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We investigate the local times of a continuous-time Markov chain on
an arbitrary discrete state space. For fixed finite range of the Markov chain,
we derive an explicit formula for the joint density of all local times on the
range, at any fixed time. We use standard tools from the theory of stochastic
processes and finite-dimensional complex calculus.

We apply this formula in the following directions: (1) we derive large de-
viation upper estimates for the normalized local times beyond the exponential
scale, (2) we derive the upper bound in Varadhan’s lemma for any measurable
functional of the local times, and (3) we derive large deviation upper bounds
for continuous-time simple random walk on large subboxes of Z

d tending to
Zd as time diverges. We finally discuss the relation of our density formula
to the Ray–Knight theorem for continuous-time simple random walk on Z,
which is analogous to the well-known Ray–Knight description of Brownian
local times.

1. Introduction. Let � be a finite or countably infinite set and let A =
(Ax,y)x,y∈� be the generator, sometimes called the Q-matrix, of a continuous-
time Markov chain (Xt)t∈[0,∞) on �. Under the measure Pa , the chain starts at
X0 = a ∈ �, and by Ea we denote the corresponding expectation. The main object
of our study are the local times, defined by

�T (x) =
∫ T

0
1{Xs=x} ds, x ∈ �,T > 0,(1.1)

which register the amount of time the chain spends in x up to time T . We have
〈�T ,V 〉 = ∫ T

0 V (Xs) ds for any bounded function V :� → R, where 〈·, ·〉 denotes
the standard inner product on R

�. We conceive the normalized local times tuple,
1
T
�T = ( 1

T
�T (x))x∈�, as a random element of the set M1(�) of probability mea-

sures on �.
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The local times tuple �T = (�T (x))x∈�, and in particular its large-T behavior,
are of fundamental interest in many branches and applications of probability the-
ory. We are particularly interested in the large deviation of 1

T
�T . A by now classical

result [12, 21] states, for a finite state space �, a large deviation principle for 1
T
�T ,

for any starting point a ∈ �, on the scale T . More precisely, for any closed set
� ⊆ M1(�),

lim sup
T →∞

1

T
log Pa

(
1

T
�T ∈ �

)
≤ − inf

µ∈�
IA(µ),(1.2)

and, for any open set G ⊆ M1(�),

lim inf
T →∞

1

T
log Pa

(
1

T
�T ∈ G

)
≥ − inf

µ∈G
IA(µ).(1.3)

The rate function IA may be written

IA(µ) = − inf
{〈

Ag,
µ

g

〉 ∣∣∣ g :� → (0,∞)

}
.(1.4)

In case that A is a symmetric matrix, IA(µ) = ‖(−A)1/2√µ‖2
2 is equal to the

Dirichlet form of A applied to
√

µ. The topology used on M1(�) is the weak
topology induced by convergence of integrals against all bounded functions
� → R, that is, the standard topology of pointwise convergence since � is as-
sumed finite. For infinite �, versions of this large deviations principle may be
formulated for the restriction of the chain to some finite subset of �. A standard
way of proving the above principle of large deviations is via the Gärtner–Ellis the-
orem; see [11] for more background on large deviation theory. One of the major
corollaries is Varadhan’s lemma, which states that

lim
T →∞

1

T
log Ea

[
eT F((1/T )�T )]= − inf

µ∈M1(�)
[IA(µ) − F(µ)],(1.5)

for any function F :M1(�) → R that is bounded and continuous in the above
topology. We would like to stress that in many situations it is the upper bound
in (1.5) that is difficult to prove since F often fails to be upper semicontinuous.
[However, often F turns out to be lower semicontinuous or well approximated by
lower semicontinous functions, so that the proof of the lower bound in (1.5) is
often simpler.]

In the present paper, we considerably strengthen the above large deviation prin-
ciple and the assertion in (1.5) by presenting an explicit density of the random
variable �T , that is, a joint density of the tuple (�T (x))x∈�, for any fixed T > 0.
We do this for either a finite state space � or for the restriction to a finite subset.
This formula opens up several new possibilities, such as:

(1) more precise asymptotics for the probabilities in (1.2) and (1.3) and for the
expectation on the left-hand side of (1.5),
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(2) the validity of (1.5) for many discontinuous functions F ,
(3) versions of the large deviation principle for rescaled versions of the local

times on state spaces � = �T coupled with T and growing to some infinite set.

Clearly, a closed analytical formula for the density of the local times is quite in-
teresting in its own right. Unfortunately, our expression for the local times density
is rather involved and is quite hard to evaluate asymptotically. Actually, not even
the nonnegativity of the density can be easily seen from our formula. Luckily, up-
per bounds on the density are more easily obtained. We will be able to use these
upper bounds to derive proofs of (1.2) and of the upper bound in (1.5) for every
measurable set �, respectively, for every measurable function F , which is a great
improvement.

This paper is organized as follows. In Section 2, we identify the density of the
local times in Theorem 2.1, and prove Theorem 2.1. In Section 3, we use Theo-
rem 2.1 to prove large deviation upper bounds in Theorem 3.6. Finally, we close in
Section 4 by discussing our results, by relating them to the history of the problem
and by discussing the relation to the Ray–Knight theorem.

2. Density of the local times. In this section, we present our fundamental
result, Theorem 2.1, which is the basis for everything that follows. By

RT = supp(�T ) = {Xs : s ∈ [0, T ]} ⊆ �(2.1)

we denote the range of the Markov chain. Note that given {RT ⊆ R} for some finite
set R ⊆ �, the random tuple (�T (x))x∈R does not have a density with respect to
the Lebesgue measure, since the event {�T (x) = 0} occurs with positive probability
for any x ∈ R, except for the initial site of the chain. However, given {RT = R} for
some R ⊆ �, the tuple (�T (x))x∈R takes values in the simplex

M+
T (R) =

{
l :R → (0,∞)

∣∣∣ ∑
x∈R

l(x) = T

}
,(2.2)

which is a convex open subset of the hyperplane in R
R that is perpendicular to 1.

It will turn out that on {RT = R}, the tuple (�T (x))x∈R has a density with respect
to the Lebesgue measure σT on M+

T (R) defined by the disintegration of Lebesgue
measure into surface measures,∫

dRlF (l) =
∫ ∞

0
dT

∫
M+

T

σT (dl)F (l),(2.3)

where F : (0,∞)R → R is bounded and continuous with compact support.
We need some notation. Let R ⊆ � and let a, b ∈ R. For a matrix M =

(Mx,y)x,y∈� we denote by det(R)
ab (M) the (b, a) cofactor of the R × R-submatrix

of M , namely, the determinant of the matrix (1x �=bMx,y1y �=a + 1x=b,y=a)x,y∈R .

We write detab instead of det(�)
ab when no confusion can arise. By ∂l we denote
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the � × �-diagonal matrix with (x, x)-entry ∂lx , which is the partial derivative
with respect to lx . Hence, det(R)

ab (M + ∂l) is a linear differential operator of order
|R| − 2 + δa,b.

Then our main result reads as follows:

THEOREM 2.1 (Density of the local times). Let � be a finite or countably
infinite set with at least two elements and let A = (Ax,y)x,y∈� be the conservative
generator of a continuous-time Markov chain on �. Fix a finite subset R of � and
sites a, b ∈ R. Then, for every T > 0 and for every bounded measurable function
F :M+

T (R) → R,

Ea

[
F(�T )1{XT =b}1{RT =R}

]= ∫
M+

T (R)
F (l)ρ

(R)
ab (l)σT (dl),(2.4)

where, for l ∈ M+
T (R),

ρ
(R)
ab (l) = det(R)

ab (−A + ∂l)

∫
[0,2π ]R

e
∑

x,y∈R Ax,y

√
lx
√

lyei(θx−θy ) ∏
x∈R

dθx

2π
.(2.5)

Alternative expressions for the density ρ
(R)
ab are found in Proposition 2.5 below.

Note that the density ρ
(R)
ab does not depend on the values of the generator out-

side R, nor on T . The formula for the density is explicit, but quite involved, in
particular as it involves determinants of large matrices, additional multiple inte-
grals, and various partial derivatives. For example, it is not clear from (2.5) that
ρ

(R)
ab is nonnegative. Nevertheless, the formula allows us to prove rather precise

and transparent large deviation upper bounds for the local times as we shall see
later. As we will discuss in more detail in Section 4, Theorem 2.1 finds its roots
in the work of Luttinger [29] who expressed expectations of functions of the local
times in terms of integrals in which there are “functions” of anticommuting differ-
ential forms (Grassman variables). It is not clear from his work that the Grassman
variables can be removed without creating intractable expressions. Theorem 2.1
accomplishes this removal. We also provide a proof that makes no overt use of
Grassman variables; the determinant is their legacy.

To prepare for the proof, we need the following two lemmas and some notation.
We write φ = u + iv and φ = u − iv, where u, v ∈ R

�, and we use d�ud�v to
denote the Lebesgue measure on R

� × R
�. Let 〈φ,ψ〉 =∑

x∈� φxψx be the real
inner product on C

�.

LEMMA 2.2. Let � be a finite set, and let M ∈ C
�×�. If �〈φ,Mφ〉 > 0 for

any φ ∈ C
� \ {0}, then∫

R�×R�
d�ud�v e−〈φ,Mφ〉 = π |�|

det(M)
.(2.6)
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REMARK 2.3. By introducing polar coordinates (l, θ) ∈ [0,∞)� × [0,2π]�
via

φx =√
lxe

iθx , x ∈ �,(2.7)

we can transform

d�ud�v = π |�| ∏
x∈�

(
dlx

dθx

2π

)
= 2−|�|d�l d�θ(2.8)

and can rewrite (2.6) in the form∫
[0,∞)�×[0,2π ]�

d�l
d�θ

(2π)|�| e
−〈φ,Mφ〉 = 1

det(M)
.(2.9)

PROOF OF LEMMA 2.2. We define the complex inner product (φ,ψ) =
〈φ,ψ〉. Any unitary matrix U ∈ C

�×� defines a complex linear transformation
on C

� by φ′ = Uφ. By writing φ = u + iv and φ′ = u′ + iv′ we obtain a real
linear transformation Ũ : (u, v) �→ (u′, v′) on R

� ⊕R
�. The map Ũ is orthogonal,

because

〈u′, u′〉 + 〈v′, v′〉 = (φ′, φ′) = (Uφ,Uφ) = (φ,φ) = 〈u,u〉 + 〈v, v〉.
Let M∗ be the adjoint to M so that (φ,Mψ) = (M∗φ,ψ). First we consider

the case where M = M∗. The hypothesis �〈φ,Mφ〉 > 0 can be rewritten as
(φ,Mφ) > 0, so that M has throughout positive eigenvalues λx , x ∈ �. Since
M is self-adjoint there exists a unitary transformation U such that U∗MU = D,
where D is diagonal with diagonal entries Dx,x = λx > 0. Thus, by the change of
variables (u′, v′) = Ũ (u, v),∫

d�ud�v e−(φ,Mφ) =
∫

d�ud�v e−(φ,Dφ).

The integral on the right-hand side factors into a product of integrals∏
x∈�

∫
R

du

∫
R

dv e−λxu2−λxv2 = ∏
x∈�

π

λx

= π |�|

det(M)
.

The lemma is proved for the case M = M∗.
Now we turn to the case where M∗ �= M . Let

S = 1

2
(M + M∗) and A = 1

2i
(M − M∗).

Thus, S and A are self-adjoint and M = S + iA. Also, (φ,Sφ) = �〈φ,Mφ〉 which
is positive by the hypothesis. Therefore the eigenvalues of S are strictly positive.

For µ ∈ C we define M(µ) = S + µA. For µ real, the matrix M(µ) is self-
adjoint. Observe that M(µ) has throughout strictly positive eigenvalues when
µ = 0. Hence, the real part of the characteristic polynomial of M(µ) is nonzero on
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(−∞,0], and therefore bounded away from zero on (−∞,0], for µ = 0. By conti-
nuity of the real part of this polynomial in µ, the latter property persists to all µ in
a suitable open interval I ⊂ R containing the origin. Therefore, M(µ) has through-
out strictly positive eigenvalues for all µ ∈ I . Thus we have (φ,M(µ)φ) > 0 for
all nonzero φ and all µ ∈ I .

Now we apply the preceding with M = M(µ), and obtain, for µ ∈ I ,

det(M(µ))

∫
d�ud�v e−(φ,M(µ)φ) = π |�|.(2.10)

Both sides of this equation are analytic in µ for �µ ∈ I because det(M(µ)) is a
polynomial in µ, and the integral of the analytic function exp(−(φ,M(µ)φ)) is
analytic by Morera’s theorem and the Fubini theorem, as well as the remark that∣∣e−(φ,M(µ)φ)

∣∣= ∣∣e−(φ,Sφ)−µ(φ,Aφ)
∣∣= e−(φ,Sφ)−�µ(φ,Aφ) = e−(φ,M(�µ)φ).

By analytic continuation (2.10) holds for �µ ∈ I and in particular for µ = i. At
µ = i, M(µ) = M . �

LEMMA 2.4. Let � be a finite set, let M ∈ C
�×�, and v = (vx)x∈� ∈ C

�.
Then, for any continuously differentiable function g : C� → R,

detab(M + ∂l)
(
e〈v,·〉g

)
(l) = e〈v,l〉 detab(M + V + ∂l)g(l), l ∈ R

�,(2.11)

where V = (δxyvx)x,y∈� denotes the diagonal matrix with diagonal entries vx .

PROOF. By a cofactor expansion, one sees that, for any diagonal matrix W ,
detab(M+W) =∑

X⊆�\{a,b} cX

∏
x∈X Wx,x for suitable coefficients cX depending

only on the entries of M . Analogously, detab(M + ∂l) =∑
X⊆�\{a,b} cX∂X

l , where
we used the notation ∂X

l =∏
x∈X ∂lx . Therefore,

e−〈v,l〉 detab(M + ∂l)
(
e〈v,·〉g

)
(l) = ∑

X⊆�\{a,b}
cXe−〈v,l〉∂X

l

(
e〈v,·〉g

)
(l)

= ∑
X⊆�\{a,b}

cX

∏
x∈�

(vx + ∂lx )g(l)

= detab(M + V + ∂l)g(l). �

PROOF OF THEOREM 2.1. We have divided the proof into six steps. In the
first five steps we assume that � is a finite set, and we put R = �. Recall the
notation in Remark 2.3, which will be used throughout this proof. We abbreviate
Dl = detab(−A − ∂l).

STEP 1. For any v ∈ C
� with �v ∈ (−∞,0)�, for F(l) = e〈v,l〉,∫ ∞

0
Ea

[
F(�T )1{XT =b}

]
dT

(2.12)

=
∫
[0,∞)�×[0,2π ]�

(DlF )(l)e〈φ,Aφ〉 ∏
x∈�

(
dlx

dθx

2π

)
.
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PROOF. Recall that 〈v, �T 〉 = ∫ T
0 v(Xs) ds to obtain∫ ∞

0
Ea

[
F(�T )1{XT =b}

]
dT =

∫ ∞
0

Ea

[
e
∫ T

0 v(Xs) ds1{XT =b}
]
dT

=
∫ ∞

0

(
eT (A+V ))

a,b dT(2.13)

= (−A − V )−1
a,b,

where V is the diagonal matrix with (x, x)-entry vx , and Mx,y denotes the
(x, y)-entry of a matrix M . In order to see the last identity in (2.13), we note
that ∫ ∞

0

(
eT (A+V ))

a,b dT =
(∫ ∞

0
eT (A+V ) dT

)
a,b

,(2.14)

and that

(A + V )

∫ ∞
0

eT (A+V ) dT =
∫ ∞

0

d

dT
eT (A+V ) dT = −I.(2.15)

By Cramér’s rule, followed by (2.9),

(−A − V )−1
a,b = detab(−A − V )

det(−A − V )

=
∫

detab(−A − V )e〈φ,(A+V )φ〉 ∏
x∈�

(
dlx

dθx

2π

)
(2.16)

=
∫

detab(−A − V )e〈v,l〉e〈φ,Aφ〉 ∏
x∈�

(
dlx

dθx

2π

)
.

We use Lemma 2.4 with g = 1 and M = A to obtain that

detab(−A − V )e〈v,l〉 = (−1)|�|−1e〈v,l〉 detab(A + V )

= (−1)|�|−1 detab(A + ∂l)e
〈v,l〉(2.17)

= detab(−A − ∂l)e
〈v,l〉 = (DlF )(l),

where we recall that Dl = detab(−A − ∂l). Substituting this in (2.16) and combin-
ing this with (2.13), we conclude that (2.12) holds. �

STEP 2. The formula (2.12) is also valid for functions F of the form

F(l) = ∏
x∈�

(evxlx fx(lx)), fx ∈ C2((0,∞)),

(2.18)
supp(fx) ⊆ (0,∞) compact, �vx < 0.
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PROOF. Note that (2.12) is linear in F and so if we know it for exponentials,
then we obtain it for linear combinations of exponentials. In more detail, consider
the Fourier representation fx(lx) = ∫

R
f̂x(wx)e

iwxlx dwx . Apply (2.12) for v re-
placed by v + iw with w ∈ R

� to obtain∫ ∞
0

Ea

[
e〈v,�T 〉ei〈w,�T 〉1{XT =b}

]
dT

=
∫
[0,∞)�×[0,2π ]�

(
Dle

〈v+iw,l〉)e〈φ,Aφ〉 ∏
x∈�

(
dlx

dθx

2π

)
.

Now multiply both sides with
∏

x∈� f̂x(wx) and integrate over R
� with respect to

d�w. Then we apply Fubini’s theorem to move the d�w integration inside. From
the representation

f̂x(wx) = 1

2π

∫
R

fx(lx)e
−iwxlx dlx

we see that f̂x is continuous by the dominated convergence theorem. Furthermore,
f̂x satisfies the bound

|f̂x(wx)| =
∣∣∣∣ 1

2π(iwx)2

∫
fx(l)

d2

dw2
x

e−iwxl dl

∣∣∣∣
= 1

2π

1

w2
x

∣∣∣∣∫ f ′′
x (l)e−iwxl dl

∣∣∣∣≤ 1

2π

1

w2
x

∫
|f ′′

x (l)|dl.

Hence, all functions wx �→ f̂x(wx) are absolutely integrable, and the exponentials
with �vx < 0 make the integration over lx convergent for any x ∈ R. �

In the following we abbreviate D∗
l = detab(−A + ∂l).

STEP 3. For F as in (2.18),∫ ∞
0

Ea

[
F(�T )1{XT =b}

]
dT =

∫
F(l)D∗

l e〈φ,Aφ〉 ∏
x∈�

(
dlx

dθx

2π

)
.(2.19)

PROOF. Comparing (2.12) with this formula we see that it is enough to prove
that the integration by parts formula∫

(DlF )(l) e〈φ,Aφ〉 d�l =
∫

F(l)
(
D∗

l e〈φ,Aφ〉)d�l(2.20)

holds for any θ ∈ [0,2π]�. Since Dl = detab(−A − ∂l) is a linear differential
operator which is first order in each partial derivative, it suffices to consider one
integral at a time and perform the integration by parts as follows: for any x ∈ �

and any fixed (ly)y∈�\{x},∫ ∞
0

(−∂lxF (l))e〈φ,Aφ〉 dlx =
∫ ∞

0
F(l)∂lx e

〈φ,Aφ〉 dlx, x ∈ �.(2.21)
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There are no boundary contributions because the map lx �→ F(l) has a compact
support in (0,∞). This proves (2.19). �

STEP 4. For any v ∈ C
�,∫ ∞

0
Ea

[
e〈v,�T 〉1{XT =b}1{RT =�}

]
dT =

∫
e〈v,l〉D∗

l e〈φ,Aφ〉 ∏
x∈�

(
dlx

dθx

2π

)
.(2.22)

PROOF. Let (fn)n∈N be a uniformly bounded sequence of smooth functions
with compact support in (0,∞) such that fn(t) → 1(0,∞)(t) for any t . Choose
F(l) = Fn(l) = ∏

x∈�(evxlx fn(lx)) in (2.19) and take the limit as n → ∞, inter-
changing the limit with the integrals using the dominated convergence theorem.
Observe that limn→∞ Fn(�T ) = e〈v,�T 〉∏

x∈� 1(0,∞)(�T (x)) = e〈v,�T 〉1{RT =�} al-
most surely. Furthermore, limn→∞ Fn(l) = e〈v,l〉 almost everywhere with respect
to the measure

∏
x∈�(dlx

dθx

2π
). Thus we obtain (2.22) in the limit of (2.19). �

STEP 5. For all v ∈ C
�,

Ea

[
e〈v,�T 〉1{XT =b}1{RT =�}

]=
∫
M+

T (�)
e〈v,l〉ρ(�)

ab (l) d�l,

(2.23)
T > 0, a, b ∈ �,

where ρ
(�)
ab (l) is given by (2.5).

PROOF. Recall that
∑

x∈� �T (x) = T almost surely and that
∑

x∈� lx = T

for l ∈ M+
T (�). Hence, without loss of generality, we can assume that �v ∈

(−∞,0)�, since adding a constant C ∈ R to all the vx results in adding a factor
of eCT on both sides. In (2.22) we replace vx by vx − λ with λ > 0. Then (2.22)
becomes ∫ ∞

0
e−λT

Ea

[
e〈v,�T 〉1{XT =b}1{RT =�}

]
dT

=
∫

e〈v,l〉e−λ
∑

x lxD∗
l e〈φ,Aφ〉 ∏

x∈�

(
dlx

dθx

2π

)
(2.24)

=
∫
(0,∞)�

e〈v,l〉e−λ
∑

x lx ρ
(�)
ab (l) d�l

=
∫ ∞

0
e−λT

[∫
M+

T (�)
e〈v,l〉ρ(�)

ab (l)σT (dl)

]
dT ,

where

ρ
(�)
ab (l) =

∫
[0,2π ]�

D∗
l e〈φ,Aφ〉 ∏

x∈�

dθx

2π
, l ∈ (0,∞)�.(2.25)
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In the second equation, we have interchanged the integrations over l and θ and
have rewritten the θ integral using (2.5). In the third equation in (2.24), we have
introduced the variable T =∑

x lx and used (2.3).
Hence we have proved that the Laplace transforms with respect to T of the two

sides of (2.23) coincide. As a consequence, (2.23) holds for almost every T > 0.
Furthermore, (2.23) even holds for all T > 0, since both sides are continuous.
Indeed, for small h we have 〈v, �T +h〉 = 〈v, �T 〉, XT +h = XT and RT +h = RT

with high probability, which easily implies the continuity of the left-hand side
of (2.23). We see that the right-hand side is continuous for T > 0 by using the
change of variable t = T −1l and (2.5) to rewrite the right-hand side as an integral
of a continuous function of T , t on the standard simplex M+

T =1(�). �

Now we complete the proof of the theorem.

STEP 6. The formula (2.4) holds for any finite or countably infinite state
space � and any finite subset R of �.

PROOF. It is enough to prove (2.4) for the case F(l) = e〈v,l〉 with �(v) ∈
(−∞,0)R because the distribution of (�T (x))x∈R on the event {RT = R} is deter-
mined by its characteristic function.

Consider the Markov chain on R with conservative generator A(R) =
(A

(R)
x,y )x,y∈R given by

A(R)
x,y =


Ax,y, if x �= y,
− ∑

y∈R\{x}
Ax,y, if x = y,(2.26)

and let V (R) be the diagonal R × R matrix with V
(R)
x,x =∑

y∈�\R Ax,y . Then

A(R)
x,y = Ax,y + V (R)

x,y ∀x, y ∈ R.(2.27)

When started in R, the Markov chain with generator A(R) coincides with the origi-
nal one as long as no step to a site outside R is attempted. Step decisions outside R

are suppressed. The distribution of this chain is absolutely continuous with respect
to the original one. More precisely,

Ea

[
F(�T )1{XT =b}1{RT =R}

]
= E

(R)
a

[
F(�T )e−∑

x∈R �T (x)V
(R)
x,x 1{XT =b}1{RT =R}

]
,(2.28)

T > 0, a, b ∈ R,

where E
(R)
a is the expectation with respect to the Markov chain on R with genera-

tor A(R). Applying (2.23) for this chain with e〈v,l〉 replaced by

FR(l) = F(l)e−∑
x∈R lxV

(R)
x,x(2.29)
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and with � replaced by R, we obtain, writing ∂
(R)
l for the restriction of ∂l to R×R,

Ea

[
F(�T )1{XT =b}1{RT =R}

]= E
(R)
a

[
FR(�T )1{XT =b}1{RT =R}

]
=
∫
M+

T (R)
FR(l)ρ

(R)
ab (l)σT (dl)(2.30)

=
∫
M+

T (R)
F (l)ρ̃

(�,R)
ab (l) σT (dl),

where

ρ̃
(�,R)
ab (l) = e−∑

x∈R lxV
(R)
x,x detab

(−A(R) + ∂
(R)
l

)
(2.31)

×
∫
[0,2π ]R

e
∑

x,y∈R φxA
(R)
x,yφy

∏
x∈R

dθx

2π
.

By Lemma 2.4, followed by (2.27),

ρ̃
(�,R)
ab (l) = detab

(−A(R) − V (R) + ∂
(R)
l

)
×
[
e−∑

x∈R lxV
(R)
x,x

∫
[0,2π ]R

e
∑

x,y∈R φxA
(R)
x,yφy

∏
x∈R

dθx

2π

]

= detab

(−A(R) − V (R) + ∂
(R)
l

)
(2.32)

×
∫
[0,2π ]R

e
∑

x,y∈R φxAx,yφy
∏
x∈R

dθx

2π

= det(R)
ab (−A + ∂l)

∫
[0,2π ]R

e
∑

x,y∈R φxAx,yφy
∏
x∈R

dθx

2π
.

From the definition (2.5), and using (2.7), we recognize the last line as ρ
(R)
ab (l).

Therefore, by combining (2.32) and (2.30) we have proved (2.4) in the theorem.
�

Now we collect some alternative expressions for the density ρ
(R)
ab .

PROPOSITION 2.5. Let the assumptions of Theorem 2.1 be satisfied. Let B =
([1 − δx,y]Ax,y)x,y∈� be the off-diagonal part of A. Then, for any finite subset R

of � and for any sites a, b ∈ R, and for any l ∈ M+
T (R), the following holds:

(i)

ρ
(R)
ab (l) = e

∑
x∈R lxAx,x det(R)

ab (−B + ∂l)
(2.33)

×
∫
[0,2π ]R

e
∑

x,y∈R Bx,y

√
lx
√

lyei(θx−θy ) ∏
x∈R

dθx

2π
.
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(ii) For any r ∈ (0,∞)R ,

ρ
(R)
ab (l) = e

∑
x∈R lxAx,x det(R)

ab (−B + ∂l)
(2.34)

×
∫
[0,2π ]R

e
∑

x,y∈R rxBx,yr−1
y

√
lx
√

lyei(θx−θy ) ∏
x∈R

dθx

2π
.

(iii)

ρ
(R)
ab (l) =

∫
[0,2π ]R

det(R)
ab (−B + Vθ,l)

(2.35)

× e
∑

x,y∈R Ax,y

√
lx
√

lyei(θx−θy ) ∏
x∈R

dθx

2π
,

where Vθ,l = (δx,yvθ,l(x))x∈R is the diagonal matrix with entries

vθ,l(x) = ∑
z∈R

Bx,z

√
lz

lx
ei(θx−θz), x ∈ R.(2.36)

The formula in (2.34) will be helpful later when we derive upper bounds on
ρ

(R)
ab (l) in the case that A is not symmetric. The remainder of the paper does not

rely on the formula in (2.35). However, we find (2.35) of independent interest,
since the integral in (2.35) does not involve any derivative.

PROOF OF PROPOSITION 2.5. Formula (2.33) follows from (2.5) by using
Lemma 2.4.

We now prove (2.34). Fix r ∈ (0,∞)R and observe that, for any l ∈ (0,∞)R ,∫
[0,2π ]R

e
∑

x,y∈R Bx,y

√
lx
√

lyei(θx−θy ) ∏
x∈R

dθx

2π

(2.37)

=
∫
[0,2π ]R

e
∑

x,y∈R rxBx,yr−1
y

√
lx
√

lyei(θx−θy ) ∏
x∈R

dθx

2π
.

Indeed, substituting eiθx = zx for x ∈ R, we can rewrite the integrals as integrals
over circles in the complex plane. The integrand is analytic in zx ∈ C \ {0}. Hence,
the integral is independent of the curve (as long as it is closed and winds around
zero precisely once), and it is equal to the integral along the centered circle with
radius rx instead of radius one. Re-substituting rxe

iθx = zx , we arrive at (2.37).
Comparing to (2.33), we see that we have derived (2.34).

Finally, we prove (2.35). We use (2.34) with r = √
l and interchange

det(R)
ab (−B + ∂l) with

∫
[0,2π ]R (this is justified by the analyticity of the integrand

in all the lx with x ∈ R). This gives that

ρ
(R)
ab (l) = e

∑
x∈R lxAx,x

∫
[0,2π ]R

det(R)
ab (−B + ∂l)e

∑
x,y∈R lxBx,yei(θx−θy ) ∏

x∈R

dθx

2π
.
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Use Lemma 2.4 with g = 1 to see that

det(R)
ab (−B + ∂l)e

∑
x,y∈R lxBx,yei(θx−θy ) = e

∑
x,y∈R lxBx,yei(θx−θy )

det(R)
ab (−B + Ṽθ ),

where Ṽθ = (δx,y ṽθ (x))x∈R is the diagonal matrix with entries ṽθ (x) =∑
z∈R Bx,ze

i(θx−θz).
Now we use the same transformation as in (2.37): We interpret the integrals

over θx as integrals over circles of radius
√

lx and replace them by integrals over
circles with radius one. By this transformation, Ṽθ is transformed into Vθ,l , and the

term e
∑

x,y∈R lxBx,yei(θx−θy )

is transformed into e
∑

x,y∈R

√
lxBx,y

√
lyei(θx−θy )

. Recalling
that B is the off-diagonal part of A, (2.35) follows. �

3. Large deviation upper bounds for the local times. In this section we use
Theorem 2.1 to derive sharp upper bounds for the probability in (1.2) and for the
expectation in (1.5) for fixed T and fixed finite ranges of the local times. The main
term in this estimate is given in terms of the rate function IA. The main value of our
formula, however, comes from the facts that (1) the error term is controlled on a
subexponential scale, (2) the set � in (1.2) is just assumed measurable, and (3) the
functional F in (1.5) is just assumed measurable. Let us stress that this formula is
extremely useful, since the functional F is not upper semicontinuous nor bounded
in many important applications.

In Section 3.1 we give a pointwise upper bound for the density, in Section 3.2 we
apply it to derive upper bounds for the probability in (1.2) and for the expectation
in (1.5), and in Section 3.3 we consider the same problem for state spaces � =
�T ⊆ Z

d depending on T and increasing to Z
d .

3.1. Pointwise upper bound for the density. Here is a pointwise upper bound
for the density. Recall the rate function IA introduced in (1.4).

PROPOSITION 3.1 (Upper bound for ρ
(R)
ab ). Under the assumptions of Theo-

rem 2.1, for any finite subset R of �, and for any a, b ∈ R, any T > 0 and any
l ∈ M+

T (R),

ρ
(R)
ab (l) ≤ e−T IA((1/T )l)

( ∏
x∈R\{a,b}

√
T

lx

)
η

|R|−1
R

(3.1)
× e[η−1

R +(4η2
RT )−1]∑x,y∈R

√
lxgyBx,y/(

√
lygx),

where g ∈ (0,∞)R is a minimizer in (1.4) for µ = l
T

and

ηR = max

{
max
x∈R

∑
y∈R\{x}

|Bx,y|,max
y∈R

∑
x∈R\{y}

|Bx,y|,1

}
,(3.2)

where B = ([1 − δx,y]Ax,y)x,y∈� is the off-diagonal part of A.
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REMARK 3.2. If A (and hence B) is symmetric, then g = √
µ is the mini-

mizer in (1.4), and we have IA(µ) = ‖(−A)1/2√µ‖2
2. In this case the upper bound

simplifies to

ρ
(R)
ab (l) ≤ e−T IA((1/T )l)

( ∏
x∈R\{a,b}

√
T

lx

)
η

|R|−1
R e|R|[1+(4ηRT )−1].(3.3)

The proof of Proposition 3.1 makes use of three lemmas that we will state and
prove first.

LEMMA 3.3. Let B̃ ∈ [0,∞)R×R be any matrix with nonnegative elements,
and let Q ⊆ R. Then

0 ≤ ∂
Q
l

∫
[0,2π ]R

e
∑

x,y∈R B̃x,y

√
lx
√

lyei(θx−θy ) ∏
x∈R

dθx

2π
≤ ∂

Q
l e

∑
x,y∈R B̃x,y

√
lx
√

ly ,

(3.4)
l ∈ (0,∞)R,

where ∂
Q
l =∏

x∈Q ∂lx .

PROOF. Write e
∑

x,y∈R... =∏
x,y∈R e... and expand the exponentials as power

series. For n = (nx,y)x,y∈R ∈ N
R×R
0 , we write n! =∏

x,y∈R nx,y !. Then we obtain

∂
Q
l

∫
[0,2π ]R

e
∑

x,y∈R B̃x,y

√
lx
√

lyei(θx−θy ) ∏
x∈R

dθx

2π

= ∑
n∈N

R×R
0

1

n!∂
Q
l

[ ∏
x,y∈R

(
B̃x,y

√
lx

√
ly
)nx,y(3.5)

×
∫
[0,2π ]R

ei
∑

x,y∈R nx,y(θx−θy)
∏
x∈R

dθx

2π

]
.

After rewriting the exponent in the integral on the right-hand side using∑
x,y nx,y(θx − θy) = ∑

x nxθx , where nx = ∑
y(nx,y − ny,x), it is clear that the

integral equals one or zero. Hence, the lower bound in (3.4) is clear, and the upper
bound comes from replacing the integral by one and a resummation over n. �

LEMMA 3.4. Fix any matrix B ∈ R
R×R , let a, b ∈ R, and let f : (0,∞)R → R

be any function with nonnegative derivatives, that is, ∂
Q
l f (l) ≥ 0 for all Q ⊆ R.

Then ∣∣det(R)
ab (−B + ∂l)f

∣∣≤ ηR

∏
x∈R\{a,b}

(ηR + ∂lx )f,(3.6)

where ηR is defined in (3.2).
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PROOF. Recalling that the determinant is the (signed) volume subtended by
the rows, we can bound a determinant by the product of the lengths of the rows.
This is called the Hadamard bound and it applies to any real square matrix. There-
fore, for X ⊆ R and a, b ∈ X,∣∣det(X)

ab (−B)
∣∣≤ ∏

x∈X\{b}
‖Bx‖ ≤ ∏

x∈X\{b}
ηR = η

|X|−1
R ,

where Bx is the row x of B after eliminating the ath column, and ‖ · ‖ is the
Euclidean length, which is bounded by ηR because

∑ |ai |2 ≤ (
∑ |ai |)2. Also,

det(R)
ab (−B + ∂l)f (l)

(3.7)
= ∑

σ : R\{b}→R\{a}
sign(σ̂ )

∏
x∈R\{a}

(−Bx,σx + δx,σx ∂lx )f (l),

where the sum over σ is over all bijections R \ {b} → R \ {a}, and where sign(σ̂ )

is the sign of the permutation σ̂ :R �→ R obtained by letting σ̂x = σx for x �= b and
σ̂b = a. Expanding the product, we obtain

det(R)
ab (−B + ∂l)f (l)

= ∑
Q⊆R\{a,b}

∑
σ : Qc\{b}→Qc\{a}

sign(σ̂ )

( ∏
x∈Qc\{b}

(−Bx,σx )

)
(3.8)

×
(∏

x∈Q

∂lx

)
f (l)

= ∑
Q⊆R\{a,b}

det(Q
c)

ab (−B)

(∏
x∈Q

∂lx

)
f (l),

where we write Qc = R \ Q. Take absolute values and bound the cofactor using
the Hadamard bound,∣∣det(R)

ab (−B + ∂l)f (l)
∣∣

≤ ∑
Q⊆R\{a,b}

η
|Qc\{b}|
R

(∏
x∈Q

∂lx

)
f (l)

(3.9)

= ηR

∑
Q⊆R\{a,b}

( ∏
x∈(R\{a,b})\Q

ηR

)(∏
x∈Q

∂lx

)
f (l)

= ηR

∏
x∈R\{a,b}

(ηR + ∂lx )f (l).
�
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LEMMA 3.5. Fix any finite subset R of �, let B̃ ∈ [0,∞)R×R be any matrix
with nonnegative elements, and fix a, b ∈ R. Then, for any T > 0 and any l ∈ M+

T ,

det(R)
ab (−B + ∂l)

∫
[0,2π ]R

e
∑

x,y∈R B̃x,y

√
lx
√

lyei(θx−θy ) ∏
x∈R

dθx

2π

≤ e
∑

x,y∈R B̃x,x

√
lx
√

ly

( ∏
x∈R\{a,b}

√
T

lx

)
η

|R|−1
R(3.10)

× e[η−1
R +(4η2

RT )−1]∑x,y∈R B̃x,y ,

where ηR is defined in (3.2).

PROOF. By Lemma 3.4 followed by Lemma 3.3, we obtain

l.h.s. of (3.10) ≤ ηR

∏
x∈R\{a,b}

(ηR + ∂lx )e
∑

x,y∈R B̃x,y

√
lx
√

ly .(3.11)

Substitute tx =
√

lx√
T

∈ [0,1] and abbreviate f (t) = eT
∑

x,y∈R B̃x,y tx ty . By the

chain rule, ∂lx = 1
2T

1
tx

∂tx . Then

l.h.s. of (3.10) ≤ η
|R|−1
R

∏
x∈R\{a,b}

(
1 + 1

2ηRT

1

tx
∂tx

)
f (t)

(3.12)

≤ η
|R|−1
R

( ∏
x∈R\{a,b}

1

tx

) ∏
x∈R\{a,b}

(
1 + 1

2ηRT
∂tx

)
f (t),

where we have used that tx ≤ 1. Since all t derivatives (not just the first order deriv-
atives) of f are nonnegative since B̃x,y ≥ 0, we can add in some extra derivatives
and continue the bound with

l.h.s. of (3.10) ≤ η
|R|−1
R

( ∏
x∈R\{a,b}

1

tx

)

× ∏
x∈R\{a,b}

( ∞∑
n=0

1

n!
∂n
tx

(2ηRT )n

)
f (t)(3.13)

= η
|R|−1
R

( ∏
x∈R\{a,b}

1

tx

)
f
(
t + (2ηRT )−11R

)
,

where the last equation follows from Taylor’s theorem, and 1R :R → {1} is the
constant function.
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Recalling that tx ≤ 1, we may estimate

1

T
logf

(
t + (2ηRT )−11R

)
= ∑

x,y∈R

B̃x,ytxty + 1

2ηRT

∑
x,y∈R

B̃x,y(tx + ty) + 1

(2ηRT )2

∑
x,y∈R

B̃x,y

≤ 1

T
logf (t) + 1

T

[
1

ηR

+ 1

4η2
RT

] ∑
x,y∈R

B̃x,y.

We conclude that

l.h.s. of (3.10) ≤ η
|R|−1
R

( ∏
x∈R\{a,b}

1

tx

)
f (t)e[η−1

R +(4η2
RT )−1]∑x,y∈R B̃x,y .(3.14)

Resubstituting tx = √
lx/T and f (t) = eT

∑
x,y∈R B̃x,y tx ty , the lemma is proved. �

PROOF OF PROPOSITION 3.1. Fix any r ∈ (0,∞) and recall the rep-
resentation of the density ρ

(R)
ab in (2.34). Now apply Lemma 3.5 for B̃ =

(rxBx,yr
−1
y )x,y∈R , to obtain

ρ
(R)
ab (l) ≤ e

∑
x,y∈R rx

√
lxAx,y

√
lyr−1

y

( ∏
x∈R\{a,b}

√
T

lx

)
η

|R|−1
R e[η−1

R +(4η2
RT )−1]∑x,y∈R B̃x,y .

Now we choose r = √
l/g, where g ∈ (0,∞)R is a minimizer in (1.4) for µ = 1

T
l.

This implies the bound in (3.1). �

3.2. Upper bounds in the LDP and in Varadhan’s lemma. In this section we
specialize to Markov chains having a symmetric generator A and give a simple
upper bound for the left hand side of (1.2) and for the expectation in (1.5). Re-
call from the text below (1.4) that, in the present case of a symmetric generator,
IA(µ) = ‖(−A)1/2√µ‖2

2 for any probability measure µ on �.

THEOREM 3.6 (Large deviation upper bounds for the local times). Let the
assumptions of Theorem 2.1 be satisfied. Assume that A is symmetric. Fix a finite
subset S of �. Then, for any T ≥ 1 and any a ∈ S, with ηS as in (3.2), the following
bounds hold:

(i) For every measurable � ⊆ M1(S),

log Pa

(
1

T
�T ∈ �,RT ⊆ S

)
(3.15)

≤ −T inf
µ∈�

∥∥(−A)1/2√µ
∥∥2

2 + |S| log
(
ηS

√
8eT

)+ log |S| + |S|
4T

.
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(ii) For every measurable functional F :M1(S) → R,

log Ea

[
eT F((1/T )�T )1{RT ⊆S}

]≤ T sup
µ∈M1(S)

[
F(µ) − ∥∥(−A)1/2√µ

∥∥2
2

]
(3.16)

+ |S| log
(
ηS

√
8eT

)+ log |S| + |S|
4T

.

Theorem 3.6 is a significant improvement over the standard estimates known in
large deviation theory. In fact, one standard technique to derive upper bounds for
the left-hand side of (3.15) is the use of the exponential Chebyshev inequality and
a compactness argument if � is assumed closed. One important ingredient there
is a good control on the logarithmic asymptotics of the expectation in (3.16) for
linear functions F . This technique produces an error of order eo(T ), which can in
general not be controlled on a smaller scale.

The standard technique to derive improved bounds on the expectation in (3.16)
for fixed T is restricted to linear functions F , say F(·) = 〈V, ·〉. This technique
goes via an eigenvalue expansion for the operator A + V in the set S with zero
boundary condition. The main steps are the use of the Rayleigh–Ritz principle for
the identification of the principal eigenvalue, and Parseval’s identity. This gives
basically the same result as in (3.16), but is strictly limited to linear functions F .

PROOF OF THEOREM 3.6. It is clear that (ii) follows from (i), hence we only
prove (i).

According to Theorem 2.1, we may express the probability on the left-hand side
of (3.15) as

Pa

(
1

T
�T ∈ �,RT ⊆ S

)
=∑

b∈S

∑
R⊆S : a,b∈R

∫
M+

T (R)∩�T,R

ρ
(R)
ab (l) σT (dl),(3.17)

where �T,R = T �R , and �R is the set of the restrictions of all the elements of �

to R.
We fix a, b ∈ S and R ⊆ S with a, b ∈ R and use the bound in Proposition 3.1,

more precisely, the one in (3.3). Hence, for l ∈ M+
T (R) ∩ �T,R , we obtain, after a

substitution l = T µ in the exponent, that

ρ
(R)
ab (l) ≤ e−T infµ∈� : supp(µ)⊆R ‖(−A)1/2√µ‖2

2

( ∏
x∈R\{a,b}

√
T

lx

)
η

|R|−1
R

(3.18)
× e|R|[1+(4ηRT )−1].

Substituting this in (3.17) and integrating over l ∈ M+
T (R), we obtain

Pa

(
1

T
�T ∈ �,RT ⊆ S

)
≤ e−T infµ∈� ‖(−A)1/2√µ‖2

2η
|R|−1
R e|R|[1+(4ηRT )−1](3.19)
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×∑
b∈S

∑
R⊆S : a,b∈R

∫
M+

T (R)

∏
x∈R\{a}

√
T

lx
σT (dl)

≤ e−T infµ∈� ‖(−A)1/2√µ‖2
2η

|R|−1
R e|S|[1+(4ηRT )−1]|S|√8

|S|
T |S|−1.

In the last integral, we have eliminated la = T −∑
y∈R\{a} ly , have extended the

(|R|−1) single integration areas to (0, T ) and used that
∫ T

0 l
−1/2
x dlx = √

2T . Now
we use that ηR is increasing in R and greater than or equal to one to arrive at (3.15).
This completes the proof of (i). �

3.3. Rescaled local times. As an application of Theorem 3.6, we now con-
sider continuous-time simple random walk restricted to a large T -dependent sub-
set � = �T of Z

d increasing to Z
d . We derive the sharp upper bound in the large

deviation principle for its rescaled local times. Assume, for some scale function
T �→ αT ∈ (0,∞), that �T is equal to the box [−RαT ,RαT ]d ∩ Z

d , where the
scale function αT satisfies

1 � αT �
(

T

logT

)1/(d+2)

as T → ∞.(3.20)

We introduce the rescaled version of the local times,

LT (x) = αd
T

T
�T (�αT x�), x ∈ R

d .

Note that LT is a random step function on R
d . In fact, it is a random probability

density on R
d . Its support is contained in the cube [−R,R]d if and only if the

support of �T is contained in the box [−RαT ,RαT ]d ∩ Z
d .

It is known that, as T → ∞, the family (LT )T >0 satisfies a large deviation prin-
ciple under the subprobability measures P (· ∩ {supp(LT ) ⊆ [−R,R]d}) for any
R > 0. The speed is T α−2

T , and the rate function is the energy functional, that
is, the map g2 �→ 1

2‖∇g‖2
2, restricted to the set of squares g2 of L2-normalized

functions g such that g lies in H 1(Rd) and has its support in [−R,R]d . The topol-
ogy is the one which is induced by all the test integrals of g2 against continu-
ous and bounded functions. This large-deviation principle is proved in [20] for
the discrete-time random walk, and the proof for continuous-time walks is rather
similar (see also [24], where the proof of this fact is sketched). Hence, Varadhan’s
lemma yields precise logarithmic asymptotics for all exponential functionals of LT

that are bounded and continuous in the above mentioned topology.
Note that this large deviations principle for LT is almost the same as the one

which is satisfied by the normalized Brownian occupation times measures (see [12,
21]), the main difference being the speed (which is T in [12, 21] instead of T α−2

T

here) and the fact that LT does not take values in the set of continuous functions
R

d → [0,∞).
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Here we want to point out that Theorem 3.6 yields a new method to derive upper
bounds for many exponential functionals of LT . For a cube Q ⊂ R

d , we denote by
M1(Q) the set of all probability densities Q → [0,∞).

THEOREM 3.7. Fix R > 0, denote QR = [−R,R]d and fix a measurable func-
tion F :M1(QR) → R. Introduce

χ = inf
{1

2‖∇g‖2
2 − F(g2) :g ∈ H 1(Rd),‖g‖2 = 1, supp(g) ⊆ QR

}
.(3.21)

Then

lim sup
T →∞

α2
T

T
log E0

[
exp

{
T

α2
T

F (LT )

}
1{supp(LT )⊆QR}

]
≤ −χ,(3.22)

provided that

lim inf
T ↑∞ inf

µ∈M1(BRαT
)

(
α2

T
1
2

∑
x∼y

(√
µ(x) −

√
µ(y)

)2 − F(αd
T µ(�·αT �))

)
(3.23)

≥ χ.

PROOF. Introduce

FT (µ) = 1

α2
T

F (αd
T µ(�·αT �)), µ ∈ M1(Z

d),

then we have 1
α2

T

F (LT ) = FT ( 1
T
�T ). Hence, Theorem 3.6(ii) yields that

E0

[
exp

{
T

α2
T

F (LT )

}
1{supp(LT )⊆QR}

]
= E0

[
exp{T FT (1/T �T )}1{supp(�T )⊆QRαT

}
]

≤ eo(T α−2
T )e−T χT ,

where

χT = inf
µ∈M1(QRαT

∩Zd )

(
1
2

∑
x∼y

(√
µ(x) −

√
µ(y)

)2 − FT (µ)

)
.

Here we used that the two error terms on the right-hand side of (3.16) are eo(T α−2
T )

since ηS ≤ 2d for any S ⊆ Z
d and because of our growth assumption in (3.20).

Now (3.22) follows from (3.23). �

Theorem 3.7 proved extremely useful in the study of the parabolic Anderson
model in [24]. Indeed, it was crucial in that paper to find the precise upper bound
of the left hand side of (3.22) for the functional

F(g2) =
∫
QR

g2(x) logg2(x) dx,
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which has bad continuity properties in the topology in which the above mentioned
large deviations principle holds. However, Theorem 3.7 turned out to be applicable
since the crucial prerequisite in (3.23) had been earlier provided in [22]. The main
methods there were equicontinuity, uniform integrability and Arzela–Ascoli’s the-
orem.

In the same paper [24], the functional

F(g2) = −
∫
QR

|g(x)|2γ dx with some γ ∈ (0,1),

was also considered. This problem arose in the study of the parabolic Anderson
model for another type of potential distribution which was earlier studied in [4].
The prerequisite in (3.23) was provided in [24] using techniques from Gamma-
convergence; see [2] for these techniques.

4. Discussion. In this section, we give some comments on the history of the
problem addressed in the present paper.

4.1. Historical background. The formulas in this paper have been motivated
by the work of the theoretical physicist J. M. Luttinger [29] who gave a (nonrig-
orous) asymptotic evaluation of certain path integrals. Luttinger claimed that there
is an asymptotic series

E0
[
e−T F(�T /T )]∼ √

T e−c0T

(
c1 + c2

T
+ c3

T 2 + · · ·
)

for Brownian local times. He provided an algorithm to compute all the coeffi-
cients. He showed that his algorithm gives the Donsker–Varadhan large deviations
formula for c0 and he explicitly computed the central limit correction c1.

In [10] Brydges and Muñoz-Maya used Luttinger’s methods to verify that his
asymptotic expansion is valid to all orders for a Markov process with symmet-
ric generator and finite state space. The hypotheses are that F is smooth and the
variational principle that gives the large deviations coefficient c0 is nondegener-
ate. Luttinger implicitly relies on similar assumptions when he uses the Feynman
expansion for his functional integral.

Thus there remains the open problem to prove that Luttinger’s series is asymp-
totic for more general state spaces, in particular, for Brownian motion. As far as
we know, the best progress to date is in [5] where compact state spaces were con-
sidered and the asymptotics including the c1 correction was verified.

Luttinger’s paper used a calculus called Grassman integration. The background
to this is that the Feynman–Kac formula provides a probabilistic representation
for the propagation of elementary particles that satisfy “Bose statistics.” To ob-
tain a similar representation for elementary particles that satisfy “Fermi statistics”
one is led in [3] to an analogue of integration defined as a linear functional on
a non-Abelian Grassman algebra in place of the Abelian algebra of measurable
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functions: this is Grassman integration. An important part of this line of thought
concerns a case where there is a relation called supersymmetry. This background
gives no hint that Grassman integrals are relevant for ordinary Markov processes,
but, nevertheless, Parisi and Sourlas [33] and McKane [32] noted that random walk
expectations can be expressed in terms of the Grassman extension of Gaussian in-
tegration. Luttinger followed up on these papers by being much more explicit and
precise about the supersymmetric representation in terms of Grassman integration
and by deriving his series.

In [28] Le Jan pointed out that Grassman integration in this context is actually
just ordinary integration in the context of differential forms. The differential forms
are the non-Abelian algebra and the standard definition of integration of differen-
tial forms provides the linear functional. Since integration over differential forms
is defined in terms of ordinary integration one can remove the differential forms,
as we have done in this paper, but this obscures the underlying mechanism of su-
persymmetry. The formalism with differential forms is explained in [9], page 551,
where it is used to study Green’s function of a self-repelling walk on a hierar-
chical lattice. Two other applications of the same formalism are the proof of the
Matrix–Tree theorem in [1] and a result on self-avoiding trees given in [8].

Luttinger found an instance of a relation between the local time of a Markov
process on a state space E and the square of a Gaussian field indexed by E. The
first appearance of such a relation was given by Symanzik in [37]. His statement is
that the sum of the local times of an ensemble of Brownian loops is the square of
a Gaussian field. The references given above to Parisi–Sourlas, McKane and Lut-
tinger removed the need for an ensemble by bringing, in its place, Grassman inte-
gration. The paper of Symanzik was not immediately rigorous because he claimed
his result for Brownian motion but it makes almost immediate sense for Markov
processes on finite state spaces only. Based on this work a rigorous relation be-
tween the square of a Gaussian field and local time of a random walk on a lattice
was given by Brydges, Fröhlich and Spencer in [6]. Dynkin [13–15] showed that
the identities of that paper can be extended to Brownian motion in one and two
dimensions. In this form, the Dynkin Isomorphism, it became a useful tool for
studying local time of diffusions and much work has been done by Rosen and
Marcus in exploiting and extending these ideas, for example, see [19, 31]. The re-
lation between the local time and the square of a Gaussian field is concealed in this
paper in (2.12) which relates the local time � to l = |φ|2 where φ is Gaussian. This
is more obvious when φ is expressed as φ = u + iv instead of in terms of polar
coordinates φ = √

leiθ .

4.2. Relation to the Ray–Knight theorem. Our density formula in Theorem 2.1
can also be used to prove a version of the Ray–Knight theorem for continuous-
time simple random walk on Z. The well-known Ray–Knight theorem for one-
dimensional Brownian motion (see [35], Sections XI.1-2, [25], Sections 6.3-4)
was originally proved in [27, 34]. It describes the Brownian local times, observed
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at certain stopping times, as a homogeneous Markov chain in the spatial para-
meter. Numerous deeper investigations of this idea have been made, for example,
for general symmetric Markov processes [19], for diffusions with fixed birth and
death points on planar cycle-free graphs [17, 18], and on the relations to Dynkin’s
isomorphism [16, 36].

The (time and space) discrete version of the Ray–Knight theorem, that is, for
simple random walk on Z, was also introduced in [27], however it turned out there
that it is not the local times on the sites, but on the edges that enjoys a Markov
property. This idea has been used or reinvented a couple of times, for example, for
applications to random walk in random environment [26], to reinforced random
walk [38], and to random polymer measures [23].

In the present situation of continuous time and discrete space, it turns out that
the local times themselves form a nice Markov chain. However, a proof appears to
be missing. In fact, up to our best knowledge, [30] is the only paper that provides
(the outline of) a proof, but only for the special case where the walk starts and ends
in the same point.

We state the result here, but omit the proof. The proof will appear in an extended
version [7]. We first introduce some notation. For fixed b ∈ Z, we denote

T h
b = inf{t > 0 :�t (b) > h}, h > 0,(4.1)

the right-continuous inverse of the map t �→ �t (b). We denote by

I0(h) =
∞∑
i=0

h2i

2i (i!)2 ,(4.2)

the modified Bessel function.

THEOREM 4.1 (Ray–Knight theorem for continuous-time random walks). Let
�T defined in (1.1) be the local times of continuous-time simple random walk
(Xt)t>0 on Z. Let b ∈ N and h > 0.

(i) Under P0, the process (�T h
b
(b − x))bx=0 is a time-homogeneous discrete-

time Markov chain on (0,∞), starting at h, with transition density given by

f (h1, h2) = e−h1−h2I0
(
2
√

h1h2
)
, h1, h2 ∈ (0,∞).(4.3)

(ii) Under P0, the processes (�T h
b
(b + x))x∈N0 and (�T h

b
(−x))x∈N0 are time-

homogeneous discrete-time Markov chains on [0,∞) with transition probabilities
given by

P �(h1, dh2) = e−h1δ0(dh2) + e−h1−h2

√
h1

h2
I ′

0
(
2
√

h1h2
)
dh2,

(4.4)
h1, h2 ∈ [0,∞).
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(iii) The three Markov chains in (i) and (ii) are independent.

We note that Theorem 4.1(ii) and an outline of its proof can be found in [30],
(3.1-2). This proof uses an embedding of the random walk into a Brownian motion
and the Brownian Ray–Knight theorem; we expect that Theorem 4.1(i) and (iii)
can also be proved along these lines. In the extended version [7], using the density
formula of Theorem 2.1, we provide a proof of Theorem 4.1 that is independent
of the Brownian Ray–Knight theorem. This opens up the possibility of producing
a new proof of this theorem, via a diffusion approximation of the Markov chains
having the transition densities in (4.3) and (4.4). Furthermore, we emphasize that
our proof can also be adapted to continous-time random walks on cycle-free graphs
and has some potential to be extended to more general graphs. Theorem 2.1 con-
tains far-ranging generalizations of the Ray–Knight idea, which are to be studied
in future.
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