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DISCRETE APPROXIMATIONS TO REFLECTED
BROWNIAN MOTION1

BY KRZYSZTOF BURDZY AND ZHEN-QING CHEN

University of Washington

In this paper we investigate three discrete or semi-discrete approxima-
tion schemes for reflected Brownian motion on bounded Euclidean domains.
For a class of bounded domains D in Rn that includes all bounded Lipschitz
domains and the von Koch snowflake domain, we show that the laws of both
discrete and continuous time simple random walks on D ∩ 2−kZn moving
at the rate 2−2k with stationary initial distribution converge weakly in the
space D([0,1],Rn), equipped with the Skorokhod topology, to the law of the
stationary reflected Brownian motion on D. We further show that the fol-
lowing “myopic conditioning” algorithm generates, in the limit, a reflected
Brownian motion on any bounded domain D. For every integer k ≥ 1, let
{Xk

j2−k , j = 0,1,2, . . .} be a discrete time Markov chain with one-step tran-

sition probabilities being the same as those for the Brownian motion in D

conditioned not to exit D before time 2−k . We prove that the laws of Xk con-
verge to that of the reflected Brownian motion on D. These approximation
schemes give not only new ways of constructing reflected Brownian motion
but also implementable algorithms to simulate reflected Brownian motion.

1. Introduction. Let n ≥ 1 and D ⊂ Rn be a domain (connected open set)
with compact closure. Consider a reflected Brownian motion (RBM in abbrevia-
tion) Y in D. Heuristically, RBM in D is a continuous Markov process Y taking
values in D that behaves like a Brownian motion in Rn when Yt ∈ D and is instan-
taneously pushed back along the inward normal direction when Yt ∈ ∂D. RBM
on smooth domains can be constructed in various ways, including the determinis-
tic Skorokhod problem method, martingale problem method, or as a solution to a
stochastic differential equation with reflecting boundary conditions (see the Intro-
duction of [5]). When D is nonsmooth, all the methods mentioned above cease to
work. On nonsmooth domains, the most effective way to construct RBM is to use
the Dirichlet form method. The RBM constructed using a Dirichlet form coincides
with RBM constructed using any other standard method in every smooth domain.

It is natural to try to construct RBM in a nonsmooth domain using a sequence of
approximations that can be easily constructed themselves. One such approximat-
ing scheme was studied in [2] and [5], where the processes approximating RBM
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in a nonsmooth domain D were RBMs in smooth domains increasing to D. In
this paper we will consider processes approximating RBM in D that are defined
on the same state space D, or a discrete subspace of D. We consider the subject
interesting and important in itself, but we also have a more concrete and direct
motivation—it comes from two recent papers on multi-particle systems [3, 4]. In
each of these papers a large population of particles is trapped in a domain. All
particles perform independent random walks or Brownian motions and an appro-
priate mechanism keeps all particles inside the domain, which is assumed to be
regular in a certain sense (see [3, 4] for more details). The intuitive interpretation
of those results and their extension to less regular domains would require an in-
variance principle for the reflected random walk and similar processes in domains
with nonsmooth boundaries. As far as we can tell, such results are not available in
literature and they do not follow easily from published theorems.

In this paper we investigate three discrete or semi-discrete approximation
schemes for reflected Brownian motion. The first two approximations involve ran-
dom walks and we prove that they converge to reflected Brownian motion in a class
of bounded nonsmooth domains in Rn that includes all bounded Lipschitz domains
and the von Koch snowflake domain. The third scheme is based on “myopic” con-
ditioning and it converges to the reflected Brownian motion in all bounded do-
mains. We will now describe these schemes in more detail.

Let D be a bounded domain in Rn whose boundary ∂D has zero Lebesgue
measure. Without loss of generality, we may assume that 0 ∈ D. Let Dk be the
connected component of D ∩ 2−kZn that contains 0 with edge structure inherited
from 2−kZn (see the next section for a precise definition). We will use vk(x) to
denote the degree of a vertex x in Dk . Let Xk and Y k be the discrete and continuous
time simple random walks on Dk moving at the rate 2−2k with stationary initial
distribution mk , respectively, where mk(x) = vk(x)

2n
2−kn. We show that the laws of

both {Xk, k ≥ 1} and {Y k, k ≥ 1} are tight in the Skorokhod space D([0,∞),Rn)

of right continuous functions having left limits. We show (see Theorems 2.4 and
3.3 below) that if D satisfies an additional condition (1.1) below, which is satisfied
by all bounded Lipschitz domains and all bounded uniform domains (see below
for the definition), then both {Xk, k ≥ 1} and {Y k, k ≥ 1} converge weakly to the
stationary reflected Brownian motion on D in the Skorokhod space D([0,1],Rn).

The last of our main theorems is concerned with “myopic conditioning.” We
say that a Markov process is conditioned in a myopic way if it is conditioned not
to hit the boundary for a very short period of time, say, 2−k units of time, where
k is large. At the end of this period of time, we restart the process at its current
position and condition it to avoid the boundary for another period of 2−k units
of time. We repeat the conditioning step over and over again. Intuition suggests
that, when 2−k is very small and the process is far from the boundary, the ef-
fect of conditioning is negligible. On the other hand, one expects that when the
process is very close to the boundary, the effect of conditioning is a strong repul-
sion from the boundary. These two heuristic remarks suggest that, for small 2−k ,
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the effect of myopic conditioning is similar to that of reflection. A more precise de-
scription of myopic conditioning of Brownian motion is the following. For every
integer k ≥ 1, let {Zk

j2−k , j = 0,1,2, . . .} be a discrete time Markov chain with
one-step transition probabilities being the same as those for the Brownian motion
in D conditioned not to exit D before time 2−k . The process Zk

t can be defined
for t ∈ [(j − 1)2−k, j2−k] either as the conditional Brownian motion going from
Zk

(j−1)2−k to Zk
j2−k without leaving the domain D or as a linear interpolation be-

tween Zk
(j−1)2−k and Zk

j2−k . We prove in Theorems 5.1 and 5.6 below that, for any

bounded domain D, the laws of Zk (defined in either way) converge to that of the
reflected Brownian motion on D. We remark that, in Theorems 5.1 and 5.6, the
myopic conditioning approximation of reflected Brownian motion is proved for
every starting point x ∈ D, so these theorems demonstrate explicitly that the sym-
metric reflected Brownian motion on D is completely determined by the absorbing
Brownian motion in D.

We would like to point out that for the first two approximation schemes (i.e.,
random walk approximations) discussed in this paper, the proof of tightness of the
approximating sequences requires only the weak assumption that D is bounded
and its boundary has zero Lebesgue measure. However, an example given in Sec-
tion 4 shows that in some domains D, reflected random walks do not converge to
the reflected Brownian motion in D.

The definition of the random walk on a lattice depends very much on the geo-
metric structure of the state space. Myopic conditioning, on the other hand, can be
applied to any Markov process that has a positive probability of not hitting a set
for any fixed amount of time, if it starts outside that set. Hence, myopic condition-
ing might provide a new way of defining reflected Markov processes, for example,
the reflected stable process that was introduced in [1], whenever the limit can be
shown to exist. We plan to address this problem in a future work.

The literature on topics discussed in this paper is rather limited. An invariance
principle for discrete approximations to the reflected Brownian motion was proved
in [15] in C2-domains. Our approach in Theorem 2.4 of this paper is quite different
from that in [15]. For results on approximations to the killed Brownian motion in
Lipschitz domains, see, for example, [18].

In the rest of this introduction we give a brief review of RBM on nonsmooth
domains, as well as present some definitions and notation, followed by a brief
description of the approach of this paper to establish discrete approximations of
reflected Brownian motion.

Let n ≥ 1 and D be a bounded connected open set in Rn. Denote by m the
Lebesgue measure in Rn. Define

W 1,2(D) := {f ∈ L2(D,m) :∇f ∈ L2(D,m)},
equipped with norm ‖f ‖1,2 := ‖f ‖2 + ‖∇f ‖2, where ‖f ‖p denotes the
Lp(D,m)-norm of f for p ≥ 1. In Sections 2 and 3 we will assume that the
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boundary of D has zero volume, that is, m(∂D) = 0. To prove the weak conver-
gence of random walks, we need to impose the following condition on D:

C1(D) is dense in (W 1,2(D),‖ · ‖1,2).(1.1)

Here C1(D) is the space of real-valued continuous functions on D that have
continuous first derivatives on D. Condition (1.1) is satisfied when D is a
W 1,2-extension domain in the sense that there is a bounded linear operator T

from (W 1,2(D),‖ · ‖1,2) to (W 1,2(Rn),‖ · ‖1,2) so that Tf = f m-a.e. on D

for every f ∈ W 1,2(D). This is because C∞
c (Rn), the space of smooth func-

tions with compact support in Rn, is ‖ · ‖1,2-dense in W 1,2(Rn). Examples of
W 1,2-extension domains are bounded Lipschitz domains in Rn, and, more gen-
erally, local uniform domains also known as (ε, δ)-domains (see [12]), defined as
follows. We say that D is an (ε, δ)-domain if δ, ε > 0, and whenever x, y ∈ D

and |x − y| < δ, then there exists a rectifiable arc γ ⊂ D joining x and y with
length(γ ) ≤ ε−1|x − y| such that min{|x − z|, |z − y|} ≤ ε−1 dist(z, ∂D) for all
points z ∈ γ . Here dist(z, ∂D) is the Euclidean distance between a point z and the
set ∂D. “Uniform domains” can be defined as (ε,∞)-domains. An example of a
uniform domain is the classical von Koch snowflake domain. Every nontangen-
tially accessible domain defined by Jerison and Kenig in [11] is a uniform domain
(see (3.4) of [11]). The boundary of a uniform domain can be highly nonrecti-
fiable and, in general, no regularity of its boundary can be inferred (besides the
easy fact that the Hausdorff dimension of the boundary is strictly less than n).
For any α ∈ [n − 1, n), one can construct a uniform domain D ⊂ Rn such that
Hα(U ∩ ∂D) > 0 for any open set U satisfying U ∩ ∂D 
= ∅. Here Hα denotes
the α-dimensional Hausdorff measure in Rn.

Define for f,g ∈ W 1,2(D) a bilinear form

E(f, g) = 1
2

∫
D

∇f (x) · ∇g(x)m(dx).

Under condition (1.1), the Dirichlet form (E ,W 1,2(D)) is regular and, therefore,
there is a symmetric diffusion X taking values in D associated with it, called the
reflected Brownian motion on D. See [9] for definitions and properties of Dirichlet
spaces, including the notions of quasi-everywhere, quasi-continuous, and so on.
When D is C1-smooth, X admits the following Skorokhod decomposition (cf. [5]):

Xt = X0 + Bt +
∫ t

0
n(Xs) dLs, t ≥ 0,

where B is the standard Brownian motion in Rn, n is the unit inward normal vector
field on ∂D and L is a continuous nondecreasing additive functional of X (called
the boundary local time of X) that increases only when Xt is on the boundary
of D.

Constructing a reflected Brownian motion on a nonsmooth bounded domain D

is a delicate problem. Fukushima [8] used the Martin–Kuramochi compactifica-
tion D∗ of D to construct a continuous symmetric diffusion process X∗ on D∗
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whose Dirichlet form is (E ,W 1,2(D)). The process X∗ could be called reflected
Brownian motion in D, but it lives on an abstract space D∗ that contains D as
a dense open set. It was proposed in [5] to refer the quasi-continuous projection
X of X∗ from D∗ into the Euclidean closure D as reflected Brownian motion in
D. The projection process X is a continuous Markov process on D and it spends
zero Lebesgue amount of time on ∂D. Moreover, it behaves like Brownian motion
when it is inside D. For every point x ∈ D, one can construct reflected Brownian
motion in D defined as above so that it starts from x. The distribution of X is
uniquely determined by the fact that its associated Dirichlet form is (E ,W 1,2(D)).
In general, X is not a strong Markov process on D (e.g., this is the case when D

is the unit disk with a slit removed). However, when condition (1.1) is satisfied,
X is the usual reflected Brownian motion in D obtained as the Hunt process asso-
ciated with the regular Dirichlet form (E ,W 1,2(D)) on D. See [2], Section 3 and
[5], Section 1 for more information on the history of reflected Brownian motion
on nonsmooth domains.

For any metric state space S and positive T > 0, let D([0, T ],S) denote the
space of all functions on [0, T ] taking values in S that are right continuous and
have left limits. The space D([0,∞),S) is a separable metric space under the
Skorokhod topology. We refer the reader to [7] for the definition and properties of
the Skorokhod topology and space D([0, T ],S). The space of continuous functions
from [0, T ] to S, equipped with the local uniform topology, will be denoted by
C([0, T ],S). We will use similar notation for spaces of functions defined on finite
time intervals. For D ⊂ Rn, we will use C∞

c (D) to denote the space of smooth
functions with compact support in D.

For technical convenience, we will often consider stochastic processes whose
initial distribution is a finite measure, not necessarily normalized to have total mass
1, for example, the Lebesgue measure on a bounded set D. Translating our results
to the usual probabilistic setting is straightforward and so it is left to the reader.

We close this section with a brief description of the main ideas of our proofs.
Denote by {P D

t , t ≥ 0} the transition semigroup of Brownian motion killed upon
leaving domain D. In the first two approximation schemes (i.e., random walk
approximations), define mk(x) = vk(x)

2n
2−kn for x ∈ Dk , where vk(x) is the de-

gree of the vertex x in Dk ; and in the myopic conditioning scheme, define
mk(dx) := 1D(x)P D

2−k 1(x)m(dx). Let Xk be one of the discrete approximating
processes mentioned above. Then mk is the reversible measure for Xk in a suit-
able sense. We will show that the law of {Xk,Pk

mk
, k ≥ 1} is tight in the space

C([0,1],Rn) or D([0,1],Rn), and that any of its weak subsequential limits (Z,P)

is a time-homogeneous Markov process that is time-reversible with respect to the
Lebesgue measure m in D. We then show that the process Z killed upon leaving
domain D is a killed Brownian motion in D and establish that the Dirichlet form
(EZ,F ) of Z in L2(D,m) has the property that

W 1,2(D) ⊂ F
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and

EZ(f,f ) ≤ E(f, f ) := 1
2

∫
D

|∇f (x)|2 dx for f ∈ W 1,2(D).

We thus conclude from the following Theorem 1.1 that (EZ,F ) = (E ,W 1,2(D))

and, therefore, (Z,P) is the stationary reflected Brownian motion on D. Discrete
approximations with nonstationary initial distributions are then handled via those
with stationary distributions.

THEOREM 1.1. Let D be a bounded domain in Rn and mD be the Lebesgue
measure in D that is extended to D by taking mD(D \ D) = 0. Suppose that Z is
a D-valued right continuous time-homogeneous Markov process having left-limits
with initial distribution mD and is symmetric with respect to measure mD . Let
(EZ,F ) be the Dirichlet form of Z in L2(D,mD). If the subprocess of Z killed
upon leaving domain D is a killed Brownian motion in D, then

F ⊂ W 1,2(D) and EZ(f,f ) ≥ E(f, f ) for f ∈ F .

The above theorem is essentially due to Silverstein [13], Theorems 15.2 and
20.1. In fact, these theorems were proved in a more general context. Observe
that the Dirichlet form for the killed Brownian motion in D is (E ,W

1,2
0 (D)) and

(E ,W 1,2(D)) is its active reflected Dirichlet space. Here W
1,2
0 (D) is the comple-

tion of C∞
c (D) under the norm ‖ · ‖1,2. An accessible proof of Theorem 1.1 can be

found in Takeda [17], Theorem 3.3.

2. Invariance principle for discrete reflected random walk. Let D be a
bounded connected open set in Rn with m(∂D) = 0. Without loss of generality,
assume that the origin 0 ∈ D. Let 2−kZn be the union of all closed line seg-
ments joining nearest neighbors in 2−kZn, let D∗

k be the connected component

of 2−kZn ∩D that contains the point 0, and let Dk = D∗
k ∩ 2−kZn. For x ∈ Dk , we

use vk(x) to denote the degree of the vertex x in Dk . Let {Xk
j2−2k , j = 0,1, . . .} be

the simple random walk on Dk that jumps every 2−2k unit of time. By definition,
the random walk {Xk

j2−2k , j = 0,1, . . .} jumps to one of its nearest neighbors with
equal probabilities. This discrete time Markov chain is symmetric with respect to
measure mk , where mk(x) = vk(x)

2n
2−kn for x ∈ Dk . Clearly, mk converge weakly

to m on D. We now extend the time-parameter of {Xk
j2−2k , j = 0,1, . . .} to all non-

negative reals using linear interpolation over the intervals ((j −1)2−2k, j2−2k) for
j = 1,2, . . . . We thus obtain a process Xk = {Xk

t , t ≥ 0}. Its law with Xk
0 = x will

be denoted by Pk
x .

For x, y ∈ Dk , let x ↔ y mean that x and y are at the distance 2−k . Let
Qk(x, dy) denote the one-step transition probability for the discrete time Markov
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chain {Xk
j2−2k , j = 0,1, . . .}; that is, for f ≥ 0 on D and x ∈ Dk ,

Qkf (x) :=
∫
D

f (y)Qk(x, dy) := 1

vk(x)

∑
y∈Dk : y↔x

f (y).

For f ∈ C2(D), define

Lkf (x) :=
∫
D

(
f (y) − f (x)

)
Qk(x, dy)

= 1

vk(x)

∑
y∈Dk : y↔x

(
f (y) − f (x)

)
, x ∈ Dk.

Then {f (Xk
j2−2k ) − ∑j−1

i=0 Lkf (Xk
i2−2k ),G

k
j2−k , j = 0,1, . . .} is a martingale for

every f ∈ C2(D), where Gk
t := σ(Xk

s , s ≤ t).
To study the weak limit of {Xk, k ≥ 1}, we introduce an auxiliary process Y k

defined by Y k
t := Xk

[22kt]2−2k , where [α] denotes the largest integer that is less than

or equal to α. Note that Y k is a time-inhomogeneous Markov process. For every
fixed t > 0, its transition probability operator is symmetric with respect to the
measure mk on Dk . Let F k

t := σ(Y k
s , s ≤ t}. By abuse of notation, the law of Y k

starting from x ∈ Dk will also be denoted by Pk
x .

LEMMA 2.1. Let D be a bounded domain in Rn with m(∂D) = 0. Then the
laws {Pk

mk
, k ≥ 1} of {Xk, k ≥ 1} are tight in the space C([0, T ],Rn) for every

T > 0.

PROOF. For each fixed k ≥ 1, we may assume, without loss of generality, that
� is the canonical space D([0,∞),Rn) and Y k

t is the coordinate map on �. Given
t > 0 and a path ω ∈ �, the time reversal operator rt is defined by

rt (ω)(s) :=
{

ω((t − s)−), if 0 ≤ s ≤ t ,
ω(0), if s ≥ t.

(2.1)

Here for r > 0, ω(r−) := lims↑r ω(s) is the left limit at r , and we use the conven-
tion that ω(0−) := ω(0). We note that

lim
s↓0

rt (ω)(s) = ω(t−) = rt (ω)(0) and

(2.2)
lim
s↑t

rt (ω)(s) = ω(0) = rt (ω)(t).

Observe that for every integer T ≥ 1, Pk
mk

restricted to the time interval [0, T ) is
invariant under the time-reversal operator rT . Note that

M
k,f
t := f (Y k

t ) − f (Y k
0 ) −

[22kt]−1∑
i=0

Lkf (Y k
i2−2k )
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is an {F k
t , t ≥ 0}-martingale for every f ∈ C2(D). We have

f (Y k
t ) − f (Y k

0 ) = 1
2M

k,f
t − 1

2

(
M

k,f
T − − M

k,f
(T −t)−

) ◦ rT for t ∈ [0, T ).(2.3)

For fi(x) = xi , let Mk,i := Mk,fi and Mk := (Mk,1, . . . ,Mk,n). With this notation,
we have

Y k
t − Y k

0 = 1
2Mk

t − 1
2

(
Mk

T − − Mk
(T −t)−

) ◦ rT for t ∈ [0, T ).

Let Sk := {x ∈ Dk :v(k) = 2n}. For f ∈ C3(D), by the Taylor expansion, for
x ∈ Dk ,

Lkf (x) =
∫
D

(
n∑

i=1

∂f (x)

∂xi

(yi − xi)

+ 1

2

n∑
i,j=1

∂2f (x)

∂xi ∂xj

(yi − xi)(yj − xj ) + O(1)|y − x|3
)
Qk(x, dy).

We see that, for x ∈ Sk ,

Lkf (x) =
∫
D

(
1

2

n∑
i=1

∂2f (x)

∂x2
i

(yi − xi)
2 + O(1)|y − x|3

)
Qk(x, dy),

and so

Lkf (x) = 1

2n

f (x)2−2k + O(1)2−3k,(2.4)

while for x ∈ Dk \ Sk ,

|Lkf (x)| ≤ 2−2kO(1).

For δ > 0, define Dδ := {x ∈ Rn : dist(x, ∂D) < 2δ}. Note that D2−k
√

n contains
the

√
n2−k-neighborhood of Dk \ Sk and so mk(Dk \ Sk) ≤ m(D2−k

√
n), which

goes to 0 as k → ∞ because m(∂D) = 0. Thus, for every t > 0,

[Mk,i,Mk,j ]t =
[22kt]∑
l=1

(
Y

k,i

l2−2k − Y
k,i

(l−1)2−2k − Lkxi

(
Y k

(l−1)2−2k

))
×(

Y
k,j

l2−2k − Y
k,j

(l−1)2−2k − Lkxj

(
Y k

(l−1)2−2k

))
= δij

[22kt]∑
l=1

((
Y

k,i

l2−2k − Y
k,i

(l−1)2−2k

)2

+ O(1)2−3k + O(1)2−2k1{Y k

(l−1)2−2k ∈Dk\Sk}
)
.
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Since mk is the invariant measure for the Markov chain {Y k
j2−2k , j = 0,1, . . .}, we

have

lim
k→∞ Ek

mk

[∣∣∣∣[Mk,i,Mk,j ]t − δij

t

n

∣∣∣∣] ≤ lim
k→∞ tm(D2−k

√
n)O(1) = 0.

By [7], Theorem 7.4.1, the laws of Mk converge weakly to that of a Brownian
motion in Rn in the space D([0, T ],Rn). Since Pk

mk
is invariant under the time-

reversal operator rT when restricted to the time interval [0, T ), we have by [10],
Proposition VI.3.26, that the laws of {Y k, k ≥ 1} are tight in D([0, T ),Rn) and any
of subsequential limits of {Y k, k ≥ 1} is the law of a continuous process. Now by
[7], Proposition 3.10.4 and [7], Problem 3.25(d) on page 153, we conclude that the
laws of {Xk, k ≥ 1} are tight in the space C([0, T ),Rn). �

Let (X,P) be any of subsequential limits of (Xn,Pn
μn

), say, along a subsequence

{Xnj ,P
nj
μnj

, j ≥ 1}. Let τD := inf{t > 0 : Xt /∈ D} and mD := m|D . Clearly, X0 has
distribution mD .

LEMMA 2.2. In the above setting, for every f ∈ C∞
c (D), the process M

f
t :=

f (Xt) − f (X0) − 1
2n

∫ t
0 
f (Xs) ds is a P-square integrable martingale. This, in

particular, implies that {Xt, t < τD,P} is a Brownian motion killed upon leaving
D, with initial distribution mD and infinitesimal generator 1

2n

.

PROOF. The lemma follows easily from the invariance principle for random
walks, but we sketch an argument for the sake of completeness. Recall the de-
finition of (Xk,Pk

x, x ∈ D) and {Gk
t , t ≥ 0}, the σ -field generated by Xk . For

f ∈ C∞
c (D), there is a k0 such that

supp[f ] ⊂ {
x ∈ D : dist(x,Dc) > 2−2k0

√
n
}
.

Thus, by (2.4), 22kLkf converges uniformly to 1
2n


f on D.
Without loss of generality, we take the sample space of Xk and X to be the

canonical space C([0,1],Rn). By the same argument as that in the last paragraph
on page 271 of [16], we can deduce that {Mf

t , t ≥ 0} is a P-martingale. �

LEMMA 2.3. Let D be a bounded domain in Rn and fix k ≥ 1. Then for every
j ≥ 1 and f ∈ L2(D,mk),

(f − Q
2j
k f, f )L2(D,mk)

≤ j (f − Q2
kf, f )L2(D,mk)

≤ 2j (f − Qkf,f )L2(D,mk)
.

PROOF. Note that Qk is a symmetric operator in L2(D,mk). So for f ∈
L2(D,mk),

(Q2
kf − Q4

kf, f )L2(D,mk)
= (f − Q2

kf,Q2
kf )L2(D,mk)

≤ (f − Q2
kf, f )L2(D,mk)

.
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Moreover,

(Q2
kg, g)L2(D,mk)

= (Qkg,Qkg)L2(D,mk)
≥ 0.

We apply the last remark to g := f − Q2
kf to obtain

(Q4
kf − Q6

kf, f )L2(D,mk)
= (Q2

kf − Q4
kf,Q2

kf )L2(D,mk)

= (Q2
kf − Q4

kf, f )L2(D,mk)

− (
Q2

k(f − Q2
kf ), f − Q2

kf
)
L2(D,mk)

≤ (Q2
kf − Q4

kf, f )L2(D,mk)
.

Suppose the following holds for some j ≥ 2:(
Q2i

k f − Q
2(i+1)
k f, f

)
L2(D,mk)

≤ (
Q

2(i−1)
k f − Q2i

k f, f
)
L2(D,mk)

for every i ≤ j.

Then (
Q

2(j+1)
k f − Q

2(j+2)
k f, f

)
L2(D,mk)

= (
Q

2(j−1)
k (Q2

kf ) − Q
2j
k (Q2

kf ),Q2
kf

)
L2(D,mk)

≤ (
Q

2(j−2)
k (Q2

kf ) − Q
2(j−1)
k (Q2

kf ),Q2
kf

)
L2(D,mk)

= (
Q

2j
k f − Q

2(j+1)
k f, f

)
L2(D,mk)

.

This proves by induction that, for every i ≥ 1,(
Q2i

k f − Q
2(i+1)
k f, f

)
L2(D,mk)

≤ (
Q

2(i−1)
k f − Q2i

k f, f
)
L2(D,mk)

.

It follows that(
Q2i

k f − Q
2(i+1)
k f, f

)
L2(D,mk)

≤ (f − Q2
kf, f )L2(D,mk)

for every i ≥ 1,

and so

(f − Q
2j
k f, f )L2(D,mk)

=
j∑

i=1

(
Q

2(i−1)
k f − Q2i

k f, f
)
L2(D,mk)

(2.5)
≤ j (f − Q2

kf, f )L2(D,mk)
.

Since Qk is a symmetric operator in L2(D,mk), we have

(f − Q2
kf, f )L2(D,mk)

= (f − Qkf,f )L2(D,mk)
+ (f − Qkf,Qkf )L2(D,mk)

≤ 2(f − Qkf,f )L2(D,mk)
.

This and (2.5) prove the lemma. �
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We will say that “Zt is a Brownian motion running at speed 1/n” if Znt is the
standard Brownian motion and we will apply the same phrase to the other related
process.

THEOREM 2.4. Let D be a bounded domain in Rn with m(∂D) = 0 and sat-
isfying the condition (1.1). Then for every T > 0, the laws of {Xk,Pk

mk
} converge

weakly in C([0, T ],Rn) to a stationary reflected Brownian motion on D running
at speed 1/n whose initial distribution is the Lebesgue measure in D.

PROOF. Fix T > 0. Let (X,P) be any of the subsequential limits of (Xk,Pk
mk

)

in C([0, T ],Rn), say, along (Xkj ,P
kj
mkj

). Clearly, X is a time-homogeneous
Markov process with transition semigroup {Pt , t ≥ 0} that is symmetric in
L2(D,dx). Let {P k

t , t ∈ 2−kZ+} be defined by P k
t f (x) := Ek

x[f (Xk
t )]. For dyadic

t > 0, say, t = j0/22k0 and f ∈ C1(D), we have, by Lemma 2.3 and the mean-
value theorem,

1

t
(f − Ptf,f )L2(D,dx)

= 1

t
lim

j→∞(f − P
kj

t f, f )L2(D,mkj
)

= 22k0

j0
lim

j→∞
(
f − Q

j022kj −2k0

kj
f, f

)
L2(D,mkj

)

≤ lim sup
j→∞

22k0

j0
j022kj−2k0(f − Qkj

f,f )L2(D,mkj
)

= lim sup
j→∞

2(2−n)kj
1

2n

∑
x∈Dkj

∑
y∈Dkj

: y↔x

(
f (x)2 − f (x)f (y)

)

= lim sup
j→∞

2(2−n)kj
1

4n

∑
x∈Dkj

∑
y∈Dkj

: y↔x

(
f (x)2 − f (x)f (y)

)

+ lim sup
j→∞

2(2−n)kj
1

4n

∑
y∈Dkj

∑
x∈Dkj

: y↔x

(
f (y)2 − f (x)f (y)

)

= lim sup
j→∞

2(2−n)kj
1

4n

∑
x,y∈Dkj

: y↔x

(
f (x) − f (y)

)2

= 1

2n

∫
D

|∇f (x)|2 dx.
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Let (E ,F ) be the Dirichlet form of X, or equivalently, of semigroup {Pt , t ≥ 0}.
That is,

F =
{
f ∈ L2(D,dx) : sup

t>0

1

t
(f − Ptf,f )L2(D,dx)

= lim
t→0

1

t
(f − Ptf,f )L2(D,dx) < ∞

}
,

E(f, f ) = sup
t>0

1

t
(f − Ptf,f )L2(D,dx)

= lim
t→0

1

t
(f − Ptf,f )L2(D,dx) for f ∈ F .

Then for f ∈ C1(D),

E(f, f ) = lim
t→0

1

t
(f − Ptf,f )L2(D,dx) ≤ 1

2n

∫
D

|∇f (x)|2 dx.

This shows that f ∈ D(E). As C1(D) is dense in (W 1,2(D),‖ · ‖1,2), we have
W 1,2(D) ⊂ F and

E(f, f ) ≤ 1

2n

∫
D

|∇f (x)|2 dx for every f ∈ W 1,2(D).

This, Lemma 2.2 and Theorem 1.1 imply that F = W 1,2(D) and

E(f, f ) = 1

2n

∫
D

|∇f (x)|2 dx for f ∈ W 1,2(D).

We deduce then that X is a stationary reflected Brownian motion on D running at
speed 1/n. This proves that Xk converge weakly on C([0, T ],Rn) to the stationary
reflected Brownian motion on D. �

REMARK 2.5. By [7], Proposition 3.10.4, under the assumptions of Theo-
rem 2.4, the stationary laws Pk

mk
of the step processes Y k defined at the beginning

of this section converge weakly in D([0, T ],Rn) to the stationary reflected Brown-
ian motion on D running at speed 1/n, for every T > 0.

3. Continuous-time reflected random walk. Let D be a bounded domain
in Rn with m(∂D) = 0 and let Dk be defined as in the previous section. But in
this section, Xk will be the continuous time simple random walk on Dk , making
jumps at the rate 2−2k . By definition, Xk jumps to one of its nearest neighbors with
equal probabilities. This process is symmetric with respect to measure mk , where
mk(x) = vk(x)

2n
2−kn for x ∈ Dk . Note that mk converge weakly to the Lebesgue

measure m on D, and recall that, for x, y ∈ Dk , we write x ↔ y if x and y are at
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the distance 2−k . The Dirichlet form of Xk is given by

Ek(f, f ) = 1

4n

∑
x,y∈Dk : x↔y

2−(n−2)k(f (x) − f (y)
)2

.

LEMMA 3.1. Let D be a bounded domain in Rn with m(∂D) = 0. Then for
f ∈ C1(D),

lim
k→∞Ek(f, f ) = 1

2n

∫
D

|∇f (x)|2m(dx).(3.1)

PROOF. For δ > 0, define Dδ := {x ∈ Rn : dist(x, ∂D) < δ}. As m(∂D) = 0,
for every ε > 0, there is δ > 0 such that m(Dδ) < ε. Take integer k0 ≥ 1 large
enough so that 2−2k0 < δ. Recall that for x ∈ Dk , vk(x) denotes the degree of
vertex x in the graph Dk . Define Sk := {x ∈ Dk :v(k) = 2n}. Then for k ≥ k0,
(D \ Dδ) ∩ 2−kZn ⊂ Sk . As

Ek(f, f ) = 1

4n

∑
x∈Dk

( ∑
y∈Dk : y↔x

2−(n−2)k(f (x) − f (y)
)2

)
,

we have by the mean-value theorem that

lim sup
k→∞

∣∣∣∣Ek(f, f ) − 1

2n

∫
D\Dδ

|∇f (x)|2m(dx)

∣∣∣∣ ≤ O(m(Dδ)).

Taking δ ↓ 0 yields the claim that limk→∞ Ek(f, f ) = 1
2n

∫
D |∇f (x)|2m(dx) for

f ∈ C1(D). �

Let Pk
mk

denote the distribution of {Xk
t , t ≥ 0} with the initial distribution mk .

LEMMA 3.2. Assume that D is a bounded domain in Rn with m(∂D) = 0. For
every T > 0, the laws of stationary random walks {Xk,Pk

mk
, k ≥ 1} are tight in the

space D([0, T ],D) equipped with the Skorokhod topology.

PROOF. For constant T > 0, let rT be the time-reversal operator from time T

for Xk [see (2.1) for its definition]. Note that Pk
mk

-a.s., Xk is continuous at time
T and Pk

mk
is invariant under rT . For f ∈ C1(D), we have by [6], Lemma 3.5 and

(3.6) the following forward–backward martingale decomposition for f (Xk
t ). For

every T > 0 there exists a martingale Mk,f such that

f (Xk
t ) − f (Xk

0) = 1
2M

k,f
t − 1

2

(
M

k,f
T +1 − M

k,f
(T +1−t)−

) ◦ rT +1(3.2)

for t ∈ [0, T ].
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Note that the symmetric jump process Xk has Lévy system (Nk(x, dy), t), where,
for x ∈ Dk ,

Nk(x, dy) = 1

2n

∑
y∈Dk : y↔x

2−(n−2)k2nkδ{y}(dy) = 1

2n

∑
y∈Dk : y↔x

22kδ{y}(dy).

Thus,

〈Mk,f 〉t =
∫ t

0

(
f (Xk

s ) − f (y)
)2

Nk(Xk
s , dy) ds

= 1

2n

∫ t

0

∑
y∈Dk : y↔Xk

s

22k(f (Xk
s ) − f (y)

)2
ds.

Recall that v(k) is the degree of vertex x in the graph Dk . Taking f (x) = xi ,
i = 1, . . . , n, we have, for every k ≥ 1 and t > s ≥ 0, with Mk,i = Mk,xi ,

n∑
i=1

(〈Mk,i〉t − 〈Mk,i〉s) ≤ 1

2n

∫ t

s
vk(X

k
r )2

2k2−2kdr ≤ t − s.

This implies that the sequence {∑n
i=1〈Mk,i〉t , k ≥ 1} is C-tight in D(R) in the

sense of [10], Proposition VI.3.26. Hence, by [10], Theorem VI.4.13, the laws of
{(Mk,1, . . . ,Mk,n), k ≥ 1} are tight in D([0, T ],Rn). As mk converges weakly to
m, and Pk

mk
is invariant under rT +1 for every k ≥ 1, we conclude by [10], Theorem

VI.3.21, that the laws of {Xk, k ≥ 1} are tight in D([0, T ],Rn) and, hence, on
D([0,∞),D). �

THEOREM 3.3. Let D be a bounded domain in Rn with m(∂D) = 0 and sat-
isfying the condition (1.1). Then for every T > 0, the stationary random walks Xk

on Dk converge weakly in the space D([0, T ],D), as k → ∞, to the stationary
reflected Brownian motion on D running at speed 1/n, whose initial distribution
is the Lebesgue measure in D.

PROOF. Let (Z,P) be any of the subsequential limits of (Xk,Pk
mk

), say, along
Xkj . Clearly, Z is a time-homogeneous Markov process under P and its transition
semigroup {Pt , t ≥ 0} is symmetric with respect to the Lebesgue measure m on D.
By a similar argument as that in the proof of Lemma 2.2, the process Z killed upon
leaving D is a killed Brownian motion in D with speed 1/n. Let (E ,F ) be the
Dirichlet form associated with Z, and let {P k

t , t ≥ 0} be the transition semigroup
for Xk . As Xkj converge weakly to Z, we have, for every f ∈ C2(D) and t > 0,

lim
j→∞

1

t
(f − P

kj

t f, f ) = lim
j→∞

1

t
E

P
kj
mkj

[
f (X

kj

0 )
(
f (X

kj

0 ) − f (X
kj

t )
)]

= 1

t
EP

[
f (Z0)

(
f (Z0) − f (Zt)

)] = 1

t
(f − Ptf,f ).
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Thus, for f ∈ C2(D), by Lemma 3.1,

E(f, f ) = sup
t>0

1

t
(f − Ptf,f )

= sup
t>0

lim
j→∞

1

t
(f − P

kj

t f, f )

≤ lim inf
j→∞ sup

t>0

1

t
(f − P

kj

t f, f )

= lim inf
j→∞ Ekj (f, f )

= 1

2n

∫
D

|∇f (x)|2m(dx).

By assumption (1.1), C1(D) is dense in the Sobolev space W 1,2(D) with respect
to norm ‖ · ‖1,2. It follows that F ⊃ W 1,2(D) and

E(f, f ) ≤ 1

2n

∫
D

|∇f (x)|2m(dx) for every f ∈ W 1,2(D).

Define

E0(f, g) = 1

2n

∫
D

∇f (x) · ∇g(x)m(dx) for f,g ∈ W 1,2(D).

Note that (E0,W 1,2(D)) is the Dirichlet form for the reflected Brownian mo-
tion on D running at speed 1/n. On the other hand, as we have observed at
the beginning of this proof, the process Z killed upon leaving D is a killed
Brownian motion in D with speed 1/n. Therefore, according to Theorem 1.1,
(E ,F ) = (E0,W 1,2(D)). In other words, we have shown that every subsequen-
tial limit of Xk is reflected Brownian motion on D with initial distribution being
the Lebesgue measure on D and with speed 1/n. This shows that Xk converges
weakly on the space D([0,∞),D) to the stationary reflected Brownian motion X

on D running at speed 1/n. �

4. Examples. All the results in the previous two sections apply to any
bounded domain D that satisfies the condition (1.1) and whose boundary has
zero Lebesgue measure. As we noted in Section 1, bounded uniform domains
have such properties. Bounded Lipschitz domains and bounded nontangentially
accessible domains are uniform domains. Although the Hausdorff dimension of
the Euclidean boundary of any uniform domain D ⊂ Rn is strictly less than n and,
thus, ∂D has zero Lebesgue measure in Rn, ∂D can be highly nonrectifiable. The
classical “von Koch snowflake” planar domain defined below is such an example.

To define the von Koch snowflake, start with an equilateral triangle T1. Let I

be any of its sides. Add an equilateral triangle such that one of its sides is the
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middle one third of I and its interior does not intersect T1. There are three such
triangles; let T2 be the closure of the union of these three triangles and T1. We
proceed inductively. Suppose I is one of the line segments in ∂Tj . Add an equilat-
eral triangle such that one of its sides is the middle one third of I and its interior
does not intersect Tj . Let Tj+1 be the closure of the union of all such triangles and
Tj . The snowflake DvK is the interior of the closure of the union of all triangles
constructed in all inductive steps.

It is elementary to check that DvK is a nontangentially accessible domain
and so a uniform domain or an (ε,∞)-domain (see Section 1 for definitions).
It is also well known that the Hausdorff dimension of ∂DvK is log 4

log 3 . Hence, the
2-dimensional Lebesgue measure of ∂DvK is 0. We conclude that all results stated
in the previous two sections, in particular, Theorems 2.4 and 3.3, apply to the von
Koch snowflake.

Without some domain regularity conditions, the results in the previous two sec-
tions do not have to be true. Here is a counter-example. Let

Uε
k = {(x, y) ∈ (0,1)2 : |x − j2−k| < ε or |y − j2−k| < ε for some j ∈ Z}.

We choose εk > 0 so that |Uεk

k | < 2−k−1 and let U = ⋃
k≥1 U

εk

k . Note that U is
a bounded open connected set with Lebesgue area less than 1/2. Let Dk be de-
fined as in the previous section, relative to D = (0,1)2. Note that for every k ≥ 1,
Dk ⊂ U , so the sets Dk defined relative to U are the same as those defined relative
to D = (0,1)2. It follows from Theorems 2.4 and 3.3 that processes Xk , with dis-
crete and continuous time, defined relative to Dk , converge weakly to the reflected
Brownian motion in [0,1]2. Since m(U) 
= m((0,1)2), the reflected Brownian mo-
tion in U has a different distribution than the reflected Brownian motion in (0,1)2

and it follows that the conclusions of Theorems 2.4 and 3.3 do not hold for U .
We would like to emphasize the fact that the approximation scheme for reflected

Brownian motion developed in the next section works for any bounded domain.

5. Myopic conditioning. Throughout this section, D ⊂ Rn is a bounded con-
nected open set and X = {Xt, t ≥ 0,Px, x ∈ Rn} is a Brownian motion in Rn. Let
XD = {XD

t , t ≥ 0,Px, x ∈ D} be the Brownian motion in Rn killed upon leaving
the domain D. For each k ≥ 1, we define a myopic process Xk as follows. For
t ∈ [0,2−k], let Xk

t be XD conditioned not to leave domain D by time 2−k . Sup-
pose that Xk is now defined on the time interval [0, j2−k]. We define Xk

j2−k+s
for

s ∈ (0,2−k] to be a copy of XD conditioned not to leave domain D by time 2−k ,
starting from Xk

j2−k , but otherwise independent of {Xk
t , t ∈ [0, j2−k]}. The law of

Xk with Xk
0 = x will be denoted as Pk

x and the mathematical expectation under Pk
x

will be denoted by Ek
x .

THEOREM 5.1. For every bounded domain D in Rn and for every x0 ∈ D, the
processes Xk under Pk

x0
converge weakly to the reflected Brownian motion Y on D

starting from x0 in the space C([0,1],D) as k → ∞.
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To prove the above theorem, we introduce auxiliary processes in which pieces
of conditioned Brownian paths are replaced with line segments. More precisely,
we let {Y k, t ∈ [0,1]} be constructed from {Xk

j2−k , j = 0,1, . . . ,2k} by linear

interpolation over the intervals ((j − 1)2−k, j2−k) for j = 1, . . . ,2k . Note that
{Y k

j2−k , j = 0,1, . . . ,2k} is a Markov chain with one-step transition probability

Qk , where, for x ∈ D and k ≥ 1, Qk(x, dy) is the distribution at time 2−k of XD

that starts from x and is conditioned not to leave D by time 2−k . In other words, if
we let {P D

t , t ≥ 0} denote the transition semigroup for the killed Brownian motion
XD , then for any nonnegative Borel function f on D,

Qkf (x) :=
∫
D

f (y)Qk(x, dy) = P D
2−kf (x)

P D
2−k 1(x)

.

With a slight abuse of notation, the law of Y k with Y k
0 = x will also be denoted

as Pk
x and the mathematical expectation under Pk

x will be denoted by Ek
x . Let

mk(dx) := 1D(x)P D
2−k 1(x) dx. Observe that

(Qkf,g)L2(D,mk)
= (f,Qkg)L2(D,mk)

for f,g ≥ 0 on D,(5.1)

and so mk is a reversible measure for Markov chain {Y k
j2−k , j = 0,1, . . . ,2k}. Let

mD denote the Lebesgue measure on D that is extended to Rn by letting mD(Rn \
D) = 0. It is clear that mk converge weakly to mD on D.

We will show that Y k converge weakly to reflected Brownian motion on D and
then use this fact to establish Theorem 5.1.

LEMMA 5.2. Suppose that either (i) μk = mk for every k ≥ 1; or (ii) {μk, k ≥
1} is a sequence of measures on D with supk≥1 μk(D) < ∞ and μk(D \ K) = 0
for some compact subset K of D and all k ≥ 1. Then the laws of {Y k,Pk

μk
, k ≥ 1}

are tight in the space C([0,1],Rn).

PROOF. (i) We first prove the lemma under condition (i). For nonnegative f ∈
C2(D), by Itô’s formula,

Qkf (x) = 1

P D
2−k 1(x)

Ex[f (XD
2−k )]

= 1

P D
2−k 1(x)

(
f (x) + 1

2
Ex

[∫ 2−k

0

f (XD

s ) ds

])

≥ f (x) − ‖
f ‖∞
2

2−k.

Fix k ≥ 1. Let Gk
j2−k = σ(Y k

i2−k , i ≤ j). For nonnegative f ∈ C2(D), let Af :=
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‖
f ‖∞
2 . Then we see from the above that

Ek
mk

[
f

(
Y k

(j+1)2−k

) + Af (j + 1)2−k|Gk
j2−k

] = Qkf (Y k
j2−k ) + Af (j + 1)2−k

≥ f (Y k
j2−k ) + Af j2−k.

In other words, {f (Y k
j2−k ) + Af j2−k,Gk

j2−k }j=0,1,...,2k is a nonnegative

Pk
mk

-submartingale. Moreover, for every ε > 0,

lim
k→∞

2k∑
j=1

Pk
mk

(∣∣Y k
j2−k − Y k

(j−1)2−k

∣∣ > ε
)

≤ lim
k→∞ 2k

∫
D

Px(|X2−k − X0| > ε and 2−k < τD)dx

≤ lim
k→∞ 2k

∫
D

Px(|X2−k − X0| > ε)dx

= 0.

Thus, by [16], Theorem 1.4.11, the laws of {Y k,Pk
mk

, k ≥ 1} are tight in
C([0,1],Rn).

(ii) Now assume that {μk, k ≥ 1} is a sequence of measures on D satisfying
condition (ii). Since every compact set has a finite covering by open balls, we
may and do assume, without loss of generality, that K ⊂ B(x0, r0) ⊂ D. Define
δ0 := dist(B(x0, r0),D

c)/2 and B := B(x0, r0 + δ0). Recall that X is Brownian
motion in Rn. By Lemma II.1.2 in Stroock [14], there is a constant c0 > 0 so that

P
(

sup
s≤t

|Xs − X0| > r

)
≤ c0 exp

(
− r

c0t

)
.(5.2)

This, in particular, implies that

P D
t 1(x) ≥ 1 − c0 exp

(
− δ0

c0t

)
for every x ∈ B.(5.3)

Let P B
t denote the semigroup for Brownian motion killed upon exiting B .

Without loss of generality, we take the sample space of Y k and X to be the
canonical space C([0,1],Rn). For ω ∈ C([0,1],Rn) and ρ > 0, we define the
oscillation of ω over time interval [s0, t0] by

oscρ[s0, t0](ω) := sup
s,t∈[s0,t0] : |t−s|≤ρ

|ω(s) − ω(t)|.

We also define

τ0 := inf{t ≥ 0 :ω(t) /∈ B}.
Sometimes we will add a superscript to make the underlying process explicit, for
example, we may write P(oscX

ρ [s0, t0] > ε).
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Since all μk’s are supported in a compact set and have uniformly bounded
mass, standard theorems (see, e.g., [16], Theorem 1.3.1) show that the laws of
{Y k,Pk

μk
, k ≥ 1} are tight in the space C([0,1],Rn) if and only if, for every ε > 0,

lim
ρ↓0

sup
k≥1

Pk
μk

(oscρ[0,1] > ε) = 0.

So it suffices to show that, for every ε > 0 and δ > 0, there is ρ > 0 and N ≥ 1
such that

Pk
μk

(oscρ[0,1] > ε) < δ for every k ≥ N.(5.4)

Fix an arbitrarily small δ > 0, and let t0 = j02k0 be a dyadic rational in (0,1) such
that c0 exp(− δ0

c0t0
) supk≥1 μk(D) < δ/4. Define

ck :=
(

1 − c0 exp
(
−2kδ0

c0

))−2kt0

,

and note that ck → 1 as k → ∞. We have

Pk
μk

(oscρ[0,1] > ε) ≤ Pk
μk

(τ0 ≤ t0) + Pk
μk

(oscρ[0,1] > ε and τ0 > t0).

Observe that B is convex. For k ≥ k0, it follows from the definition of the process
Y k and (5.3) that

Pk
μk

(τ0 ≤ t0)

=
2kt0∑
j=1

Pk
μk

(
τ0 ∈ (

(j − 1)2−k, j2−k])

=
2kt0∑
j=1

Eμk

[(j−1∏
i=0

1

P D
2−k 1(XD

j2−k )

)
;

XD
i2−k ∈ B for i = 0, . . . , j − 1 but XD

j2−k /∈ B

]
(5.5)

≤ ck

2kt0∑
j=1

Pμk
(XD

i2−k ∈ B for i = 0, . . . , j − 1 but XD
j2−k /∈ B)

≤ ckPμk
(τB

0 ≤ t0)

≤ ckc0 exp
(
− δ0

c0t0

)
μk(D)

≤ ckδ/4.

On the other hand, by the definition of Y k and (5.3) again, conditioned on {τ0 >

t0}, the law of Pk
μk

restricted to [0, t0] is dominated by ck times that of linear
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interpolation of XD at times j2−k , with initial distribution μk . Thus, for any ε > 0,
one can make t0 > 0 smaller, if necessary, so that for all sufficiently large k,

Pk
μk

(τ0 > t0 and oscρ[0, t0] > ε/2)

≤ ckPμk
(τX

0 > t0 and oscX
ρ [0, t0] > ε/2)(5.6)

≤ ckμk(D)P0(oscX
ρ [0, t0] > ε/2),≤ δ/4,

where P0 denotes the law of Brownian motion X starting from the origin.
For each fixed y ∈ B(x0, r0), let x �→ ψk(y, x) be the density function for

the distribution of XD
t0

under Py restricted on the event that {XD
j2−k ∈ B for j =

1,2, . . . ,2kt0}. Clearly, x �→ ψk(y, x) is a bounded function on D that vanishes
outside B , and as k ↑ ∞, ψk(y, x) decrease to φ(y, x), the probability density
function for the killed Brownian motion in B at time t0 starting from y ∈ B(x0, r0).
There is a constant a1 > 0 such that

sup
y∈B(x0,r0)

ψk(y, x) dx ≤ a1P
D
t0

1(x) dx ≤ a1mk(dx)

for every k ≥ 1 such that 2−k ≤ t0. As supk≥1 μk(D) < ∞, there is a constant
a2 > 0, independent of k ≥ 1, such that the distribution of XD

t0
under Pμk

restricted
on the event that {XD

j2−k ∈ B for j = 1,2, . . . ,2kt0} is dominated by a2mk(dx).
We obtain,

Pk
μk

(τ0 > t0 and oscρ[t0,1] > ε/2)

= Eμk

[(2kt0∏
j=0

1

P D
2−k 1(XD

j2−k )

)
Pk

XD
t0
(oscρ[0,1 − t0] > ε/2);

(5.7)

XD
j2−k ∈ B for j = 1,2, . . . ,2kt0

]

≤ c
(2kt0+1)/(2kt0)
k a2Pk

mk
(oscρ[0,1] > ε/2).

We have already proved in part (i) of the proof that the laws of {Y k,Pk
mk

, k ≥ 1}
are tight in C([0,1],Rn), so there is N ≥ 1 such that

Pk
mk

(oscρ[0,1] > ε/2) < δ/(4a2) for every k ≥ N.(5.8)

Combining (5.5)–(5.8), we obtain for large k,

Pk
μk

(oscρ[0,1] > ε)

≤ Pk
μk

(τ0 ≤ t0) + Pk
μk

(oscρ[0, t0] > ε/2 and τ0 > t0)

+ Pk
μk

(oscρ[t0,1] > ε/2 and τ0 > t0)

≤ ckδ/4 + δ/4 + c
(2kt0+1)/(2kt0)
k a2δ/(4a2).
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This proves (5.4) because limk→∞ ck = 1. �

Consider a sequence of finite measures μk on D, k ≥ 1, that satisfies the as-
sumptions of Lemma 5.2(i) or (ii) and converges weakly to a finite measure μ. By
Lemma 5.2, the laws of {Y k,Pk

μk
, k ≥ 1} are tight on C([0,1],Rn). Let (Y,P) be

any of its subsequential limit, say, along a subsequence {Ynj ,P
nj
μnj

, j ≥ 1}. Clearly
Y0 has distribution μ.

LEMMA 5.3. In the above setting, for every f ∈ C∞
c (D), M

f
t := f (Yt ) −

f (Y0) − 1
2

∫ t
0 
f (Ys) ds is a P-square integrable martingale. This in particular

implies that {Yt , t < τD,P}, with τD := inf{t > 0 :Yt /∈ D}, is the killed Brownian
motion in D with initial distribution μ.

PROOF. Recall the definition of (Y k,Pk
x, x ∈ D) and denote by {Gk

t , t ≥ 0} the
σ -field generated by Y k . For f ∈ C∞

c (D), define

Lkf (x) =
∫
D

(
f (y) − f (x)

)
Qk(x, dy).

Then {f (Y k
j2−k ) − ∑j

i=1 Lkf (Y k
i2−k ),G

k
j2−k , j = 0,1, . . . ,2k,Pk

x} is a martingale
for every f ∈ C∞

c (D). For f ∈ C∞
c (D), using the Taylor expansion, we have

2kLkf (x)

= 2k
∫
D

(
∇f (x)(y − x)

+ 1

2

n∑
i,j=1

∂2f (x)

∂xi ∂xj

(yi − xi)(yj − xj ) + O(1)|y − x|3
)
Qk(x, dy)

= 2k

P D
2−k 1(x)

(
n∑

i=1

∂f (x)

∂xi

Ex[Xi
2−k − Xi

0; 2−k < τD]

+ 1

2

n∑
i,j=1

∂2f (x)

∂xi ∂xj

Ex[(Xi
2−k − Xi

0)(X
j

2−k − X
j
0);2−k < τD]

+ O(1)Ex[|X2−k − X0|3;2−k < τD]
)
.

This converges uniformly to 1
2
f (x) on D as k → ∞.

Without loss of generality, we take the sample space of Y k and Y to be the
canonical space C([0,1],Rn). Then by the same argument as that in the last para-
graph on page 271 of [16], we can deduce that {Mf

t , t ≥ 0} is a P-martingale.
�
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LEMMA 5.4. Let D be a bounded domain in Rn and fix k ≥ 1. Then for every
j ≥ 1 and f ∈ L2(D,mk),

(f − Q
j
kf,f )L2(D,mk)

≤ j (f − Qkf,f )L2(D,mk)
.

PROOF. The idea of the proof is similar to that for Lemma 2.3. Note that Qk

is a symmetric operator in L2(D,mk). So for f ∈ L2(D,mk),

(Qkf − Q2
kf, f )L2(D,mk)

= (f − Qkf,Qkf )L2(D,mk)
≤ (f − Qkf,f )L2(D,mk)

.

We have

(Qkg,g)L2(D,mk)
= (P D

2−kg, g)L2(D,dx) =
∫
D

P D
2−k−1g(x)2 dx ≥ 0.

We apply the above observation to g := f − Qkf to obtain

(Q2
kf − Q3

kf, f )L2(D,mk)

= (Qkf − Q2
kf,Qkf )L2(D,mk)

= (Qkf − Q2
kf, f )L2(D,mk)

− (
Qk(f − Qkf ),f − Qkf

)
L2(D,mk)

≤ (Qkf − Q2
kf, f )L2(D,mk)

.

Suppose the following holds for j ≥ 2:

(Qi
kf − Qi+1

k f, f )L2(D,mk)
≤ (Qi−1

k f − Qi
kf,f )L2(D,mk)

for every i ≤ j.

Then

(Q
j+1
k f − Q

j+2
k f, f )L2(D,mk)

= (
Q

j−1
k (Qkf ) − Q

j
k(Qkf ),Qkf

)
L2(D,mk)

≤ (
Q

j−2
k (Qkf ) − Q

j−1
k (Qkf ),Qkf

)
L2(D,mk)

= (Q
j
kf − Q

j+1
k f, f )L2(D,mk)

.

This proves by induction that, for every i ≥ 1,

(Qi
kf − Qi+1

k f, f )L2(D,mk)
≤ (Qi−1

k f − Qi
kf,f )L2(D,mk)

.

It follows that

(Qi
kf − Qi+1

k f, f )L2(D,mk)
≤ (f − Qkf,f )L2(D,mk)

for every i ≥ 1,

and so

(f − Q
j
kf,f )L2(D,mk)

=
j∑

i=1

(Qi−1
k f − Qi

kf,f )L2(D,mk)

≤ j (f − Qkf,f )L2(D,mk)
,

which proves the lemma. �
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THEOREM 5.5. Let D be a bounded domain in Rn. The processes Y k under
Pk

mk
converge weakly to the stationary reflected Brownian motion Y on D in the

space C([0,1],Rn) as k → ∞, where Y0 is distributed according to the Lebesgue
measure on D.

PROOF. Let (Y,P) be any of the subsequential limits of (Y k,Pk
mk

) in

C([0,1],Rn), say, along (Y kj ,P
kj
mkj

). Clearly, Y is a time-homogeneous Markov

process with transition semigroup {Pt , t ≥ 0} that is symmetric in L2(D,mD) =
L2(D,dx). Let {P k

t , t ∈ 2−kZ+} be defined by P k
t f (x) := Ek

x[f (Y k
t )]. As

(Y kj ,P
kj
mkj

) converges weakly to (Y,P) in C([0,1],Rn), we have for dyadic ra-

tional t > 0, say, t = j0/2k0 and φ ∈ C(D),

lim
j→∞(P

kj

t φ,φ)L2(D,mkj
) = lim

j→∞ E
kj
mkj

[φ(Y
kj

0 )φ(Y
kj

t )]
(5.9)

= E[φ(Y0)φ(Yt )] = (Ptφ,φ)L2(D,m).

Recall from (5.1) that mk is a reversible measure for operator P k
t for t ∈ 2−kZ+

when k is sufficiently large. For t ∈ 2−kZ+, the operator P k
t has density func-

tion pk(t, x, y) with respect to the reversible measure mk . The density function
pk(t, x, y) is symmetric in (x, y). Note that P k

t 1 = 1 and so∫
D

pk(t, x, y)mk(dy) = 1 for every x ∈ D.

For a dyadic rational t ∈ (0,1], g ∈ L2(D,mk) and large k,

(g − P k
t g, g)L2(D,mk)

=
∫
D

(
g(x) − P k

t g(x)
)
g(x)mk(dx)

=
∫
D

(
g(x) −

∫
D

pk(t, x, y)g(y)mk(dy)

)
g(x)mk(dx)

=
∫
D×D

(
g(x)2 − g(x)g(y)

)
pk(t, x, y)mk(dx)mk(dy)

(5.10)
= 1

2

∫
D×D

(
g(x)2 − g(x)g(y)

)
pk(t, x, y)mk(dx)mk(dy)

+ 1
2

∫
D×D

(
g(y)2 − g(x)g(y)

)
pk(t, x, y)mk(dx)mk(dy)

= 1
2

∫
D×D

(
g(x) − g(y)

)2
pk(t, x, y)mk(dx)mk(dy)

= 1
2Ek

mk

[(
g(Y k

0 ) − g(Y k
t )

)2] ≥ 0.
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For later reference, we record the following consequence of the last formula,

(g − Qkg,g)L2(D,mk)

= (g − P k
2−kg, g)L2(D,mk)

= 1
2Ek

mk

[(
g(Y k

0 ) − g(Y k
2−k )

)2]
(5.11)

= Em

[(
g(X0) − g(X2−k )

)2;2−k < τD

]
,

where X is Brownian motion in Rn and τD := inf{t > 0 :Xt /∈ D}. By (5.10), we
have for dyadic t > 0 and large k ≥ 1,

0 ≤ (g − P k
2t g, g)L2(D,mk)

= (g, g)L2(D,mk)
− (P k

2t g, g)L2(D,mk)

= (g, g)L2(D,mk)
− (P k

t g,P k
t g)L2(D,mk)

,

and thus,

‖P k
t g‖2

L2(D,mk)
≤ ‖g‖2

L2(D,mk)
≤ ‖g‖2

L2(D,m)
.

Every f ∈ L2(D,m) can be approximated in L2(D,m) by continuous functions
on D, so we have from above and (5.9) that

lim
j→∞(P

kj

t f, f )L2(D,mkj
) = (Ptf, f )L2(D,m) for every f ∈ L2(D,m).(5.12)

Let Z be the reflected Brownian motion on D, obtained from quasi-continuous
projection on D of the reflected Brownian motion Z∗ on the Martin–Kuramochi
compactification D∗ of D. Recall that Z behaves like Brownian motion in D be-
fore Z hits the boundary ∂D. For f ∈ W 1,2(D), it admits a quasi-continuous ver-
sion on D∗ and, therefore, f (Zt) = f (Z∗

t ) is well defined. Moreover, f (Zt) has
the following Fukushima’s decomposition (see [8] or [9]):

f (Zt) − f (Z0) = M
f
t + N

f
t for every t ≥ 0,

where Mf is a continuous martingale additive functional of Z∗ with quadratic
variation process 〈Mf 〉t = ∫ t

0 |∇f (Zs)|2 ds and Nf is a continuous additive func-
tional of Z∗ having zero energy. In particular, we have

lim
t→0

1

t
Em

[(
f (Zt) − f (Z0)

)2] = lim
t→0

1

t
Em[(Mf

t )2] =
∫
D

|∇f (x)|2 dx.

These observations, (5.11)–(5.12) and Lemma 5.4 imply that for f ∈ W 1,2(D) and
dyadic t > 0,

1

t
(f − Ptf,f )L2(D,dx) = 1

t
lim

j→∞(f − P
kj

t f, f )L2(D,mkj
)

= 2k0

j0
lim

j→∞
(
f − Q

j02kj −k0

kj
f, f

)
L2(D,mkj

)
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≤ lim sup
j→∞

2k0

j0
j02kj−k0(f − Qkj

f,f )L2(D,mkj
)

= lim sup
j→∞

2kj−1Em

[(
f (Z2−kj ) − f (Z0)

)2;2−kj < τD

]
≤ lim sup

j→∞
2kj−1Em

[(
f (Z2−kj ) − f (Z0)

)2]
= 1

2

∫
D

|∇f (x)|2 dx.

Let (E ,F ) be the Dirichlet form of Y in L2(D,mD) = L2(D,dx). Then for f ∈
W 1,2(D),

E(f, f ) = lim
t→0

1

t
(f − Ptf,f )L2(D,dx) ≤ 1

2

∫
D

|∇f (x)|2 dx.

This shows that f ∈ F . So we have W 1,2(D) ⊂ F and

E(f, f ) ≤ 1
2

∫
D

|∇f (x)|2 dx for every f ∈ W 1,2(D).

If follows from Lemma 5.3 that {Yt , t < τD} is a Brownian motion in D with
initial distribution mD . Therefore, we have by Theorem 1.1 that F = W 1,2(D) and

E(f, f ) = 1
2

∫
D

|∇f (x)|2 dx for f ∈ W 1,2(D).

We deduce that Y is a stationary reflected Brownian motion on D. This proves that
Y k converges weakly on C([0,1],Rn) to the stationary reflected Brownian motion
on D. �

THEOREM 5.6. Let D be a bounded domain D in Rn. Let {μk, k ≥ 1} be a se-
quence of measures on D that converges weakly to μ with supk≥1 μk(D) < ∞ and
that there is a compact set K ⊂ D such that μk(D \ K) = 0 for every k ≥ 1. Then
the processes Y k under Pk

μk
converge weakly to the reflected Brownian motion Y

on D with initial distribution μ in the space C([0,1],Rn) as k → ∞.

PROOF. Using a partition of K with a finite covering of open balls if neces-
sary, we may assume that K ⊂ B(x0, r0) ⊂ D. Let δ0 = dist(B(x0, r0),D

c)/2 and
define B := B(x0, r0 + δ0). So the distance between ball B and Dc is δ0. Define

τB := inf{t ≥ 0 :Yt /∈ B} and τ k
B := inf{t ≥ 0 :Y k

t /∈ B}.
According to Lemma 5.2, the laws of {(Y k,Pk

x0
), k ≥ 1} are tight in the space

C([0,1],Rn). Let (Y,P) be any of the subsequential limits of (Y k,Pk
μk

), say, along

(Y kj ,P
kj
μkj

). It suffices to show that the finite-dimensional distributions of (Y,P)
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are the same as those of reflected Brownian motion with initial distribution μ.
For this purpose, take 0 < t1 < t2 < · · · < tN and nonnegative fi ∈ Cb(R

n) for
i = 1,2, . . . ,N . We know from Lemma 5.3 that, under P, {Yt , t < τD} is the killed
Brownian motion in D with initial distribution μ. Thus, for every ε > 0, there is a
dyadic rational t0 = j02−k0 ∈ (0, t1/2) such that

P(τB ≤ t0) < ε.

Since (Y kj ,P
kj
μkj

) converge to (Y,P) weakly, we have

lim sup
j→∞

P
kj
μkj

(τ k
B ≤ t0) ≤ P(τB ≤ t0) < ε.(5.13)

By (5.3), there is a constant c0 > 0 such that

P D
t 1(x) ≥ 1 − c0 exp

(
− δ0

c0t

)
for every x ∈ B.

Let P D
t denote the semigroup for Brownian motion killed upon exiting D and XB

be the Brownian motion X killed upon leaving ball B . The ball B is convex so for
any bounded nonnegative function f on D and k > k0,

Ek
μk

[f (Y k
t0
); τB > t0]

= Ek
μk

[f (Y k
t0
);Y k

j2−k ∈ B for j = 1,2, . . . ,2kt0]

= Eμk

[(2kt0−2∏
j=0

1

P D
2−k 1(XD

j2−k )

)
P D

2−kf (XD
t0−2−k )

P D
2−k 1(XD

t0−2−k )
;(5.14)

XD
j2−k ∈ B for j = 1,2, . . . ,2kt0 − 1

]

≤ ckEμk
[f (XD

t0
);XD

j2−k ∈ B for j = 1,2, . . . ,2kt0],
where

ck :=
(

1 − c0 exp
(
−2kδ0

2c0

))−2kt0

→ 1 as k → ∞.

For each fixed y ∈ B(x0, r0), let x �→ ψk(y, x) be the density function for the
distribution of XD

t0
under Py restricted on the event that {XD

j2−k ∈ B for j =
1,2, . . . ,2kt0}. Clearly, x �→ ψk(y, x) is a bounded function on D that vanishes
outside B , and as k ↑ ∞, ψk(y, x) decrease to pB(t0, y, x), the probability density
function for the killed Brownian motion in B at time t0 starting from y. We clearly
have

Ek
μk

[f (Y k
t0
); τ k

B > t0] ≥ Eμk
[f (XB

t0
)].(5.15)
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Let

φk(x) :=
∫
D

pB(t0, x, y)μk(dy) and φ(x) :=
∫
D

pB(t0, x, y)μ(dy).

and denote (φm)(dx) := φ(x)m(dx) and (φjm)(dx) := φj (x)m(dx). By (5.13)–
(5.15), we have, for each j ≥ j0,

E
kj

φm

[
N∏

i=1

fi(Y
kj

ti−t0
)

]
− ε

N∏
i=1

‖fi‖∞ ≤ E
kj
μkj

[
N∏

i=1

fi(Y
kj

ti
)

]

≤ ckj
E

kj

φkj0
m

[
N∏

i=1

fi(Y
kj

ti−t0
)

]
+ ε

N∏
i=1

‖fi‖∞.

Let Z be the reflected Brownian motion on D with initial distribution μ. Since φ

and φj0 are bounded continuous functions with compact support B , it follows from
Theorem 5.5 that

lim
j→∞ E

kj

φm

[
N∏

i=1

fi(Y
kj

ti−t0
)

]
= Eφm

[
N∏

i=1

fi(Zti−t0)

]
and

lim
j→∞ E

kj

φj0m

[
N∏

i=1

fi(Y
kj

ti−t0
)

]
= Eφj0m

[
N∏

i=1

fi(Zti−t0)

]
.

Taking j → ∞, we have

Eφm

[
N∏

i=1

fi(Zti−t0)

]
− ε

N∏
i=1

‖fi‖∞ ≤ lim inf
j→∞ E

kj
x0

[
N∏

i=1

fi(Y
kj

ti
)

]

≤ lim sup
j→∞

E
kj
x0

[
N∏

i=1

fi(Y
kj

ti
)

]

≤ Eφj0m

[
N∏

i=1

fi(Zti−t0)

]
+ ε

N∏
i=1

‖fi‖∞.

Since φj0 converges to φ boundedly as j0 → ∞, we have

Eφm

[
N∏

i=1

fi(Zti−t0)

]
− ε

N∏
i=1

‖fi‖∞ ≤ lim inf
j→∞ E

kj
x0

[
N∏

i=1

fi(Y
kj

ti
)

]

≤ lim sup
j→∞

E
kj
x0

[
N∏

i=1

fi(Y
kj

ti
)

]

≤ Eφm

[
N∏

i=1

fi(Zti−t0)

]
+ ε

N∏
i=1

‖fi‖∞.
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On the other hand,∣∣∣∣∣Eφm

[
N∏

i=1

fi(Zti−t0)

]
− Eμ

[
N∏

i=1

fi(Zti )

]∣∣∣∣∣ < ε

N∏
i=1

‖fi‖∞.

From these estimates we conclude that

lim
j→∞ E

kj
μkj

[
N∏

i=1

fi(Y
kj

ti
)

]
= Eμ

[
N∏

i=1

fi(Zti )

]
.

However, we know that

lim
j→∞ E

kj
μkj

[
N∏

i=1

fi(Y
kj

ti
)

]
= E

[
N∏

i=1

fi(Yti )

]
.

This proves that (Y,P) has the same finite dimensional distributions as those for
the reflected Brownian motion Z with initial distribution μ. This completes the
proof of the theorem. �

REMARK 5.7. By [7], Proposition 3.10.4, Theorems 5.5 and 5.6 hold also for
step-process approximation Ŷ k defined as

Ŷ k
t := Y k

[2kt]2−2k , t ≥ 0,

but with the Skorokhod space D([0,1],Rn) in place of the continuous function
space C([0,1],Rn).

Now we turn to myopic processes Xk , defined at the beginning of Section 5.

LEMMA 5.8. Suppose that either (i) μk = mk for every k ≥ 1; or (ii) there is
a compact subset K of D such that μk is a measure on D with supk≥1 μk(D) < ∞
and μk(D \K) = 0 for all k ≥ 1. Then the laws of {Xk,Pk

μk
, k ≥ 1} are tight in the

space C([0,1],Rn).

PROOF. (i) Since, by Lemma 5.2, the laws of {Y k,Pk
μk

, k ≥ 1} are tight in the
space C([0,1],Rn) and Y k

j2−k = Xk
j2−k , we have, in particular, for every ε > 0 and

δ > 0, that there are ρ > 0 and N ≥ 1 so that

Pk
μk

(
sup

0≤i,j≤2k : |i−j |2−k≤ρ

|Xk
i2−k − Xk

j2−k | > ε/3
)

< δ/2(5.16)

for every k ≥ N.

Recall the oscillation operator oscρ[s, t] from the proof of Lemma 5.2 for the
process Xk . As

oscρ[0,1] ≤ 2 sup
j∈{1,...,2k}

oscρ[(j − 1)2−k, j2−k]

+ sup
0≤i,j≤2k : |i−j |2−k≤ρ

|Xk
i2−k − Xk

j2−k |,
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we have

Pk
mk

(oscρ[0,1] > ε) ≤ Pk
mk

(
sup

j∈{1,...,2k}
oscρ[(j − 1)2−k, j2−k] > ε/3

)
(5.17)

+ Pk
mk

(
sup

0≤i,j≤2k : |i−j |2−k≤ρ

|Xk
i2−k − Xk

j2−k | > ε/3
)
.

Since mk is the reversible measure for the Markov chain {Xk
j2−k , j = 0,1, . . . ,2k},

for k with 2−k ≤ ρ,

Pk
mk

(
sup

j∈{1,...,2k}
oscρ[(j − 1)2−k, j2−k] > ε/3

)

≤
2k∑

j=1

Pk
mk

(
oscρ[(j − 1)2−k, j2−k] > ε/3

)
(5.18)

= 2kPk
mk

(oscρ[0,2−k] > ε/3)

≤ 2km(D)P0

(
sup

s,t∈[0,2−k]
|Xs − Xt | > ε/3

)
,

which tends to zero as k → ∞. Here P0 is the law of Brownian motion X in Rn

starting from the origin. Thus, (5.16)–(5.18) imply that there is N1 ≥ N such that

Pk
mk

(
oscρ[0,1] > ε

)
< δ for every k ≥ N1.

This proves that the laws of {Xk,Pk
mk

, k ≥ 1} are tight in the space C([0,1],Rn).
(ii) can be established from the tightness of {Xk,Pk

mk
, k ≥ 1} in the space

C([0,1],Rn) by almost the same argument as that for the proof of Lemma 5.2(ii).
So we omit the details here. �

Theorem 5.1 is a special case of the following with μk = μ = δ{x0}, the Dirac
measure concentrated at x0 ∈ D.

THEOREM 5.9. Suppose that either (i) μk = mk for every k ≥ 1 and μ =
mD ; or (ii) {μk, k ≥ 1} is a sequence of measures on D with supk≥1 μk(D) < ∞,
μk(D \ K) = 0 for some compact subset K of D and all k ≥ 1, and μk converge
weakly on D to a measure μ. Then the laws of {Xk,Pk

μk
, k ≥ 1} converge weakly

in the space C([0,1],Rn) to the reflected Brownian motion on D with the initial
distribution μ.

PROOF. By Lemma 5.8, the laws of {Xk,Pk
μk

, k ≥ 1} are tight in the space
C([0,1],Rn). Let (Z,P) be any of its subsequential weak limits. Clearly, Z0 has
distribution μ. Let Y be reflected Brownian motion on D with initial distribution μ.
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Denote by Q2 all the dyadic rational numbers. Since Xk
t = Y k

t for t ∈ [0,1] of the
form j2−k , we have from Theorems 5.5 and 5.6 that {Zt, t ∈ Q2 ∩ [0,1],P} and
{Yt , t ∈ Q2 ∩ [0,1]} have the same finite dimensional distributions. Since both Z

and Y are continuous processes, (Z,P) must have the same distribution as Y . That
is, (Z,P) is the reflected Brownian motion on D with the initial distribution μ.
This proves the theorem. �
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