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VERTEX-REINFORCED RANDOM WALK ON Z EVENTUALLY
GETS STUCK ON FIVE POINTS!

BY PIERRE TARRES

CNRS Université Paul Sabatier and Université de Neuchatel

Vertex-reinforced random walk (VRRW), defined by Pemantle in 1988,
is a random process that takes values in the vertex set of a grapitich
is more likely to visit vertices it has visited before. Pemantle and Volkov
considered the case when the underlying graph is the one-dimensional integer
lattice Z. They proved that the range is almost surely finite and that with
positive probability the range contains exactly five points. They conjectured
that this second event holds with probability 1. The proof of this conjecture
is the main purpose of this paper.

1. General introduction. Let (2, #,P) be a probability space. L&t be a
locally finite graph, let~ be its neighbor relationship and [€t(G) be its vertex
set. Let(X,),en be a process that takes valuesinG). LetF = (£,),en denote
the filtration generated by the process [iE,,= o (Xo, ..., X,,) foralln € N] and
let Foo =0 (Fy, n > 0).

For anyv € V(G), let Z,,(v) be the number of times plus 1 that the process
visits sitev up through time: € N U {oco}, that is,

n
Zy(0) =14 ) 1ix;=y)-
i=0
Then (X,),en is called vertex-reinforced random walk (VRRW) with starting
pointvg € V(G) if Xg=vg and for alln € N,

Zu(x)
'Y x, Zn(w)’

In other words, moves are restricted to the edge6 ovith the probability of a
move to a neighbar being proportional to the augmented occupatiprix) of x
at that time.

VRRWSs were introduced in 1988 by Pemantle [7] in the spirit of the seminal
work by Coppersmith and Diaconis [4], who defined the notion of edge-reinforced
random walks, which have at each step a probability to move along an edge

IP)(XrH—l =x|F,) = ]l{,\fNX,,
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REINFORCED RANDOM WALK 2651

proportional to the number of times plus 1 that the process has visited this edge.
Reinforced processes are useful in models involving self-organization and learning
behavior; they can also describe spatial monopolistic competition in economics.
For more details on applications and known results in connection with these
models, refer to the articles by Pemantle and Volkov [8, 9].

VRRWs on finite complete graphs, with reinforcements weighted by factors
associated to each edge of the graph, have been studied by Pemantle [8] and
Benaim [1]. Pemantle and Volkov obtained results in 1997 on reinforced random
walks on Z [9], which are described in the following text. More recently,
Volkov [13] generalized some of these results and proved that, on a fairly broad
class of locally finite graphs (containing the graphs of bounded degree), the VRRW
has finite range with positive probability. The remainder of this paper is devoted to
VRRWSs onZ.

Define the two random sets

R:={veZ/3aneNs.t.X, =v},
R’ :={v € Z/ X, = v infinitely often}
and, giverk € Z anda € (0, 1), define the six events:
(RR={k—-2k—1k k+1k+2}};
(INZ,(k—2)/Inn — a};
(INZ,(k+2)/Inn - 1—a};
{(Z,(k—1)/n— a/2};
(Zu(k+1)/n— (1—a)/2);
{Zn(k)/n — 1/2}.

Let | - | be the cardinality of a set. Pemantle and Volkov [9] proved the following
results.

ok whE

THEOREM1.1. One hasP(|R| < o0) =1andP(|R|=5) > 0.
THEOREM1.2. One hadP(|R'| <4) =0.

THEOREM1.3. Foranyopen sel C [0, 1] and any integek € Z there exists
with positive probabilitye € I such that events—6occur

Pemantle and Volkov also proposed the following conjecture.

CONJECTURE 1. There exist almost surely € Z and « € (0, 1) such that
eventsl-6occut

The main purpose of the present article is to prove this conjecture. In fact, we
prove the following result, which is slightly more accurate. GigAnC € (0, co)
andk € Z, define the two events:
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2. Zu(k—2)/n% — C;
3. Z,(k+2)/nt* - Cs.

THEOREM 1.4. There exist almost surely € Z, o € (0,1) and C1, C2 €
(0, c0) such that events, 2, 3 and4—6occut

In our proof, we make use of Theorem 1.1 of Pemantle and Volkov ([9];
stated above). The heuristic developed by these authors on the comparison of
VRRW to Pélya and Friedman urn models [9, 13] also has been very useful
and is partly related to the results claimed in Section 3.1. Although we do not
use it explicitly, the heuristic of a result from Benaim about convergence with
positive probability toward an attractor ([2], Chapter 7) has been very useful in
Lemmas 2.4,2.9and 2.11.

2. Introduction to the ideas of the proof.

2.1. Notation. Let R* =R\ {0}, N* =N\ {0}, R =R \ {0} andQ7} =
Q4+ \ {0}. Given a random sequencg,) of F-adapted nondecreasing stopping
times ¥q € N, {y, < q} € ), let F(,,),.x = (F},)nen denote the filtration
defined as follows: Foralt e N, A e ¥, <= VqgeNU{oo}, AN{y, <q} <
F,. The equalities and inclusions between probability events are understood to
hold almost surely. Given, y € R, we use alternately the notationA y and
min(x, y) [resp.x v y and maxx, y)] for the minimum [resp. the maximum]
of x and y. We write x = O(y) iff |x|] < y. We let xT = max(x,0) and
x~ =max—x,0). Let Cstay, ap, ..., a,) denote a positive constant depending
only onay, ap,...,a, and let Cst denote a universal positive constant. We
say for simplicity that a property holds for < Csf(ay, ..., a,) [resp. forx >
Csfl(ay, ..., a,)] when there exists a constantwhich depends only o, ..., a,
so that this property holds far < ¢ (resp. forx > ¢).

Let (u,)nen and (vy)zen be two sequences taking values ih We write
u, = 0(v,) [resp.u, = o(v,)] when there exists an a.s. finite random variaile
[resp. a random sequen¢€,),cn converging to 0 a.s.] such that, for alle N,
u, < Cv, [resp.u, < C,v,].

We write u, < v, iff either limsup|u,| < oo and limsugv,| < co or
u, /v, — 1, and writeu,, < v, iff, for all ¢ > 0, there exist%g € N such that,
forall n > k > ko,

up —up < (L+¢e)(v, —vp) +e.

Note that, ifu,, andv, are random variablegg is a priori a random variable.

Similarly, givena € R and another sequence,),n that takes values iiR,
we write u, <, >,v, When, for alle > 0, there existsg € N such that, for all
n >k > ko,

uy —up < 1+¢e)(v, —vg) +¢ if w,, >aforallm e [k,n].
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We writeu,, = v, ifflim (u,, —v,) exists a.s. and is finite, and writg = v,, iff there
exists a randonig € N such that for alh > ko, u, — v, = ux, — vi,. In particular,
we write u,, = v, + o(w,) iff there existsa € R (a priori random) such that
Uy — v, = a+o(wy,). Givenu, v e R} U{oo}, we writeu ~ v iff eitheru = v = oo
or maxu, v) < oo, and writeu > v iff either u = oo or maxu, v) < oc.

We letE[-] andV[-] be the expectation and the variance of a random variable.
If G is asube-field of #, we letE[-|4] andV[-|4] be the expectation and variance
conditionally tog.

2.2. Sketch of the proof.Let us begin with some background on the study
of VRRWs. First recall that VRRW are non-Markovian processes. Define, for all
n € N, the vector of occupation densities of the random walk at #inas

Zn(v))
noJvev(G)

The works of Pemantle [8] and Benaim [1] provide some methods to compare
the behavior ofV (n) with solutions of ordinary differential equations when the
graph is complete (i.e., any two vertices and adjacent). The heuristics of these
results is as follows.

Let L > 1. For alln e N, try to compareV(n + L) to V(n). If n > L,
then the VRRW between these times behaves as thdugkere constant and,
hence, approximates a Markov chain which we @4V (n)). Let 7 (V (n)) be
the invariant measure @/ (V (n)). If L is assumed to be large enough, then the
occupation measure between these times will be close(¥(n)). This means
that, approximately,

V(n) =(

Q) m+L)YVn+L)=nV®m)+ La(V(n));
hence
(2) V(n+L)—Vn) = (L/n)(x(V(n)—Vn).

Passing to a continuous time limit gives

d 1
3 EV(Z)=;(JT(V(I))—V(I))-

Up to an exponential time chang¥,should behave like an integral curve for the
vector fieldr — 1.

If the graph is not assumed to be complete, then the relaxation time of the
Markov chain M (V(n)) depends onV(n), (1) and (2) do not make sense in
general, and it is difficult to deduce some results from this heuristics. In the critical
case where this relaxation time is on the orden ot may occur that the random
walk gets stuck with high probability in a proper subset of the graph.

Our work relies on the principle that, df, when this relaxation time is large,
there are some seldom visited vertices between some often visited vertices. In this
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case, the behavior of the occupation densities of the random walk can be studied
nearly independently to the left and to the right of each seldom visited vertex.

This notion of asymptotically seldom visited vertex Z corresponds, in the
following notation, to event’ (x) defined below. Fok € Z andn € N, denote

n
ZE@x) = Z X 1=x, Xp=x+1}>

k=1
Y, Z 1 '
(x) = 2 K= D+ Zi 1+ 1)
1
YE () =) Lixy g—x Xymrtl) 5
(x): 1; Wer=r Xi=xtll 7 = 4 1)
B Z,(x £1) +ooN . Lﬂ:]‘)
B 1
y* = 1 =x =X 1Y
£(x) 1; Xir=x+l Xi=x) 7 —
T = 3 M=t

Since, for any fixed: € Z, the sequences, (x), Y, (x), Y7 (x), Y (x) andY" (x)
are monotone nondecreasinginit makes sense to denote

Zoo(x) = lim_Z, (x), ZE (x) = lim_ ZE(x),
Yoo(x) := lim ¥, (x), YE ) = lim_ YEW),
Y= lim_ YE@), Yix) = lim_ YE(x).

Let us define the probability events
T (x) 1= {Yoo(x) < 00},
Y™ (x) == {Y(x) <00}, Y (x) = {YI(x) < oo}

Let us enumerate a few properties about these events, x € Z. First, for all

x € Z, Y (x) coincides a.s. with the s&t™ (x) on which there are a small number
of visits fromx to x + 1 and, by symmetry, with the s&t—(x). This property is
stated in the following lemma.

LEMMA 2.1. Forall x € Z,
Tx) =Y ) =7T"(x).
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PrROOFE Using the conditional Borel-Cantelli lemma [Lemma A.1(i)],

> 1
T+ = 1 - _ - <
(X) 1{2; {Xr—1=x,X=x+1} Zk_l(x ¥ 1) < }

1 — _
E[ {(Xp_1=x, Xp=x=+1} ‘}Vk_l] -
Zr-1(x £ 1)

I
WK

k=1

1
X7 T G- D+ Zra 1 1)

I
M2

1 OO} =T(x).

k=1

Second, there are at most two consecutive infinitely often visitedxsikeg on
which Y (x) holds, as implied by Lemma 2.2.
LEMMA 2.2. Forall x € Z,
Tx—-DNYTx+1) ={Zs(x) < o0}

PROOF Indeed, by Lemma 2.1,
Tx—-—DNY(x+1)
=YTx—-DNY (x+1)

o0

~ LiXe=x} _ v+ . -
C mzmu)wgigzzas_xxu D+Yo(x—1) <0
={Z(x) < 00}.

The reverse inclusion is straightforward.]

Third, if Y(x) holds, we can give some information on the behavior of
a, (x + 2) (since there are a small number of visits framo x + 1) as stated
in Corollary 3.1(ii). Note that the entire Corollary 3.1 is stated (and proved) in
Section 3.1.

COROLLARY 3.1(ii)). Forall x € Z,

T(x)C {Elaffo(x +2):= nli_)moooerf(x +2) €0, 1)}.

Fourth, we can claim a kind of propagation rule on seldom visited sites as given
by the following proposition.

ProrPosITION2.1. Forall x € Z,
TEXCYTx+DHUYT(x +4).
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This result is closely related to the dynamics inherent to the random walk. We
cannot directly use the methods of comparison with the dynamical system, since
there is no tool that gives a control on the behavior of the random walk on more
than a few vertices.

The heuristic of the proposition is that there is a kind of competition between
the numbers of visits to poinis+ 1 andx + 4. Its proof is divided into two cases.

If a(x + 2) is positive, thernx + 4 loses, which implies thar (x + 4) holds. On
the other hand, i (x + 2) is equal to zero, them + 1 loses, which implies that

T (x + 1) holds. These two results are implied, respectively, by Corollary 3.1(iii)
and Lemma 2.3:

COROLLARY 3.1(iii). Forall x € Z,

Tx)N{o,(x+2)>0CT(x+4).

LEMMA 2.3. Forall x € Z,
Tx)N{o(x+2)=0CYT(x +1).
Recall that Corollary 3.1 is proved in Section 3.1. Lemma 2.3 is equivalent to
the statement that the random set
Yo(x) =T (x) N{ag(x+2)=0lNT(x +1)°

is of probability 0. Before proving this lemma, we prove in Lemma 2.4 (proved in

Section 3.3) thallo(x) is a.s. a subset of j(x) (defined hereafter), on which we

have a rough control on the behavior of the random walk on sitesc + 5. Then

Lemma 2.5 (stated hereafter and proved in Section 5.1) completes the proof.
Lete:=expl). Let, for allx € Z,

Yo(x) = {Iim supw < e} N {Iim sup(supw) < 1}

Zy(x+1) — k=n oty (x 4 2)
A Liim INZ,(x+1) —lim INZ,(x+4) :1}
InZ,(x +2) InZ,(x + 2)
N{Zoo(x) = Zoo(x +4) = 00}
N {lim Znx 43 _ 1}
Z,(x+2)
N1lim supm < 1} N {Ilm supm < 1}.

LEMMA 2.4. Forall x € Z, Yo(x) C Yg(x).
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LEMMA 2.5. Forall x € Z, P(Yo(x) N Yy(x)) =0

The case off’p(x) N Yy(x) considered in Lemma 2.5 corresponds to an unstable
set in the dynamical systems setting. To prove the nonconvergence to this set
without a complete control on the behavior of the empirical density of occupation,
we use a partial order on a certain class of random walk& and prove an
appropriate result in some unstable situations (Section 4).

Let us now go back to the description of seldom visited sites. Theorem 1.1
implies that there exists a.s. a leftmost infinitely visited sige By definition,

0o (X0 — 1) < 0o, which implies thaf (xo — 1) andY (xg) = Y~ (x0) hold (using
Lemma 2.1). Accordingly, Proposition 2.1 and Lemma 2.2 lead us to a pavement
of the set of infinitely often visited vertices (which is connected) by sites on which
T (x) holds.

More precisely, let us denote, for any finite seque@g®<;<, taking values
in Z, the event

(xl)1<l<n ﬂ T (x;).

1<i<n

Let us define the events

Q(x) ={x=inf R},
Qo(x) = 2(x) N {Zx(x +5) < o0},
QX)) =T, x4+4x+8)N{Zsx(x+1)=Zoo(x +7) =00},
QX)) =TYTx—-1Lx,x+4,x+5x+9,x+10
N{Zoo(x +1) = Zo(x + 8) = 00}.

We can state the following lemma.

LEMMA 2.6. Forall x € Z,

Qx) C Qo(x) UL1(x) UL1(x +5) U Qa(x).

PROOF  First, forally € Z,
(4) Ty —Ly)N{Zxo(y) =00} CY(y+4),
since, by Poposition 21,

THO))CYY+DHUT(y+4)
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and, by Lemma 2.2,
Toy-—-DNY(y+1) C{Zx(y) < oo}
This implies
€ (x) N Qo(x)°

CYx =1L x)N{Zs(x) =Zs(x +5) =00}

CYx—1Lx,x+4)N{Zx(x)=Z(x +5) =00}

C(Yx—Lx,x+4,x+5UY(x,x+4,x+8)
N{Zoo(x) =Zso(x +7) = 00},

where we use (4) witly := x in the second inclusion and use Proposition 2.1 with
x := x + 4 in the third inclusion Z« (x 4+ 7) = oo follows from the convergence
of «, (x +6) on Y (x 4 4), by Corollary 3.1(ii), together witlZ o, (x + 5) = oc].

Now

Tx—1Lx,x+4,x+5 N{Zs(x+5) =00}
CYx—-1Lx,x+4,x+5x+9)
cCYx—Lx,x+4,x+5x+9,x+ 10

UTYx—Lx,x+4,x+5x+9,x+13),

where we use (4) with := x + 5 in the first inclusion and use Proposition 2.1 with
x := x + 9 in the second inclusion.
Putting together these two equations, we obtain

€ (x) N Qo(x)° N Q1(x)°
CYx—Lx,x4+dDN{Zs(x+1)=Zx(x+7)=00}
N(Yx+5x4+9x+10UTY(x+5x+9,x+13)
C Qx)UQ1(x +5),

where we note in the second inclusion tlag (x + 8) = oo if Y (x + 8) does not
hold and, similarly,Z, (x 4+ 10) = Zoo (x 4+ 12) = oo [sincea (x + 11) € [0, 1)]
onY(x +9)if Y(x + 10) does not hold. O

Now, for all x € Z, Q21(x) andQ22(x) are of probability 0, as stated in Lemmas
2.7 and 2.8. These results complete the proof of the conjecture.

LEMMA 2.7. Forall x € Z, P(Q1(x)) =0.

LEMMA 2.8. Forall x € Z, P(22(x)) =0.
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Let us explain in a few words the proofs of these lemmas. Lemma 2.7 relies on
the fact that there is a kind of competition between the numbers of visits to points
x + 1, x 4+ 2 andx 4+ 3 on the left-hand side of + 4, andx +5,x + 6 andx + 7
on the right-hand side of + 4. We first prove the following lemma.

LEMMA 2.9. Forall x € Z, Q1(x) C{lim Z,(x +6)/Z,(x + 2) = 1}.

The heuristic of Lemma 2.9 is that #,,(x + 6)/Z,(x + 2) did not converge
to 1, then it would converge to O or te, and that these convergences would be so
fast thatZ,, (x + 6) < oo in the first case and . (x + 2) < oo in the second case.

The proof of Lemma 2.7 therefore reduces to the study of the unstable case
Z,(x+6)/Z,(x +2) — 1. The methods used for this proof in Section 5.2 rely,
similarly as in the proof of Lemma 2.5, on the tools introduced in Section 4.

The proof of Lemma 2.8 has roughly the same heuristic as Lemma 2.7, but
we have to face the problem explained at the beginning of this section, that is,
we have to discriminate between the c§eg (x + 7) > o (x + 2)}, where the
random walk regularly visits the s¢t, ..., x + 9}, and the cas¢x__(x +7) <
o, (x + 2)}, where the random walk eventually gets stuck in a strict subset [i.e.,
Zoo(x +4) < 00 0Or Zoo(x 4+ 5) < o0]. This study corresponds to Lemma 2.10,
stated subsequently and proved in Section 3.5.

LEMMA 2.10. Forall x € Z,
Qo(x) Clogg(x +7) > a (x +2)}.

Next, we prove in Lemma 2.11 tha}, (x +7)/Z, (x + 2) — 1 onQa(x) and we
finish the proof of Lemma 2.8 in Section 5.3, using again the methods introduced
in Section 4.

LEMMA 2.11. Forall x € Z, Qo(x) C{limZ,(x +7)/Z,(x + 2) = 1}.

2.3. Outline of contents. Section 3 gives some preliminary results, based on
martingales techniques. This section is divided into six parts. In Section 3.1, we
prove results related to the PAlya and Friedman urn models. In Section 3.2 we give
a comparison tool (Lemma 3.1) and prove an estimate that gives conditions for a
site to be finitely often visited (Lemma 3.2). Finally, we deduce Lemmas 2.4, 2.9,
2.10and 2.11, respectively, in Sections 3.3, 3.4, 3.5 and 3.6. In Section 4, we prove
a result of nonconvergence in unstable situations, using a partial order on a certain
class of random walks oA. This result is useful to the proofs of Lemmas 2.5, 2.7
and 2.8. In Section 5, we apply this result to the proofs of Lemmas 2.5, 2.7 and
2.8 (resp. in Sections 5.1, 5.2 and 5.3). In the Appendix, we state some general
martingale results and, in particular, recall a generalized version of the conditional
Borel-Cantelli lemma.
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3. Preliminary results.

3.1. Martingale results. The following Proposition 3.1 and its Corollaries
3.1 and 3.2 provide us with some local properties of the VRRW, relating the
quantities, (x), Y;F(x), Y*(x) andY*(x) defined in Section 2.2. These results
enable us to describe the behavior of the random walk on the first few points
following x when one event lik&g(x), 21(x) or Q2(x) holds.

Let us focus on the two key properties of this part, namely Proposition 3.1(a)
and Corollary 3.2(i), which are related to the Pdlya and Friedman urn models.
Note that a detailed survey on the relationships between these urn models and
reinforcement processes can be found in [9].

Proposition 3.1(a) can bepglained by studying fat the case of a VRRW on
three consecutive poin{s — 1, x, x 4+ 1}. Under this assumption, the walk is half
of the time in sitesx — 1 orx + 1, and comes back to at the next step; the other
half of the time, the walk is in site and moves ta + 1 with a probability equal to
the number of times + 1 has been visited up through timedivided by the total
number of visits toc — 1 andx + 1 [with the convention that the sitast+ 1 have
been visitedZg(x + 1) at time 0].

This construction is equivalent to a P6lya urn model with two calors1 and
x+1,withZ,(x —1) andZ,(x + 1) balls of colorsx — 1 andx + 1 at timen.
Indeed, this corresponds to the process of picking, half of the time, a ball at random
in the urn and replacing it with a ball of the same color.

A classical result claims that the proportion of balls of color 1 converges
toward a randonw € (0, 1). The random variable has a beta distribution of
parameter<o(x — 1) andZg(x + 1) (see, e.g., [5], Vol. 2, Chapter VII), but this
result is difficult to use in our context, where, in the general case, we have to
deal with visits fromx 4+ 2 to x + 1 and fromx — 2 to x — 1. Observe that this
convergence can be proved by Proposition 3.1(a). Indeed, it implie¥ fhat —

Y~ (x) converges, and we deduce from the convergend(;‘rcﬁc) —InZ,(x+1)
(approximation of log by the harmonic series) thatdp(x + 1)/Z,,(x — 1))
converges.

Let us now return to the study of the VRRW @h The equivalence between
the weighted numbers of visits fromto x + 1 and fromx to x — 1, ¥,/ (x) and
Y, (x), claimed in Proposition 3.1(a), enables us to estimate in Corollary 3.1(i) the
variation of InZ, (x + 1)/Z,(x — 1), with respect to¥,” (x + 2) and¥," (x — 2).
Corollary 3.1(ii)—(iv) is a direct consequence of this claim.

Let us now explain the heuristic of Corollary 3.2(i). Let us consider the case
where, giverx € Z, the event

R={x—-2x—-1x,x+1x+2)

holds. ThenY " (x — 2) = Y(x — 2) and Y(x + 2) hold. This implies by
Corollary 3.1(ii) thate,, (x) converges tar (x) € (0,1) (see also Remark 3.1).
Let us study the behavior of the random walk on the border poing.
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Let us denote by, thenth visit time to sitex — 1. We again observe an urn
model with two colorsc — 2 andx, Z; (x — 2) andZ,,(x) being the numbers of
balls of colorx — 2 andx at thenth iteration. Indeed, at timg, we move tax — 2
with probabilitye, (x — 1); this operation is equivalent to picking a ball at random
in the urn, and similarly fox. Now, if we move tax — 2, we come back to — 1 at
the next step (unless we moveite- 3, which occurs only finitely often). On the
other hand, if we move te, the expected number of visits tobefore returning
tox — 1 is on the order of Ax_ (x) [expectation of a geometric random variable
with success probability  (x)].

In the urn model, this means that if we pick a ball of color— 2, we
replace it with a ball of the same color, and that if we pick a ball of calor
we replace it, on average, byd_ (x) balls of colorx. This corresponds to a
generalized P6lya—Friedman urn model (see, e.g., [9]), and a classical result claims
that this impliesz; (x) ~ Z, (x — 2)%/*~®)_ We obtain the same conclusion by
Corollary 3.2(i) and (iv):

Lix=x})
Zi(x)

INZ,(x—2)=Y, (x)=)_
k=1

o (x) =a(x)InZ,(x).

This gives an intuition for this Corollary 3.2, which is needed here instead
of generalized Pdlya—Friedman urn results since the corresponding martingale
technique is more adaptable to the case of visits from3 tox — 2.

Note that these methods provide the asymptotic behavior of the VRR®/, on
conditional on the event that we eventually get stuck on five points. Indeed, we
obtain that events 2-6 (defined in Section 1) hold, conditional on to event 1.
Another proof of this result was given by Bienvenie in his Ph.D. dissertation [3],
using ideas related to the construction of continuous reinforced random walks
(see [10]).

PropPOSITION3.1. Forall x e Zandv <1/2,

@) YEx) =Y, (x) +0(Z,(x £1)7Y),

(b) NZy(x) =¥, (x = D+ ¥, (x + D) + O(Zu(x) 7Y,

(€ YE(®) =Y () — Ljax,<t)/(Znoa(x £ D) = VT (x £1) + o(Zy(x £
D).

PROOF Let us first prove statement (a). Givery < 1/2, we apply
Lemma A.1(iii) with
Ni={Xia=xXy=x+t1}, &=1Zx+1), pfi=Zx+D1?,
to conclude that

(5) YE(x) — Y, (x) = O(Z,(x £1)7).
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Indeed, using the notation of this lemma,

Zﬂkﬁk = gak_(x)ak (X)Z (x :{éﬂi;;(}l Vo)

Lix=r) v HXi=r Xea=ctl)
= Zak (x) Z ( + 1)2(1 Vo) X(:) Zk(x + 1)2(l—vo) < 00,

the last equwalence being a consequence of the conditional Borel-Cantelli lemma,
Lemma A.1(i). Therefore, the conditions of Lemma A.1(iii) are statisfied and (5)
holds.

Statement (a) follows directly iZ,,(x + 1) = oo, by choosingvg > v.
Otherwise, by Lemma A.1(i)Voo(x) < Y (x) < oo, which also enables us to
conclude (a).

Statement (b) follows from

Zn(x)—1 1

n
1x,—
Y a—D+Y, 4= =0 oy 2

Zi_1(x .
i=1 Zr=1(x) ‘/=1+]1[X0:x}']

=1InZ,(x) + Cstlx, vo) + 0(Z,(x) ™)

whenZ,(x) > Cst.

Let us now prove statement (c) fa}" (x); the proof forY, (x) is similar. For
all n € N*, letu, (resp.v,) be the time of thesth visit fromx to x + 1 (resp. from
x + 1tox), thatis,

u, = inf{k e N*/ZF (x) = n}, v, =inflk e N*/Z (x + 1) = n}.

Recall that the number of visit?{,f(x) from x to x £ 1 at timek is defined in
Section 2.1.

Assume, for instancey < u1 (the other case is similar). Then, for alk N*,
Up < Vpt1 < Up41 (With the convention thato < oo) and Z,,—1(x + 1) =
Zy,-1(x +1). Therefore,

Un 1
YoM=Y @)= Y Lix = X=xtl), 1
1 i Zi—1(x+1)
" 1

T S Zi e+ D)

L 1
= Tixq1= LXk=x}"7> ,_  ~
Z v/—l(x+1) kgv:z s e 7 e+ )
S 1 5+ 7+
Y Lxgmt LX) = = 1, () = ¥ ().

k=u1+1 Zi-1(x +1)
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This gives the first equivalence of (c) whep < oo for all n € N*. Otherwise,
Y,j(x) — ?,j(x) is constant for large enough € N, which also gives the
equivalence.

Let us prove the second equivalence of (c)ZIf (x + 1) < oo, then Yi(x)
Yi(x) < oo by Lemma A.1(i), which enables us to conclude. Otherwise, apply
Lemma A.1(iii) and use its notation, with

Tr={Xpm1=x+1 X =x}, &=1Z(x+£1), fi=Zx+1?,

where we note that
{Xr=x+1}
o < _—— < OQ.
Zﬁkk ZZ(x:le)z(l V)

COROLLARY 3.1. Forall x e Zandv < 1/2:

(i) IN(Z,(x =)/ (Zy(x + D)) =Y, (x=2) =Y, (x+2)+0o(Z,(x =D ")+
o(Z,(x+1D7");
(i) Y(x) c{3al(x £2):=lim, 0, (x £2) €[0, D};
(i) Y(x)N{el(x+2) >0} CT(x+4);
(V) T(x) C (@3BL(x £2) = liMyms oo BF(x £ 2) € [0, 00));
(V) T(x) N{Zo(x £2) =00} C{BL(x £2) =al (x £2)}.

REMARK 3.1. Corollary 3.1 implies that a.s. ofi(x, x + 4), ani(x + 2)
[resp. B (x + 2)] converges tax (x + 2) € (0,1) [resp.fZ(x +2) > 0] and
that 8= (x + 2) = aL (x + 2) if, moreover,Z, (x + 2) = oco. This follows from an
application of statements (ii) and (iv)—(v) successively twith — instead ofF
and tox + 4 with + instead off, and fromad, (x + 2) + o (x + 2) =

PROOF OFCOROLLARY 3.1. It follows from statement (b) of Proposition 3.1,
applied tox — 1 andx + 1 that, for allv < 1/2,
Y, (x)=InZ,(x =) =Y, (x —2)+0(Z,(x — D7),
Vi) =InZ,(x+1) - Y, (x +2) +0(Z,(x + D).

These equivalences remain true in the cagggr — 1) < co andZq, (x + 1) < oo.
It also follows from statement (a) of the proposition that, forad 1/2,

Y, (x) =Y ) +0(Zy(x — D7) +0o(Z,(x + D7),

which completes the proof of (i). Let us now prove (ii) and (iii) tgf (x + 2); the
case of;" (x + 2) is similar. Apply (i) forx + 2: On Y (x),

Zn(x+1)
Zn(x +3)

andY,” (x + 4) is nondecreasing in, which completes the proof.

In =Y, () —Y, x+dH=-Y, (x+4)
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Let us now prove (iv) and (v) foB, (x + 2); the proof forg;} (x — 2) is similar.
Assume thafY' (x) holds: By statements (a) (applied to+ 2) and (b) (applied
to x 4+ 1) of the proposition,

NZ,x+1) =Y, (x)+Y, (x+2)

n—1 —
_ Lix,=x+2) o) (x +2)
=Y x+2=Y,x+2)= — )
" " kX:;)Zk(x+2)ﬂk (x+2)

and, therefore,

6) InB; (x+2) =In

Lw+n=§ﬁmﬂﬂwwu+a_o
Zux+2) = Zi(x+ 2\ B (x +2) '

Now, Z;(x +2) < Zi(x +1) + Zi(x + 3) impliese; (x +2) < B, (x +2). Hence

the right-hand side of the equation is nonincreasing which implies (iv). Let us

further assume thal (x +2) =oo. If B (x +2) > 0andf (x +2) # o (x +

2), thena; (x + 2)/B; (x +2) — 1 converges to a negative real and (6) implies

In B (x +2) = —o0, so thatB (x +2) =0, which leads to a contradiction. If

Bao(x+2) =0, thena (x +2) < B (x +2) = 0. This completes the proof of (v).
O

k=0

COROLLARY 3.2. ForallxeZ,y €(0,1) andv < 1/2:

) Yx-=Dc{lnzZ,x)=Y, x+1) =Y, (x+2)+0o(Z,(x)"")};
(i) Y(x—=DN{limsupe, (x+2) <y} CYx-1)N{INnZ,(x) <yInZ,(x+
2}CcY(x—1,x);
(i) {liminfa, x+2)>y}C{inZ,(x) >yInZ,(x +2)};
(iv) Tx—1Lx,x+4,x+5 C{36§>0/a, x+2) —a(x+2) =0(Z,(x +
2" H)N{InZ,(x) = a(x+2INZ,x+2)=0a, (x+2)InZ,(x +2)}.

PROOF Let us first prove (i). Assume thal (x — 1) holds and apply
Proposition 3.1(a), (b) and (c): For all< 1/2,

INZ,(x)=Y, (x+1 =Y, (x+1) +0(Z,(x)"") +0(Zn(x +2)7")
7) =Y, (x+2) +0(Z,(x)") +0(Zy(x +2)7")
=Y, (x +2) +0(Z,(x)™"),
where we use in the last equation tbgt(x + 1) converges tex (x + 1) € [0, 1)
by Corollary 3.1(ii) and, therefore, that(Z, (x + 2)7") is upper bounded by
o(Z,(x)™"). The first inclusion of statement (ii) and statement (iii) follow directly.
Let us prove the second part of (ii). Assuméx —1)N{InZ,,(x) <yInZ,(x +

2)} holds. We prove the stronger statement that there e&ist® such that (8)
holds, which completes the proof by Lemma 2X(k) = Y+ (x)] and also is
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useful in the proof of (iv). IfZ. (x + 1) < oo, thenYF(x) < oo, which proves the
statement. Otherwise, for all> 0, for sufficiently largec € N, usingZ; (x + 1) <
Zi(x) + Zi(x + 2),

Zi(x)
Zi(x) + Zr(x + 2)

= 0((Zk(X) + Zp(x + 2))V+8—1) _ O(Zk(x + 1))/-&-8—1)’

a (x+1) =

which implies, for all§ < min(1/2,1— y) ande <1 — y — §, using Proposi-
tion 3.1(c),

Vi) =Y, (x+1+0(Z,(x +1)7°)

o Lixp=x+y s
8 =y =l +1D)+0(Zy(x +1
© Pt Zix + 1) (4D FoZutx+D7)

=0(Zy(x + YY) 4 0(Z,(x + D7) = 0(Zu(x + D).

Note that, conversely, (8) always holds ®iix — 1, x) for all § < o, (x +2) A
1/2, since limsujp, (x +2) = a, (x +2) <1 onY(x) by Corollary 3.1(ii).

Let us now assume thal'(x — 1,x,x + 4,x + 5) holds and prove (iv).
First observe that botly (x + 2) and ol (x + 2) are strictly positive, using
Remark 3.1. For ald < ol (x + 2) A 1/2, Y,/ (x) = o(Z,(x + 1)7%) by (8), and
forall § <oz (x +2) A 1/2 symmetrically (with respectto +2), Y, (x +4) =
o(Z,(x +3)79).

Accordingly, using Corollary 3.1(i) withh := x + 2, there exist§ > 0 such that

Z,(x+1)

In =22 © 7
: Z,(x+3)

=Y, () =Y, (x 4+ 8) +0(Zy(x + D7°) + 0(Zu(x +3)7%)
9)
=0(Zy(x+ D) +0(Z,(x +3)°) = 0(Z,(x +279),

where the last equality uses the observation thd, (x + 1)~°) ando(Z, (x +
3)~%) are upper bounded by(Z, (x + 2)7?), sincefZ(x +2) =aZ (x +2) >0
by Remark 3.1.
Equation (9) implies
a, (x4+2) —ag(x+2) =0(Z,(x +2)7%).
Using (7), we deduce that

n
>— ]l{X =x+2} — _
INZ,(x)=Y, x+2)=) - ="Zo (x+2) =a,(x +2)InZ,(x +2).
= Zix+2) ¢ *

O
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3.2. Comparison results. The following lemma considers the case of a
sequence, repelled bya on its right-hand side, where the repulsion depends
on a functionf of u,, and on another sequeneg. It yields, whenu,, does not
asymptotically remain ii—oo, a], an estimate of,, asn goes off to infinity.

LEmMmA 3.1. Letf:R — R be anondecreasing functippositive on(a, co),
and let (u,),eny and (vy),en be sequences that take valuesspectivelyin
R andR™. Then

n—1 U —a
> N {limsu }C{Iiminfni O}.
Hn un;alg)f(uk)vk} { n—>oopun =4 n—oo 91 4 Zz;é Uy ~

PROOF Assume thatu, >, >4 Zz;éf(uk)vk and limsup_, . u, > a. Let
¢ > 0 be such that limsup, > a + 3¢ (¢ exists by the second assumption). The
first assumption implies there exid#tse N such that, for alk > k > ko, if u,, > a
for all m € [k, n],

n—1
(10) Un zuk+(l+8)‘1<Z f(uj)vj) —¢&.
J=k
By definition, there exist8; > ko such thatu, > a + 2¢. We easily prove by
induction, using (10) wittk := k; that, for alln > k1, u,, > a + ¢. It follows from
this claim that, for alk > k1,
n—1
up—a>e+A+e) fa+e) Y v
J=k1

n—1
>min(e, 1+¢) 1 f(a +£))<1+ 3 vj),

J=k1
which enables us to conclude the proofl

The comparison result stated in Lemma 3.2 gives us a tool which allows us
to estimate the behavior &,,(x + 6)/Z,,(x + 2) [resp.Z,(x + 1)/ Z,,(x + 2)]
on Q1(x) [resp. onQ2(x)]. In particular, part (ii), which provides a sufficient
condition for a site to be visited finitely often, implies én (x) that if Z,,(x +
6)/Z,(x + 2) does not converge to 1, then either 3 or x + 5 will be visited
finitely often [and a similar result of22(x)], which allows us to conclude that it is
a.s. impossible. The assumption ti#gtc) holds is technical and easy to check in
the cases of application.

LEmMmA 3.2. Forall x € Z, define the stopping time

T,(x) =inf{m > n/X,, =x}
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and the event
AXx)="T@®N {EI(S > O/Z (in(—xl;ZZ)(x) =o(min(Z,(x — )%, Z,(x) %)),

Zy(x —2)
sup <
neN Zn(x =D+ Z,(x +1)

Z7,(x0)(x —2)
Zn(x - 2)

’

—1=0(Zy(x - 2)_5)}.

Then

n—1
(i) Ax) C [In Z,(x —1) = Z Lixy=x} Zi(x — 2) }

S i) Ze— D+ Zix + 1)

INZ,(x —2)

< 1} Cl{Zx(x — 1) < o0}

PROOF Assume thati(x) holds. Let us prove that

Lix; 1=x—1)

nZ,x—-1)= Z Zi1e— D)

k=1

_ Z Lx, qmv—1 Xemx} Zk—1(x — 2) + Zg_1(x)
o Ze-1x— 1) Zg—1(x)

— Xn: Lix; g=x—1,x=x} Zk-1(x — 2)
S 21— Zia)

_ Xn: Lixy 1=x,Xp=x—1) Zr—1(x — 2)
i—1 Zi-1(x) Zr-1(x = 1)

~ Lixg_g=x) Zy-1(x —2)
= Zk-1(0) Zima(x =D+ Zia(x + 1)

Indeed, the second equivalence follows from Theorem A.1(i), with

M — Xn: Lixg=x—1.X=x) Zk—1(x —2) + Zp—1(x) X": L{x, 1=x—1)
" e Ziak -1 Zi-1(x) = Zia(x— 1)

Indeed,(M,,), <N+ IS @ square integrable martingale and

(M) < i Tix, 1=x—1) Zk—1(x —2) + Zj—1(x)

S Ziax 12 Zj—1(x)

Zi-1(x — 2)

- Z Lix_1=x-1 Z Lix_1=x-1 >
"o Zi-1(x — 1)? i1 Zk-1(x = 1) Zp—1(x — D Zg—1(x) ’
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si~nce A(x) holds. The third equivalence follows from the fact tHatx) =
{Y(x) < oo} (by Proposition 3.1) holds. The fourth equivalence follows from
an argument similar to the proof of Proposition 3.1(c), using the assumption
Z7,00)(x —2)
Zy(x = 2)
and observing that, by Lemma A.1(i), for &l 0, if A(x) holds,

—1=0(Z,(x =279,

n

Z Lix, 1mx, Xpmx—1) Zk—1(x — 2)17°
o Ze-1x) Zr-1(x =1

- Z ]l{Xk 1=x} Zi-1(x — 2)1_8
Zi1(x) Z1a(x =D+ Zp1(x+ 1)

Z Xk 1=x} ( Zk—l(x - 2) )1_6 <00
 Zk-1 ()N Zp 1 (x = 1) + Zg—a(x + 1) ’

where the second part of the equation follows frén 1(x) < Zy_1(x — 1) +
Zi-1(x + 1.
To prove the fifth equivalence, we observe that the process

noq _ N7 _ 0
Ry=Y {(Xp_1=x,X=x—1) Zk—1(x —2)

= Zk-1x) Zpa(x—1)

. Z ]l{Xk 1=x} Zk—l(x - 2)
Zi-1(x) Zp—1(x =)+ Zp_1(x +1)

is a martingale and that

& L (xy_=x) . Zi1(x —2)2
(Rl 5 Y R e

o Zea0? Zeae = 1)?

o~ Lixg=x)  Zr-1(x —2) Zi_1(x — 2)
7 Zk—1(%) Zp—1(0) Zg—1(x = 1) Z—1(x = 1) + Zg—2(x + 1)

if A(x) holds, and we conclude by Theorem A.1(i). Statement (ii) is a direct
consequence of (i).O

3.3. Proof of Lemmé&.4: Yo(x) C Ty(x). We suppose := 0 for simplicity

(the problem is translation-invariant, since the initial paigtof the VRRW is
arbitrary). The inclusion

Yo(0) C {Iim sup(fgfak_(Z)/a;(Z)) < 1}
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follows directly from Corollary 3.1(i) applied to site 2, that is,

Zo(D) _
n 7.3 =Y 0-Y, (4H=-Y, 4.
We first prove the inclusion
(11) Yo(0) C {limsupZ,(4)/Z,(1) <e}.

Let us assume thao(0) holds. It follows from Corollary 3.1(iv)—(v) that
B, (2) — 0. Fixe > 0 andkg € N, and assume that for all> ko, 8, (2) <e (¢ >0
is choseninthe proof). Let > ¢ and assume, givem> ko, thatZ,(4) > nZ,(1).
Let (H,) denote the property

Zk Z,1
()_ﬂ() pD

Zr(2) Z,(2)

We prove that ifp has been chosen large enough, then foral p, (H,+1)
holds when(H,,) holds. This implies thatH,,) holds for alln > p and, therefore,
that limsupy,, (3) < 1, and subsequently by Corollary 3.2(ii) that1) holds,
which leads to a contradiction by definition ¥§(0).

Let

Vkelp,n], (Hy).

o 5@
P14 8,2
This proof is based on the following two inequalities, obtained on one hand by
Corollary 3.1(i) (applied toc := 3) and Proposition 3.1(c}], (1) = Y~ (2)] and
on the other hand by Corollary 3.2(i) applied to site 1plhas been chosen large
enough, then for akk > p,

L@ Z,@

> (148718, (2.

(12) Z20>-"2,> " (Y, 2-Y,)-
(13) INZ,(1)<InZ,(H)+Y, B Y, (3 +e.
Recall that
— — n ]l{x =3 _
Y, (3-Y,(3)= a7 (3).
’ jgl Zi®

We use the following heuristic: As long &$1,) holds, «, (3) remains far
enough from 1, which implies by (13) that, (1) grows slowly in comparison
with Z,(3), which implies thatt,” (2) — ?,,—(2) remains small, and subsequently
by (12) thatx,, (3) remains far enough from 1.

If (H,) holds, then for allj € [p, n], ozj_(3) <1- o”ﬁ, which implies

,()

1% P
Yj 3 — Y ®=<@1 )InZ (3)
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which implies by (13)

Z; _ (L <3>)1-“

Z,() — Z,(3)
and, therefore,
_ Z;(1)
o0 (="t
J Z;(L+Z;(3)
Z o= Zp<1)~+ 1 oo Zp(l)~+ 1 _
Z,(Y% (Z;(1) + Z;(3)% Z,(¥% z;(2)%

where we use ;(2) < Z;(1) + Z;(3) in the second inequality. This implies

— — Z,(1 " 1ix,=
V@ -V @ <228 X,=2)
Zyt 0 L Zi (M
<o Z,,(l)~+% 1 _
Z,% ap Z,2)%
- e*Z,1) 48/9 ()
T a2,
where the third inequality follows fronZ ,(2) < Zp(l) +Z,(3) <e°Z,(3) for
large enouglp [recall thate, (2) — 0]. Therefore, using (12),
Zn1( _ Zpy3 Zp(1)
Zy41(2) ~ Zp(2) Z,(2)
if ¢ < Cst(u), which completes the proof of (11).
The fact that linZ,(3)/Z,(2) = 1 a.s. onYp(0) follows from (11) and

o5 (2) =0, usingZ,(2) < Z,(1) + Z,(3), andZ, (3) < Z,(2) + Z, (4.
Corollary 3.2(ii) and (iii) implies on one hand

<(1+8) 48

exp(—e — (1+8)e™®) >

o . Inz,(1)
(14) Yo(0) C Y(O) N{lime, (3) =1} C {Ilm nZ,2 1}
and on the other hand
L. ... InZ,4
+(oy _ _
(15) Yo(0) C {liminfa, (2) =1} C {Ilmlnf Nz, = 1},

which gives the third part of the inclusion.
Let us now prove that the limsup &f,(5)/Z,(3) is less than or equal to 1.
AssumeY(0) holds. Let

Zn(5)
Zn(3)

u, =I
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By Corollary 3.1(i),

Zn ()
Zn(3)

For alla > 0, using Proposition 3.1(c) and the result given by (11),

=Y, (6)—Y, (2.

u, =1In

_ ~_ = I{x,_1=5, X; =6} = L{x;_1=5,X;=6)
Y 6 = Y 6 — k—1 , Ak - k-1 s Ak
» =5 ,; Zp-1(9)  wzafz  Zik-1(6)
(16) + T+
— Y (5) =T (@)

The > inequality comes fron¥,, (6) > Z,(5) — Z,(4)>,,>0Z,(5), sinceZ,(4)/

Zy(5) =e " Zy(4)/Zn(3) —u,>00, as a consequence of (11) arng(2) = 0.
We prove similarly that’;F (2)<,,, > Y, (4), which implies, together with (16),

p = Y@ Y (=Y =D
w2 = T 45

" 1yx,=a) Zn(5) — Zn(3)
Z,(8) Z,(3) + Z,(5)

k=0
Let us apply Lemma 3.1 witlf (x) =1 — ¢~ and

Lix,=4y  Zn(® o Lix,=4
Zu® Zy(3) + Zu(5) 1,20 2Z,(4)

n:

Note thaty 7 —5 vk =u,>0 N Z,(4)/2.

Using (15), we obtain that for adl > 0, limsupu,, > a implies

imint "Z2®) _imint M2 _ 1 iming " ®/ZG)
InZ,,(4) InZ,(3) InZ,(4)

and, accordingly, thal" (4) holds. Remark 3.1 implies__(2) > 0, which leads to
a contradiction on(p(0). The proof concerning,, (0)/Z,(2) is similar.

The statementZ,,(0) = Zo(4) = oo follows from Z,,(0) > Y (1) ~
Yoo(1) = 00 a.s. onYp(0) € Y(1)¢ [by Proposition 3.1(a)], which implies
Z~(4) = oo by the other statements of this lemma.

3.4. Proof of Lemm&.9. We suppose := 0 for simplicity. Let us prove that,
on 21(0), the limsup ofZ,,(6)/Z,(2) is less than or equal to 1. The symmetrical
statement (with respect to site 4) completes the proof. Our goal is to describe the
evolution of the quantity,, (6)/ Z, (2); this description is obtained in (18). Assume
in the sequel tha®4(0) C Y (0, 4, 8) holds.

First, we apply Lemma 3.2(i). Let us use its notation for= 4 and prove
that A(4) holds. Using Remark 3.1 and Corollary 3.2(iii)), we obtain that
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o7 (2) and B;F(2) converge toad (2) > 0 and that IrZ,(4) > «X(2)InZ,(2).
Hence, on one hand,

Zn(2)

imsup——=—— +2)~1 <
P Btz — MA@
Z,(2) T o1 -1 -1 —a%,(2

—_— = 2 Z,(4 =0(Z,4 =0(Z, Yoole))

7. 32, @ (2 (2) 4 0(Z,(H™ ) =0(Z,(3 )
On the other hand, let us prove that there existsSa=sO such that

Z7,4((2) _5

17 — - _1=0(Z,(2 .
) ] 0(Z,(2)7)

Indeed, for all: € N*, lett,, be thenth visit time to site 4. For alt: € N anda > 0,
let 7% :=inf{n > m s.t.a;} (2) < a}. There exists a.e. > 0 andm € N such that
T™% = oo.
Givena, ¢ > 0 andn € N, let
Fpy1:= {Zzn+1(2) - 7,2 > Z,, (2)”8_1} UA{T™" < tyq1}.

Letn € N be such that, > m and assume > Cst. Givery > ¢, suchthat < 74,
X, =2andZ(2) < Z;, (2)(1+ n*~1), the probability to reach site 4 in two steps
starting from site 2 at timeis greater thaan/(2Z; (2)) and, therefore,

Z,, (2nt~1)2 P

an n an
Pyl F) < (1 <expl —— ).
(Tl f")—( 2z,n<2)) = p( 4 )

Accordingly,

Y PIY) <oo  as.
neN*
and the Borel-Cantelli lemma implies thBf occurs only finitely often. This
gives (17), using IZ,,(4) = a1 (2)In Z,,(2).
Therefore, Lemma 3.2(i) implies, together wigfi (2) - o2, (2) > 0,

"X_:l Lix,=4 Zi(2)
= Zk® Z(3) + Zi(5)

The situation being symmetrical with respect to site 4, we have a similar estimate
for In Z,,(6). Hence,

nZ,2)=InZ,3) =

(Zn® 'S Y1 (x,2a) Zk(6) — Zk(2)
18
(18) "Z.@ ;;, zk<4> Zr(3) + Zi(5)°

Let us apply Lemma 3.1 with =0, u,, =In(Z,(6)/Z,,(2)), f(x) =1—e™*
and
1ix,=4 Z,(6)
Z,(&) Z,3)+ Z,(5) u,>

11ix,=4)

+
(/3 2 +8,(©)" 22,4’

n =
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using that Z,(3) + Z,(5) = B,(2Z,(2) + B, (6)Z,(6). We obtain, if
limsupZ,(6)/Z,(2) > 1,

INZ.(6) _ 14 liminf IN(Z,(6)/Zx(2) InZ,,(4)

iminf =" Nz, Inz,2

using the estimate I, (4) > o1 (2)In Z,(2).
Now, Lemma 3.2(ii) completes the proof. Indeed,

Z,(6)
7,2 1}

Q100N {Iim sup

C0)NA@) N {Iim supnZn@ 1}

InZ,(5)
CQ10)N{ZxxB) <00} =0 a.s.,

where we use in the first inclusion thgf (6) — a5 (6) > 0, by Remark 3.1.

3.5. Proof of Lemm&.10. Suppose := 0 for simplicity. We use Lemma A.2
in the Appendix. Let us introduce a some notation first. Let, for &lN*,

T, :=inflk e Ns.t. Z;(3) = n or Zx(6) =n}

and letG := ($n)nen+ := (¥1,)nen+. We easily prove by induction that, for all
n>2,Xr, €{3,6} andZr,(X7,) =n =maxZr,(3), Zr,(6)). For alln > 2, let
us defineX7, :=5if X7, =3 and:=4 if X7, =6. LetI'g=T1 =T := @ and,
foralln > 2,

Thi1={T, <00} N{X7,42=X1,}.

Assume thaf2(0) N{a, (7) < a5, (2)} holds. Let us apply Lemma A.2 to prove
thatT",, holds only finitely often a.s., which implies th&t,,(4) A Z5(5) < 00
or Zoo(3) N Z(6) < 0o (if 3n € N s.t. T,, = 00) and, therefore, enables us to
conclude.

We settle upon the notation of Lemma2. Let us choose the sequen(gg) that
satisfies the upper bound B{I',, ;1| %;,). Givens > 0 andm € N, let

Asm={¥n=m, laz (2 —a, 2| < Z,@3)° andle},(7) — e, (D] < Z,(6) °}.

By Remark 3.1 B%(2) = «Z,(2) > 0 and B (6) = a,(6) > 0] and Corol-
lary 3.2(iv), there exists a.8.> 0, m € N such thatd; ,, holds. We fixs > 0,m €
N and supposé; , holds. We choosg, := (o (2) — n")lx, 3+ (a;n(?) —
n~°)1x, —e. Note thaty, <oz (D1x, 3+ ad (7)1x, —e by definition ofAs .

By Remark 3.1 and Corollary 3.2(iv), there exists &s= 0 such that, for
all n e N, Z,(4) < hZ,(3)%?@ and Z,(5) < hZ,(6)%=D . Then, ifn > m and
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X1, =3,usingZr, (6) <1, andZr, (3) =n,
P(Cuy1lF7,) = af, (3ot (4 < BF. o (4) < Z1,(H Z1,(5)/ Z1, (3)?

< 127,02, (375?72 < 2~ plros@
S hzrri/rn/nl-‘r)/rn’

using o, (7) < ay,(2) in the fourth inequality and using, in the last inequality,
thaty;, < o (2) and thatx — r;;/n“x is nonincreasing o (sincer, < n).
The estimate oP(I',41|¥7,) is very similar whenX 7, = 6, which enables us to
conclude.

3.6. Proof of Lemma2.11. We suppose := 0 for simplicity. Let us prove
that, on ©2>(0), the limsup of Z,(7)/Z,(2) is less than or equal to 1. The
symmetrical statement (with respect to the number 4.5) completes the proof.
Assume subsequently the%(0) holds. Letu,, = In(Z,(7)/Z,(2)). Similarly as
in the proof of Lemma 2.9, we try to describe the evolution of the quamjityhis
description is obtained in (20).

Let us begin with some elementary properties. By Remark 821(2) =
B=(2) € (0,1) andaZ (7) = BE(7) € (0,1). By Corollary 3.2(iv), there exist
a.s.yl, y2 > 0suchthatz,(d) = y1 Z,(2)**@ andZ,(5) x y2 Z, (7).

Now, we can adapt the proof of Lemma 3.2(i) for= 5 to show that
= Iix,=5 Zi(3)

19 InZ,(4) < .
(19) 24 =276 i@ + 2O

Indeed, there exists a&> 0 such that

Z,(3) _ BL(2Z,(2)
Z,(8Z,(5) yoloyz Z, (2)013;(2) Zn (7)0150(7)

oo

=, 0(Zu()7*%) = O((Zu(4)V Z4(5) "),

Up>
letting 600 1= o, (7) — 5, (2) (>0 by Lemma 2.10) and, on the other hand,
Z®) %@ _BLQ -, _ 2k

Zo®+ 2,6 - 20® D’ an’
Zr,53) . _ _5
7.3 1=0(Z,(37°).

The last equality comes from the fact that whgr> 0, the probability to go from
3to 5is greater than a term on the ordefZg(?:)’f‘l for ¢ > 0, using Lemma 2.10,
and its proof is very similar to the proof of (17) in Section 3.4.
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Inequality (19) follows, which implies with the upper bound£{(3)/(Z,,(4) +
Z,(6)) that

° 1x,=5) ¢k (D) Zk(2)

INZy(4) = a2 INZ, (D) < '
NZ@ = @@ 2 3 A

Hence

n—1
(20) n Z,(7) . 1(x,=5) (1_ Zk(Z))

Zy(2) up=0 =4 oo (1) Zi(5) Zi(7)
since, by Corollary 3.2(iv),

|nz,1(5)E”—1 1(x,=5)
wn()  Shae(DZ®)

Now, Lemma 3.1 withz = 0, u,, defined below,

InZ,(7) =

__Lix=5
oo (1) Zk(5)

implies that liminfu,,/In Z,,(5) > 0 and, therefore, limsup 8, (3)/In Z,,(6) < 1,
since

f)=1-¢",

Un

. .InZ,(6)

liminf inf N Zn (D)

. . u, InZ,(5)

nz,3 MMz e T MM BNz,

Hence we can conclude, again by inequality (19) [as in Lemma 3.2(iy fer5],
that Zo(4) < oo, which is a.s. impossible [of22(0)].

4. Nonconvergencetoward unstable situations.

4.1. Introduction. The aim of this section is to provide a result that ensures
nonconvergence in the unstable situations that correspond to Lemmas 2.5,
2.7 and 2.8, which are proved, respectively, in Sections 5.1, 5.2 and 5.3. This result
makes use of the particular structure of reinforced random walks to overcome the
fact that, in general, we can only obtain partial information on the behavior of
the random walk. Indeed, as explained in the Introduction, it is not, in general,
possible to describe the behavior of the density of occupation of the random walk
by the differential equation (3), which would enable us to interpret these unstable
situations by unstable sets of the corresponding dynamical system and, therefore,
allow us to use the classical results of nonconvergence toward these sets. For this
reason, we provide a result that requires only an equation of evolution of the
considered unstable quantity. This information is sufficient when the evolution
involved is in some sense compatible with a partial order constructed on a
certain class of random walks ¢h More precisely, we study the behavior of a
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(4n)nen-adapted sequence,),n that takes values iR and we try to prove that
its behavior around 0 is unstable, so that convergence to 0 is a.s. impossible.
The evolution of(z,,),en IS given by an equation of the form

(21) Zn4+l — Zn = Yn T Eny1+ 1y,
where(y,)nen, (en)nen+ and(r,)en are(4,)nen-adapted and

E(en+11$n) = 0.

Let us, for instance, consider the case discussed in Lemmaz3)en and
(yn)neN correspond to

Z;,(3) R;

zn=1In 7.2 and y, = m
where
tn =inf{m e N/Z}(2) > n},
Ry=Z,&+ Z,(2 — (Z,(1) + Z,(3)),
and
E(eZ,119n) =< o; (2)/n?, Iral = 0(1/n%>"%)  foralle > 0.

If z, andy, were of the same sign, we would be able to conclude (see, e.g., [8],
[11] and [12], Chapter 3) that the unstable paiat O is a.s. avoided, namely that

(22) P(nleOOZn _ o) —o0.

This is not the case here and, in fagt,does not depend only af}. However, we
can observe that the terR), increases only with visits from 5 to 4 and decreases
with visits from 0 to 1. Indeed, it is easy to prove by induction that, forallN,

(23) R,=2Z,;(5) —Z(0) + (1(x,=20r x,>4 — L{x,<1 or x,=3;)/2+ Cs{(vo),
so that
(24) R, =Z(4) - Z, (1) + Csi(vp),

using thatZ; (5) = Z;" (4) 4 Csi(vg) andZ; (0) = Z; (1) + Csi(vp).

Heuristically, whenz,, tends to increase (resp. to decrease), the random walk
tends to go more to the right (resp. to the left), which implies thailso tends to
increase. The precise tool behind these remarks is the definition of a partial order
on the random walks. Lemma 4.1 claims the following result.

Assume we deal with two random walk® and .M’ such that at each point
J € Z, for the same number of visits tf if M’ has more visited + 1 than.M
and less visited — 1, thenM’ has a greater probability tha# to go right. Then
we can coupleM andM’ so that for allj € Z, for the same number of visits tg
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M’ has more visited + 1 than.M and less visited — 1. In this case, we write
that M’ > M.

It is easy to prove that, given two random walksand.m’ such thatM’ > M,
if we keep the same notation fo and add a superscript prime fat’, then, for
alln eN,

/
Rt;l Z Rtn .

Having put down this partial order on random walks HBnwe observe in the
considered cases that a significant part of the noise inherent in the behayjor of
is generated by the uncertainty on the visits from a certain vertexy — 1 (in
the case of Lemma 2.5,:= 2). This leads us to define, concurrent to the VRRW
called M, a random walkmM’ as follows. Starting from all points except from
M’ has the same conditional probabilitiessFromuv the conditional probability
to visit v — 1 is the probability designed fa#( minus a term on the order of the
standard deviation of this probability on a large time interval. This new random
walk is constructed in Definition 4.12.

Lemma 4.1 implies that we can coupl& and M’ so thatM’ > M. This
property has the consequence that, rougfjlyis greater thary,; more precisely,
Assumption (H3) of Proposition 4.1 is satisfied. Furthermore, the different moving
probabilities fromv imply here thatz, in z, undergoes a drift toward the
right significant enough to cover the noise, which corresponds to Assumptions
(H1) and (H2) W (k) is of the order of the standard deviation 5f starting at
time 7;]. The probabilities of a same group of paths far and for M’ being of
the same order (stated in Lemma 4.2), these properties imply that the conditional
probability not to converge to 0 is always greater than a positive constant. This
enables us to conclude thgta.s. does not converge to 0.

The section is divided as follows. In Section 4.2, we introduce some notation,
and state and prove a coupling result for nearest-neighbor random walkslion
Section 4.3, we state the nonconvergence result Proposition 4.1, which is applied
in Sections 5.1-5.3. Proposition 4.1 is proved in Section 4.4.

4.2. Notation and a coupling result.

DEFINITION 4.1. Givenk € NU {oo} andv € 7K1 for all n < k, we letv,,
be the(n + 1)th coordinate oV. We say thawv is ak path (or a path, when there
is no ambiguity) or¥ iff, for all 0 <n < k — 1, there exists, € {—1, 1} such that
Vi1 — V, = &,. Let P, be the set ok paths. LetP := P,. Giveni e N*, j € Z
andv € &, we letn; ;(v) be the time the sequence,)o<,<x makes itsith visit
to site j, with the convention that; ;(v) = oo if j is visited less thantimes.

We make use of the notation introduced in Sections 1 and 2.2, that(s)(v),
Y,(x)(v), ..., forall n <k, replacing the underlyingX ;) jcn in these definitions
by (Vj)jen.
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DEFINITION 4.2. For allk € N, let 7, be the smallest-field on & that
contains the cylinder€y ={we £/Wg=Vvp,...,Wr =V}, Ve Pr. Let T =
VienTr. Let us define the filtratioff := (7 )ken-

DEFINITION 4.3. On a probability spac&z, £, P), we call a random walk
a process Xy )ren taking values inz, starting from a fixed poinkKg := vg € Z,
satisfying the following conditions: for a.e € 2, (X;(w));en € & and, for all
k € N* andv € £ such thawg = vg, P((X;)o<i<k =V) > 0.

DEFINITION 4.4. LetM := (Xi)ren be arandom walk on a probability space
(2, F,P). Let 44 :(R2,F) — (P,T) be the measurable functian € Q
(X;(w))ien- Note thati 4 defines naturally a probability os® by, forall ¢ € T,
Py (C) =P }(C)). Foralln e N, let&M := 171(T,) = (Xo, ..., Xn). Letus
define the filtrationE™ := (§M),,cn. Given aT -measurable random variahle
let us define ther -measurable random variahlé! := u o 4 .

Note that, if 7 is a T stopping time, therf is a EM stopping time. If
(t,)nen IS @ nondecreasing sequencelo$topping times and if” [resp.(a,)qen]
is a (77, nen Stopping time (resp. adapted process), tieh [resp. (a*),en] is
a (8,%)neN stopping time (resp. adapted process).

DEFINITION 4.5. LetM := (Xi)ren be arandom walk on a probability space
(R, F,P), starting fromvg € Z. For allk € NU {oo}, v € £ such thatvg = vg
andn <k, letgy(v,n) =Py (Cy,... vu.vu+1) /P (Covy,....v,)) b€ the conditional
probability to go to the right at time, knowing Xg = vo, ..., X,, = v,. For all
ve P, ieN* jeZsuch that; ;(v) < oo, let pi{“j(v) :=qu(V,n; j(v)) be the
conditional probability to go to the right just after thi visit to site j, knowing
Xo=Vop,... ananl.yj(\,) = Vni._,'(V)-

Subsequently, we fix the probability space, £, P), on which we take i.i.d.
uniform [0, 1] random variablesw; ;)icn+, jez.

DEFINITION 4.6. We construct (and settle) the random walkg@n¥ ', P) by
the following method. Given the initial poinfy and the conditional probabilities
of moveg (-, -) of a random walkM, we letM := (Xi)ren ON 2 be as follows:
Xo:=uvg and, for alln € N, given(Xp, ..., X,),

PO RO if wz,x,)X00 X -1.X, < g ((Xo, ..., Xn), n),
n+l= .
X, —1, otherwise.

DEFINITION 4.7. LetM := (Xi)ren be a random walk [on the probability
space(Q, ¥, P)]. Let, for all n € N, FM := 0(w;,j) (i, j)eNsx2/n; (4 p(@)<n =
o({w; j € I} N {n; j(Uy(w)) <n},i e N*, j e Z,I C[0,1] interva). Note that
gM c FM. Let us define the filtratiofi ™ := (F,),.cn.
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DEFINITION 4.8. Givenv, V' € 2, let us define, for all e N* andj € Z, the
propertyE; ;(v,V') as

Zn,*,j(V’) (] + 1)(\/) = an‘ﬁj(V) (] + 1)(\/) and
Zo 02U = DO = Zog 0 = D)

with the convention thak; ; (v, V') holds whenever; ;(v) = oo orn; ; (V') = oo.

DEFINITION 4.9. LetM and M’ be two random walks oii$2, ¥, P). Let
M’ > M denote the following property: for a.ex € @, E; j (L (@), Iy (w))
holds for alli e N* andj € 7Z.

ThusM’ > M means that, for the same numbef visits to j, M’ has visited
site j 4+ 1 (right hand fromj) more often thanM and has visiteg — 1 less often
thanM.

LEMMA 4.1. Let M and M’ denote two random walks o [on the
probability space<2, #, P)], starting from the same poitkp = X, = vp. Suppose
thatforallv,v € 2, forall i e N*, j € Z, pi{“j’(v/) > pi{“j(v) wheneve; ; (v, V')
holds andmax(n; ;(v), n; j(V')) < oco. ThenM' >> M.

PrROOF Consider an arbitrary element € Q. Let v := { y(w) andV' :=
Ly (@), pij = p), p) ;= p;{“j'(v/) andE; ; := E; j(v, V). We want to prove
that, for alli e N*, j € Z, E; ; holds. Observe the following facts:

e One hasig=v.

e Forallp e N, there existé e N* andj € Z such thatp =n, ;(v):
—if Wi, j < Pij thenvp+1 =Vp+ 1;
—if Wi, j > Pijs thenvp+1 =Vp — 1.

The same remark holds, with andp; ; instead ofv andp; ;.
Let us introduce the property

P.={Vie N*, jEZ, S.t.n,-,j(v) <k andn,-,‘,- (V/) <k, Ei’j hOlds

Let us prove by induction ok that P, holds for allk € N. Note thatPy follows
from Xo = X{ = vo. SupposeP;_1 holds. We want to deducey, which is
different from P,_1 if there exists(i, j) € N* x Z such that #; j(v) = k and
n; j(V') <k]or[n; j(V') =k andn; ;(v) < k]. Select such a couplg, ).

If i =1, then suppose, for instance, thiat vo = vg (the case < vg is anal-
ogous, andj = vo is obvious). Thenz,, ;) (j + HV)= Zn ;n(G+DHW) =1
and we aim to prove thak,, ;) (j — D) = Zy, ;»(j — D(v). Suppose the
contraryZ,, ;) (j — D) > Zy, ;)(j — D). Leta = Zy, ;,)(j — D (V) — 1.
SinceP;_1 holds,E, ;_1 holds and, thereforqz;w._1 > Pa.j—1- NOWVy, ;141 =
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Vi j_1 + 1 sincea = Z,, ,(j — 1)(v) — 1; this impliesv;lajilJrl =V, t1
and leads to a contradiction. ’

If i > 1, takev at timen;_1 j(v) and takev’ at timen;_1 ;(v)). We make use
of the notationmM or M’ — [ or r to indicate thatv (resp.Vv’) goes to the left
or to the right at this time:;_1 ;(v) [resp.n;_1 ;(V)]. Since E;_, ; is satisfied,
pl{_l’j > pi—1,j and it is impossible thas{ — r and M’ — [. Hence, there are
three cases:

e M — [ andM’' — r, and the conclusion follows;

e M — r and M’ — r, and the conclusion follows from a proof similar to the
case =1.

e M — [ andM’ — [, and the conclusion follows from an analogous argument.

O
DEFINITION 4.10. LetM = (X,),en be the VRRW onZ [on (2, F,P)

according to Definition 4.6] defined in the Introduction, that is, define&§y= vg
and the transition probabilities, for alle > andn € N,

gm(V,n) :=a, (V) (V) =1 — o, (V) (V).

DeErINITION 4.11. For allx € Z, k e N and M > 1, let us define the
T stopping timeU, x » by, for allv e 2,

U iom =inf{n >k s.t.Z,(x)(V) > MZi(x)(V) O o, (x)(V) > Max, (x)(V)}.

DEFINITION 4.12. Letx € Z andM < R.. Let us define, for alll stopping
timesk andV, andg € R, the modified VRRV\LM,/(,V,g [on (2, #,P) according

to Definition 4.6] by X( := vo and the transition probabilities, for alle »» and
neN,

aag,, (V1)

=1-a, V)W (1- WL, _, andne[k,ux,k,MAV)}m{yk(v)<1,a,;(x)(v)<1/4M})’

wherey, (V) := g/~ Zi (x) (Ve (x) (V).
Observe that, for alt € N andg € R* , (M,’(,V,g > M by Lemma 4.1.

4.3. Nonconvergence resultLet c, d, M € R} andx € Z. Let (t,),cn be an
increasing sequence @fstopping times. Lety,),eN, (2n)neny and(W (n)), N be
(77, )nen-adapted random processes taking values, respectivay,imR and in
R?% , and letT" be a(7;, )nen stopping time such that < T implies?, < oo. Let .M
be the random walk in Definition 4.10. By a slight abuse of notation, for alN,

we lett, :=tM, T :=TM, y, :=yM, z, .=z and 7, .= F M
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AsSsSUMPTION (H1). There existsig € N (deterministic) and %;,)-adapted
processess, ), en+ and(r,),en such that, for alk > ng,

(25) Tntl —Zn = Yn + Ens1 + 7 fn+tl<T

and, ifn < T,

o0
E(en+1|%;,) =0, E(Zrﬁ]ﬂl]%) <d*Wn)?,
j=n
(26) o
Dol < dWn).
j=n
Let us use again the notation of Definition 4.12¢ Z and M < R are
M, , h
already fixed). For alk, » € N andg € R* , let tn X g =1, CFE T = T Mt g,
M, M,
ynkg =y, kf2k8’z/ =z, Tk>12k -8 and?/ =, rerkg Notethat‘f?/k :%k,
'8

n,k, g -
since the random walks$( and M are the same up to time.

I, 12k, 8

ASSUMPTION (H2). For all g > 0, there existsng (deterministic, but
dependent o) and(}‘ti )-adapted processés),),cn+ and (r;),en such that,
nk,g

for all k > ng andn > no,

cgW (k) .

(7) Zpi1ke—Znkg = YnkeT — Lneik.2o e atr,  ifn+l<T
and, ifn < T,

- s 2 2

E(5;+1|ft:;1k,g) =0, (Z "9]+1‘ / ) =d"W(mn)",

(28) o

D oIri < dWn).

j=n

Note that7’, #,/, ¢, andr, also depend ok andg, but we omit it for simplicity.

ASSUMPTION (H3). For allg € R%, there existsig € N such that, for all
n >k > no,

(29) y;,k,g —Yn = _dl)’n|[|Z:1,k,g —znl + W(K)].

PROPOSITION4.1. Letc, d, M € RY and letx € Z. Let (1,),en be an
increasing sequence af stopping timesLet (y,)neN, (@n)nen and (W), en
be (77, )nen-adapted random processes that take valuespectivelyin R, in R
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and inR%, and letT be a(7;, ).en stopping time such that < T impliest, < oo.
Suppose Assumptioftd1l)—(H3)hold. Then

(30) ]P’“nli_)moozn:O}ﬂ{Zlyn|<oo}ﬂ{T=oo}}=O.

n<T

NOTATION. In the remainder of the paper (except Lemma 4.2 and its

proof), we letmM’ := CM;k’,Zk,g, forgetting the dependence @nandg. For any

T-measurable random variahlewe writeu (resp.«’) instead ofu™ (resp.uM:).

In particular, we use notatiom, (x) [resp.a/, (x)] for a;, (x)™ [resp.a,, (x)™],
Z;}(x) [resp.Z/+ (x)] for Z;F (x)M [resp.Z;" (x)*'] and so on. The notatior] , .,
Yn.k.g @Ndz, ;. is used in this current section to emphasize the link with variables
k andg [especially in (27)], but is replaced subsequentlyyy, andz),.

REMARK 4.1. Assume that, can be written, when < T, as
—_ Rt"
= 5,

[where(R,),en and(S,),cn areT-adapted processes, taking values, respectively,
in R andR?* ] and that, whem < T A T,

Yn

Rt// Z Rtn'
Then a sufficient condition for Assumption (H3) is that, whea [ng, T A T'),
S
o 1] <dllgy — al + Wl
fy

Indeed,
, Ry R, Sy
= = o

which implies

S,
Yo — Vn Zyn(S, —1)~

REMARK 4.2. In the conclusion of Proposition 4.1 [equation (3Q)]}y,| <
oo can be replaced by, y£ < oo or by " |y,|1y,,<0 < 0o. Indeed, assume (H1)
holds andz, — 0. Let us prove thafy_y, < oo implies >y, < oo (and
thus Y |y,| < 00); the proof of the converse implication is very analogous.
Summing (25) fromn :=m to p, if m > no,

p—1 p—1
p—im= Y 0 =)+ D (err1+7r1)
k=m

k=m
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and, therefore,

Z €k+1

k=m

Zyk <Zm+zyk+SUp +Z|”k|<00

p>m

using (26) and Doob’s inequalityif (m) < oo].
Similarly, > |ynlly,;,<0 < oo implies }|y,|1y,,,>0 < oo (and thus
> |ynl < 00), using
|Zn+l| — |znl = |yn|]1ynzn20 - |)’n|]ly,,z,,50 +Sigr(zn)(5n+l + 1),

where, for allx € R, sign(x) denotes the sign of.

4.4. Proof of Propositiod.1.  The following lemma is useful in the proof of
Proposition 4.1.

LEMMA 4.2. LetxcZandM e R% . Forall T stopping time« and V, and
g €RY, let M and M)y, , be the two random walks o(m ,IP) introduced in
Definitions4.6, 4.10and4.12.Thenforall n > 0andC € 7

Py, (ClT0) = Cslg, M, )Py (CTi) + .

PRoOOFR  For simplicity, let M’ := M} V= = (X})nen and, for any]l‘—measu—
rable rv.u, u := u™ andu’ := u™. Givenn e N andv € 2, let I,(n) :=
IP)MkV (G(VO Vn))/IP)M(G(Vo Vn)) If yk(V) >1 or O{k (x)(V) > 1/4M then
I,(n) = 1. Otherwise,

nAV AUy k,m (V)

Iy(n) = 1_[ [(1 — VWL, _y=x.v;=x-1})

j=k+1

y (1 n Vk (V)]l{vj,lzj_,vj:x+1}05j__1(x)(V) )i|
a4 (x)(V)
Let us upper bound IR, (n), using IN(1 + x) < x for all x > —1. We obtain
In IV(”) S Rn(V),

where (R,),>k IS the (7,),>r-adapted process defined & = 0 and, forn >
k+1,

nAV AUy k.M

]l{vj:x+1}051~__1(x)(v)]
Rn V) = V 1 Vi 1=x —1 Vi=x— +
(V) =y (V) ,:;H Vi1 }[ vj=x-1) T

Our goal is to overestimate spg, (v) [> sup, In Iy(rn)] on a7 -measurable subset
of & of large probability form’. To this end, we now analyze the behavior of
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the (¥,)),en-measurable procesy, := R;W, depending on the random wall(’
(recall thatf, = FM).

Let (R )n>k be the compensator Qﬂ?n),,>k, that is, the(¥,)),>«-predictable
process such that the procdsjs R! — R/ is a martingale. For alt > k,

~

o/ ’
Rn+l - Rn

o, (%) + yra, (x) o (x )}

= AL L <vnty |~ L= ) + 2 e
n

/—
_ .2 /— oy (x)
= Ve Yixp=x}lin<v' AU )% (X)[l-i- oz,’f(x)]'

Therefore, for alh > k, usinga}‘ (x) <Ma; (x) <1/4 andZ} (x) < MZi(x) for
allj <Uy ;. yo

(31) R, < 2yZ(M — 1) Zy(x) Moy (x) = 2¢°M (M — 1).
Now, for alln > k,
VIR, 11 F) < EIRy 11— RDZIF < VL, mameur 120 ()
< Lxymvm<v, 1 2Mag ()Y,

whereV[-|%,] is the variance conditional ofy,.
Successively using the Bienaymé-Tchebycheff and Doob inequalities, for all
AeR%,

<supR > A‘?’k> < E(
n>k

< 8May ()Y (M — D) Zi(x)/ A =8M(M — 1)g?/ A%,

2 2 o 2
)/A <4E[R! G PRI/ A

n>k

Hence, by lettind" be the7 -measurable event

I:= {SupRn(V) > /8M (M —1)g%/n +2g2M(M — 1)},

n>k
we deduce, using’, = R, + R, and (31), that
P (T[T%) <.
On the other hand, for any patte » N I'¢, foralln € N,
P (Cov,... v | T) < Cst(g, M, )P 4 (Cvg,....v) 1T%),

which enables us to concludel]
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Let us now prove Proposition 4.1. Given- 0, which is chosen subsequently,
let us define the stopping tim&™ = inf{n > m/37_, |vi| > €}. Let, for all
meN,

Tpi={limz, 0 U(T AZ™ <00}, Cp =4, (Th).

It suffices here to prove that there exigts: Cst(c, d, M) such that itk > m Vv no,
thenP[C,,|F;, ] = Cst(c,d, M). Indeed, by a standard martingale convergence
theorem,P[C,,|F;, ] = Elle, |F4] k>0 le, SiNCECy € Fr, = o (UF,).
Thereforele, > Cstic,d, M) > 0a.s. and®(C,,) = 1 for allm € N. We conclude
thatP({lim z,, # 0} U {3 |ya| = 00} U{T < 00}) =P(Nen Cm) = 1.
Let g € RY be fixed later. Let us introduce the random wa¥ . . (see
Definition 4.12) and use the notation iottuced in Section 4.3. Let us consider,

forall k e N,

A = {sup

n>k

n
Z";z/'+1

i=k

< 4dW(k)}.

n
Z€i+1

i=k

<4dW(k),sup
k

nz

Let us apply the Bienaymé-Tchebycheff and Doob inequalities, and use Assump-
tions (H1) and (H2): For alt > no,

E(SUp s (Crg €i+)?1F)  ESURsr (Xiy &/, 1)%1 %)
16d2W (k)2 16d2W (k)?
8 1
< — = —,
—16 2
We want to prove that o\, T A T' A Z™ < o0 OF z,, & 0. From now on, we

suppose thai holds andthal’ A T/ A Z™ = oc.
Observe that Assumptions (H1)—(H3) imply, for at k andn > i,

P(A|F,) <

(32) =iz 2 —zi—de Sup |2 —zj| —d(104 &)W (k)
jeli,n—1]

and that for alk > 2k (usingz;, = zx, the coupled random walk&é and.M’ being
identical up to timey),

(33) 2 — 2n > [cg — d(104&)]W (k) — de sup |2} — 2.
JEIK,n

Suppose: > 2k and let

u(n) :=Sup{ie[k,n] s.t.|z; —zi|= sup |z’,—zj|}, Tn = Zy(ny — Zun)-
jelkn]

On one hand, using (33),
[Tn| = 7w = [cg —d(10+ &)W (k) — de|Tp].
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We takeg := 24d /c and suppose < Cst(d); hencegt,| > 12d W (k). On the other
hand, using (32) with := k andn := u(n),

T, > —de|t,| — d(104+ )W (k).

Thereforet, < 0 implies |t,|(1 — de) < d(10+ )W (k) and hence|t,| <
124 W (k) [if we supposes < Cst(d)], which leads to a contradiction. Therefore
T, > 12dW (k). For alln > 2k, (32) withi := u(n) implies

72— zn > (1 —de) —d(10+ )W (k) > dW(k) >0
if we assume: < Cst(d). Therefore,
P (Tl T) + P (T | T7,)
= (P, T F) + PUSETw)IF)) 0 I5F

ZIP’(nleOOZn3’500fn|_|>";02,/1#OOFT/\T’/\W<OOIJ%> ol

>P(A|F,) 0 51 > 1/2.

In the equality, we use thaf, = JTI;Z and, forallc e # andn e N, Py (C|7;,) =
P(L,HC)|F,) o 451 [for all v e #, PU,LC)|F,) is constant ond ;}(V)];
similarly Py (C|7;,) = P(4,4(C)|F) o 4. We also use that for alV € 2,
Jljwl(v) and 1;41/(v) have the same projections on thefirst coordinates (the
coupled random walk#( and.mM’ are the same up to tineg).

Now, Lemma 4.2 implies that for all > O,

P ¢ (T Ty) < Cstg, M, mPp(Tin|T,) + 1
and, therefore,
1 —
0l > /2—n
1+Cstg, M, n)
if we taken = 1/4 (recall that we have chosgn=24d/c).

P(C| F7,) = P e (T |T7,) =Cslc,d, M)

5. Proofsof Lemmas 2.5, 2.7 and 2.8.
5.1. Proof of Lemm&.5.

5.1.1. Notation. It suffices to prove thaP(Yo(0) N T(0)) = 0, because the
problem is translation-invariant. We apply Proposition 4.1 to show it (as explained
in Section 4.1) and use its notation. Let us first introduce our choice of the variables
that appear in this lemma.

Let us define a sequenég), <N by

tn :=inflm e Ns.t.Z1(2) > n).
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Let, foralln e N,
R, = Zn(z) + Zn(4) - (Zn (1) +Z, (3))
Let (yn)nen and(z,)nen be the(T;, )-adapted processes defined by
Ry, Z;,(3)
Z,(2)Z,(3)° Z:,(2)
if ¢, <00, andy, =z, :=0 else.
Givene > 0, for allm € N, let 7;"* and T, be theF,,),., stopping times
defined by

T =inf{n > m s.t.2,(4) = e(1+£)Z,, (D) or e, (D) = (1+) inf o, (2)
m<j<n

Vp 1= Zn:=1In

or Z, () A Z,, 4 ¢ [(Z, @V Z,3) . 2,2 A Z, 3]}
T, :=infln>ms.ts,=oc00rIye[l4]st.Z, (y)— Z, ,(y) > Z;, ,(»)°}
and7™¢ =T, AT,"".

LEMMA 5.1. Forall ¢ >0,

To(0) N T§(0) C {limz, =0} N [Z v < oo} N ( e = oo}),
meN
PROOF.  Observe that a.s. diip(0) N Y;(0),

. 2,0
D D AT YAE

neN
~ Z Ztn (O) Ztn (1) 1
% 2,0+ Z,,(2) Z,(1) + Z,(3) Z,,(1)

< Za (1) Xn 2XVH—1 l}

neN Z (1)
_ ~ Xn=1,Xn+l:0}
= ZN e Z (1) ZN Zn(D)

<y 1(x,=0,X,,1=1) < oo,

neN Z"(l)

where we use (23) in the first relationship, the definitioriigf0) N Y (0) in the
second and seventh relationships, Lemma A.1(i) in the third and fifth relationships,
Proposition 3.1(c) in the sixth relationship and, finalty0) = {Y(0) < oo} by
Lemma 2.1.

The fact that there exists a.s. 3(0) N Y;(0), m € N such thatf,"* = co can
be proved as follows: For instance, f@f, (1) — Z;,_,(1), the probability to visit
3 starting from 1 in two steps is asymptotically greater thaf, 50 we can use



2688 P. TARRES

a method very similar to the proof of (17) to estimate the number of visits to 1
between times,_1 andr,. The other points follow from the definitionsJ

Lemma 5.1 implies, together with Remark 4.2, that it suffices to apply
Proposition 4.1,m and ¢ being fixed, with (¢,),en, (Vn)nen and (z,)nen a@s
defined below, to conclude th&(Yo(0) N Y;(0)) = 0. Let us choose here the
other constants that appear in the application of this lemma (the choice is justified
afterward):c := 1/64,d :=8V1+4e, M :=4,x :=2, W(n) := Vo, (2)/n and
T :=T"*. We choose in the following text. We check in Sections 5.1.2-5.1.4
that Assumptions (H1)—(H3) hold.

5.1.2. Assumption(H1) of Proposition4.1 holds. Let n € N be such that
n < T. We need to define a continuationgf,1 onn + 1= T, so that conditions
(25) and (26) hold. Let us define

Z,1(2):=infli > Z,(2) + 1 s.twi—12 < maxe;._,(2), e} (2 - Z, (D},

nj—12

wheren; ;, i € N*, j € Z, is theith visit time to sitej, as in Definition 4.1. We
apply the convention thalji_l,z(Z) = 0 wheneven;_1 2 = co.

Note thatZ,,.,(2) is #,,,-measurable and théZ, ,,(2) = Z,,,(2) when
n+1<T.Indeed,Z, (1) < Z, (1) + Z,,(1)® implies, for all k € [#,, t;y1],
@ (2) <o (2) + Z,, ()t [hencew (2) = oif (2) — Z,, (D],

Let V41 := ZM(Z) — Z;(2). ThenV, 1 is lower and upper bounded by
two geometric random varialdevith successrpbabilitieSa;‘ 2 -7, (L)*~1and
aﬂn'(Z), and, therefore, assumiag< Cst andz > Cst [note thatZ, (2) > n],

E(Vas1l %) € [0 @72 (0 (@) - 2, (1)*H) 7]

(34)

clef @7 ot @71+ 22, )Y
and
(35) E((Var1 — D2IF,) <3(;, () + Z,, (D) < 60y, (2).

Indeed, ifz is a geometric r.v. with success probabilifyand if 1— p < Cst,
EQ)=1/p, E(-D%)=1-pR-p)/p*<31-p).
Let us defineZ,, ,, (3) similarly so that ifW,,+1:= Z;,,,(3) — Z, (3),
E(Wyi1lF,) € [, D e, 371 +22, 95
and such that the estimate analogous to (35) hold¥4or; . Let

. 24,3 .
Zng1i=In 2, rn :=E(Znt1 — 20l F1,) — Yo
n+1 Zt,,+1 ) n ( n+1 nl t,,) Yn

Ep4l = Zn—i—l —Zn — E(Zn—i—l - Zn|\(/:}n)-
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Note that ife < Cst andn > Csi(e), using notatiori] in Section 2.1,
( Z1,, )| 7 ) _EVinl%) D(E(V Hmn))

Z,,(2) Z,,(2) 22,,(2)?
A 27, ()1 1
(30) =% () +5(%)

AN 1+D< 1 )

- Zt,, (2 212-3¢ )’
using | In(1 + x) — x| < x2/2 for x > 0 in the first equationE(V +1|f; ) <2,
Z.(2) >n and (34) in the second equation, am (1)*~1 < n=(1-9% <

1/(4n*=3) in the third equation. _
Using a similar estimate fdi(In Z,, ., (3)/Z,,(3)|¥;,), we obtain

(37) E(Zn+1 — 2l F,) = yo + 0(1/n*%).
Thereforey, = 0(1/n%%) is such that

§l|r1|—[]<; j2_38) < 13 D= 52\/T—ZW(11),

usinge; (2) > 1/n%, if ¢ < Cstandn > Csf(e).
Let us now estimati&(s2, ;| #,):

o)
o([ofe225) e 2] 1)

vn+1—1>]2 ) E[(Vat1 — D?|F,]  6a; (2)
E(|Inll+ — F L L
= ([”( +ztn<2>+1 Fin ) = n2 =Tz

using (35) (note that the second inequality is an equality). Using a similar estimate
of conditional variance of log,, . ,(2)/Z;,(2), we obtain, ife < Cst andn > k >
Csft(e),

12(er; (2) + ;" (3))
2

E(e2,1|%;,) <

240, (2)(1+e) 48(1+e)(1+e)a, (2)
< = < = :
usinge;” (3) < 2ea; (2), sincen < T;"°. Indeed,Z,, (2) € [(1+¢)71Z,,(3), (1 +
82,1 [Z,3) <Z,(2)+ Z;,(4) < (1+ ¢)Z,,(2) and the other inequality is
similar].

(38) !
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We conclude from (37) and (38) that (26) holds and, therefore, that Assump-
tion (H1) is satisfied when < Cst andn > Csi(¢).

5.1.3. Assumption (H2) of Proposition 4.1 holds. Note that y;, :=
g/NZy (2, (2) < 1if k > Csi(g) ande < Cst. Let us prove that2< T im-
plies o < Uz, m SO that in Definition 4.12 for the transition probabilities of
M = M;k in.¢ (IN the statement of Proposition 4.1y A Uz4,m = tz. This
implies that if Z < T”, the probabilities of moving from site 2 to site 1 fat’ are
the VRRW probabilities multiplied by the factor-1y;, from time to timez,.
First, o, (2) < (1 + &)y (2) < 204, (2) as long asw < T by definition of T, if
e <1.Second, ift <2k < T, thenZ, (2 < Z;(2) + Z,,(1) < Z;(2) + £Z,,(2),
sothatZ, (2) <(1—e) 1z (2 =1 —-e)tn <4kif e <1/2.

Letn € N be such that < T’. We define

Z;’;H(Z) =inf{i > Z;,’l (2) +1s.t.

1-wi-122 (1= yidneik.2o) Minfe,, (2,072 + Z ()Y,

with the convention that' (2) 1 whenever;_, , = co.

l*

Similarly as in Section 5 1. ZZ/ (2) is F "i -measurable andl/ 2 =
It Iny1

Zt’/ (2) whenn +1 < T'. We deflneZ’ (3) in the same way (but the factor
1- y,k does not appear, since the probabllltles of moving are only changed starting
from 2, according to Definition 4.12).

Instead of (36), we obtain

_ Z, @ - Q- y)lepaoo @10 1
(n Z)2 | )_ Z, @ (2n2—35)

andwhem € [k, 2k A T"),

[1- A=y, QI o, @71
Z,(2) Z,(2)

a;j(Z)_l[(l+Vzka;;(2))—l 1}

B Z;V/I(Z) a;’?—(Z)

@ e gWKk)
27} (2)ay, F@2~ 3% ~ 64
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using in the first inequality thatl + x)~1 < 1 — x/2 for x € [0, 1] and using
in the second inequality thzﬂ’ (2) < 4k (see the first paragraph of this section,

and similarIyZ (3) < 4k, WhICh |mpI|eSa (2) = oy (2)/4 [recall thate, (2) =
o/_(Z)] The rest of the proof is analogous to the proof of Assumption (H1), so
that we obtain (27) and (28).

5.1.4. AssumptiorfH3) of Proposition4.1holds. Letus use Remark 4.1, with

R, := R, and S, := Z,(2)Z,(3). First observe thak/, > R;,, sinceM’ > M.
This comes from the fact that’ tends to go more to the right thas, so thatr, ,
which increases only with visits from 5 to 4 and decreases with visits from 0 to 1,
is larger for.M’ than for .M. More preciselyM’ > M implies on one hand that
Z;f“(4) > Z,*n‘(4) andZ,/,_(l) < Z‘(l) and on the other hand by (24) thit < R/
forall¢,t € N suchthat; = X;,, Y@ =2zr4 andZ (1) < Z; (1). Second,
if & < Cst,

Zin (2)Zin O 1‘ - 2‘ n Zy, (2)Zin €)

Z,(2Z, (3 Z,2Z, ()

Z,3 7.2
2(In =" In St ):2 L= Zal.
= (”z,n<3>+”Z;,;<2> o0 =2l

The first inequality follows fromx| < 2|In(1+ x)| for |x| < 1: Indeed,Z;, (2),

Z,(3), Z;,(2) andZ;, (3) are close to (e.g.,Z;,(2) € [Z 2), 2" " (2) +¢Z,,(2)]
and Z,, (2’1) =n, see Section 5.1.3), so that;, (2)/Z;,(2) and Z;n /2,3
are close to 1. The second inequality is a cgnsequentﬁt,(ﬁ) > Z,,(3) and
Z;}; (2) < Z,,(2), which follows again fromM’ >> M. '

5.2. Proof of Lemma&.7. It suffices to prove thaP(21(0)) = 0, because the
problem is translation-invariant. We prove a preliminary resultin Section 5.2.1 and
then show the result in Section 5.2.2, using Proposition 4.1.

5.2.1. A preliminary result. The following lemma implies that a.s. @&y (0),
Z,0OVvZ,dVZ,8)/Z,(2) N Z,(6) tends to O.

LEMMA 5.2. One has

Z,(i)
Q1(0) C { lim 0}.
i:@l,s = Z,(2)

PROOFE Let us prove, for instance, th&t,(0)/Z,(2) — 0 on 21(0); the
proofs of the other statements are similar (using also Lemma 2.9). Observe that,
by Proposition 3.1(c) and Remark 3.1,

Q1(0) C Y(0,4) N {Zx(2) = 00} C {Y (1) < 00} N{B(2) = a5, (2) > O}.



2692 P. TARRES

Assume thaf21(0) holds. It suffices to prov&,(0)/Z, (1) — 0. There exist a.s.
a € (0,1) andp € N such that, for alk > p, Z,(1) > aZ,(2). This implies, for
alln> p,

Yo -Y, (=)

k>n

>aZ,(0) )

k>n

Ix,=1 Zr(0) =3 Tx,=1 Z,(0)
Zi (D) Zi(0) + Zk(2) ~ & Zie(D) Z,(0) + Zik(2)

Ix=1 -y Z,(0)
(Zr (D) + Z4(0)2 ~ Z,(0)+ Z,(H)+ 1" O

5.2.2. Application of Propositio.1. We apply Proposition 4.1 and use its
notation to prové?(21(0)) = 0. Let us first introduce our choice of variables that
appear in this lemma. Let us define a sequenggcn:

t, :=infim e Ns.t.Z,,(4) > n}.

Forn > 2,1, is the time of thgn — 1)th visit to site 4.
Foralln e N, let

Rn = Zn(5) + Zn(7) - (Zn(l) + Zn(3))
Let (yn)nen and(z,)nen be the(7;,)-adapted processes defined by
Yy = Ry, ’ 2= In Z:,(6)
n(Z;,(3) + Z,(5)) Z,(2)

if , < oo and byy, = z, := 0 otherwise. Givem, a > 0, for allm € N, let 7;""*
and7,"* be theF ), stopping times defined by

IneN

"t = inf{n >ms.tZ, (6)/Z, (2 ¢[1l—e,1+¢]

or sup Z,(j)>eZ, (2 ore (2 Aa; (6)<a
j€{0.,4,8) " "

or i[nf ][In(Z,n(S)/Z,i(S)) —2a71In(Z,,(4)/Z,;(4)] 28},
JjElm,n ’ ’
T, :==inf{n>m s.t.t, =00
ordye[1,71S.t.Z,(y) — Z,_,(¥) = Z;,_,(y)n* "}

andT®me .= TEME A T3

LEMMA 5.3. Forall ¢ > 0,

Q1(0) C (limz, =0} N { 3 Iynltyc, =0 < oo} n ( U (reme= oo}).
neN a>0, meN
g<s/A2~2a71-3
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PROOF Lete > 0 and suppos&;(0) holds. The existence ek € N, a > 0

ands < ¢’ A 223 gych that7;""* = oo follows from Lemmas 2.9 and 5.2,
Remark 3.1 and Corollary 3.2(iii). The proof of the existencenof N such that
T," = oo follows from an argument very similar to the proof of (17) [which gives
the estimate of,, (y) — Z;,_,(y) for y =2].

To estimate the sum ¢§,|1,,.,<o0, observe that,z, <0 impliesk,, (Z;,(6) —
Z; (2)) <0; hence,

|R;,| < |Ry, — (Z:,(6) = Z;,(2)| < Z;,(0) + Z,, () + Z,,(8).
Therefore, it suffices to prove that
1 Z,(0
2 ;’1(4;} Z,(3) Jf; Rl
neN neN

since the sum involvingZ,, (4) is obviously finite on21(0) C {Y(4) < oo}.
Whereas21(0) is symmetric with respect to 4, let us prove the first inequality:

1(x,=4) Z,(8) oo
Zn(4) Z,(3) + Zn(5) ’

1ix,=4 Z,(0)
% Z,(8) 7,3+ Z,(5

1ix,=2,X, =41 Zn(0)
Z,(4) Zy(3)

~ Z ]l{xn:4vxn+2:2} Z,(0)

=77, @ Z,3)

NZ =2}
Z(2)Z(1)+Z(3) ) Z,(—1)+Z,(1)

Z
eN
Z,(0) o Z,(0)
neN ZN

_ZZ< 1>+z<1>

neN
In the second equivalence, we use an argument similar to the proof of Proposi-
tion 3.1(c). In the last equivalence, we use the same principle as in the previous
arguments. [

Lemma 5.3 implies, together with Remark 4.2, that it suffices to apply
Proposition 4.1a, m ande < ¢ < Cst being fixed, with(z,),en, (yn)nen and
(zn)nen as defined below, to conclude tHat2;(0)) = 0. Let us choose here the
other constants that appear in the application of this lemma:1/8, d := 4a 1,

M =221 .25 W(n) = 1//n andT = T9™¢,

We leave to the reader the proof that Assumption (H1) holds, since it is very
similar to the proof of the same fact in Section 5.1.2. Concerning the proof of
Assumption (H2), let us show that 2 T impliesty < Us ;, u. It follows directly
from 2k = Z,,, (4) = Z,, (4) thate, (5) < 2, (5) foralln < 2k. On the other hand,
if n <2k <T,then INZ;,(5)/Z,(5) < 2a71In2+ 1 if ¢ < 1, which implies

Z,,(5) < 22"71+1Ztk (5). The rest of the proof that Assumption (H2) is fulfilled is
left to the reader.
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Let us check Assumption (H3), using Remark 4.1. Figt, > M implies
R}, > R,,. Second, we need an estimate of

Z; (3)+ Z, (3 1‘ - ‘ Z,3)+ 7,5 — (Z, ® + Z,, (5)
Z,3+2,5 1~ Z,3+7,5

Note that
Z, 3+ Z,(5) =n+Z, (3 + Z;"(5) + Cstvo),
Zy(3+ 2y (5 =n+Z, (3)+Z; (5 + Cslvo)
and
Z;j(5) —Z5(5) < Z{}; 6) — Z,(6), zZ, (- 2;5(3) <Z,(2 - Z{}; (2.
Indeed, the first inequality follows, for instance, from
Z,,(6) = Z} (5) + Z;"(6) + Cst(vp), Z,/’; (6) = z;j(s) + Z;j(e) + Cst(vp),
which implies
Z,/,; (6) — Z,,(6) = Z;ZF(S) —-Z 5+ Z,/ZF(G) —Z5(6) > Z;Z“(5) —-Z5 (5,
where the last inequality follows frord;, () > Z, (v) and Z;Zr(y) > ZF(y) for

y>4,andZ; (y) < Z,(y) and Z;,‘(y) < Z,(y) for y <4, as a consequence

of M’ > M.
To summarize, aslongas< T AT, if ¢ < Cst,

Zi, () + Z,,(5) ‘ _Z®-2,0 s Z,,(2) = 7, (2)
Z,®+7,6 1~ 2,3+7,6) ' 2,3+72,0)

_1(Z,(2)  Z,,(6) _
3Cl l( tn _ n ) 4Cl l /_ .
= 7,2 7,0)° 120 = 2l

5.3. Proof of Lemma&.8. It suffices to prove thaP(22(0)) = 0, because the
problem is translation-invariant. We prove a preliminary result in Section 5.3.1 and
then prove the result in Section 5.3.2, using Proposition 4.1.

5.3.1. A preliminary result. Let, foralln € N,
_ 1 242,05
Tz,

LEMMA 5.4. One has

Q2(0) C {EI Ago i= nli_)moo An}.



REINFORCED RANDOM WALK 2695

PROOF  Suppose&?2(0) holds. Thenz, (7)/Z,(2) — 1 by Lemma 2.11 and
B (2 — o (2) > 0 by Remark 3.1. Using Corollary 3.2(iv), we obtain that
Z,(5)/Z,(2)%=D and Z,(4)/ Z,(2)*~? converge to a positive value. Note that
these statements impl;, (5)/Z,(3) = 8 (2~12,(5)/Z,(2) — 0.

Therefore, there exist a.s. finite random variab}ggs i €{1, 2,3, 4,5}, such
that

n
+
Zi i =) 1ix=4x,,,-5)

k=0

L Z(5) L Z(5)
= 1 ) = 4 ————

,;0 W= Ze @ + Ze(5) ,;, W= Ze3

n n
— _ + -1, — _
= Vo Y L=ty Zk (DD <y 2 3 1 x5, a Zi (47 @ (DD
k=0 k=0
+ (2~ L(g— (7)—
= Y Zn (@@ D=7, (4)

i 7 20T s L)
Z, Z,(2)

where we use the conditional Borel-Cantelli lemma, Lemma A.1(i), in the first
equivalence and use;(Z)—l(agOG) — 1) > -1 [since a,(2) < a,(7) by
Lemma 2.10] in the fifth equivalence

5.3.2. Application of Propositiod.1. We apply Proposition 4.1 and use its
notation to prove?(22(0)) = 0. Let us first introduce our choice of variables that
appear in this lemma. Let us define a sequénggen by

tn =inf{m e N/Z} (4) =n}.
Foralln e N, let
Ry :=Z,(6)+ Z,(8) — (Z, (D) + Z,(3)).
Let (yn)nen and(z,)qen be the(T;,)-adapted processes defined by
YV = _ R , Zn:=1In Zy, (1)
Z1,(8)Z,(5) Z,(2)
if , < oo and byy, =z, := 0 otherwise.

_ Givens_, a,b>0,forallmeN, let Tf*b””*s and7,"* be theF ), stopping
times defined by

rasbme . inf{n >mSt.Z,, (7)) 2, (D ¢ [L— e, L+¢]

orA,/b¢[l—e l+elore} (@ Aa, (7)<a
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or sup a, (9)/a, (5 =2

m<k<n

or sup (Z, (5)/n“_1)/(Z,k/k“_l) >2

m<k<n

or sup Z;,(v)>¢eZ, (2
ve{0,4,5,9}

or sup Vk|(¥,F(6) - Y, (6) — (¥,[(6) — ¥, (6)] = 1},

m<k<n

T, :==inf{n >m s.t.t, =00
ordye(L8]s.tZ, (y)—Z, (y)=>Z, ,(»n1}
andT@bme .= TP A T,

LEMMA 5.5. Forall ¢ > 0,

Q2(0) C {limz, =0}N{> " [yally,z,<0 < oo} m( U (Tebme = oo}).
neN a,b>0, meN
g<e/ na2-20"1-3

PROOF Lete’ > 0 and suppos&2(0) holds. Then,, < oo for all n € N and
zu — 0. Let us prove the existence afe N, a, b > 0 ande < &’ A a2~ =3
such that7{"”"¢ = co. Lemma 2.11, Remark 3.1 and Lemma 5.4 imply that
Z,(N/Z,(2) = 1, oz,"f(Z) — ajo(Z) €(0,1), a, (7) > a,(7) €(0,1) andA, —
As > 0. Moreover, Corollary 3.2(iv) implies

InZ,(4) =al(2)InZ,(2), In Z,(5) = ay,(7) InZ,,(7),

and similar estimates for IB,(0) and InZ,(9), so that SUP-(0.4,5,9) Z1, (V) /
Z,(2) — 0 and sup., a, (5)/a; (5) — 1 [there exists a.8¢ > 0 s.t.a, (5) <
Yoo Zn(2)%(D1].

There exist random variables,, .2 > 0 such that

Z;, (1) < )/Olon(“o_c(7)+a;“o(2)_1)—1
[usingA;, = Z, (HZ,,(5)/(nZ;,(2)) - Ax] and

+ — + -1
Ztn (5) = )/ozonaoo(z)(aoo(7)+aoo(2) 1) '

Hence, there exists as.> 0 such that syp.,(Z,, (5)/n ) )(Zy (5)/ k¢ ) > 1
foralla € (0, a’).
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Next, observe thatt (2) (a3, (7) + L (2) — 1)1 > 1 implies that there exists
v < 1/2 such thatZ, (5)"/./n — oo. Accordingly, using Proposition 3.1(a),

Y (6) =Y, (6)+0(Z,(57") =Y, (6)+ o(n~1/?),

The proof of the existence ok € N such that7;"* = co relies on the
observation that ift > 7, is such that, for ally € [1,9], Z;(y) — Z;, (y) <
Z, (y)n®~1, then the probability to visit 4 at time+ | X; — 4] if X; € [5, 9] (resp.
to visit 5 attimer + | X, — 5] if X, € [1, 4]) is greater than a constant multiplied by
n/Z; (X;) (usingA; — Ax). The result follows from an argument very similar
to the proof of (17) in Section 3.4.

To estimate the sum ¢§,|1,,.,<o0, observe that, z, <0 impliesk;, (Z;,(7) —
Z, (2)) <0; hence,

Ry, | <Ry, — (Z4,(D) = Z4,(2)| < Z;,(0) + Z,,(4) + Z;,(5) + Z,,(9).
which enables us to conclude the proof using

Z SUQ)E{O,4,5,9} Ztn (v) - Z SUQ)E{O,4,5,9} Z;n (v) } o
Z,»Z,5 Z, (2 n : O

Lemma 5.5 implies, together with Remark 4.2, that it suffices to apply
Proposition 4.1¢a, b, m ande < ¢’ < Cst being fixed, with(#,,),,en, (V2)nen and
(zw)nen as defined below, to conclude tHat2,(0)) = 0. Let us choose here the
other constants that appear in the application of this lemma: \/a/(4b%/?),
d:=20v4b~1, M =201 x:=5 W(n) :=1//n andT := T@bmse.

We leave to the reader the proof that Assumption (H1) holds, since it is very
similar to the proof of the same fact in Section 5.1.2.

Concerning the proof of Assumption (H2), let us show tha2l" impliesry;, <
Us,,.m-Foralln < 2k < T, a; (5) < 2a;, (5) andZ,, (5) < 2(2k)* ' Z,,(5)/k*' <
2"71+1Z,k (5) by definition of 7. The rest of the proof that Assumption (H2) is ful-
filled is left to the reader.

Let us check Assumption (H3), using Remark 4.1 wRh:= R, and S, :=
Z,(8Z,(5). First, M’ > M implies Rt/’; > R, . Second, we need an estimate of

Z, (HZ, (5 1’ - 2<In Z, (4) z, (5))

A e A +n
ACYRG Zy @ " 7,0

Let us, for instance, upper boundn (5)/Z;,(5). Assumen > k > Cst and
let & = Y, (6) — Y,7(6). The proofs of Proposition 3.1(b) and (c) imply
[using Z;, (5) > ZZ,'(5) >n, Z,(1) 2 (1 —6)2,,(2) > (1 - ¢e)Z,,5) /e = n
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andn < T;"""*] that
InZ,, (5) — Cstix, vo)

=Y, @ +7Y,_ 6 +0(Z,57Y)

=Y (@ + Y (6) + & +0(2/Vk)

=Y (4 +Y,"(6) + 8 +0(3/vk)
and, similarly,

InZ;, (5) — Csi(x, vo) = ¥,/ (&) + ¥, (6) + 8¢ + O(2/vk)

(recall thatM and .M’ are the same until timg). Therefore,
Z, (5)

7 > 4
L + I+ s 4
Z; (5) = t’ F(4) - Y, (4) + Yt,’l (6) - Y,7(6) + 7

Now Y/ (4) <Y, (4) sinceM’ > M. Letu, (resp.u,) be thenth visit time to
site 7 forM (resp.M’):

(39) In -

Zy, (7)

g ]l{xu 1=6}
Yre= 3 —t—,
k=1
M Lix', g z (7)
ad W+1" Xy +1= 6}
o= 3 sy
k=1

In summary, (39) implies, assumikg> Cst ands < Cst,

Z!, (1)
(5) u 1 Z;, (7) 1 4 Z,( 5
—<In n 4+ — n

In < + <In + .
Zt,,(5) k=Z, (7) +1k Z, (1) Z,(7) f Z, () Vk

APPENDIX: GENERAL MARTINGALE RESULTS

Let us recall the following theorem: The first part is due to Doob, while the
second part is due to Neveu (see, [Btopositions VII-2.3 and VIII-2.4).

THEOREMA.1. Let(M,),cn be a square integrable martingalieet
n
oy =E((My41— Mp)?|F) <00, (M), =) o.

Thenforall r > 1/2:

() {{M)oo <00} C{IMs e R/M, > My} as,;
(i) {(M)oo =00} C {M,, = o((M)(IN(M),_1)")} as.
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We make use of the following generalized version of the conditional Borel-
Cantelli lemma at various steps of the proof.

LEMMA A.1. LetG = ($n)nen be a filtration Let (§,),en [reSp (Bn)neN]
be aG-adapted sequence of random variables that take valué®,irand are
boundedresp nondecreasingLet(I',),en+ be a sequence @-adapted random
sets Let

Pi—1=PTk|Gr-1),

n n
®, =) &-_1lr,, Of =& 1pi-1.
k=1 pa]

n
8 =& p(L— p), Ap=)_ 81
k=1

Then
(i) @, =Py,
(i) bﬁa><100}<1{¢m55‘bﬁh
(iii)) (X ren Bk < 00} C (P, — @ = O(1//By)}-

PROOE First observe that
M, =®, — oF

is a martingale and thah,, = (M),,_1. This implies claims (i) and (i), using
Theorem A.1 [note thad, = O(®}), since(&,),en is bounded].
Let us now prove (iii). Let us define th@-adapted random processes

n n
1/2 1/2
W, =) ﬂkilgk—llew =3 ﬂkilgk—lpk—l, R, =V, -V,
k=1 k=1
with the convention thaRy = 0. Observe thaR, is a martingale and that

(R)oo =Y Bdr < 00,
k=0

which implies by Lemma A.1 thak, converges a.s. toward a rRe € R. Now,
observe that

n

~1/2

M,=Y_ ﬁk_{ (Rk — Rk—1)
k=1

and, therefore,

Moo —My= Y B 12(Re — Ri—1)
k=n+1
= > B BTYAR - BTY2R, = 0(1/VBy). O

k=n+1
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The following lemma has some similarity to the conditional Borel-Cantelli
lemma, although its proof is based on different arguments. Assuming some upper
bounds on conditional probdities for eventsl',,, depending on the number of
timesT,, has arisen]’,, a.s. holds only finitely often. The result is used in the
proof of Lemma 2.10.

LEMMA A.2. LetG = (4,)nen be a filtration let (y,),en be aG-adapted
sequence that takes valuesRrsuch thatiminf y,, > 0 a.s. and let(I',,),en+ be a
sequence di-adapted event$or all n € N, let

7, = sugk < n s.t. Iy holds.

Then

Y

art s
(40) {Ela eRY, meNst.Vn>m,P(T,11]§n) < nlfm } C {XE}ﬂrn < oo}.
n=

ProoFr For all a, e e R} andm € N, let T, ., be the stopping time
Tyem :=inf{n>ms.ty, <eorP(T, 1|9, > at)™ /nltr=}. Foralln e N, let
AZ’_iim =1 N {Tyem >ntandVy e = {ZZO:]_ ]lAz,s,m < 00}.

Let us prove that, for alk, ¢ € RY. andn > m, P(Vy ¢.m|%n) > Csta, &) > 0.
This enables us to conclude. Indeed, suppose this inequality holds. By a stan-
dard martingale theorem®(Vy ¢ m|%n) = E(v, . [91) = n—so00 E(1y,, ,1G0) =
1vy,,, SINCE€V,em € Goo. Thereforely,, , > Csla,e) a.s. andP(V,em) =1
(for all a, e € RY and m € N). We deduce that a.s. offa,e € R, m ¢
N s.t. 7, .m = 0o}, I';, only occurs finitely often, which proves the lemma.

Fix a, e € R%, andm € N. For simplicity, we assume: > 2sufl,a), and
vn < 1foralln € N [the overestimate dP(T",,1]%,) remains true if we replacg,
by y, A 1]. Givenn > m, let us estimate

o0 o0 any.rn
P(Va.eml§n) > IP( N @pemye gn) > 11 (1_ le)
k=n+1 k=n

<1 2an¥m
> exp| —2an”™ Z >expl ————————
k:nk1+ym Yo, (n — 1)Ym

da
> exp(——) >0,
&

where we use that1 x > exp(—2x) for all x € [0, 1/2] (with x = an= /k1H7m <
an—1<1/2 sincem > 2a) and(n — 1)/n > 1/2 (sincem > 2). This enables us to
conclude. [J
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