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OPTIMAL INVESTMENT AND CONSUMPTION IN A
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In this paper, we investigate an optimal investment and consumption
problem for an investor who trades in a Black–Scholes financial market
with stochastic coefficients driven by a non-Gaussian Ornstein–Uhlenbeck
process. We assume that an agent makes investment and consumption de-
cisions based on a power utility function. By applying the usual separation
method in the variables, we are faced with the problem of solving a nonlin-
ear (semilinear) first-order partial integro-differential equation. A candidate
solution is derived via the Feynman–Kac representation. By using the proper-
ties of an operator defined in a suitable function space, we prove uniqueness
and smoothness of the solution. Optimality is verified by applying a classical
verification theorem.

1. Introduction. A fundamental problem in financial mathematics is the al-
location of funds between assets in order to provide sufficiently large payments
during the duration of an investment contract, as well as to arrive at a high return
at maturity. This optimization problem has its origin in a seminal paper by Mer-
ton [18], where it is formulated as a utility maximization problem and an optimal
strategy is derived via the Bellman equation. Since then, there has been a growing
interest in investment and consumption problems and the classical Merton prob-
lem has been extended in many directions. One of the generalizations considers
financial coefficients (risk-free return, drift and volatility) affected by an external
stochastic factor.

In this paper, we extend the results from [5] and [17]. We investigate a Black–
Scholes-type financial model with coefficients depending on a background driving
process. The dependence is described through general functions which satisfy
linear growth conditions. An external stochastic factor is chosen as Ornstein–
Uhlenbeck process driven by a subordinator. The Barndorff-Nielsen and Shephard
model considered in [5] and [17] arises as a special case. As an additional possi-
bility, the investor is allowed to withdraw (consume) funds during the term of the

Received February 2007; revised September 2007.
1Supported in part by an Advanced Mathematical Methods for Finance (AMaMeF) grant from

European Science Foundation and by the Ministry of Education in Poland Grant M111 002 31/0165.
AMS 2000 subject classifications. Primary 93E20, 91B28; secondary 60H30, 60J75.
Key words and phrases. Banach fixed point theorem, Feynman–Kac formula, Hamilton–Jacobi–

Bellman equation, utility function, Lévy process, optimal investment and consumption, Ornstein–
Uhlenbeck process, stochastic volatility model, subordinator.

879

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/07-AAP475
http://www.imstat.org
http://www.ams.org/msc/


880 L. DELONG AND C. KLÜPPELBERG

contract. This leads to an optimal investment and consumption problem which is
more complex than a pure investment problem. From an analytical point of view,
the difference is that, after applying the usual separation of variables, we arrive at
a nonlinear partial integro-differential equation, whereas [5] and [17] deal with a
linear one.

The first goal of this paper is to show that a candidate value function is the
classical solution of a corresponding Hamilton–Jacobi–Bellman equation. This
requires proving the existence of a classical solution to a nonlinear (semilinear)
first-order partial integro-differential equation. It is well known (see [9], Chap-
ter 12.2, and [20]) that the regularity of solutions to equations with an integral
term is uncertain, especially in the degenerate case. There exist some results con-
cerning the smoothness of a solution to a linear partial integro-differential equation
(see, e.g., [2], Chapters 3.3 and 3.8, [9], Chapter 12.2 and [20]), but they all deal
only with the nondegenerate second-order case. The degenerate case can be han-
dled by applying a viscosity approach (e.g., [9], Chapter 12.2) which we want to
avoid, following instead [5], where the existence of a classical solution to a lin-
ear first-order partial integro-differential equation is established. We believe that
our proof (in Sections 4 and 5) of the existence of a unique classical solution to a
nonlinear first-order partial integro-differential equation contributes to the present
state of the literature.

Our second goal is to provide an explicit formula for the optimal consumption.
In the case of a power utility function, it is intuitively easy to foresee a formula
for the optimal investment, by simply replacing deterministic coefficients by func-
tions, which relate coefficients to an external factor and thus adapt the strategy
to an underlying filtration. This is no longer obvious as far as the consumption
strategy is concerned. To the best of our knowledge, the formula for the optimal
consumption in the model investigated in this paper is new (see Theorem 6.1).

Portfolio optimization in stochastic factor models has recently gained much at-
tention in the financial literature. In the majority of papers, a power utility function
is applied and a Black–Scholes financial market with an external stochastic fac-
tor of diffusion type is considered. In this setting, it is well known that one must
solve a nondegenerate nonlinear second-order partial differential equation. Sev-
eral methods have been proposed to deal with this problem. In [23], in the case of
a pure investment problem, a power transformation was introduced, which makes
the nonlinear term disappear. In [16] a similar transformation has been applied,
but because of the possible consumption, a linear partial differential equation ap-
pears only in the case of perfectly (positively) correlated Brownian motions or for
logarithmic utility. More effective methods have been proposed in [12] and [8].
In the first paper, a change of measure transformation is applied and the resulting
optimization control problem is investigated, whose value function depends only
on time and a factor variable. In the second paper, the dual problem is considered,
whose control process belongs to a set of equivalent local martingale measures.
Again, the value function of the dual problem depends only on time and a factor
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variable. This method has also been successfully applied in a robust utility maxi-
mization model in [15] recently. In all three aforementioned papers, the existence
of a classical solution to the Hamilton–Jacobi–Bellman equation is proved in three
steps: first, by constraining the values of the control process to a compact set,
second, by applying results from the theory of nondegenerate linear partial differ-
ential equations (see Chapter VI.6 and Appendix E in [13]), thus showing that the
constrained problem has a unique classical solution, and, third, by studying the
asymptotic limit. It seems that this method cannot be successfully applied to our
problem.

In the present paper, a candidate solution is first derived heuristically via the
Feynman–Kac representation. This leads to a fixed point equation. The existence
of a solution is established by Banach’s fixed point theorem and its differentiability
is proved by using the properties of a suitable operator. Finally, we show that the
candidate solution satisfies our integro-differential equation and that this solution
is unique. The idea of finding a solution to a control problem through a fixed point
theorem is not new; it is, for example, mentioned in [8]. In [4], the existence of a
solution to a nondegenerate nonlinear (semilinear) partial differential equation is
proved by Banach’s fixed point theorem. The smoothness then follows from Hölder
estimates for a solution of a nondegenerate linear partial differential equation. We
would like to point out that, in particular, in [4], an exponent in the Feynman–Kac
formula is assumed to be bounded, which leads to a bounded solution, while we are
dealing with a solution which satisfies only an exponential growth condition. We
would also like to mention that in the context of optimal control, the results from
[4] are directly applied in [10], where an investment and consumption problem is
investigated in the presence of default, triggered by a one-jump counting process
with a stochastic intensity of diffusion type.

Throughout this paper, we assume that the external factor is observable (as in all
aforementioned publications). An alternative would be a partially observed con-
trol problem, whose optimal strategy would then be based on an estimate of the
underlying factor. We refer to [3] or [21], where a portfolio problem is solved in
a diffusion setting with an unobserved volatility process of diffusion type and of
Markov switching type, respectively.

Our paper is structured as follows. In Section 2, we introduce the financial mar-
ket. The optimization problem is formulated in Section 3. The uniqueness of a
solution is proved in Section 4, whereas the differentiability is established in Sec-
tion 5. In Section 6, we show the optimality of a solution and illustrate our findings
by means of a numerical example. We also present the solution to the optimal in-
vestment and consumption problem for logarithmic utility.

2. The financial market. Let (�,F ,P) be a probability space with filtration
F = (F (t))0≤t≤T , where T denotes a finite time horizon. The filtration is assumed
to satisfy the usual conditions of completeness and right continuity. The measure
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P is the real-world, objective probability measure. All expectations are taken with
respect to P.

We consider a Black–Scholes market with coefficients driven by an external sto-
chastic factor. Let Y := (Y (t))0≤t≤T denote this economic factor, whose dynamics
is given by a stochastic differential (SDE) equation of the Ornstein–Uhlenbeck
type,

dY (t) = −λY (t−) dt + dL(λt), Y (0) = y > 0,(2.1)

where λ > 0 denotes the reversion rate and L := (L(t))0≤t≤T is an F-adapted
subordinator with càdlàg sample paths. Recall that a subordinator is a Lévy process
with a.s. nondecreasing sample paths. For definitions and more background on
Lévy processes, we refer to [1, 7] or [22].

Our financial market consists of two instruments. The price of a (locally) risk-
free asset B := (B(t))0≤t≤T is described by the differential equation

dB(t)

B(t)
= r(Y (t−)) dt, B(0) = 1,(2.2)

whereas the dynamics of the price of a risky asset, S := (S(t))0≤t≤T , is given by
the SDE

dS(t)

S(t)
= μ(Y (t−)) dt + σ(Y (t−)) dW(t), S(0) = s > 0,(2.3)

where W := (W(t))0≤t≤T denotes an F-adapted Brownian motion, independent of
the subordinator L. We make the following assumptions concerning the functions
r,μ and σ :

(A1) the functions r : (0,∞) → [0,∞), μ : (0,∞) → [0,∞) and σ : (0,∞) →
(0,∞) are continuous and satisfy the linear growth conditions

r(y) ≤ Ar + Bry, μ(y) ≤ Aμ + Bμy,

σ 2(y) ≤ Aσ + Bσy, y > 0,

with nonnegative constants;
(A2) the derivatives dr

dy
: (0,∞) → R,

dμ
dy

: (0,∞) → R and dσ 2

dy
: (0,∞) → R

are continuous and satisfy linear growth conditions analogous to those of
r,μ,σ 2;

(A3) infy∈D2 σ(y) > 0, where the set D2 will be specified in (3.7).

Note that the assumptions (A1)–(A3) are more general than in [8, 12] and [15],
where uniform boundedness of the functions r,μ,σ 2 and their first derivatives is
required. Our conditions are similar to those in [23], where Lipschitz continuity of
the coefficients is assumed, together with a linear growth condition.
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A prominent example of the above financial model is the Barndorff-Nielsen and
Shephard model, introduced in [6], which can be described by the following set of
equations:

dB(t)

B(t)
= r dt,

dS(t)

S(t)
= (

μ + βY(t−)
)
dt + √

Y(t−) dW(t).(2.4)

Besides the above paper, we also refer to [9], Chapter 15, [5, 17] and refer-
ences therein for more information about the properties of non-Gaussian stochastic
volatility models in the context relevant to our paper.

We shall need some further results and notation for Y and its background driving
Lévy process L. The subordinator L has the representation (see, e.g., [1], Chap-
ter 1.3.2)

L(t) =
∫
(0,t]

∫
z>0

zN(ds, dz), t ≥ 0,(2.5)

where N((0, t] × A) = #{0 < s ≤ t : (L(s) − L(s−)) ∈ A} denotes a Poisson ran-
dom measure with a deterministic, time-homogeneous intensity measure ν(dz) ds

satisfying
∫

0<z<1 zν(dz) < ∞. The fundamental result in the theory of infinitely
divisible random variables is the Lévy–Kintchine formula, which presents the mo-
ment generating function of a subordinator as

E
[
ewL(t)] = etψ(w) = exp

{
t

∫
z>0

(ewz − 1)ν(dz)

}
, w ≤ w̄,(2.6)

for some w̄ ∈ [0,∞]. The function ψ(w) is called the Laplace exponent of L. Note
that ψ(w) exists at least for all w ≤ 0 and ψ(w) > 0 for w > 0, provided it exists.

Let us now investigate the SDE (2.1). Its unique solution for s > t is given by
(cf. [1], Chapter 6.3)

Y(s) = ye−λ(s−t) +
∫ s

t
e−λ(u−t) dL(λu), Y (t) = y.(2.7)

We abbreviate the process (2.7) by Y t,y := (Y t,y(s), t ≤ s ≤ T ) and would like to
point out that it has a.s. càdlàg sample paths of finite variation and that the mapping
y �→ Y t,y is continuous P-a.s. Moreover,

∂

∂y
Y t,y(s) = e−λ(s−t), P-a.s.(2.8)

Finally, it is straightforward to establish the following relations for all 0 ≤ t ≤ s ≤
T and y > 0:

Y t,y(s) ≤ y + L(λs) − L(λt),(2.9)

λ

∫ s

t
Y t,y(u) du = y + L(λs) − L(λt) − Y t,y(s)(2.10)

≤ y + L(λs) − L(λt) = y + L
(
λ(s − t)

)
.(2.11)
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The above relations hold P-a.s., except for the last equality, which holds in distri-
bution.

3. Formulation of the optimization problem. We consider an investor who
makes decisions concerning investment and consumption of a portfolio based on a
power utility function of the form xγ for γ ∈ (0,1).

Consider the wealth process Xc,π := (Xc,π (t))0≤t≤T of an agent. Its dynamics
is given by the stochastic differential equation

dXc,π (t) = π(t)Xc,π (t)
(
μ(Y (t−)) dt + σ(Y (t−)) dW(t)

)
(3.1)

+ (
1 − π(t)

)
Xc,π (t)r(Y (t−)) dt − c(t) dt,

where π(t) denotes a fraction of the wealth invested in the risky asset and c(t)

denotes the rate of consumption at time t . We are dealing with the following opti-
mization problem:

sup
c,π

E

[∫ T

0
(c(s))γ ds + (Xc,π (T ))γ | X(0) = x,Y (0) = y

]
.(3.2)

The corresponding optimal value function is defined as

V (t, x, y) = sup
(c,π)∈A

E

[∫ T

t
(c(s))γ ds + (Xc,π (T ))γ | X(t) = x,

(3.3)

Y(t) = y

]
.

Let us introduce the set A of admissible strategies.

DEFINITION 3.1. A strategy (c,π) := (c(t),π(t))0≤t≤T is admissible, and
we write (c,π) ∈ A, if it satisfies the following conditions:

1. (c,π) : (0, T ] × � → [0,∞) × [0,1] is a progressively measurable mapping
with respect to the filtration F;

2.
∫ T

0 c(s) ds < ∞ P-a.s.;
3. the SDE (3.1) has a unique, positive solution Xc,π on [0, T ].

We would like to mention that for every (c,π) ∈ A, the wealth process Xc,π ,
which satisfies (3.1), is an Itô diffusion; that is, in particular, a semimartingale with
P-a.s. continuous sample paths.

Note that we exclude the possibility of borrowing from the bank account and
short-selling the asset, as in [5] and [17]. Technically, there is no problem in solv-
ing the unconstrained optimization problem. In particular, if (μ(y) − r(y))/σ 2(y)

is positive and uniformly bounded, then all of our results remain the same.
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One can associate a Hamilton–Jacobi–Bellman equation with the optimization
problem (3.3) given by the following partial integro-differential equation

sup
(c,π)∈[0,∞)×[0,1]

{
cγ + ∂v

∂t
(t, x, y)

+ ∂v

∂x
(t, x, y)

(
πx

(
μ(y) − r(y)

) + xr(y) − c
)

(3.4)

+ 1

2

∂2v

∂x2 (t, x, y)π2x2σ 2(y) − ∂v

∂y
(t, x, y)λy

+ λ

∫
z>0

(
v(t, x, y + z) − v(t, x, y)

)
ν(dz)

}
= 0,

v(T , x, y) = xγ .

As we use a power utility function, it is natural to try to find a solution of the
form v(t, x, y) = xγ f (t, y) for some function f . With this choice of value func-
tion, the optimal strategy (ĉ, π̂), which maximizes the left-hand side of (3.4), is
given by

ĉ = xf (t, y)−1/(1−γ ),(3.5)

π̂ = arg max
π∈[0,1]

{
π

(
μ(y) − r(y)

) − 1
2π2(1 − γ )σ 2(y)

}
.(3.6)

To investigate the formula for the investment strategy more closely, we define the
three sets

D1 = {y > 0,μ(y) − r(y) < 0},
D2 = {y > 0,μ(y) − r(y) > 0, (1 − γ )σ 2(y) > μ(y) − r(y)},(3.7)

D3 = {y > 0,μ(y) − r(y) > 0, (1 − γ )σ 2(y) < μ(y) − r(y)}.
The strategy π̂ is given by

π̂ =

⎧⎪⎪⎨
⎪⎪⎩

0, y ∈ D1,
μ(y) − r(y)

(1 − γ )σ 2(y)
, y ∈ D2,

1, y ∈ D3.

(3.8)

The following lemma is a counterpart of Lemma 5.1 in [5].

LEMMA 3.2. Define the function

Q(y) = max
π∈[0,1]

{
π

(
μ(y) − r(y)

) − 1

2
π2(1 − γ )σ 2(y)

}
+ r(y)

(3.9)



886 L. DELONG AND C. KLÜPPELBERG

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r(y), y ∈ D1,
(μ(y) − r(y))2

2(1 − γ )σ 2(y)
+ r(y), y ∈ D2,

μ(y) − 1

2
(1 − γ )σ 2(y), y ∈ D3.

The function Q is nonnegative, continuous and satisfies the linear growth condition

0 ≤ r(y) ≤ Q(y) ≤ A + By, y > 0,(3.10)

for nonnegative A and B . The derivative of Q is continuous and also satisfies a
linear growth condition: for nonnegative C and D, we have∣∣∣∣dQ

dy
(y)

∣∣∣∣ ≤ C + Dy, y > 0.

PROOF. First, note that the sets D1 and D2 have common boundary

∂D12 = {y > 0,μ(y) = r(y)}(3.11)

and that D2 and D3 have common boundary

∂D23 = {y > 0, (1 − γ )σ 2(y) = μ(y) − r(y)}.(3.12)

The sets D1 and D3 do not have a common boundary.
It is straightforward to show that Q is continuous in D1, D2 and D3, as well as

over the boundaries ∂D12 and ∂D23. The linear growth condition clearly holds in
the sets D1 and D3. Note that in D2, the inequality

(μ(y) − r(y))2

2(1 − γ )σ 2(y)
+ r(y) ≤ 1

2

(
μ(y) − r(y)

) + r(y)

(3.13)

= 1

2

(
μ(y) + r(y)

)

holds, from which the linear growth condition of the function Q in the set D2
follows, from (A1).

We differentiate the function Q and obtain

dQ

dy
(y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr

dy
(y),

y ∈ D1,

(μ(y) − r(y))(
dμ
dy

(y) − dr
dy

(y))

(1 − γ )σ 2(y)
− (μ(y) − r(y))2 dσ

dy
(y)

(1 − γ )σ 3(y)
+ dr

dy
(y),

y ∈ D2,

dμ

dy
(y) − 1

2
(1 − γ )

dσ 2

dy
(y), y ∈ D3.
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Again, it is easy to show that this derivative is continuous in D1, D2 and D3
and over the boundaries ∂D12 and ∂D23, and that a linear growth condition holds
in D1 and D3. To prove the linear growth condition in the set D2, note that∣∣∣∣dQ

dy
(y)

∣∣∣∣ ≤
∣∣∣∣dμ

dy
(y)

∣∣∣∣ + 1

2
(1 − γ )

∣∣∣∣dσ 2

dy
(y)

∣∣∣∣
holds for y ∈ D2. �

REMARK 3.3. When investigating the unconstrained optimization problem,
π ∈ R, the set D2 must coincide with the whole positive real line and one must
assume a uniform lower bound of the function σ , that is, infy>0 σ(y) > 0. In the
Barndorff-Nielsen and Shephard model, this condition does not hold unless we
introduce reversion to a strictly positive constant (i.e., a linear drift term with posi-
tive mean reverting level). However, by considering a constrained strategy, one can
overcome the global lower uniform boundedness and work with uniform bounded-
ness only over some subset; see [5] and [17] for the structure of the set D2. Note
that for the constrained optimization problem, condition (A3) is not necessary. If
volatility hits zero, one can assume that the set D2 reduces to an empty set so that
the results from this paper remain valid. However, in order that all terms in (3.8)
and (3.9) are well defined, we prefer to retain condition (A3). Moreover, we point
out that (A3) is very common in stochastic volatility optimization models (see [8,
12, 15, 23]) as well as being economically sensible.

We would like to point out that the linear growth condition (3.10) and the rela-
tions (2.8)–(2.11) will be frequently applied when proving our results.

By substituting (3.5) and (3.6) into (3.4) we arrive at the nonlinear first-order
partial integro-differential equation for the function f ,

0 = ∂f

∂t
(t, y) − λ

∂f

∂y
(t, y)y + λ

∫
z>0

(
f (t, y + z) − f (t, y)

)
ν(dz)

(3.14)
+ γf (t, y)Q(y) + (1 − γ )f (t, y)−γ /(1−γ ), f (T , y) = 1.

We will show that there exists a unique classical solution to this equation.

4. Existence of the solution. We introduce an operator L acting on func-
tions f as follows:

(Lf )(t, y) = E

[
eγ

∫ T
t Q(Y t,y(s))ds

+ (1 − γ )

∫ T

t
eγ

∫ s
t Q(Y t,y(u))duf (s, Y t,y(s))−γ /(1−γ ) ds

]
,(4.1)

for Q as in Lemma 3.2. By applying (heuristically) the Feynman–Kac formula to
(3.14), we arrive at the following fixed point equation:

(Lf )(t, y) = f (t, y), (t, y) ∈ [0, T ] × (0,∞).(4.2)
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In this section, we prove that equation (4.2) has a unique solution f̂ . In Sec-
tion 5, we shall show that this solution satisfies the partial integro-differential
equation (3.14) in the classical sense.

We start with some observations. Note that it is easy to derive a lower bound for
the optimal value function V ,

V (t, x, y) ≥ xγ
E

[
eγ

∫ T
t r(Y (s))ds],(4.3)

(t, x, y) ∈ [0, T ] × (0,∞) × (0,∞),

where the left-hand side of (4.3) is the payoff, when the agent does not consume
and invests everything in the bank account. We conclude that the solution to (4.2)
should satisfy the inequality

f (t, y) ≥ E
[
eγ

∫ T
t r(Y (s))ds] ≥ 1, (t, y) ∈ [0, T ] × (0,∞).(4.4)

Moreover, if we apply the operator L to a function f which satisfies (4.4), then
we obtain a lower bound of the operator,

(Lf )(t, y) ≥ E
[
eγ

∫ T
t r(Y (s))ds] ≥ 1, (t, y) ∈ [0, T ] × (0,∞),(4.5)

which can be derived by noting that the second term in (4.1) is positive and by
applying the lower estimate (3.10) of the function Q in the first term.

We now turn to the more interesting upper bound of the operator L. We still
assume that condition (4.4) holds, which implies that f (t, y)−γ /(1−γ ) ≤ 1. By ap-
plying the upper estimate (3.10) of the function Q, the estimate (2.11) and the
representation (2.6), provided that ψ(γB/λ) < ∞, we obtain the inequality

(Lf )(t, y) ≤ E

[
eγA(T −t)+γB

∫ T
t Y t,y(s)ds

+ (1 − γ )

∫ T

t
eγA(s−t)+γB

∫ s
t Y t,y(u)du ds

]

≤ E

[
eγA(T −t)+(γB/λ)y+(γB/λ)(L(λT )−L(λt))

+ (1 − γ )

∫ T

t
eγA(s−t)+(γB/λ)y+(γB/λ)(L(λs)−L(λt)) ds

]
(4.6)

= eγA(T −t)+(γB/λ)y+λψ(γB/λ)(T −t)

+ (1 − γ )

∫ T

t
eγA(s−t)+(γB/λ)y+λψ(γB/λ)(s−t) ds

≤
(

1 + 1 − γ

A′
)
eA′(T −t)+B ′y,

where we have introduced the constants A′ = γA + λψ(γB/λ) > 0 and B ′ =
γB/λ ≥ 0.
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In the rest of the paper, we assume that the following condition on the Lévy
measure of L, formulated in terms of the characteristic exponent in (2.6) holds:

(B) ψ(w) < ∞ for w = 2(1 + γ
2 )(B ′ ∨ B ′

σ ) + ε and some ε > 0,

where B ′
σ = γBσ/λ ≥ 0 is defined analogously to B ′ and Bσ is defined in (A1).

The reason for this assumption becomes clear in the course of our calculations. It
is needed in Section 6 in order to verify the optimality. Note that the lemmas in
this section and Section 5 hold under integrability conditions of lower orders.

Let us investigate the operator L in a more rigorous way. Denote by Ce([0, T ]×
(0,∞)) the space of continuous functions f on [0, T ] × (0,∞) satisfying

1 ≤ f (t, y) ≤
(

1 + 1 − γ

A′
)
eA′(T −t)+B ′y, (t, y) ∈ [0, T ] × (0,∞).

We define a metric an Ce([0, T ] × (0,∞)) by

d(ϕ, ξ) = sup
(t,y)∈[0,T ]×(0,∞)

∣∣e−α(T −t)−B ′y(
ϕ(t, y) − ξ(t, y)

)∣∣,(4.7)

for some α > A′ to be specified later. The space (Ce([0, T ] × (0,∞)), d) is a
complete metric space. Below, we state two lemmas dealing with the properties of
the operator L.

LEMMA 4.1. The operator L defines a mapping from Ce([0, T ] × (0,∞))

into itself.

PROOF. Based on our previous results (4.5) and (4.6), we can conclude that
the lower and upper bounds are preserved. It remains to prove the continuity of the
mapping (t, y) �→ (Lf )(t, y). Due to the time homogeneity of Y , the operator L
can be represented as

(Lf )(t, y) = E

[
eγ

∫ T −t
0 Q(Y 0,y(s))ds

+ (1 − γ )

∫ T −t

0
eγ

∫ s
0 Q(Y 0,y(u))duf

(
s + t, Y 0,y(s)

)−γ /(1−γ )
ds

]
.

The above representation simplifies proving continuity in the time variable. Note
that by the growth condition (3.10) and relation (2.11),

eγ
∫ s

0 Q(Y 0,y(u))duf
(
s + t, Y 0,y(s)

)−γ /(1−γ ) ≤ eγ
∫ s

0 Q(Y 0,y(s))ds

≤ eγAT +B ′y+B ′L(λT )

holds P-a.s. and the càdlàg mapping (y, u) �→ Y 0,y(u) is bounded a.s on com-
pact sets. In order to prove continuity in the time variable, one can directly ap-
ply Lebesgue’s dominated convergence theorem and take the limit under the inte-
gral. To prove continuity of the mapping y �→ (Lf )(t, y) at a fixed point y0 > 0,
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define a compact set U around y0 and take a sequence of points yn ∈ U such
that yn → y0 as n → ∞. In this setting, we can find a uniform bound for all
yn ∈ U and can apply Lebesgue’s dominated convergence theorem. The conti-
nuity of (t, y) �→ (Lf )(t, y) now follows from the continuity of f and Q and the
continuity of the mapping y �→ Y 0,y . �

LEMMA 4.2. The mapping L :Ce([0, T ] × (0,∞)) → Ce([0, T ] × (0,∞)) is
a contraction with respect to the metric (4.7) for α > A′ + γ .

PROOF. Take two functions ϕ, ξ ∈ Ce([0, T ] × (0,∞)). Again, we invoke
(2.10) and (3.10). The following inequalities then hold for all (t, y) ∈ [0, T ] ×
(0,∞):

d(Lϕ,Lξ) = ∣∣e−α(T −t)−B ′y(
(Lϕ)(t, y) − (Lξ)(t, y)

)∣∣
≤ (1 − γ )e−α(T −t)−B ′y

× E

[∫ T

t
erγ

∫ s
t Q(Y t,y(u))du

∣∣ϕ(s,Y t,y(s))−γ /(1−γ )

− ξ(s, Y t,y(s))−γ /(1−γ )
∣∣ds

]

≤ γ e−α(T −t)−B ′y
E

[∫ T

t
eγ

∫ s
t Q(Y t,y(u))du|ϕ(s,Y t,y(s))

− ξ(s, Y t,y(s))|ds

]

≤ γ e−α(T −t)−B ′yd(ϕ, ξ)E

[∫ T

t
eγ

∫ s
t Q(Y t,y(u))du+α(T −s)+B ′Y t,y(s) ds

]

≤ γ e−α(T −t)−B ′yd(ϕ, ξ)

× E

[∫ T

t
eγA(s−t)+B ′(y+L(λs)−L(λt)−Y t,y(s))+α(T −s)+B ′Y t,y(s) ds

]

= γ d(ϕ, ξ)

∫ T

t
e−α(s−t)+γA(s−t)+λψ(B ′)(s−t) ds

≤ γ

α − A′ d(ϕ, ξ),

where the mean value theorem has been applied in line 3. We conclude that

d(Lφ,Lξ) ≤ ζd(ϕ, ξ), ζ < 1,

which proves that the operator L defines a contraction mapping. �

The main result of this section is the following proposition, which is a conse-
quence of Banach’s fixed point theorem.
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PROPOSITION 4.3. The equation

(Lf )(t, y) = f (t, y)(4.8)

has a unique solution f̂ ∈ Ce([0, T ] × (0,∞)).

5. Differentiability of the solution. In this section, we establish the differen-
tiability of the function f̂ . In order to apply a classical verification theorem, we
have to prove that f̂ is continuously differentiable in the time and in the space
variable.

We assume that B > 0. In the case when the function Q is uniformly bounded
in y, that is, B = 0, an arbitrary, strictly positive (small) constant B > 0 can be
chosen so that the proofs from this section remain true. We remark that our argu-
ments can be modified in order to handle the special case of B = 0 and to derive
sharper bounds. We would like to point out that the main theorem of our paper,
Theorem 6.1, holds true even for B = 0.

Recall that the ODE

dφ

dt
(t) + (γ − λ)φ(t) + λa = 0, φ(T ) = a,(5.1)

has the unique, smooth and strictly positive solution in the class C1([0, T ]) given
by

φ(t) = a + γ

∫ T

t
φ(s)e−λ(s−t) ds,

with constant a > 0.
The idea for establishing differentiability in the space variable is to construct a

sequence of functions (fn)n∈N which converge to f̂ and which share some desir-
able properties.

LEMMA 5.1. Define A′′ = γA + λψ(B ′′) > 0 and B ′′ = B ′(1 + γ
4 ) > 0, with

B ′ = γB/λ > 0 and A,B as in (3.10).
Choose a function f1 ∈ Ce([0, T ] × (0,∞)) ∩ C0,1([0, T ] × (0,∞)) such that∣∣∣∣∂f1

∂y
(t, y)

∣∣∣∣ ≤ φ(t)eA′′(T −t)+B ′′y, (t, y) ∈ [0, T ] × (0,∞),(5.2)

where φ solves (5.1) with a = 1
λ
(1 + 1−γ

A′′ )(4D
B ′ ∨ Cγ ) > 0 and C,D as in

Lemma 3.2.
Now, construct now the sequence (fn)n∈N recursively as fn+1 = Lfn with L

defined as in (4.1).
Then, for all n ∈ N,

fn ∈ Ce

([0, T ] × (0,∞)
) ∩ C0,1([0, T ] × (0,∞)

)
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and ∣∣∣∣∂fn

∂y
(t, y)

∣∣∣∣ ≤ φ(t)eA′′(T −t)+B ′′y, (t, y) ∈ [0, T ] × (0,∞).(5.3)

PROOF. Recall from (4.1) that

f2(t, y) = E

[
eγ

∫ T
t Q(Y t,y(s))ds

+ (1 − γ )

∫ T

t
eγ

∫ s
t Q(Y t,y(u))duf1(s, Y

t,y(s))−γ /(1−γ ) ds

]
.

First, we prove that the mapping (t, y) �→ ∂f2
∂y

(t, y) is continuous.
We expect that the derivative equals

∂f2

∂y
(t, y) = E

[
γ eγ

∫ T
t Q(Y t,y(s))ds

∫ T

t

dQ

dy
(Y t,y(s))e−λ(s−t) ds

+ (1 − γ )

∫ T

t
γ eγ

∫ s
t Q(Y t,y(u))duf1(s, Y (s))−γ /(1−γ )

×
∫ s

t

dQ

dy
(Y t,y(u))e−λ(u−t) duds(5.4)

−
∫ T

t
γ eγ

∫ s
t Q(Y t,y(u))duf1(s, Y

t,y(s))−1/(1−γ )

× ∂f1

∂y
(s, Y t,y(s))e−λ(s−t) ds

]
.

This will follow from Lebesgue’s dominated convergence theorem, provided that it
can be applied. Below, we establish three estimates which allow us to interchange
differentiation and integration. We point out that the interchange is justified if we
can bound the derivative by an integrable function. The estimates are also used
later to establish (5.3).

We recall that in order to find a uniform bound, one can take a limit yn → y0,
as n → ∞, over a sequence of points yn ∈ U , where U is a compact set around a
fixed point y0 > 0.

Note that by invoking the simple inequality a + by ≤ (1
ε

∨ a)ebεy for all ε > 0,
together with (2.9), we obtain that∣∣∣∣ ∂

∂y
(Q(Y t,y(u)))

∣∣∣∣ =
∣∣∣∣dQ

dy
(Y t,y(u))

∂

∂y
Y t,y(u)

∣∣∣∣
≤ (

C + DY t,y(u)
)
e−λ(u−t)

(5.5)

≤
(

4D

γB ′ ∨ C

)
e(γB ′/4)Y t,y(u)e−λ(u−t)

≤
(

4D

γB ′ ∨ C

)
e(γB ′/4)(y+L(λs)−L(λt))e−λ(u−t)
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holds P-a.s., for 0 ≤ t ≤ u ≤ s ≤ T . Based on (5.5), we derive that

∣∣∣∣ ∂

∂y

(
eγ

∫ s
t Q(Y t,y(u))du)∣∣∣∣

=
∣∣∣∣γ eγ

∫ s
t Q(Y t,y(u)du ∂

∂y

(∫ s

t
Q(Y t,y(u)) du

)∣∣∣∣
=

∣∣∣∣γ eγ
∫ s
t Q(Y t,y)(u)du

∫ s

t

∂

∂y
(Q(Y t,y(u))) du

∣∣∣∣
(5.6)

≤
(

4D

B ′ ∨ Cγ

)

× eγA(s−t)+B ′(y+L(λs)−L(λt))e(γB ′/4)(y+L(λs)−L(λt))
∫ s

t
e−λ(u−t) du

≤ 1

λ

(
4D

B ′ ∨ Cγ

)
eγA(s−t)+B ′′(y+L(λs)−L(λt))

holds P-a.s., for 0 ≤ t ≤ s ≤ T . We would like to point out that we are allowed
to interchange integration and differentiation in the first line of (5.6) since the
bound (5.5) is integrable P-a.s. on [t, s].

Based on (5.2) and (5.6), we obtain the third estimate

∣∣∣∣ ∂

∂y

(
(1 − γ )eγ

∫ s
t Q(Y t,y(u))duf1(s, Y (s))−γ /(1−γ ))∣∣∣∣

=
∣∣∣∣(1 − γ )

∂

∂y

(
eγ

∫ s
t Q(Y t,y(u))du)

f1(s, Y (s))−γ /(1−γ )

− γ eγ
∫ s
t Q(Y t,y(u))duf1(s, Y

t,y(s))−1/(1−γ ) ∂f1

∂y
(s, Y t,y(s))

∂

∂y
(Y t,y(s))

∣∣∣∣
≤ (1 − γ )

λ

(
4D

B ′ ∨ Cγ

)
eγA(s−t)+B ′′(y+L(λs)−L(λt))

+ γ eγA(s−t)+γB
∫ s
t Y t,y(u)du

∣∣∣∣∂f1

∂y
(s, Y t,y(s))

∣∣∣∣e−λ(s−t)(5.7)

≤ (1 − γ )

λ

(
4D

B ′ ∨ Cγ

)
eγA(s−t)+B ′′(y+L(λs)−L(λt))

+ γ eγA(s−t)+B ′′(y+L(λs)−L(λt)−Y t,y(s))φ(s)eA′′(T −s)+B ′′Y t,y(s)e−λ(s−t)

= 1 − γ

λ

(
4D

B ′ ∨ Cγ

)
eγA(s−t)+B ′′(y+L(λs)−L(λt))

+ γφ(s)e−λ(s−t)eA′′(T −s)+γA(s−t)+B ′′y+B ′′(L(λs)−L(λt)), P-a.s.
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As the derived bound (5.7) is a càdlàg mapping, it is a.s. integrable, and we have
that

∂

∂y

∫ T

t

(
(1 − γ )eγ

∫ s
t Q(Y t,y(u))duf1(s, Y (s))−γ /(1−γ ))ds

=
∫ T

t

∂

∂y

(
(1 − γ )eγ

∫ s
t Q(Y t,y(u))duf1(s, Y (s))−γ /(1−γ ))ds, P-a.s.

Finally, taking the derivative under the expectation is also justified since, by con-
dition (B), we have ψ(B ′′) < ∞. Consequently, we have shown that the deriva-
tive (5.4) holds.

The continuity of the mapping (t, y) �→ ∂f2
∂y

(t, y) again follows from Lebesgue’s
dominated convergence theorem, by applying the estimates (5.6) and (5.7), and
from the continuity of the functions f1 and Q, as well as their derivatives [cf. the
proof of continuity in Lemma (4.1)].

We still have to prove that the bound (5.3) holds. By combining (5.6) and (5.7),
we can estimate for n = 2:∣∣∣∣∂f2

∂y
(t, y)

∣∣∣∣
≤ E

[
1

λ

(
4D

B ′ ∨ Cγ

)
eγA(T −t)+B ′′(y+L(λT )−L(λt))

+ 1 − γ

λ

(
4D

B ′ ∨ Cγ

)∫ T

t
eγA(s−t)+B ′′(y+L(λs)−L(λt)) ds

+ γ

∫ T

t
φ(s)e−λ(s−t)eA′′(T −s)+γA(s−t)+B ′′(y+L(λs)−L(λt)) ds

]

= 1

λ

(
4D

B ′ ∨ Cγ

)
eA′′(T −t)+B ′′y

+ 1 − γ

λ

(
4D

B ′ ∨ Cγ

)∫ T

t
eA′′(s−t)+B ′′y ds

+ eA′′(T −t)+B ′′yγ
∫ T

t
φ(s)e−λ(s−t) ds

≤ 1

λ

(
4D

B ′ ∨ Cγ

)
eA′′(T −t)+B ′′y

+ 1 − γ

λA′′
(

4D

B ′ ∨ Cγ

)
eA′′(T −t)+B ′′y

+ eA′′(T −t)+B ′′yγ
∫ T

t
φ(s)e−λ(s−t) ds

= eA′′(T −t)+B ′′y
(
a + γ

∫ T

t
φ(s)e−λ(s−t) ds

)
= φ(t)eA′′(T −t)+B ′′y,
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where we have invoked the solution of the ODE (5.1) with the appropriate constant.
Repeating the calculations recursively concludes the proof. �

From the properties of the constructed sequence (fn)n∈N, we can deduce an
important property of the function f̂ .

PROPOSITION 5.2. The function f̂ belongs to the class Ce([0, T ]× (0,∞)) ∩
C0,1([0, T ] × (0,∞)). Moreover, its derivative satisfies

∣∣∣∣∂f̂

∂y
(t, y)

∣∣∣∣ ≤ φ(t)eA′′(T −t)+B ′′y, (t, y) ∈ [0, T ] × (0,∞),(5.8)

for A′′, B ′′ and φ as in Lemma 5.1.

PROOF. The result follows if we show that the sequence (
∂fn

∂y
)n∈N, constructed

in Lemma 5.1, converges uniformly, at least on compact subsets of [0, T ]×(0,∞).
Choose n ≥ m and ρ > α ∨ A′′. Using the definition of the derivative (5.4), we

have

e−ρ(T −t)−2B ′′y
∣∣∣∣∂fn+1

∂y
(t, y) − ∂fm+1

∂y
(t, y)

∣∣∣∣

≤ E

[
(1 − γ )

∫ T

t
γ eγ

∫ s
t Q(Y t,y(u))du

× ∣∣fn(s, Y
t,y(s))−γ /(1−γ )

− fm(s, Y t,y(s))−γ /(1−γ )
∣∣

×
∫ s

t

∣∣∣∣∂Q

∂y
(Y t,y(u))

∣∣∣∣e−λ(u−t)(u) duds

]
e−ρ(T −t)−2B ′′y

+ E

[∫ T

t
γ eγ

∫ s
t Q(Y t,y(u))du

∣∣fn(s, Y
t,y(s))−1/(1−γ )

− fm(s, Y t,y(s))−1/(1−γ )
∣∣(5.9)

× ∂fm

∂y
(s, Y t,y(s))e−λ(s−t) ds

]
e−ρ(T −t)−2B ′′y

+ E

[∫ T

t
γ eγ

∫ s
t Q(Y t,y(u))du

×
∣∣∣∣∂fn

∂y
(s, Y t,y(s)) − ∂fm

∂y
(s, Y t,y(s))

∣∣∣∣
× fn(s, Y

t,y(s))−1/(1−γ )e−λ(s−t) ds

]
e−ρ(T −t)−2B ′′y

=: M1 + M2 + M3.
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We first derive an upper bound for M1. Again, let d(·, ·) denote the metric defined
in (4.7). Applying the estimate (5.5) and the mean value theorem, we find

M1 ≤ γ 2
E

[∫ T

t
eγA(s−t)+B ′(y+L(λs)−L(λt)−Y t,y(s))eρ(T −s)+B ′Y t,y(s)

× e−α(T −s)−B ′Y t,y(s)

× |fn(s, Y
t,y(s)) − fm(s, Y t,y(s))|

×
(

4D

γB ′ ∨ C

)
e(γB ′/4)(y+L(λs)−L(λt))

∫ s

t
e−λ(u−t) duds

]
(5.10)

× e−ρ(T −t)−2B ′′y

≤ 1

λ

(
4Dγ

B ′ ∨ Cγ 2
)

d(fn, fm)

∫ T

t
e(γA+λψ(B ′′)−ρ)(s−t) ds

≤ K1d(fn, fm).

Similarly, we have

M2 ≤ γ

1 − γ
E

[∫ T

t
eγA(s−t)+B ′′(y+L(λs)−L(λt)−Y t,y(s))eρ(T −s)+B ′Y t,y(s)

× e−α(T −s)−B ′Y t,y(s)|fn(s, Y
t,y(s)) − fm(s, Y t,y(s))|

× φ(s)eA′′(T −s)+B ′′Y t,y(s)e−λ(s−t) ds

]

× e−ρ(T −t)−2B ′′y

≤ γ

1 − γ
d(fn, fm)E

[∫ T

t
eγA(s−t)+B ′′(y+L(λs)−L(λt)−Y t,y(s))(5.11)

× eρ(t−s)+B ′(y+L(λs)−L(λt))

× φ(s)eA′′(T −s)+B ′′Y t,y(s)e−λ(s−t)e−2B ′′y ds

]

≤ γ

1 − γ
d(fn, fm)eA′′T sup

t∈[0,T ]
{φ(t)}

∫ T

t
e(γA+λψ(2B ′′)−ρ−λ)(s−t) ds

≤ K2d(fn, fm),

where we have used the bound (5.3) for the sequence of derivatives (
∂fn

∂y
)n∈N. Fi-

nally, we obtain a bound for M3:

M3 ≤ E

[∫ T

t
γ eγA(s−t)+2B ′′(y+L(λs)−L(λt)−Y t,y(s))

× e−ρ(T −s)−2B ′′Y t,y(s)

∣∣∣∣∂fn

∂y
(s, Y t,y(s)) − ∂fm

∂y
(s, Y t,y(s))

∣∣∣∣(5.12)
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× eρ(T −s)+2B ′′Y t,y(s)e−λ(s−t) ds

]

× e−ρ(T −t)−2B ′′y

≤ sup
(t,y)∈[0,T ]×(0,∞)

∣∣∣∣e−ρ(T −t)−2B ′′y
(

∂fn

∂y
(t, y) − ∂fm

∂y
(t, y)

)∣∣∣∣

× γ

∫ T

t
e(γA+λψ(2B ′′)−ρ−λ)(s−t) ds

≤ K3 sup
(t,y)∈[0,T ]×(0,∞)

∣∣∣∣e−ρ(T −t)−2B ′′y
(

∂fn

∂y
(t, y) − ∂fm

∂y
(t, y)

)∣∣∣∣,

where ρ must be chosen such that K3 = γ (ρ − γA − λψ(2B ′′) + λ)−1 < 1.
Note that by the contraction property of the operator L proved in Lemma 4.2,

we have

d(fn, fm) ≤
(

γ

α − A′
)m−1

d(fn−m+1, f1)

(5.13)

≤ 2
(

γ

α − A′
)m−1(

1 + 1 − γ

A′
)
.

By combining (5.10)–(5.13), we get

∣∣∣∣e−ρ(T −t)−2B ′′y
(

∂fn+1

∂y
(t, y) − ∂fm+1

∂y
(t, y)

)∣∣∣∣

≤ 2(K1 + K2)

(
γ

α − A′
)m−1(

1 + 1 − γ

A′
)

+ K3 sup
(t,y)∈[0,T ]×(0,∞)

∣∣∣∣e−ρ(T −t)−2B ′′y
(

∂fn

∂y
(t, y) − ∂fm

∂y
(t, y)

)∣∣∣∣

≤ 2(K1 + K2)

(
γ

α − A′
)m−1(

1 + 1 − γ

A′
)

1 − Km−1
3

1 − K3

+ Km−1
3 sup

(t,y)∈[0,T ]×(0,∞)

∣∣∣∣e−ρ(T −t)−2B ′′y
(

∂fn−m+1

∂y
(t, y) − ∂f1

∂y
(t, y)

)∣∣∣∣

≤ 2(K1 + K2)

(
γ

α − A′
)m−1(

1 + 1 − γ

A′
)

1 − Km−1
3

1 − K3
+ 2Km−1

3 sup
t∈[0,T ]

{φ(t)},

from which we conclude that the sequence (
∂fn

∂y
(t, y))n∈N converges uniformly on

compact sets. �
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We now turn to the question of differentiability in the time variable. We first
show that the function f̂ (t, y) belongs, for every fixed t ∈ [0, T ], to the domain of
the infinitesimal generator of the process Y ; see Chapter 1.3 in [19].

As the mapping y �→ f̂ (t, y) is continuously differentiable on (0,∞), we can
apply Itô’s formula and show that the limit relation

lim
s→0

E[f̂ (t, Y 0,y(s))] − f̂ (t, y)

s
(5.14)

= −∂f̂

∂y
(t, y)λy +

∫
z>0

(
f̂ (t, y + z) − f̂ (t, y)

)
ν(dz)

holds, provided that, for s > 0,

E

[∫ s

0

∫
z>0

(
f̂

(
t, Y 0,y(u−) + z

) − f̂ (t, Y 0,y(u−))
)
Ñ(du × dz)

]
= 0,(5.15)

where Ñ(du×dz) := N(du×dz)−ν(dz) du is the compensated Poisson random
measure from (2.5). It is well known (see, e.g., Theorem 4.2.3 in [1]) that condition
(5.15) is equivalent to

E

[∫ s

0

∫
z>0

∣∣f̂ (
t, Y 0,y(u−) + z

) − f̂ (t, Y 0,y(u−))
∣∣2ν(dz) du

]
< ∞.(5.16)

The mean value theorem and the bound (5.8) imply that

E

[∫ s

0

∫
z>0

∣∣f̂ (
t, Y 0,y(u−) + z

) − f̂ (t, Y 0,y(u−))
∣∣2ν(dz) du

]

≤ E

[∫ s

0

∫
z>0

φ2(t)e2A′′(T −t)+2B ′′(Y 0,y(u)+z)z2ν(dz) du

]

(5.17)

≤ E

[∫ s

0

∫
z>0

φ2(t)e2A′′(T −t)+2B ′′y+2B ′′L(λT )e2B ′′zz2ν(dz) du

]

≤ Ke2B ′′
∫

0<z<1
z2ν(dz) + K

∫
z≥1

e2B ′′zz2ν(dz)

for some positive constant K , which is finite since ψ(2B ′′) < ∞. The first term in
(5.17) is clearly finite. We show that the second term is also finite. By applying the

inequality z ≤ 4
γB ′ e

γB′
4 z and assumption (B), we find that

∫
z≥1

e2B ′′zz2ν(dz) ≤
(

4

γB ′
)2 ∫

z≥1
e(2B ′′+γB ′/2)z dz

=
(

4

γB ′
)2 ∫

z≥1
e2B ′(1+γ /2)z dz < ∞.
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Before stating the next lemma, we would like to remark that the mapping
(t, y) �→ ∫

z>0(f̂ (t, y + z) − f̂ (t, y))ν(dz) is continuous on [0, T ] × (0,∞). This
follows from the inequality

|f̂ (t, y + z) − f̂ (t, y)| ≤ φ(t)eA′′(T −t)+B ′′(y+z)z

and Lebesgue’s dominated convergence theorem.

PROPOSITION 5.3. The function f̂ satisfies the partial integro-differential
equation

0 = ∂f̂

∂t
(t, y) − ∂f̂

∂y
(t, y)λy + λ

∫
z>0

(
f̂ (t, y + z) − f̂ (t, y)

)
ν(dz)

(5.18)
+ f̂ (t, y)γQ(y) + (1 − γ )(f̂ (t, y))−γ /(1−γ ), f̂ (T , y) = 1,

in the classical sense. In particular, the mapping (t, y) �→ ∂f̂
∂t

(t, y) is continuous
on [0, T ) × (0,∞).

PROOF. The idea of the proof is similar to that of the proof of Proposition 5.5
in [5]. We will calculate the limit in (5.14) explicitly by using the representation
of f̂ .

Consider a fixed t ∈ [0, T ). Note that by the time homogeneity of Y , the equiv-
alent representation holds:

f̂ (t, y) := E

[
eγ

∫ T −t+s
s Q(Y (w))dw

+ (1 − γ )

∫ T −t+s

s
eγ

∫ u
s Q(Y (w))dw

× (
f̂ (u + t − s, Y (u))

)−γ /(1−γ )
du | Y(s) = y

]
,

for s ≥ 0. Let σ((Y 0,y(s)) denote the σ -algebra generated by the random variable
Y 0,y(s) as defined in (2.7). We have that

f̂ (t, Y 0,y(s))

= E

[
eγ

∫ T −t+s
s Q(Y (w))dw

+ (1 − γ )

∫ T −t+s

s
eγ

∫ u
s Q(Y (w))dw

× (
f̂ (u + t − s, Y (u))

)−γ /(1−γ ) | σ((Y 0,y(s))

]
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holds P-a.s. Applying the law of iterated expectations, we obtain

E[f̂ (t, Y 0,y(s))]
= E

[
eγ

∫ T −t+s
s Q(Y (w))dw

+ (1 − γ )

∫ T −t+s

s
eγ

∫ u
s Q(Y (w))dw

× (
f̂ (u + t − s, Y (u))

)−γ /(1−γ )
du | Y(0) = y

]
.

Now, consider the difference E[f̂ (t, Y 0,y(s))] − f̂ (t, y) for some s > 0 in the
neighborhood of 0. By simple algebraic manipulations, we find

1

s

(
E[f̂ (t, Y 0,y(s))] − f̂ (t, y)

)

= E

[
(1 − γ )

∫ T −t+s

s

(
f̂

(
u + t − s, Y 0,y(u)

))−γ /(1−γ )
eγ

∫ u
0 Q(Y 0,y(w))dw

× 1

s

(
e−γ

∫ s
0 Q(Y 0,y(w))dw − 1

)
du

]

− 1

s
E

[
(1 − γ )

∫ s

0

(
f̂

(
u + t − s, Y 0,y(u)

))−γ /(1−γ )
eγ

∫ u
0 Q(Y 0,y(w)dw du

]

+ E

[
eγ

∫ T −t+s
0 Q(Y 0,y(w))dw 1

s

(
e−γ

∫ s
0 Q(Y 0,y(w))dw − 1

)]

+ 1

s

(
f̂ (t − s, y) − f̂ (t, y)

)

=: M1(s) + M2(s) + M3(s) + M4(s).

Note that

eγ
∫ s

0 Q(Y 0,y (w))dw ≤ eγAT +B ′y+B ′L(λT ),

1

s

(
1 − e−γ

∫ s
0 Q(Y 0,y(w))dw) ≤ sup

s≥0
{γQ(Y 0,y(s))}

≤ γAT + γB sup
s≥0

{Y 0,y(s)}

≤ γAT + γBy + γBL(λT )

≤ (λ ∨ γAT )eB ′y+B ′L(λT )

hold P-a.s. for 0 < s ≤ T . The above estimates ensure that we can apply
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Lebesgue’s dominated convergence theorem to obtain the following limits:

lim
s→0

M1(s) = −γQ(y)E

[
(1 − γ )

∫ T −t

0
eγ

∫ u
0 Q(Y 0,y (w))du

× (
f̂

(
u + t, Y 0,y(u)

))−γ /(1−γ )
du

]
,

lim
s→0

M2(s) = −(1 − γ )(f̂ (t, y))−γ /(1−γ ),

lim
s→0

M3(s) = −γQ(y)E
[
eγ

∫ T −t
0 Q(Y 0,y (w))dw]

.

Moreover, lims→0(M1(s) + M3(s)) = −γQ(y)f̂ (t, y) holds and by combining
these calculations with (5.14), we arrive at

lim
s→0

M4(s) = − lim
s→0

f̂ (t, y) − f̂ (t − s, y)

s

= −∂f̂

∂y
(t, y)λy +

∫
z>0

(
f̂ (t, y + z) − f̂ (t, y)

)
ν(dz)

+ f̂ (t, y)γQ(y) + (1 − γ )(f̂ (t, y))−γ /(1−γ ).

We conclude that the derivative ∂f̂
∂t

exists and that f̂ satisfies the partial integro-

differential equation (5.18). Moreover, the mapping (t, y) �→ ∂f̂
∂t

(t, y) is contin-
uous on [0, T ) × (0,∞) by the continuity of all terms on the right-hand side
of (5.18). �

We can also conclude that the function f̂ is the only classical solution of the
partial integro-differential equation (3.14) as, for any such solution, the Feynman–
Kac representation must hold; see [4] for a similar argument.

6. Optimality of the solution. We shall conclude with the following theorem,
which states that our solution is indeed optimal.

THEOREM 6.1. Assume that the conditions (A1)–(A3) and (B) hold. Define
the investment strategy

π̂ (t) = arg max
π∈[0,1]

{
π

(
μ(Y (t−)) − r(Y (t−))

) − 1
2π2(1 − γ )σ 2(Y (t−))

}
(6.1)

and the consumption rate

ĉ(t) = Xĉ,π̂ (t)(f̂ (t, Y (t−)))−1/(1−γ ),(6.2)
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where the function f̂ is the unique solution of the fixed point equation (4.8) in the
space C1,1([0, T ) × (0,∞)) ∩ Ce([0, T ] × (0,∞)) given by

f (t, y) = E

[
eγ

∫ T
t Q(Y t,y(s))ds

+ (1 − γ )

∫ T

t
eγ

∫ s
t Q(Y t,y(u))duf (s, Y t,y(s))−γ /(1−γ ) ds

]

and Xĉ,π̂ is the wealth process of the agent under (ĉ, π̂), defined as

Xĉ,π̂ (t) = xe
∫ t

0 (π̂(s)(μ(Y (s−))−r(Y (s−)))+r(Y (s−))−(f̂ (s,Y (s−)))−1/(1−γ ))ds

(6.3)
× e−1/2

∫ t
0 (π̂(s))2σ 2(Y (s−))ds+∫ t

0 π̂(s)σ (Y (s−))dW(s).

The pair (ĉ, π̂) is then the optimal strategy for the investment and consumption
problem (3.2).

The proof of the above theorem is based on a verification theorem stating the
conditions which a candidate value function should satisfy in order to coincide
with the optimal value function. Theorem 3.1 of [19] is an appropriate verification
theorem for jump-diffusion processes. We can prove that our candidate solution
satisfies all of its conditions. In particular, we would like to point out that assump-
tion (B) is needed for proving uniform integrability of the value function. We want
to emphasize that we have been able to prove the optimality of the strategy under
the weaker integrability assumption (B) on the Lévy measure of L than is required
in [5].

Finally, we want to mention that in [11], a different verification theorem
for jump-diffusion processes has been proven, one which requires substantially
weaker conditions than those in Theorem 3.1 of [19]. However, this result re-
quires the strategy to be càglàd (left continuous with right limits), in contrast to
the weaker progressively measurable condition as in the present paper. Details can
be obtained from the authors on request.

REMARK 6.2. Assume that we state our problem for a deterministic func-
tion Y . The candidate for the value function is again V̄ (t, x) = xγ f̄ (t) resulting in
the ODE

df̄

dt
(t) + f̄ (t)γQ(Y (t)) + (1 − γ )(f̄ (t))−γ /(1−γ ) = 0, f̄ (T ) = 1,

which has the solution given by the fixed point equation

f̄ (t) = eγ
∫ T
t Q(Y (s))ds + (1 − γ )

∫ T

t
eγ

∫ s
t Q(Y (u))duf̄ (s)−γ /(1−γ ) ds,

0 ≤ t ≤ T .
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If Y is a stochastic process, then the function f̄ , defined as above, involves a ran-
dom path of the volatility process, so it depends on ω ∈ �. It is tempting to believe
that the function E[f̄ (t,ω) | Y(t) = y] solves the optimization problem (3.2).

However, taking the operator L as defined in (4.1), we calculate

LE
t,y[f̄ (t,ω)]
= E

t,y

[
eγ

∫ T
t Q(Y (s,ω))ds

+ (1 − γ )

∫ T

t
eγ

∫ s
t Q(Y (u,ω))du(E[f̄ (s,ω)|Fs])−γ /(1−γ ) ds

]

≤ E
t,y

[
eγ

∫ T
t Q(Y (s,ω))ds

+ (1 − γ )

∫ T

t
eγ

∫ s
t Q(Y (u,ω))duf̄ (s,ω)−γ /(1−γ ) ds

]

= E
t,y[f̄ (t,ω)],

where the equality holds if and only if (Y (t,ω))0≤t≤T is independent of ω, hence
deterministic.

We conclude that the function E
t,y[f̄ (t,ω)] does not satisfy the fixed point

equation (4.8) and, as a result, it is not the solution to our optimization problem.
The optimal value function and the optimal investment and consumption strategy
are, different, as one might have expected.

EXAMPLE 6.3. We consider a financial model of Barndorff-Nielsen and
Shephard type. More precisely, we choose the time horizon T = 1 and γ = 0.75
for the exponent of the power utility function. Furthermore, in (2.1), we choose
λ = 1/6, in (2.2), we take r(y) = 0 and in (2.3), we take μ(y) = 0.1 + 0.5y and
σ 2(y) = y. Let the subordinator L be a compound Poisson process with jumps of
intensity 0.5 and exponentially distributed jump sizes with expectation 1/15. We
set the initial volatility level at Y(0) = 0.2, which equals the expected long-term
volatility.

We have solved the nonlinear partial integro-differential equation (3.14) numer-
ically by applying an explicit finite difference method. As we are dealing with a
first-order integro-differential equation and the Lévy measure is finite, the explicit
scheme is more efficient than the implicit scheme; see [9], Chapter 12.4, for details.
We point out that the finite difference method has been applied to the transformed
equation to which the solution is f̂ (t, y)e−κy . The exponential scaling has been
applied in order to set a sensible boundary condition in the bounded domain. The
parameter κ should be chosen sufficiently large so that limy→∞ f̂ (t, y)e−κy = 0
holds.

Based on (3.8), we can state that the optimal investment strategy is π̂(t) = 1,
whereas the optimal consumption rate is given in Figure 1.
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FIG. 1. The optimal consumption rate as a function of time to maturity and the volatility level; see
also the text in Example 6.3.

The first observation, which is common in optimal investment and consumption
models, is that the optimal consumption rate is an increasing function of time. In
the model considered, it is interesting to note that the optimal consumption rate is
a decreasing function of volatility level. The result agrees with our intuition: the
higher level of volatility leads to a higher variability, which is, however, compen-
sated for generously by an increase in the appreciation rate of the risky asset. This
explains why the investor should consume less and invest more.

It has already been stated, in [5], that stochastic volatility modeling can change
the investment strategy significantly. We have simulated one path resulting in a
volatility that jumps at t = 0.05 by 0.12 and at t = 0.65 by 0.07. The optimal
consumption pattern is significantly different, when compared with the constant
volatility model Y ≡ 0.2; see Figure 2. Under the stochastic volatility model, it
is optimal to consume much higher proportions of the wealth as the unexpected
jump in the volatility increases the variability of the return and may cause a severe
decrease in the portfolio value. Note the discontinuity in the consumption strategy
at t = 0.05 in the upper curve in Figure 2, which is caused by the jump in the
volatility. The second discontinuity at t = 0.65 is much less visible.

We conclude this paper with the solution for the optimization problem in the
case of a logarithmic utility. Logarithmic utility is investigated in depths in [14],
where a general financial market is considered, consisting of stocks whose prices
are driven by semimartingales. The solution is stated in terms of the semimartin-
gales, characteristics, which are not straightforward to find in our model.
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FIG. 2. The optimal consumption rate in the stochastic volatility model (upper curve) and in the
model with constant volatility (lower curve); see also the text in Example 6.3.

We make an ansatz with a value function of the form

v(t, x, y) = g(t) logx + h(t, y).

This yields the following equations:

0 = dg(t)

dt
+ 1, g(T ) = 1(6.4)

and

0 = ∂h

∂t
(t, y) − ∂h

∂y
(t, y)λy

+ λ

∫
z>0

(
h(t, y + z) − h(t, y)

)
ν(dz)(6.5)

+ g(t)Q0(y) − logg(t) − 1 = 0, h(T , y) = 0,

where

Q0(y) = max
π∈[0,1]

{
π

(
μ(y) − r(y)

) − 1
2π2σ 2(y)

} + r(y)

is the analogue of (3.9).
The following theorem can be proven.

THEOREM 6.4. Assume that conditions (A1)–(A3) hold and that the Lévy
measure ν of L satisfies the following condition:
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(C)
∫
z>1 z1+εν(dz) < ∞, equivalently E[L(1)1+ε] < ∞, for some ε > 0.

Define the investment strategy

π̂ (t) = arg max
π∈[0,1]

{
π

(
μ(Y (t−)) − r(Y (t−))

) − 1
2π2σ 2(Y (t−))

}

and the consumption rate

ĉ(t) = Xĉ,π̂ (t)

1 + T − t
,

where Xĉ,π̂ is the wealth process of the agent under (ĉ, π̂), defined as

Xĉ,π̂ (t) = xe
∫ t

0 (π̂(s)(μ(Y (s−))−r(Y (s−)))+r(Y (s−))−1/(1+T −s)) ds

× e−1/2
∫ t

0 (π̂(s))2σ 2(Y (s−))ds+∫ t
0 π̂(s)σ (Y (s−))dW(s).

The pair (ĉ, π̂) is then the optimal strategy for the investment and consumption
problem under a logarithmic utility function.

As we are facing the linear equation (6.5), existence and smoothness of a solu-
tion can be easily proven by combining the results from this paper with those and
from [5]. It is well known (see [18]) that the optimal consumption rate in the case
of a logarithmic utility does not depend on the financial coefficients.

7. Conclusions. In this paper, we have solved an investment and consumption
problem for an agent who invests in a Black–Scholes market with stochastic coef-
ficients driven by a non-Gaussian Ornstein–Uhlenbeck process. We have proven
that the candidate value function is the classical solution of the corresponding
Hamilton–Jacobi–Bellman equation. In particular, we have provided a classical
solution to a nonlinear first-order partial integro-differential equation.

The optimal investment strategy has been explicitly calculated, while the op-
timal consumption rate depends on the function which solves the partial integro-
differential equation. The conclusion from the simulation study is that under sto-
chastic volatility, the optimal consumption strategy is significantly different com-
pared to a constant volatility model.

In [5], a multivariate Ornstein–Uhlenbeck process driven by independent sub-
ordinators was considered, while in [17], a financial market consisting of n stocks
was investigated. We would like to point out that our results can be extended to
both settings.
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