
n−1+1/αV

(n)
t ≥ c

)
.

Use the convergence of V
(n)
t , see Corollary 3.5, to get that the right-hand side

of the last inequality converges to 0 as n goes to infinity. Then notice that
P(n−1+α−1/α|Rn,2| ≥ ε′, nt ≥ τn) ≤ P(nt ≥ τn) which converges to 0 thanks
to (37).

Thus n−1+α−1/αRn(t) converges in probability to 0. As t �→ Rn(t) is nonnega-
tive and nondecreasing, we conclude that

n−1+α−1/α sup
0≤t≤t0

Rn(t)
P−→

n→∞ 0.(42)

We deduce from (36), (38), (40) and (42) that

n−1+α−1/α(
L̂

(n)
t − n2−αv(t)

) (d)−→
n→∞γ

[∫ t

0
dr

(∫ t

r

(
1 − s

γ

)−α

ds

)α]1/α

V1.(43)

To obtain (35), use (29) to get that γ [∫ t
0 dr(

∫ t
r (1 − s

γ
)−α ds)α]1/αV1 is distributed

as γ
∫ t

0 dVr

∫ t
r (1 − s

γ
)−α ds which in turn is equal to

∫ t
0 dr(1 − r

γ
)−αVr .
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To get (34), thanks to (36), (38) and (42), we have to check that
n(α−1)/2−δ−2+α sup0≤t≤t0

|Jn(t)| converges to 0 in probability for any δ > 0. No-
tice that for t ∈ [0, t0],

|Jn(t)| ≤
	nt
∧(τn−1)∑

k=1

(
n − k

γ

)−γ−1
∣∣∣∣∣

k∑
i=1

(
X

(n)
i − 1

γ

)∣∣∣∣∣
≤

	nt0
∧(τn−1)∑
k=1

(
n − k

γ

)−γ−1
∣∣∣∣∣

k∑
i=1

(
X

(n)
i − 1

γ

)∣∣∣∣∣.
Use (41) to deduce that

E

[
sup

0≤t≤t0

|Jn(t)|2
]1/2

≤ cn(5−3α)/2.

This implies that n(α−1)/2−δ−2+α sup0≤t≤t0
|Jn(t)| converges to 0 in L2 and thus

in probability. This ends the proof of (34). �

6. Proof of the main result. Let

α0 = 1 + √
5

2
.

Notice that for α ∈ (1, α0), we have −1 + α − 1/α < 0, whereas for α ≥ α0, −1 +
α − 1/α ≥ 0. Recall γ = α − 1. We define a(t) for t ∈ [0, γ ] by

a(t) = v(t)

C0
(2 − α)
where v(t) =

∫ t

0

(
1 − r

γ

)−γ

dr.

We also set

V ∗
t = α − 1

C0
(2 − α)

∫ t

0

(
1 − r

γ

)−α

Vr dr for t ∈ (0, γ ).

Let x+ = max(x,0) denote the positive part of x.

THEOREM 6.1. Let α ∈ (1,2). We assume that ρ(t) = C0t
−α +O(t−α+ζ ) for

some C0 > 0 and ζ > 1 − 1/α.

(i) Let t0 ∈ [0, γ ) and δ > 0. We have the following convergence in probabil-
ity:

n−((5−3α)+/2)−δ sup
0≤t≤t0

∣∣L(n)
t − n2−αa(t)

∣∣ P−→
n→∞ 0.(44)

In particular, we have n−2+αL
(n)
t

P−→
n→∞a(t) for all t ∈ [0, γ ).



ASYMPTOTIC RESULTS ON THE LENGTH OF COALESCENT TREES 1023

(ii) If α ∈ (1, α0), for t ∈ (0, γ ), the following convergence in distribution
holds:

n−1+α−1/α(
L

(n)
t − a(t)n2−α) (d)−→

n→∞V ∗
t .(45)

PROOF. First of all, let us consider the case α ∈ (1, α0). Lemma 4.1 and
Chebyshev inequality imply that for α ∈ (1, α0), we have the following conver-
gence in probability:

lim
n→∞n−1+α−1/α sup

t≥0

∣∣L(n)
t − L̃

(n)
t

∣∣ = 0.

This and Lemma 4.2 imply that for α ∈ (1, α0), we have the following convergence
in probability

lim
n→∞n−1+α−1/α sup

t≥0

∣∣∣∣L(n)
t − L̂

(n)
t

C0
(2 − α)

∣∣∣∣ = 0.

Then (45) and (44) for α ∈ (1, α0) are a direct consequence of Theorem 5.1.
For α ∈ [α0,2), note that α > 3/2 and −1 + α − 1/α ≥ 0. As ζ > 1 − 1/α and

α ≥ α0, that is, 1 − 1/α ≥ 2 − α, we get ζ > 2 − α. We then use Lemma 4.1,
Lemma 4.2 (only with ζ > 2 −α) and Theorem 5.1 to get (44) for α ∈ [α0,2). �

Let S
(n)
t be the total number of mutations up to the 	nt
th coalescence, for

t ∈ (0, γ ). Conditionally on L
(n)
t , S

(n)
t is a Poisson r.v. with parameter θL

(n)
t . The

next corollary is a consequence of Theorem 6.1.

COROLLARY 6.2. We assume that ρ(t) = C0t
−α + O(t−α+ζ ) for some

C0 > 0 and ζ > 1 − 1/α. Let t ∈ (0, γ ) and G be a standard Gaussian r.v., in-
dependent of V .

(i) For α ∈ (1,
√

2), we have

n−1+α−1/α(
S

(n)
t − θa(t)n2−α) (d)−→

n→∞ θV ∗
t .

(ii) For α ∈ (
√

2,2), we have

n−1+α/2(
S

(n)
t − θa(t)n2−α) (d)−→

n→∞
√

θa(t)G.

(iii) For α = √
2, we have −1 + α − 1

α
= 1 − α

2 and

n−1+α−1/α(
S

(n)
t − θa(t)n2−α) (d)−→

n→∞ θV ∗
t + √

θa(t)G.
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PROOF. Let us compute the characteristic function ψn(u, v) of the 2-dimen-
sional r.v. (Gn,Hn) with

Gn = S
(n)
t − θL

(n)
t√

θa(t)n2−α
and Hn = n−1+α−1/α(

L
(n)
t − a(t)n2−α)

.

Using that, conditionally on L
(n)
t , the law of S

(n)
t is a Poisson distribution with

parameter θL
(n)
t , we have

ψn(u, v) = E[eiuGneivHn] = E
[
e−θL

(n)
t (1−eiu/

√
θa(t)n2−α +iu/

√
θa(t)n2−α)eivHn

]
.

Using (i) of Theorem 6.1, we get that

−θL
(n)
t

(
1 − eiu/

√
θa(t)n2−α + iu/

√
θa(t)n2−α

)
tends to −u2/2 in probability and has a nonnegative real part.

We first consider the case α ∈ (1,
√

2]. We have
√

2 < α0. Hence, applying (ii)
of Theorem 6.1, we get that (Gn,Hn) converges in distribution to (G,V ∗

t ), where
G is a standard Gaussian r.v. independent of V . Notice that

S
(n)
t = θa(t)n2−α + θn1−α+1/αHn + √

θa(t)n1−α/2Gn

and then

n−1+α−1/α(
S

(n)
t − θa(t)n2−α) = θHn + √

θa(t)nα/2−1/αGn.

When α ≤ √
2, notice that α/2 − 1/α < 0 (resp. = 0) if α <

√
2 (resp. α = √

2).
This gives (i) and (iii) of the corollary.

Now we consider the case α ∈ (
√

2,2). We write

n−1+α/2(
S

(n)
t − θa(t)n2−α) = √

θa(t)Gn + n−1+α/2(
L

(n)
t − a(t)n2−α)

.

We still have that Gn converges in law to G. Moreover, the convergences (45)
and (44) imply that n−1+α/2(L

(n)
t − a(t)n2−α) converges to 0 in probability. This

gives (ii). �

Acknowledgments. This work is part of the MAEV (Modèles Aléatoires pour
l’Evolution du Vivant) supported by the French ANR (Agence Nationale de la
Recherche). The authors wish to thank an anonymous referee for his comments
which improved the presentation of the paper.

REFERENCES

[1] BASDEVANT, A.-L. and GOLDSCHMIDT, C. (2007). Asymptotics of the allele frequency spec-
trum associated with the Bolthausen–Sznitman coalescent. Available at http://fr.arXiv.org/
abs/0706.2808.

[2] BERESTYCKI, J., BERESTYCKI, N. and SCHWEINSBERG, J. (2007). Beta-coalescents and
continuous stable random trees. Ann. Probab. 35 1835–1887.

[3] BERESTYCKI, J., BERESTYCKI, N. and SCHWEINSBERG, J. (2007). Small time properties of
Beta-coalescents. Ann. Inst. H. Poincaré Probab. Statist. To appear.

http://fr.arXiv.org/abs/0706.2808
http://fr.arXiv.org/abs/0706.2808


ASYMPTOTIC RESULTS ON THE LENGTH OF COALESCENT TREES 1025

[4] BERTOIN, J. (1996). Lévy Processes. Cambridge Univ. Press. MR1406564
[5] BERTOIN, J. and LE GALL, J.-F. (2006). Stochastic flows associated to coalescent processes.

III. Limit theorems. Illinois J. Math. 50 147–181. MR2247827
[6] BIRKNER, M., BLATH, J., CAPALDO, M., ETHERIDGE, A., MÖHLE, M., SCHWEINS-

BERG, J. and WAKOLBINGER, A. (2005). Alpha-stable branching and Beta-coalescents.
Electron. J. Probab. 10 303–325. MR2120246

[7] BOLTHAUSEN, E. and SZNITMAN, A.-S. (1998). On Ruelle’s probability cascades and an
abstract cavity method. Comm. Math. Phys. 197 247–276. MR1652734

[8] BOOM, J. D. G., BOULDING, E. G. and BECKENBACH, A. T. (1994). Mitochondrial
DNA variation in introduced populations of pacific oyster, Crassostrea Gigas, in British
Columbia. Can. J. Fish. Aquat. Sci. 51 1608–1614.

[9] BREIMAN, L. (1992). Probability. SIAM, Philadelphia. MR1163370
[10] DRMOTA, M., IKSANOV, A., MÖHLE, M. and RÖSLER, U. (2007). Asymptotic results about

the total branch length of the Bolthausen–Sznitman coalescent. Stoch. Process. Appl. 117
1404–1421.

[11] ELDON, B. and WAKELEY, J. (2006). Coalescent processes when the distribution of offspring
number among individuals is highly skewed. Genetics 172 2621–2633.

[12] FELLER, W. (1971). An Introduction to Probability Theory and Its Applications. II. Wiley, New
York. MR0270403

[13] GNEDIN, A. and YAKUBOVICH, Y. (2007). On the number of collisions in �-coalescents.
Available at http://arXiv.org/abs/0704.3902.

[14] IKSANOV, A. and MÖHLE, M. (2007). On a random recursion related to absorption times of
death Markov chains. Available at http://arXiv.org/abs/0710.5826.

[15] KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York.
MR1876169

[16] KIMURA, M. (1969). The number of heterozygous nucleotide sites maintained in a finite pop-
ulation due to steady flux of mutations. Genetics 61 893–903.

[17] KINGMAN, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13 235–248.
MR0671034

[18] KINGMAN, J. F. C. (2000). Origins of the coalescent 1974–1982. Genetics 156 1461–1463.
MR0671034

[19] MÖHLE, M. (2006). On the number of segregating sites for populations with large family sizes.
Adv. in Appl. Probab. 38 750–767. MR2256876

[20] MUKHERJEA, A., RAO, M. and SUEN, S. (2006). A note on moment generating functions.
Statist. Probab. Lett. 76 1185–1189. MR2270543

[21] PITMAN, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27 1870–1902.
MR1742892

[22] SAGITOV, S. (1999). The general coalescent with asynchronous mergers of ancestral lines.
J. Appl. Probab. 36 1116–1125. MR1742154

[23] SCHWEINSBERG, J. (2003). Coalescent processes obtained from super critical Galton–Watson
processes. Stochastic Process. Appl. 106 107–139. MR1983046

[24] WATTERSON, G. A. (1975). On the number of segregating sites in genetical models without
recombination. Theoret. Population Biology 7 256–276. MR0366430

J.-F. DELMAS

CERMICS
ÉCOLE DES PONTS

PARISTECH

6-8 AV. BLAISE PASCAL

CHAMPS-SUR-MARNE, 77455 MARNE LA VALLÉE

FRANCE

E-MAIL: delmas@cermics.enpc.fr

J.-S. DHERSIN

A. SIRI-JEGOUSSE

MAP 5
UNIVERSITÉ PARIS DESCARTES

45 RUE DES SAINTS PÈRES

75270 PARIS CEDEX 06
FRANCE

E-MAIL: dhersin@math-info.univ-paris5.fr
Arno.Jegousse@math-info.univ-paris5.fr

http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=2247827
http://www.ams.org/mathscinet-getitem?mr=2120246
http://www.ams.org/mathscinet-getitem?mr=1652734
http://www.ams.org/mathscinet-getitem?mr=1163370
http://www.ams.org/mathscinet-getitem?mr=0270403
http://arXiv.org/abs/0704.3902
http://arXiv.org/abs/0710.5826
http://www.ams.org/mathscinet-getitem?mr=1876169
http://www.ams.org/mathscinet-getitem?mr=0671034
http://www.ams.org/mathscinet-getitem?mr=0671034
http://www.ams.org/mathscinet-getitem?mr=2256876
http://www.ams.org/mathscinet-getitem?mr=2270543
http://www.ams.org/mathscinet-getitem?mr=1742892
http://www.ams.org/mathscinet-getitem?mr=1742154
http://www.ams.org/mathscinet-getitem?mr=1983046
http://www.ams.org/mathscinet-getitem?mr=0366430
mailto:delmas@cermics.enpc.fr
mailto:dhersin@math-info.univ-paris5.fr
mailto:Arno.Jegousse@math-info.univ-paris5.fr

	Introduction
	Motivations
	The coalescent tree and mutation rate
	Known results
	Kingman coalescence
	Bolthausen-Sznitman coalescence
	The case (0,1] x-1 Lambda(dx) <
	Beta coalescent

	Main result
	Organization of the paper

	Law of the first jump
	Asymptotics for the number of jumps
	First approximation of the length of the coalescent tree
	Limit distribution of Lt(n)
	Proof of the main result
	Acknowledgments
	References
	Author's Addresses

