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SOME PARABOLIC PDEs WHOSE DRIFT IS AN
IRREGULAR RANDOM NOISE IN SPACE

BY FRANCESCO RUSSO AND GERALD TRUTNAU

Université Paris 13 and Universität Bielefeld

A new class of random partial differential equations of parabolic type is
considered, where the stochastic term consists of an irregular noisy drift, not
necessarily Gaussian, for which a suitable interpretation is provided. After
freezing a realization of the drift (stochastic process), we study existence and
uniqueness (in some appropriate sense) of the associated parabolic equation
and a probabilistic interpretation is investigated.

1. Introduction. This paper focuses on a random partial differential equation
consisting of a parabolic PDE with irregular noise in the drift. Formulation, exis-
tence (with uniqueness in a certain sense) and double probabilistic representation
are discussed. The equation itself is motivated by random irregular media models.

Let T > 0, σ : R → R be a continuous function and η̇(x) a generalized random
field playing the role of a noise. Let u0 : R → R, λ : [0, T ]×R → R be continuous.
Consider the problem

−∂tv(t, x) + σ 2(x)

2
∂2

xxv(t, x) + η̇(x) ∂xv(t, x) = λ(T − t, x),

(1.1)
v(0, x) = u0(x),

where η̇ is the derivative in the sense of distributions of a continuous process.
Among examples of possible η, we have in mind not only different possibilities of
continuous processes as classical Wiener process and (multi) fractional Brownian
motion, but also non-Gaussian processes. The derivative in the sense of distribu-
tions η̇(x) will be the associated noise. (1.1) is a new type of SPDE, not yet studied
in any real depth even when η is a classical Brownian motion. For the situation
where η̇(x) is replaced by a space-time white noise η̇(t, x), some relevant work
was done by Nualart and Viens (see, e.g., [17]). In this article, time dependence is
useful for the corresponding stochastic integration.

Equation (1.1) is equivalent to the following dual problem:

∂tu(t, x) + σ 2(x)

2
∂2

xxu(t, x) + η̇(x) ∂xu(t, x) = λ(t, x),

(1.2)
u(T , x) = u0(x).
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Formally speaking, setting u(t, x) = v(T − t, x), v solves (1.1) if and only if u

solves (1.2). This is rigorously confirmed in Section 9 so that at this stage, the
choice of whether to work with equation (1.1) or (1.2) is arbitrary. We have decided
to concentrate on equation (1.2) because it corresponds to the standard form for
probabilistic representation.

The idea of this paper is to first freeze the realization ω, to set b(x) = η(x)(ω)

and then to consider the deterministic Cauchy problem associated with (1.2),

∂tu(t, x) + σ 2(x)

2
∂2

xxu(t, x) + b′(x) ∂xu(t, x) = λ(t, x),

(1.3)
u(T , x) = u0(x),

where b′ is the derivative of the continuous function b.
Since the product of a distribution and a continuous function is not defined in the

theory of Schwarz distributions, we must develop some substitution tools. Ideally,
we would like to represent the parabolic PDE probabilistically through a diffusion
which is the solution of the stochastic differential equation (SDE)

dXt = σ(Xt) dWt + b′(Xt) dt(1.4)

with generalized drift. We will give a meaning to (1.4) at three different levels:

• the level of a martingale problem;
• the level of a stochastic differential equation in the sense of probability laws;
• the level of a stochastic differential equation in the strong sense.

For each of these levels, we shall provide conditions for equation (1.4), with given
initial data, to be well posed. Later, the notion of a C0

b -solution to the general-
ized parabolic PDE (1.3) will be defined; related to this, existence, uniqueness and
probabilistic representation will be shown.

When η is a strong finite cubic variation process and σ = 1, the solutions to (1.3)
obtained for b = η(ω) provide solutions to the SPDE (1.1). This is shown in the
last part of the paper. A typical example of a strong zero cubic variation process
is the fractional Brownian motion with Hurst index H ≥ 1

3 . Equation (1.3) will be
understood in some weak distributional sense that we can formally reconstruct as
follows. We freeze b = η(ω) as a realization and formally integrate equation (1.1)
from 0 to t in time against a smooth test function α with compact support in space.
The result is

−
∫

R

dx α(x)u(t, x) +
∫

R

dx α(x)u0(x) −
∫ t

0
ds 1

2

∫
R

dx α′(x) ∂xu(s, x)

+
∫ t

0
ds

∫
R

b(dx)α(x) ∂xu(s, x)(1.5)

=
∫ t

0
ds

∫
R

dx α(x)λ(T − s, x).
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The integral
∫
R

α(x) ∂xu(s, x)b(dx) needs interpretation since b is not generally of
bounded variation and it involves the product of the distribution b′ and the function
∂xu(s, ·); in general, this function is, unfortunately, only continuous. As expected
this operation is deterministically undefined, unless one uses a generalized func-
tions theory. However, since b is a frozen realization of a stochastic process η, we
can hope to justify the integral in a stochastic sense. Note that it cannot be of Itô
type, even if η were a semimartingale, since ∂xu(s, ·) is not necessarily adapted to
some corresponding filtration. We will, in fact, interpret the stochastic integral ele-
ment b(dx) or η(dx) as a symmetric (Stratonovich) integral d0η of regularization
type; see Section 3.

DEFINITION 1.1. A continuous random field (v(t, x), t ∈ [0, T ], x ∈ R), a.s.
in C0,1(]0, T [×R), is said to be a (weak) solution to the SPDE (1.1) if

−
∫

R

dx α(x)v(t, x) +
∫

R

dx α(x)v0(x) −
∫ t

0
ds 1

2

∫
R

dx α′(x) ∂xv(s, x)

+
∫

R

d◦η(x)α(x)

(∫ t

0
ds ∂xv(s, x)

)
(1.6)

=
∫ t

0
ds

∫
R

dx α(x)λ(T − s, x)

for every smooth function with compact support α.

If we integrate equation (1.2) from t to T in time against a smooth test func-
tion α with compact support in space, we are naturally led to the following.

DEFINITION 1.2. A continuous random field (u(t, x), t ∈ [0, T ], x ∈ R), a.s.
in C0,1(]0, T [×R), is said to be a (weak) solution to the SPDE (1.2) if

−
∫

R

dx α(x)u(t, x) +
∫

R

dx α(x)u0(x) −
∫ T

t
ds 1

2

∫
R

dx α′(x) ∂xu(s, x)

+
∫

R

d◦η(x)α(x)

(∫ T

t
ds ∂xu(s, x)

)
(1.7)

=
∫ T

t
ds

∫
R

dx α(x)λ(s, x)

for every smooth function with compact support α.

We will show that the probabilistic solutions that we construct through stochas-
tic equation (1.4) will, in fact, solve (1.5).

Diffusions in the generalized sense were studied by several authors beginning
with (at least to our knowledge) [19]. Later, many authors considered special cases
of stochastic differential equations with generalized coefficients. It is difficult to
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quote them all. In particular, we refer to the case when b is a measure [7, 16, 18].
In all of these cases, solutions were semimartingales. More recently, [8] considered
special cases of nonsemimartingales solving stochastic differential equations with
generalized drift; those cases include examples coming from Bessel processes.

[10] and [11] treated well-posedness of the martingale problem, Itô’s formula
under weak conditions, semimartingale characterization and the Lyons–Zheng de-
composition. The only assumption was the strict positivity of σ and the exis-
tence of the function �(x) = 2

∫ x
0

b′
σ 2 dy with appropriate regularizations. Bass and

Chen [2] were also interested in (1.4) and provided a well-stated framework when
σ is 1

2 -Hölder continuous and b is γ -Hölder continuous, γ > 1
2 .

Beside the martingale problem, in the present paper, we shall emphasize the
formulation of (1.4) as a stochastic differential equation which can be solved by
introducing more assumptions on the coefficients. Several examples are provided
for the case of weak and strong solutions of (1.4).

The paper is organized as follows. Section 2 is devoted to basic preliminaries,
including definitions and properties related to Young integrals. Section 3 is devoted
to some useful remainder in stochastic calculus via regularization. In Section 4, we
introduce the formal elliptic operator L and recall the concept of a C1-generalized
solution of Lf = 	̇ for continuous real functions 	̇. We further introduce a fun-
damental hypothesis on L for the sequel, called Technical Assumption A(ν0),
and we illustrate several examples where it is verified. In Section 5, we discuss
different notions of martingale problems. Section 6 provides notions of solutions
to stochastic differential equations with distributional drift and their connections
with martingale problems. The notion of solution is coupled with a property of ex-
tended local time regularity. This concept of solution is new, even when the drift is
an ordinary function. Section 7 presents the notion of a C0

b -solution for a parabolic
equation Lu = λ, where λ is bounded and continuous with L = ∂t + L. We also
provide existence, uniqueness and probabilistic representations of C0

b -solutions to
Lu = λ. Section 8 discusses mild solutions to the previous parabolic PDE and use-
ful integrability properties for its solutions. In Section 9, we finally show that the
C0

b -solutions provide, in fact, true weak solutions to the SPDE (1.1) if σ = 1.

2. Preliminaries. In this paper, T will be a fixed horizon time, unless oth-
erwise specified. A function f defined on [0, T ] (resp., R+) will be extended,
without mention, by setting f (t) = f (0) for t ≤ 0 and f (T ) for t ≥ T [resp., f (0)

for t ≤ 0].
C0(R) will indicate the set of continuous functions defined on R, Cp(R),

the space of real functions with differentiability class Cp . We denote by C0
0(R)

[resp., C1
0(R)] the space of continuous (continuous differentiable) functions van-

ishing at zero. When there is no confusion, we will also simply use the sym-
bols C0,Cp,C0

0 ,C1
0 . We denote by C0

b([0, T ] × R) the space of real continuous
bounded functions defined on [0, T ]×R. C0

b(R), or simply C0
b , indicates the space

of continuous bounded functions defined on R.
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The vector spaces C0(R) and Cp(R) are topological Fréchet spaces, or
F-spaces, according to the terminology of [5], Chapter 1.2. They are equipped
with the following natural topology. A sequence fn belonging to C0(R) [resp.,
Cp(R)] is said to converge to f in the C0(R) [resp., Cp(R)] sense if fn (resp., fn

and all derivatives up to order p) converges (resp., converge) to f (resp., to f and
all its derivatives) uniformly on each compact of R.

We will consider functions u : [0, T ] × R → R which are bounded and continu-
ous. A sequence (un) in C0

b([0, T ]×R) will be said to converge in a bounded way
to u if:

• limn→∞ un(t, x) = u(t, x), ∀(t, x) ∈ [0, T ] × R;
• there exists a constant c > 0, independent of the sequence, such that

sup
t≤T ,x∈R

|un(t, x)| ≤ c ∀n ∈ N.(2.1)

If the sequence (un) does not depend on t , we similarly define the convergence of
(un) ∈ C0

b(R) to u ∈ C0
b(R) in a bounded way.

Given two functions u1, u2 : [0, T ] × R → R, the composition notation u1 ◦ u2
means (u1 ◦ u2)(t, x) = u1(t, u2(t, x)).

For positive integers m,k, Cm,k will indicate functions in the corresponding
differentiability class. For instance, C1,2([0, T [×R) will be the space of (t, x) 	→
u(t, x) functions which are C1 on [0, T [×R (i.e., once continuously differentiable)
and such that ∂2

xxu exists and is continuous.
C

m,k
b will indicate the set of functions Cm,k such that the partial derivatives of

all orders are bounded.
If I is a real compact interval and γ ∈]0,1[, we denote by Cγ (I) the vector

space of real functions defined on I which are Hölder with parameter γ . We denote
by Cγ (R), or simply Cγ , the space of locally Hölder functions, that is, Hölder on
each real compact interval.

Suppose I = [τ, T ], τ, T being two real numbers such that τ < T . Here, T does
not necessarily need to be positive. Recall that f : I 	→ R belongs to Cγ (I) if

Nγ (f ) := sup
τ≤s,t≤T

|f (t) − f (s)|
|t − s|γ < ∞.

Clearly, f 	→ |f (τ)| + Nγ (f ) defines a norm on Cγ (I) which makes it a Banach
space. Cγ (R) is an F-space if equipped with the topology of convergence related
to Cγ (I) for each compact interval I . A sequence (fn) in Cγ (R) converges to f

if it converges according to Cγ (I) for every compact interval I .
We will also provide some reminders about the so-called Young integrals

(see [27]) but will remain, however, in a simplified framework, as in [9] or [23].
We recall the essential inequality, stated, for instance, in [9]:

Let γ,β > 0 be such that γ + β > 1. If f,g ∈ C1(I ), then∣∣∣∣
∫ b

a

(
f (x) − f (a)

)
dg(x)

∣∣∣∣ ≤ Cρ(b − a)1+ρNγ (f )Nβ(g)(2.2)
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for any [a, b] ⊂ I and ρ ∈]0, γ +β − 1[, where Cρ is a constant not depending on
f,g. The bilinear map sending (f, g) to

∫ ·
0 f dg can be continuously extended to

Cγ (I) × Cβ(I) with values in C0(I ). By definition, that object will be called the
Young integral of f with respect to g on I . We also denote it

∫ ·
τ f d(y)g.

By additivity, we set, for a, b ∈ [τ, T ],∫ b

a
f d(y)g =

∫ b

τ
f d(y)g −

∫ a

τ
f d(y)g.

Moreover, the bilinear map defined on C1(R) × C1(R) by (f, g) → ∫ ·
0 f dg

extends continuously to Cγ (R) × Cβ(R) onto C0(R). Again, that object, defined
on the whole real line, will be called Young integral of f with respect to g and will
again be denoted by

∫ ·
0 f d(y)g.

REMARK 2.1. Inequality (2.2) remains true for f ∈ Cγ (I), g ∈ Cβ(I). In par-
ticular, t 	→ ∫ t

τ f d(y)g belongs to Cβ(I). In fact,∣∣∣∣
∫ b

a
f dg

∣∣∣∣ ≤
∣∣∣∣
∫ b

a

(
f − f (a)

)
dg

∣∣∣∣ + ∣∣f (a)
(
g(b) − g(a)

)∣∣.
Through the extension of the bilinear operator sending (f, g) to

∫ ·
0 f dg, it is

possible to get the following chain rule for Young integrals.

PROPOSITION 2.2. Let f,g,F : I → R, I = [τ, T ]. We suppose that g ∈
Cβ(I), f ∈ Cγ (I), F ∈ Cδ(I ) with γ + β > 1, δ + β > 1. We define G(t) =∫ t
τ f d(y)g. Then ∫ t

τ
F d(y)G =

∫ t

τ
Ff d(y)g.

PROOF. If g ∈ C1(I ), then the result is obvious. We remark that G ∈ Cγ (I).
Repeatedly using inequality (2.2), one can show that the two linear maps g 	→∫ ·
τ F d(y)G and g 	→ ∫ ·

τ Ff d(y)g are continuous from Cδ(I ) to C0(I ). This con-
cludes the proof of the proposition. �

By a mollifier, we mean a function � ∈ S(R) (i.e., a C∞-function such that
itself and all its derivatives decrease to zero faster than any power of |x|−1 as
|x| → ∞) with

∫
�(x)dx = 1. We set �n(x) := n�(nx).

The result below shows that mollifications of a Hölder function f converge to
f with respect to the Hölder topology.

PROPOSITION 2.3. Let � be a mollifier and let f ∈ Cγ ′
(I ). We write fn =

�n ∗ f . Then fn → f in the Cγ (I) topology for any 0 < γ < γ ′.
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PROOF. We need to show that Nγ (f − fn) converges to zero. We set �n(t) =
(f − fn)(t). Let a, b ∈ I . We will establish that

|�n(b) − �n(a)| ≤ const |b − a|γ
(

1

n

)γ ′−γ

.(2.3)

Without loss of generality, we can suppose that a < b. We distinguish between two
cases.

Case a < a + 1
n

< b.
We have

|�n(b) − �n(a)| ≤
∣∣∣∣
∫ (

f

(
b − y

n

)
− f (b)

)
�(y)dy

∣∣∣∣
+

∣∣∣∣
∫ (

f

(
a − y

n

)
− f (a)

)
�(y)dy

∣∣∣∣
≤ 2

∫ ∣∣∣∣yn
∣∣∣∣
γ ′

|�(y)|dy

≤ 2
∫

|�(y)||y|γ ′
dy(b − a)γ

(
1

n

)γ ′−γ

.

Case a < b ≤ a + 1
n

.
In this case, we have

|�n(b) − �n(a)|
≤

∫
|f (b) − f (a)||�(y)|dy +

∫ ∣∣∣∣f
(
b + y

n

)
− f

(
a + y

n

)∣∣∣∣|�(y)|dy

≤ 2(b − a)γ
′
∫

|�(y)|dy ≤ 2
∫

|�(y)|dy(b − a)γ
(

1

n

)γ ′−γ

.

Therefore, (2.3) is verified with const = 2
∫ |�(y)|(1 + |y|γ ′

) dy. This implies
that

Nγ (f − fn) ≤ const
(

1

n

)γ ′−γ

,

which allows us to conclude. �

For convenience, we introduce the topological vector space defined by

Dγ = ⋃
γ ′>γ

Cγ ′
(R).

It is also a vector algebra, that is, Dγ is a vector space and an algebra with respect
to the sum and product of functions.

The next corollary is a consequence of the definition of the Young integral and
Remark 2.1.
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COROLLARY 2.4. Let f ∈ Dγ , g ∈ Dβ with γ + β ≥ 1. Then t 	→ ∫ t
0 f d(y)g

is well defined and belongs to Dβ .

Dγ is not a metric space, but an inductive limit of the F-spaces Cγ ; the weak
version of the Banach–Steinhaus theorem for F-spaces can be adapted.

In fact, a direct consequence of the Banach–Steinhaus theorem of [5], Sec-
tion 2.1, is the following.

THEOREM 2.5. Let E = ⋃
n En be an inductive limit of F-spaces En and

F another F-space. Let (Tn) be a sequence of continuous linear operators
Tn :E → F . Suppose that Tf := limn→∞ Tnf exists for any f ∈ E. Then
T :E → F is again a continuous (linear) operator.

3. Previous results in stochastic calculus via regularization. We recall here
a few notions related to stochastic calculus via regularization, a theory which began
with [21]. We refer to a recent survey paper [23].

The stochastic processes considered may be defined on [0, T ],R+ or R. Let
X = (Xt , t ∈ R) be a continuous process and Y = (Yt , t ∈ R) be a process with
paths in L1

loc. For the paths of process Y with parameter on [0, T ] (resp., R+), we
apply the same convention as was applied at the beginning of previous section for
functions. So we extend them without further mention, setting Y0 for t ≤ 0 and
YT for t ≥ T (resp., Y0 for t ≤ 0). C will denote the vector algebra of continu-
ous processes. It is an F-space if equipped with the topology of u.c.p. (uniform
convergence in probability) convergence.

In the sequel, we recall the most useful rules of calculus; see, for instance, [23]
or [22].

The forward symmetric integrals and the covariation process are defined by the
following limits in the u.c.p. sense, whenever they exist:∫ t

0
Y d−X := lim

ε→0+

∫ t

0
Ys

Xs+ε − Xs

ε
ds,(3.1)

∫ t

0
Ys d◦Xs := lim

ε→0+

∫ t

0
Ys

Xs+ε − Xs−ε

2ε
ds,(3.2)

[X,Y ]t := lim
ε→0+Cε(X,Y )t ,(3.3)

where

Cε(X,Y )t := 1

ε

∫ t

0
(Xs+ε − Xs)(Ys+ε − Ys) ds.

All stochastic integrals and covariation processes will of course be elements of C.
If [X,Y ], [X,X] and [Y,Y ] exist, we say that (X,Y ) has all of its mutual covari-
ations.
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REMARK 3.1. If X is (locally) of bounded variation, we have:

• ∫ t
0 X d−Y = ∫ t

0 Xs d◦Ys = ∫ t
0 Xs dYs , where the third integral is meant in the

Lebesgue–Stieltjes sense;
• [X,Y ] ≡ 0.

REMARK 3.2. (a)
∫ t

0 Ys d◦Xs = ∫ t
0 Ys d−Xs + 1

2 [X,Y ] provided that two of
the three integrals or covariations exist.

(b) XtYt = X0Y0 +∫ t
0 Ys d−Xs +∫ t

0 Xs d−Ys +[X,Y ]t provided that two of the
three integrals or covariations exist.

(c) XtYt = X0Y0 +∫ t
0 Y d◦X+∫ t

0 Xs d◦Ys provided that one of the two integrals
exists.

REMARK 3.3. (a) If [X,X] exists, then it is always an increasing process and
X is called a finite quadratic variation process. If [X,X] = 0, then X is said to be
a zero quadratic variation process.

(b) Let X, Y be continuous processes such that (X,Y ) has all of its mutual
covariations. Then [X,Y ] has locally bounded variation. If f,g ∈ C1, then

[f (X), g(Y )]t =
∫ t

0
f ′(X)g′(Y ) d[X,Y ].

(c) If A is a zero quadratic variation process and X is a finite quadratic variation
process, then [X,A] ≡ 0.

(d) A bounded variation process is a zero quadratic variation process.
(e) (Classical Itô formula.) If f ∈ C2, then

∫ ·
0 f ′(X)d−X exists and is equal to

f (X) − f (X0) − 1
2

∫ ·

0
f ′′(X)d[X,X].

(f) If g ∈ C1 and f ∈ C2, then the forward integral
∫ ·

0 g(X)d−f (X) is well
defined.

In this paper, all filtrations are supposed to fulfill the usual conditions. If
F = (Ft )t∈[0,T ] is a filtration, X an F-semimartingale and Y is an F-adapted cad-
lag process, then

∫ ·
0 Y d−X is the usual Itô integral. If Y is an F-semimartingale,

then
∫ ·

0 Y d◦X is the classical Fisk–Stratonovich integral and [X,Y ] is the usual
covariation process 〈X,Y 〉.

We now introduce the notion of Dirichlet process, which was essentially intro-
duced by Föllmer [12] and has been considered by many authors; see, for instance,
[3, 24] for classical properties.

In the present section, (Wt) will denote a classical (Ft )-Brownian motion.

DEFINITION 3.4. An (Ft )-adapted (continuous) process is said to be a
(Ft )-Dirichlet process if it is the sum of an (Ft )-local martingale M and a zero
quadratic variation process A. For simplicity, we will suppose that A0 = 0 a.s.
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REMARK 3.5. (i) Process (At ) in the previous decomposition is an
(Ft )-adapted process.

(ii) An (Ft )-semimartingale is an (Ft )-Dirichlet process.
(iii) The decomposition M + A is unique.
(iv) Let f : R → R be of class C1 and let X be an (Ft )-Dirichlet process. Then

f (X) is again an (Ft )-Dirichlet process with local martingale part M
f
t = f (X0)+∫ t

0 f ′(X)dM .

The class of semimartingales with respect to a given filtration is known to be
stable with respect to C2 transformations. Remark 3.3(b) says that finite quadratic
variation processes are stable through C1 transformations. The last point of the
previous remark states that C1 stability also holds for Dirichlet processes.

Young integrals introduced in Section 2 can be connected with the forward and
symmetric integrals via the regularization appearing before Remark 3.1. The next
proposition was proven in [23].

PROPOSITION 3.6. Let X,Y be processes whose paths are respectively in Cγ

and Cβ , with γ > 0, β > 0 and γ + β > 1.
For any symbol � ∈ {−,◦}, the integral

∫ ·
0 Y d�X coincides with the Young inte-

gral
∫ ·

0 Y d(y)X.

REMARK 3.7. Suppose that X and Y satisfy the conditions of Proposition 3.6.
Then Remark 3.2(a) implies that [X,Y ] = 0.

We need an extension of stochastic calculus via regularization in the direction
of higher n-variation. The properties concerning variation higher than 2 can be
found, for instance, in [6].

We set

[X,X,X]εt = 1

ε

∫ t

0
(Xs+ε − Xs)

3 ds.

We also define

‖[X,X,X]ε‖t = 1

ε

∫ t

0
|Xs+ε − Xs |3 ds.

If the limit in probability of [X,X,X]εt when ε → 0 exists for any t , we denote it
by [X,X,X]t . If the limiting process [X,X,X] has a continuous version, we say
that X is a finite cubic variation process.

If, moreover, there is a positive sequence (εn)n∈N converging to zero such that

sup
εn

‖[X,X,X]εn‖T < +∞,(3.4)

then we say that X is a (strong) finite cubic variation process. If X is a (strong)
finite cubic variation process such that [X,X,X] = 0, then X will be said to be a
(strong) zero finite cubic variation process.
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For instance, if X = BH , a fractional Brownian motion with Hurst index H ,
then X is a finite quadratic variation process if and only if H ≥ 1

2 ; see [22]. It is
a strong zero cubic variation process if and only if H ≥ 1

3 ; see [6]. On the other
hand, BH is a zero cubic variation process if and only if H > 1

6 ; see [13].
It is clear that a finite quadratic variation process is a strong zero cubic variation

process. On the other hand, processes whose paths are Hölder continuous with
parameter greater than 1

3 are strong zero cubic variation processes.
As for finite quadratic variation and Dirichlet processes, the C1-stability also

holds for finite cubic variation processes. The next proposition is a particular case
of a result contained in [6].

PROPOSITION 3.8. Let X be a strong finite cubic variation process, V a
locally bounded variation process and f : R × R → R of class C1. Then Z =
f (V,X) is again a strong finite cubic variation process and

[Z,Z,Z]t =
∫ t

0
∂xf (Vs,Xs)

3 d[X,X,X]s .

Moreover, an Itô chain rule property holds, as follows.

PROPOSITION 3.9. Let X be a strong finite cubic variation process, V a
bounded variation process and Y a cadlag process. Let f : R × R → R be of
class C1,3. Then∫ t

0
Y d◦f (V,X) =

∫ t

0
Y ∂vf (Vs,Xs) dVs +

∫ t

0
Y ∂xf (Vs,Xs) d◦Xs

− 1
12

∫ t

0
Y ∂3

xxxf (Vs,Xs) d[X,X,X]s.

We deduce, in particular, that a C1 transformation of a strong zero cubic varia-
tion process is again a strong zero cubic variation process.

We conclude the section by introducing a concept of definite integral via regu-
larization. If processes X,Y are indexed by the whole real line, a.s. with compact
support, we define ∫

R

Y d−X := lim
ε→0+

∫
R

Ys

Xs+ε − Xs

ε
ds,(3.5)

∫
R

Ys d◦Xs := lim
ε→0+

∫
R

Ys

Xs+ε − Xs−ε

2ε
ds,(3.6)

where the limit is understood in probability. Integration by parts [Remark 3.2(c)],
Proposition 3.6 and the chain rule property (Proposition 3.9) can all be immedi-
ately adapted to these definite integrals.
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4. The PDE operator L. Let σ , b ∈ C0(R) be such that σ > 0. Without loss
of generality, we will suppose that b(0) = 0.

We consider a formal PDE operator of the following type:

Lg = σ 2

2
g′′ + b′g′.(4.1)

If b is of class C1, so that b′ is continuous, we will say that L is a classical PDE
operator.

For a given mollifier �, we denote

σ 2
n := (σ 2 ∧ n) ∗ �n, bn := (−n ∧ (b ∨ n)

) ∗ �n.

We then consider

Lng = σ 2
n

2
g′′ + b′

ng
′ for g ∈ C2(R),

(4.2)
Lnu = ∂tu + Lnu for u ∈ C1,2([0, T [×R),

where Ln acts on x. A priori, σ 2
n , bn and the operator Ln depend on the mollifier �.

Previous definitions are slightly different from those in papers [10, 11], but a
considerable part of the analysis of L and the study of the martingale problem can
be adapted. In those papers, there was only regularization but no truncation; here,
truncation is used to study the associated parabolic equations.

DEFINITION 4.1. A function f ∈ C1(R) is said to be a C1-generalized solu-
tion to

Lf = 	̇,(4.3)

where 	̇ ∈ C0 if for any mollifier �, there are sequences (fn) in C2 and (	̇n) in C0

such that

Lnfn = 	̇n, fn → f in C1, 	̇n → 	̇ in C0.(4.4)

PROPOSITION 4.2. There is a solution h ∈ C1 to Lh = 0 such that h′(x) �= 0
for every x ∈ R if and only if

�(x) := lim
n→∞ 2

∫ x

0

b′
n

σ 2
n

(y) dy

exists in C0, independently of the mollifier. Moreover, in this case, any solution f

to Lf = 0 fulfills

f ′(x) = e−�(x)f ′(0).(4.5)
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PROOF. This result follows in a very similar way to the proof of Proposi-
tion 2.3 in [10]—first at the level of regularization and then passing to the limit.

�

For the remainder of this paper, we will suppose the existence of this function �.
We will consider h ∈ C1 such that

h′(x) := exp(−�(x)), h(0) = 0.(4.6)

In particular, h′(0) = 1 holds. Even though we discuss the general case with re-
lated nonexplosion conditions in [10], here, in order to ensure conservativeness,
we suppose that ∫ 0

−∞
e−�(x) dx =

∫ ∞
0

e−�(x) dx = +∞,

(4.7) ∫ 0

−∞
e�(x)

σ 2 dx =
∫ ∞

0

e�(x)

σ 2 dx = +∞.

Previous assumptions are of course satisfied if σ is lower bounded by a positive
constant and b is constant outside a compact interval.

Condition (4.7) implies that the image set of h is R.

REMARK 4.3. Proposition 4.2 implies uniqueness of the problem

Lf = 	̇, f ∈ C1, f (0) = x0, f ′(0) = x1(4.8)

for every 	̇ ∈ C0, x0, x1 ∈ R.

REMARK 4.4. We present four important examples where � exists:

(a) If b(x) = α(σ 2(x)
2 − σ 2(0)

2 ) for some α ∈]0,1], then

�(x) = α log
(

σ 2(x)

σ 2(0)

)

and

h′(x) = σ 2α(0)

σ 2α(x)
.

If α = 1, the operator L can be formally expressed in divergence form as Lf =
(σ 2

2 f ′)′.
(b) Suppose that b is locally of bounded variation. We then get∫ x

0

b′
n

σ 2
n

(y) dy =
∫ x

0

dbn(y)

σ 2
n (y)

→
∫ x

0

db

σ 2

since dbn → db in the weak-∗ topology and 1
σ 2 is continuous.
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(c) If σ has bounded variation, then we have

�(x) = −2
∫ x

0
b d

(
1

σ 2

)
+ 2b

σ 2 (x) − 2b

σ 2 (0).

In particular, this example contains the case where σ = 1 for any b.
(d) Suppose that σ is locally Hölder continuous with parameter γ and that b is

locally Hölder continuous with parameter β such that β +γ > 1. Since σ is locally
bounded, σ 2 is also locally Hölder continuous with parameter γ . Proposition 2.3
implies that σ 2

n → σ 2 in Cγ ′
and bn → b in Cβ ′

for every γ ′ < γ and β ′ < β .
Since σ is strictly positive on each compact, 1

σ 2
n

→ 1
σ 2 in Cγ ′

. By Remark 2.1,
� is well defined and locally Hölder continuous with parameter β ′.

Again, the following lemma can be proven at the level of regularizations; see
also Lemma 2.6 in [10].

LEMMA 4.5. The unique solution to problem (4.8) is given by

f (0) = x0,

f ′(x) = h′(x)

(
2

∫ x

0

	̇(y)

(σ 2h′)(y)
dy + x1

)
.

REMARK 4.6. If b′ ∈ C0(R) and f ∈ C2(R) is a classical solution to Lf = 	̇,
then f is clearly also a C1-generalized solution.

REMARK 4.7. Given 	 ∈ C1, we denote by T 	 the unique C1-generalized
solution f to problem (4.8) with 	̇ = 	′, x0 = 0, x1 = 0. The unique solution to the
general problem (4.8) is given by

f = x0 + x1h + T 	.

We write T x1	 = T 	 + x1h, that is, the solution with x0 = 0.

REMARK 4.8. Let f ∈ C1. There is at most one 	̇ ∈ C0 such that Lf = 	̇. In
fact, to see this, it is enough to suppose that f = 0. Lemma 4.5 implies that

2
∫ x

0

	̇

σ 2h′ (y) dy ≡ 0.

Consequently, 	̇ is forced to be zero.

This consideration allows us to define without ambiguity L :DL → C0, where
DL is the set of all f ∈ C1(R) which are C1-generalized solution to Lf = 	̇ for
some 	̇ ∈ C0. In particular, T 	 ∈ DL.

A direct consequence of Lemma 4.5 is the following useful result.
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LEMMA 4.9. DL is the set of f ∈ C1 such that there exists ψ ∈ C1 with
f ′ = e−�ψ.

In particular, it gives us the following density proposition.

PROPOSITION 4.10. DL is dense in C1.

PROOF. It is enough to show that every C2-function is the C1-limit of a se-
quence of functions in DL. Let (ψn) be a sequence in C1 converging to f ′e�

in C0. It follows that

fn(x) := f (0) +
∫ x

0
e−�(y)ψn(y) dy, x ∈ R,

converges to f ∈ C1 and fn ∈ DL. �

We must now discuss technical aspects of the way L and its domain DL are
transformed by h. We recall that Lh = 0 and that h′ is strictly positive. Condi-
tion (4.7) implies that the image set of h is R.

Let L0 be the classical PDE operator

L0φ = σ̃ 2
h

2
φ′′, φ ∈ C2,(4.9)

where

σ̃h(y) = (σ̃h′)(h−1(y)), y ∈ R.

L0 is a classical PDE map; however, we can also consider it at the formal level and
introduce DL0 .

PROPOSITION 4.11. (a) h2 ∈ DL, Lh2 = h′2σ 2.
(b) DL0 = C2.
(c) φ ∈ DL0 holds if and only if φ ◦ h ∈ DL. Moreover, we have

L(φ ◦ h) = (L0φ) ◦ h(4.10)

for every φ ∈ C2.

PROOF. This follows similarly as for Proposition 2.13 of [10]. �

We will now discuss another operator related to L. Given a function f , we need
to provide a suitable definition of f 	→ ∫ x

0 Lf (y)dy, that is, some primitive of Lf .

• One possibility is to define that map, through previous expression, for f ∈ DL.
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• Otherwise, we try to define it as linear map on C2. For this, first suppose that b′
is continuous. Then integrating by parts, we obtain

∫ x

0
Lf (y)dy =

∫ x

0

(
σ 2

2
− b

)
f ′′(y) dy + (bf ′)(x) − (bf ′)(0).(4.11)

We remark that the right-hand side of this expression makes sense for any f ∈
C2 and continuous b. We will thus define L̂ :C2 → C0

0 as follows:

L̂f :=
∫ x

0

(
σ 2

2
− b

)
f ′′(y) dy + (bf ′)(x) − (bf ′)(0).(4.12)

One may ask if, in the general case, the two definitions f → ∫ x
0 Lf (y)dy on DL

and L̂ on C2 are compatible. We will later see that under Assumption A(ν0), this
will be the case. However, in general, DL ∩ C2 may be empty.

Thus far, we have learned how to eliminate the first-order term in a formal PDE
operator through the transformation h introduced at (4.6); when L is classical, this
was performed by Zvonkin (see [28]). We would now like to introduce a transfor-
mation which puts the PDE operator in a divergence form.

Let L be a PDE operator which is formally of type (4.1):

Lg = σ 2

2
g′′ + b′g′.

We consider a function of class C1, namely k : R → R such that

k(0) = 0 and k′(x) = σ−2(x) exp(�(x)).(4.13)

According to assumptions (4.7), k is bijective on R.

REMARK 4.12. If there is no drift term, that is, b = 0, then we have k′(x) =
σ−2(x).

LEMMA 4.13. We consider the formal PDE operator given by

L1g = σ̄ 2
k

2
g′′ +

(
σ̄ 2

k

2

)′
g′ =

(
σ̄ 2

k

2
g′

)′
,(4.14)

where

σ̄k(z) = (σk′) ◦ k−1(z), z ∈ R.

Then:

(i) g ∈ DL1 if and only if g ◦ k ∈ DL;
(ii) for every g ∈ DL1 , we have L1g = L(g ◦ k) ◦ k−1.
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PROOF. It is practically the same as in Lemma 2.16 of [10]. �

We now give a lemma whose proof can be easily established by investiga-
tion. Suppose that L is a classical PDE operator. Then L = ∂t + L is well de-
fined for C1,2([0, T [×R) functions where L acts on the second variable. Given
a function ϕ ∈ C([0, T ] × R), we will hereafter set ϕ̃ : [0, T ] × R −→ R by
ϕ̃(t, y) = ϕ(t, h−1(y)).

LEMMA 4.14. Let us suppose that h ∈ C2(R). We set σh = σh′.
We define the PDE operator L0 by L0ϕ = ∂tϕ + L0ϕ, where L0 is a classical

operator acting on the space variable x and

L0f = σ̃ 2
h

2
f ′′.

If f ∈ C1,2([0, T [×R) and Lf = γ in the classical sense, then L0f̃ = γ̃ .

We will now formulate a supplementary assumption which will be useful when
we study singular stochastic differential equations in the proper sense and not only
in the form of a martingale problem.

TECHNICAL ASSUMPTION A(ν0). Let ν0 be a topological F-space which is
a linear topological subspace of C0(R) (or, eventually, an inductive limit of sub-F-
spaces). The ν0-convergence implies convergence in C0 and, therefore, pointwise
convergence.

We say that L fulfills Assumption A(ν0) if the following conditions hold:

(i) C1 ⊂ ν0, which is dense.
(ii) For every g ∈ C1(R), the multiplicative operator φ → gφ maps ν0 into

itself.
(iii) Let T :C1(R) ⊂ ν0 → C1(R) as defined in Lemma 4.5, that is, f = T 	 is

such that

f (0) = 0,

f ′(x) = e−�(x)

(
2

∫ x

0

e�(y)	′(y)

σ 2(y)
dy

)
.

We recall that f = T 	 solves problem Lf = 	′ with f (0) = f ′(0) = 0. We suppose
that T admits a continuous extension to ν0.

(iv) Let x1 ∈ R. For every f ∈ C2 with f (0) = 0 and f ′(0) = x1 so that
]L̂f = 	, we have 	 ∈ ν0 and T x1	 = f , where T x1 denotes the continuous ex-
tension of T x1 (see Remark 4.7) to ν0, which exists by (iii).

(v) The set L̂C2 is dense in {	 ∈ ν0|	(0) = 0}.
REMARK 4.15. Let x1 ∈ R.
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(i) Remark 4.7 and point (iii) above together imply that T x1 :C1(R) ⊂ ν0 →
C1(R) extends continuously to ν0. Moreover,

{f ∈ C2|f (0) = 0, f ′(0) = x1} ⊂ ImT x1 .

(ii) Point (iv) above shows that b ∈ ν0 and T 1b = id , where id(x) = x; in fact,
id(0) = 0, id ′(1) = 1 and (4.12) implies that L̂id = b.

(iii) Point (i) above is satisfied if, for instance, the map T is closable as a map
from C0 to C1. In that case, ν0 may be defined as the domain of the closure of C1,
equipped with the graph topology related to C0 × C1.

Below, we give some sufficient conditions for points (iv) and (v) of the Technical
Assumption to be satisfied.

We define by C1
ν0

the vector space of functions f ∈ C1 such that f ′ ∈ ν0. This
will be an F-space if equipped with the following topology. A sequence (fn) will
be said to converge to f in C1

ν0
if fn(0) → f (0) and (f ′

n) converges to f ′ in ν0.
In particular, a sequence converging according to C1

ν0
also converges with respect

to C1. On the other hand, C2 ⊂ C1
ν0

and a sequence converging in C2 also con-
verges with respect to C1

ν0
. Moreover, C2 is dense in C1

ν0
because C1 is dense

in ν0.

LEMMA 4.16. Suppose that points (i) to (iii) of the Technical Assumption are
fulfilled. We suppose, moreover, that:

(a) h ∈ C1
ν0

.

(b) For every f ∈ C2, f (0) = 0, f ′(0) = 0, L̂f = 	, we have 	 ∈ ν0 and
T 	 = f .

(c) L̂ :C2 → ν0 is well defined and has a continuous extension to C1
ν0

, still

denoted by L̂, such that L̂h = 0.
(d) ImT ⊂ C1

ν0
.

(e) L̂T is the identity map on {	 ∈ ν0|	(0) = 0}.
Then T ,T x1 for every x1 ∈ R are injective and points (iv) and (v) of the Techni-

cal Assumption are satisfied.

PROOF. The injectivity of T follows from point (e). The injectivity of T x1 is
a consequence of Remark 4.7.

We prove point (iv). Point (c) says that L̂h = 0. We set f̂ = f − x1h, f ∈ C2,
where f (0) = 0, f ′(0) = x1. Clearly, L̂f̂ = L̂f = 	 and f̂ (0) = 0, f̂ ′(0) = 0.
Point (b) implies that T 	 = f̂ . Hence, T x1	 = T 	 + x1h = f and (iv) is satisfied.

Concerning point (v), let 	 ∈ ν0 with 	(0) = 0 and set f = T 	. Since f belongs
to C1

ν0
by (c), f ′ belongs to ν0. Point (i) of the technical assumption implies that

there exists a sequence (f ′
n) of C1 functions converging to f ′ in the ν0 sense
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and thus also in C0. Let (fn) be the sequence of primitives of (f ′
n) (which are of

class C2) such that fn(0) = 0. In particular, we have that (fn) converges to f in
the C1

ν0
-sense. By (c), there exists λ in ν0 which is the limit of L̂fn in the ν0-sense.

Observe that because of (b), T (L̂fn) = fn. On the other hand, limn→+∞ fn = f

in C1. Applying T and using (iii) of the Technical Assumption, we obtain

T λ = lim
n→+∞T (L̂fn) = lim

n→+∞fn = f = T 	.

The injectivity of T allows us to conclude that 	 = λ. �

REMARK 4.17. Under the assumptions of Lemma 4.16, we have:

• DL ⊂ C1
ν0

;

• L̂f = ∫ x
0 Lf (y)dy, f ∈ DL.

In fact, let f ∈ DL. Without loss of generality, we can suppose that f (0) = 0.
Let x1 = f ′(0) and set f̂ = f + x1h so that f̂ (0) = f̂ ′(0) = 0. Setting 	̇ = Lf̂ ,

Lemma 4.5 implies that f̂ = T 	, where 	 = ∫ x
0 	̇(y) dy. So f̂ ∈ ImT ⊂ C1

ν0
. Since

h ∈ C1
ν0

, it follows that f ∈ C1
ν0

, by additivity.
On the other hand,

Lf = Lf̂ + x1Lh = L̂f = 	̇,

L̂f = L̂f̂ + x1L̂h = L̂T 	 = 	,

by point (e) of Lemma 4.16.

EXAMPLE 4.18. We provide here a series of four significant examples when
Technical Assumption A(ν0) is verified. We only comment on the points which
are not easy to verify.

(i) The first example is simple. It concerns the case when the drift b′ is con-
tinuous. This problem, to be studied later, corresponds to an ordinary SDE where

ν0 = C1, C1
ν0

= C2, L̂f =
∫ ·

0
Lf (y)dy.

(ii) L is close to divergence type, that is, b = σ 2−σ 2(0)
2 + β and where β is a

locally bounded variation function vanishing at zero. The operator is of divergence
type with an additional Radon measure term, that is, we have � = lnσ 2 + 2

∫ x
0

dβ

σ 2 .

In this case, we have ν0 = C0. Points (i) and (ii) of the Technical Assumption are
trivial.

We have, in fact,

h′(x) = e−� = 1

σ 2(x)
exp

(
−2

∫ x

0

dβ

σ 2

)
.
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T defined at point (iii) of the Technical Assumption is such that T 	 = f , where
f (0) = 0 and

f ′(x) = 2σ 2(0)

σ 2(x)
exp

(
−2

∫ x

0

dβ

σ 2

)∫ x

0
	′(y) exp

(
2

∫ y

0

dβ

σ 2

)
dy.(4.15)

Consequently, the extension of T to ν0 = C0, always still denoted by the same
letter T , is given by f = T 	 with f (0) = 0 and

f ′(x) = 2

σ 2(x)

{
	(x) − 2 exp

(
−2

∫ x

0

dβ

σ 2

)
(4.16)

×
(
	(0) +

∫ x

0
	(y) exp

(
2

∫ y

0

dβ

σ 2

)
1

σ 2(y)
dβ(y)

)}
.

Points (iv) and (v) are seen to be satisfied via Lemma 4.16. We have C1
ν0

= C1.
Point (a) is obvious since h′ ∈ C0 and so h ∈ C1

ν0
. Let f ∈ C2. Using Lebesgue–

Stieltjes calculus, we can easily show that

	(x) = L̂f (x) = σ 2(x)

2
f ′(x) − σ 2(0)

2
f ′(0) +

∫ x

0
f ′ dβ.(4.17)

This shows that 	 ∈ C0 = ν0 and therefore the first part of (b). We remark that we
can, in fact, consider L̂ :C2 → ν0 because

L̂f = L̂(f − x1h) + x1L̂h = L̂(f − x1h) ∈ ν0.

The expression of L̂f extends continuously to f ∈ C1, which yields the first part
of point (c). Moreover, inserting the expression for h′ into f ′ in (4.17), one shows
that L̂h = 0.

Suppose, now, that in expression (4.17), f ∈ C2, f (0) = 0, f ′(0) = 0. A sim-
ple investigation shows that T 	 = f , so the second part of point (b) is fulfilled;
point (d) is also clear because of (4.16). Finally point (d) holds because one can
prove by inspection that L̂T is the identity on C0

0 .
(iii) We recall the notation Dγ (R) which indicates the topological vector space

of locally Hölder continuous functions defined on R with parameter α > γ . We
recall that Dγ (R) is a vector algebra.

Suppose that σ ∈ D1/2 and b ∈ C1/2 (or σ ∈ C1/2 and b ∈ D1/2). Remark 4.4(d)
implies that � also belongs to D1/2. We set ν0 = D1/2.

Technical Assumption A(ν0) is verified for the following reasons.
Since � ∈ D1/2, h′ = e−� belongs to the same space.
Point (i) follows because of Proposition 2.3 and point (ii) follows because D1/2

is an algebra. Corollary 2.4 yields that for every 	 ∈ D1/2, the function

f ′(x) = e−�(x)
∫ x

0
2
e�

σ 2 (y) d(y)	(y)(4.18)
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is well defined and belongs to D1/2. This shows that T can be continuously ex-
tended to ν0 and point (iii) is established.

Concerning points (iv) and (v), we again use Lemma 4.16. We observe that

C1
ν0

= {f ∈ C1|f ′ ∈ D1/2}.
Point (a) is obvious since h′ = e−� ∈ D1/2. Let f ∈ C2. Considering b as a deter-
ministic process and recalling the definition of L̂ as in (4.12), integration by parts
in Remark 3.2(c) and Proposition 3.6 together imply that

	(x) =
∫ x

0

σ 2

2
d0f ′ +

∫ x

0
f ′ d◦b,(4.19)

	(x) =
∫ x

0

σ 2

2
d(y)f ′ +

∫ x

0
f ′ d(y)b.(4.20)

The first part of point (b) follows because of Proposition 2.2. Of course, the previ-
ous expression can be extended to f ∈ C1

ν0
and this shows the first part of point (c).

Showing that the second part of point (c) of Lemma 4.16 holds consists of ver-
ifying that L̂h = 0. Substituting h′ = e−� into the previous expression, through
Proposition 2.2, we obtain

	(x) = −
∫ x

0

σ 2

2
e−� d(y)� +

∫ x

0
e−� d(y)b = 0.

Concerning the second part of point (b), let f ∈ C2 so that f (0) = f ′(0) = 0. We
want to show that ϕ = T 	 coincides with f .

Since ϕ(0) = 0, it remains to check that ϕ′ = f ′. We recall that

ϕ′(x) = e−�(x)

(
2

∫ x

0

e�

σ 2 (y) d(y)	(y)

)
.

Twice applying the chain rule of Proposition 2.2 and using (4.19), the fact that

e�(x) =
∫ x

0
e� 2d(y)b

σ 2 + 1

and integration by parts, we obtain

ϕ′(x) = e−�(x)

{∫ x

0
e� d0f ′ +

∫ x

0
2
e�

σ 2 f ′ d(y)b

}

= e−�(x)

{∫ x

0
e� d0f ′ +

∫ x

0
f ′ d(y)e�

}

= e−�(x)

{∫ x

0
e� d0f ′ +

∫ x

0
f ′ d0e�

}

= e−�(x){(f ′e�)(x) − (f ′e�)(0)}
= f ′(x).
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Point (b) is therefore completely established.
Point (d) follows because in (4.18), when 	 ∈ ν0, it follows that f ′ ∈ ν0.
Clearly, as for the previous example, ImT ⊂ C1

ν0
. It remains to show that L̂T is

the identity map {f ∈ D1/2|f (0) = 0}.
For this, we first remark that

L̂f (x) =
∫ x

0

σ 2

2
e−� d(y)(f ′e�).(4.21)

In fact, by Proposition 3.6 and integration by parts contained in Remark 3.2(c), we
obtain

f ′(x)e�(x) = f ′(0) +
∫ x

0
e� d(y)f ′ +

∫ x

0
f ′ d(y)e�.

By the chain rule of Proposition 2.2, we obtain the right-hand side of (4.21).
At this point, by definition, if f = T 	, we have

f ′(x)e�(x) =
∫ x

0
2
e�

σ 2 d(y)	.

Therefore, (4.21) and Proposition 2.2 allow us to conclude that

L̂f (x) =
∫ x

0

σ 2

2
e−�2

e�

σ 2 d(y)	 = 	(x) − 	(0).

(iv) Suppose b is locally with bounded variation. Then the Technical Assump-
tion is satisfied for ν0 = BV , where BV is the space of continuous real functions,
locally with bounded variation v, equipped with the following topology. A se-
quence (vn) in BV converges to v if

vn(0) → v(0),

dvn → dv in the weak- ∗ topology.

The arguments for proving that the Technical Assumption is satisfied are similar,
but easier, than those for the previous point. Young-type calculus is replaced by
classical Lebesgue–Stieltjes calculus.

5. Martingale problem. In this section, we consider a PDE operator satisfy-
ing the same properties as in previous section, that is,

Lg = σ 2

2
g′′ + b′g′,(5.1)

where σ > 0 and b are continuous. In particular, we assume that

�(x) = lim
n→∞ 2

∫ x

0

b′
n

σ 2
n

(y) dy(5.2)
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exists in C0, independently of the chosen mollifier. Then h defined by h′(x) :=
exp(−�(x)) and h(0) = 0 is a solution to Lh = 0 with h′ �= 0.

Here, we aim to introduce different notions of martingale problem, trying, when
possible, to also clarify the classical notion. For the next two definitions, we con-
sider the following convention. Let (�,F ,P ) equipped with a filtration (Ft )t≥0
fulfill the usual conditions; see, for instance, [14], Definition 2.25, Chapter 1.

DEFINITION 5.1. A process X is said to solve the martingale problem related
to L (with respect to the aforementioned filtered probability space) with initial
condition X0 = x0, x0 ∈ R, if

f (Xt) − f (x0) −
∫ t

0
Lf (Xs) ds

is an (Ft )t≥s-local martingale for f ∈ DL and X0 = x0.
More generally, for s ≥ 0, x ∈ R, we say that (X

s,x
t , t ≥ 0) solves the martingale

problem related to L with initial value x at time s if for every f ∈ DL,

f (X
s,x
t ) − f (x) −

∫ t

s
Lf (Xs,x

r ) dr, t ≥ s,

is an (Ft )t≥s-local martingale.

We remark that Xs,x solves the martingale problem at time s if and only if
Xt := X

s,x
t+s solves the martingale problem at time 0.

DEFINITION 5.2. Let (Wt) be an (Ft )-classical Wiener process. An
(Ft )-progressively measurable process X = (Xt) is said to solve the sharp mar-
tingale problem related to L (on the given filtered probability space) with initial
condition X0 = x0, x0 ∈ R, if

f (Xt) − f (x0) −
∫ t

0
Lf (Xr) dr =

∫ t

0
f ′(Xr)σ (Xr) dWr

for every f ∈ DL.
More generally, for s ≥ 0, x ∈ R, we say that (X

s,x
t , t ≥ s) solves the sharp

martingale problem related to L with initial value x at time s if for every f ∈ DL,

f (X
s,x
t ) − f (x) −

∫ t

s
Lf (Xs,x

r ) dr =
∫ t

s
f ′(Xs,x

r )σ (Xs,x
r ) dWr, t ≥ s.

REMARK 5.3. Let (Wt) be an (Ft )-Wiener process. If b′ is continuous, then
a process X solves the (corresponding) sharp martingale problem with respect to
L if and only if it is a classical solution of the SDE

Xt = x0 +
∫ t

0
b′(Xr) dr +

∫ t

0
σ(Xr) dWr.

For this, a simple application of the classical Itô formula gives the result.
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REMARK 5.4. (i) In general, f (x) = x does not belong to DL, otherwise a
solution to the martingale problem with respect to L would be a semimartingale.
According to Remark 5.18, this is generally not the case. In [11], we gave neces-
sary and sufficient conditions on b so that X is a semimartingale.

(ii) Given a solution X to the martingale problem related to L, we are interested
in the operators

A :DL → C, given by A(f ) =
∫ ·

0
Lf (Xs) ds,

and

A :C1 → C, given by A(	) =
∫ ·

0
	′(Xs) ds,

where C is the vector algebra of continuous processes.
We may ask whether A and A are closable in C1 and C0, respectively. We

will see that A admits a continuous extension to C1. However, A can be extended
continuously to some topological vector subspace ν0 of C0, where ν0 includes the
drift, only when Assumption A(ν0) is satisfied.

Similarly, as in the case of classical stochastic differential equations, it is possi-
ble to distinguish two types of existence and uniqueness for the martingale prob-
lem. Even if we could treat initial conditions which are random F0-measurable so-
lutions, here we will only discuss deterministic ones. We will denote by MP(L, x0)

[resp. MP(L, x0)] the martingale problem (resp. sharp martingale problem) related
to L with initial condition x0. The notions will only be formulated with respect to
the initial condition at time 0.

DEFINITION 5.5 (Strong existence). We will say that SMP(L, x0) admits
strong existence if the following holds. Given any probability space (�,F ,P ),
a filtration (Ft )t≥0 and an (Ft )t≥0-Brownian motion (Wt)t≥0, x0 ∈ R, there is a
process (Xt)t≥0 which solves the sharp martingale problem with respect to L and
initial condition x0.

DEFINITION 5.6 (Pathwise uniqueness). We will say that SMP(L, x0) admits
pathwise uniqueness if the following property is fulfilled.

Let (�,F ,P ) be a probability space with filtration (Ft )t≥0 and
(Ft )t≥0-Brownian motion (Wt)t≥0. If two processes X, X̃ are two solutions of
the sharp martingale problem with respect to L and x0, such that X0 = X̃0 a.s.,
then X and X̃ coincide.

DEFINITION 5.7 (Existence in law or weak existence). We will say that
MP(L;x0) admits weak existence if there is a probability space (�,F ,P ), a fil-
tration (Ft )t≥0 and a process (Xt)t≥0 which is a solution of the corresponding
martingale problem.
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We say that MP(L) admits weak existence if MP(L;x0) admits weak existence
for every x0.

DEFINITION 5.8 (Uniqueness in law). We say that MP(L;x0) has a unique
solution in law if the following holds. We consider an arbitrary probability space
(�,F ,P ) with a filtration (Ft )t≥0 and a solution X of the corresponding mar-
tingale problem. We also consider another probability space (�̃, F̃ , P̃ ) equipped
with another filtration (F̃t )t≥0 and a solution X̃. We suppose that X0 = x0, P -a.s.
and X̃0 = x0, P̃ -a.s. Then X and X̃ must have the same law as a r.v.’s with values
in E = C(R+) (or C[0, T ]).

REMARK 5.9. Let us suppose b′ to be a continuous function. We do not sup-
pose σ to be strictly positive (only continuous).

(i) The SMP(L, x0) then admits strong existence and pathwise uniqueness if
the corresponding classical SDE

Xt = x0 +
∫ t

0
σ(Xs) dWs +

∫ t

0
b′(Xs) ds

admits strong existence and pathwise uniqueness. In this case, DL = C2 and to
establish this, it is enough to use the classical Itô formula.

(ii) It is well known (see [14, 26]) that weak existence (resp., uniqueness in
law) of the martingale problem is equivalent to weak existence (resp., uniqueness
in law) of the corresponding SDE.

For the rest of the section let s ∈ [0, T ], x0 ∈ R. Moreover, let (�, (Ft ),P ) be
a fixed filtered probability space fulfilling the usual conditions.

The first result concerning solutions to the martingale problem related to L is
the following.

PROPOSITION 5.10. Let y0 = h(x0).

(i) A process X solves the martingale problem related to L with initial condi-
tion x at time s if and only if Y = h(X) is a local martingale which solves, on the
same probability space,

Yt = y0 +
∫ t

s
σ̃h(Ys) dWs,(5.3)

where σ̃h(y) = (σh′)(h−1(y)) and where (Wt) is an (Ft )-classical Brownian mo-
tion.

(ii) Let (Wt) be an (Ft )-classical Brownian motion. If Y is a solution to equa-
tion (5.3), then X = h−1(Y ) is a solution to the sharp martingale problem with
respect to L with initial condition x at time s.
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REMARK 5.11. Let X be a solution to the martingale problem with respect to
L and set Y = h(X) as in point (i) above. Since Y is a local martingale, we know
from Remark 3.5(iv) that X = h−1(Y ) is an (Ft )-Dirichlet process with martingale
part

MX
t =

∫ t

0
(h−1)′(Ys) dYs.

In particular, X is a finite quadratic variation process with

[X,X] = [MX,MX]t =
∫ t

0
σ 2(Xs) ds.

PROOF OF PROPOSITION 5.10. For simplicity, we will set s = 0.
First, let X be a solution to the martingale problem related to L. Since h ∈ DL

and Lh = 0, we know that Y = h(X) is an (Ft )-local martingale. In order to cal-
culate its bracket, we recall that h2 ∈ DL and Lh2 = σ 2(h′)2 hold by Proposi-
tion 4.11(a). Thus,

h2(Xt) −
∫ t

0
(σh′)2(Xs) ds

is an (Ft )-local martingale. This implies that

[Y,Y ]t =
∫ t

0
(σh′)2(h−1(Ys)) ds =

∫ t

0
σ̃ 2

h (Ys) ds.

Finally, Y is a solution to the SDE (5.3) with respect to the standard FY -Brownian
motion W given by

Wt =
∫ t

0

1

σ̃h(Ys)
dYs,

where FY is the canonical filtration generated by Y .
Now, let Y = h(X) be a solution to (5.3) and let f ∈ DL. Proposition 4.11(c)

says that φ := f ◦ h−1 ∈ DL0 ≡ C2, where

L0φ = σ̃ 2
h

2
φ′′ = (Lf ) ◦ h−1.(5.4)

We can therefore apply Itô’s formula to evaluate φ(Y ), which coincides with f (X).
This gives

φ(Yt ) = φ(Y0) +
∫ t

0
φ′(Ys) dYs + 1

2

∫ t

0
φ′′(Ys) d[Y,Y ]s .

Using d[Y,Y ]s = σ̃ 2
h (Ys) ds and taking into account (5.4), we conclude that

f (Xt) = f (X0) +
∫ t

0
(f ′σ)(Xs) dWs +

∫ t

0
Lf (Xs) ds.(5.5)

This establishes the proposition. �
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REMARK 5.12. From Proposition 5.10 in particular, we have the following.
Let (�, (Ft ),P ) be a filtered probability space fulfilling the usual conditions.

Let x0 ∈ R and X be a solution to the martingale problem related to L with initial
condition x0. Then there exists a classical Brownian motion (Wt) such that X is a
solution to the sharp martingale problem related to L with initial condition x0.

COROLLARY 5.13. Let X be a solution to the martingale problem related to
L with initial condition x0. Then map A admits a continuous extension from DL

to C1 with values in C which we will again denote by A. Moreover, A(f ) is a zero
quadratic variation process for every f ∈ C1.

PROOF. A has a continuous extension because of (5.5). A(f ) is a zero
quadratic variation process because X is a Dirichlet process with martingale part∫ ·

0 σ(Xs) dWs and because of Remark 3.5. �

REMARK 5.14. The extension of (5.5) to C1 gives

f (Xt) = f (X0) +
∫ t

0
(f ′σ)(Xs) dWs + A(f ).(5.6)

Choosing f = id in (5.6), we get

Xt = X0 +
∫ t

0
σ(Xs) dWs + A(id).

We will see that if there is a subspace ν0 of C0 such that Technical Assump-
tion A(ν0) is verified, then the operator A will be extended to ν0. If b is an element
of that space, then it will be possible to write L̂id = b and A(id) = A(b). In that
case, we will be able to indicate that X is a solution of the generalized SDE with
diffusion coefficient σ and distributional drift b′.

A similar result to Proposition 5.10 can be deduced for the case of a transfor-
mation through function k and the divergence-type operator introduced at (4.13).

PROPOSITION 5.15. We consider the transformation k and the PDE operator
L1 introduced at (4.13) and in Lemma 4.13, respectively.

A process X solves the martingale problem related to L with initial condition
x0 at time s if and only if Z = k(X) solves the martingale problem related to L1

with initial condition k(x0) at time s.

PROOF. This is an easy consequence of Lemma 4.13. �

Let x0 ∈ R, y0 = h(x0). Let σ, b,�,h be as in Section 4.
We set σ̃h = (σe−�) ◦ h−1.
From Proposition 5.10, we have the following.
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COROLLARY 5.16. (i) Strong existence (resp., pathwise uniqueness) holds for
SMP(L, x0) if and only if strong existence (resp., pathwise uniqueness) holds for
the SDE

dYt = σ̃h(Yr) dWr

with initial condition Y0 = h(x0).
(ii) An analogous equivalence holds for weak existence (resp., uniqueness in

law).

From Proposition 5.10, we can deduce two other corollaries concerning the
well-posedness of our martingale problem.

COROLLARY 5.17. Under the same assumptions as the previous corollary,
MP(L, x0) admits weak existence and uniqueness in law.

PROOF. The statement follows from point (i) of Corollary 5.16 and from the
fact that the SDE (5.3) admits weak existence and uniqueness in law because
σ̃h > 0; see Theorem 5.7, Chapter 5 of [14], or [7]. �

REMARK 5.18. By Corollary 5.11 of [11], it is immediate to see that the so-
lution is a semimartingale for each initial condition if and only if � is locally of
bounded variation.

If L is in divergence form [see Remark 4.4(a) with α = 1], then the solution
corresponds to the process constructed and studied by, for instance, Stroock [25].

COROLLARY 5.19. Suppose that either (σ, b) ∈ (D1/2,C1/2) or (b, σ ) ∈
(D1/2,C1/2) and, moreover, that (4.7) is satisfied. Then MP(L, x0) admits strong
existence and pathwise uniqueness.

PROOF. In this case, � is well defined [see Remark 4.4(d)] and σ belongs to
D1/2. Since h−1 is of class C1, σ̃h is Hölder continuous with parameter 1

2 . The
SDE (5.3) admits pathwise uniqueness because of Theorem 3.5(ii) of [20] and
weak existence, again through Theorem 5.7 of [14]. The Yamada–Watanabe the-
orem (see [14], Corollary 3.23, Chapter 5) also implies strong existence for (5.3).
The result follows from point (i) of Corollary 5.16. �

6. A significant stochastic differential equation with distributional drift.
In this section, we will discuss the case where the martingale problem is equivalent
to a stochastic differential equation to be specified. First, one would need to give a
precise sense to the generalized drift

∫ ·
0 b′(Xs) ds, b being a continuous function.

We will introduce a property related to a general process X. First, we consider
the linear map AX :	 → ∫ ·

0 	′(Xs) ds defined on C1(R) with values in C.
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DEFINITION 6.1. Let ν1 be a topological F-space (or, eventually, an inductive
limit of F -spaces) which is a topological linear subspace of C0(R) and such that
ν1 ⊃ C1(R). We will say that X has extended local time regularity with respect to
ν1 if:

• AX admits a continuous extension to ν1, which will still be denoted by the same
symbol;

• ∫ ·
0 g(X)d−AX(	) exists for every g ∈ C2 and every 	 ∈ ν1.

REMARK 6.2. The terminology related to local time is natural in this context.
To illustrate this, we consider a general continuous process X having a local time
(Lt (a), t ∈ [0, T ], a ∈ R) with respect to Lebesgue measure, that is, fulfilling the
density occupation identity∫ t

0
ϕ(Xs) ds =

∫
R

ϕ(a)Lt (a) da, t ∈ [0, T ],

for every positive Borel function ϕ. X trivially has extended local time regularity,
at least with respect to ν1 = C1.

Let 	 ∈ C1. Suppose for a moment that (Lt (a)) is a semimartingale in a, as is
the case, for instance, if X is a classical Brownian motion. In that case, one would
have ∫ t

0
	′(Xs) ds =

∫ t

0
	′(a)Lt (a) da = −

∫
R

	(a)Lt (da).

Clearly, the rightmost integral can be extended continuously in probability to any
	 ∈ C0, which implies that X also has extended local time regularity related to
ν1 = C0. We remark that [4] gives general conditions on semimartingales X under
which Lt(da) is a good integrator, even if (Lt (a)) is not necessarily a semimartin-
gale in a.

DEFINITION 6.3. Let (�, (Ft ),P ) a filtered probability space, (Wt) a classi-
cal (Ft )-Brownian motion and Z an F0-measurable random variable. A process X

will be called a ν1-solution of the SDE

dXt = b′(Xt) dt + σ(Xt) dWt,

X0 = Z,

if:

• X has the extended local time regularity with respect to ν1;
• Xt = Z + ∫ t

0 σ(Xs) dWs + AX(b)t ;
• X is a finite quadratic variation process.
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REMARK 6.4. Suppose that b ∈ ν1. If ν1 ⊂ ν′
1, then a ν′

1-solution is also a
ν1-solution.

The previous definition is also new in the classical case, that is, when b′ is
a continuous function. A ν1-solution with ν1 = C1 corresponds to a solution to
the SDE in the classical sense. On the other hand, a ν1-solution with ν1 strictly
including C1 is a solution whose local time has a certain additional regularity.

Even in this generalized framework, it is possible to introduce the notions of
strong ν1-existence, weak ν1-existence, pathwise ν1-uniqueness and ν1-uniqueness
in law. This can be done similarly as in Definition 5.8 according to whether or not
the filtered probability space with the classical Brownian motion is fixed a priori.

LEMMA 6.5. We suppose that Technical Assumption A(ν0) is satisfied. If X

is a solution to a martingale problem related to a PDE operator L, then it has
extended local time regularity with respect to ν1 = ν0.

PROOF. Let 	 ∈ C1. Since X solves the martingale problem with respect to L,
setting f = T 	, it follows that

AX(	)t =
∫ t

0
	′(Xs) ds =

∫ t

0
Lf (Xs) ds

= f (Xt) − f (X0) −
∫ t

0
f ′(Xs)σ (Xs) dWs.

Continuity of T on ν0 implies that AX can be extended to ν0.
Now, let 	 ∈ ν0 and f = T 	 ∈ C1. Since f (X) equals a local martingale plus

AX(	), it remains to show that ∫ ·

0
g(X)d−f (X)(6.1)

exists for any g ∈ C2. Integrating by parts, the previous integral (6.1) equals

(gf )(X·) − (gf )(X0) −
∫ ·

0
f (X)d−g(X) − [f (X), g(X)].

Remark 3.3(b), (f) shows that the rightmost term member is well defined. �

LEMMA 6.6. Let X be a process having extended local time regularity with
respect to some F -space (or inductive limit) ν1. Suppose that for fixed g ∈ C1, the
application 	 → g	 is continuous from ν1 to ν1. Then for every g ∈ C2 and every
	 ∈ ν1, we have ∫ ·

0
g(X)d−AX(	) = AX(�(g, 	)),(6.2)

where

�(g, 	)(x) = (g	)(x) − (g	)(0) −
∫ x

0
(	g′)(y) dy.(6.3)
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PROOF. The Banach–Steinhaus-type Theorem 2.5 implies that for every
g ∈ C2,

	 	→
∫ ·

0
g(X)d−AX(	)(6.4)

is continuous from ν1 to C. In fact, expression (6.4) is the u.c.p. limit of

lim
ε→0+

∫ ·

0
g(Xs)

AX(	)s+ε − AX(	)s

ε
ds.

Note that � is a continuous bilinear map from C1 × ν1 to ν1. Since AX :ν1 → C
is continuous, the mapping 	 → AX(�(g, 	)) is also continuous from ν1 to C. In
order to conclude the proof, we need to check identity (6.2) for 	 ∈ C1. In that
case, since

�(g, 	)(x) =
∫ x

0
(g	′)(y) dy,

both sides of (6.2) equal ∫ ·

0
(g	′)(Xs) ds. �

We will now explore the relation between the martingale problem associated
with L and the stochastic differential equations with distributional drift.

PROPOSITION 6.7. Let x0 ∈ R. Suppose that L fulfills Technical Assump-
tion A(ν0). Let (�, (Ft ),P ) be a filtered probability space fulfilling the usual
conditions and let (Wt) be a classical (Ft )-Brownian motion.

If X solves the sharp martingale problem with respect to L with initial condi-
tion x0, then X is a ν0-solution to the stochastic differential equation

dXt = b′(Xt) dt + σ(Xt) dWt,
(6.5)

X0 = x0.

REMARK 6.8. In particular, if L is close to divergence type, as in Exam-
ple 4.18(ii), then X is a C0-solution to the previous equation with b = σ 2

2 + β −
σ 2(0)

2 .

PROOF. Let X be a solution to the martingale problem related to L. We know,
by Lemma 6.5, that X has extended local time regularity with respect to ν1. On the
other hand, by Remark 5.11, X is a finite quadratic variation process. It remains to
show that

Xt = X0 +
∫ t

0
σ(Xs) dWs + AX(b)t .(6.6)
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Let 	 ∈ C1 and set f = T 1	. By definition of a sharp martingale problem, we have

T 1	(Xt) = T 1	(X0) +
∫ t

0
((T 1	)′σ)(Xs) dWs + AX(	)t .(6.7)

According to Remark 4.15(i) concerning the continuity of the map T 1 :ν0 → C1,
previous expression can be extended to any 	 ∈ ν0.

By Remark 4.15(ii), 	 = b ∈ ν0 and f = T 1	 = id . Replacing this in (6.7), we
obtain

Xt = x0 +
∫ t

0
σ(Xs) dWs + AX(b).

Since X0 = Z, the proof is complete. �

COROLLARY 6.9. Let x0 ∈ R. Suppose that L fulfills Technical Assump-
tion A(ν0). If MP(L, x0) [resp. SMP(L, x0)] admits weak (resp., strong) existence,
then the SDE (6.5) also admits weak (resp., strong) existence.

PROOF. The statement concerning strong solutions is obvious. Concerning
weak solutions, let us admit the existence of a filtered probability space, where
there is a solution to the martingale problem with respect to L with initial condi-
tion x0. Then according to Remark 5.12, this solution is also a solution to a sharp
martingale problem and the result follows. �

If X is some ν1-solution to (6.6), is it a solution to the (sharp) martingale prob-
lem related to some operator L? This is a delicate question. In the following propo-
sition, we only provide the converse of Proposition 6.7 as a partial answer.

PROPOSITION 6.10. Suppose that the PDE operator L fulfills Technical As-
sumption A(ν0). Let (�, (Ft ),P ) be a filtered probability space fulfilling the usual
conditions and let (Wt) be a classical (Ft )-Brownian motion. Let X be a progres-
sively measurable process.

X solves the sharp martingale problem related to L with respect to some initial
condition x0 if and only if it is a ν0-solution to the stochastic differential equation

dXt = b′(Xt) dt + σ(Xt) dWt,
(6.8)

X0 = x0.

COROLLARY 6.11. Let x0 ∈ R. Suppose that L fulfills Technical Assump-
tion A(ν0). Then weak existence and uniqueness in law (resp., strong existence
and pathwise uniqueness) hold for equation (6.8) if and only if the same holds
for MP(L, x0) [resp. SMP(L, x0)].
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PROOF OF PROPOSITION 6.10. Suppose that X is a ν0-solution to (6.8).
Then it is a finite quadratic variation process. Let f ∈ C3. Since X solves (6.6)
and

∫ ·
0 f ′(Xs) d−Xs always exists by the classical Itô formula [see Remark 3.3(e)

of Section 1], we know that
∫ ·

0 f ′(X)d−AX(b) also exists and is equal to∫ ·
0 f ′(X)d−X − ∫ ·

0(f
′σ)(X)dW. Therefore, this Itô formula says that

f (Xt) = f (X0) +
∫ t

0
f ′(Xs)σ (Xs) dWs +

∫ t

0
f ′(X)d−AX(b)

+ 1
2

∫ t

0
f ′′(Xs)σ

2(Xs) ds

holds.
By Lemma 6.6, the linearity of mapping AX and (4.12), we obtain∫ t

0
f ′(X)d−AX(b) + 1

2

∫ t

0
(f ′′σ 2)(Xs) ds

= AX(�(f ′, b))t + 1

2

∫ t

0
(f ′′σ 2)(Xs) ds

=
∫ t

0

(
σ 2

2
− b

)
(Xs)f

′′(Xs) ds + AX(bf ′) = AX(L̂f ).

This shows that

f (Xt) − f (X0) −
∫ t

0
(f ′σ)(Xs) dWs = AX(L̂f )(6.9)

for every f ∈ C3. In reality, it is possible to show the previous equality for any
f ∈ C2. In fact, the left-hand side extends continuously to C2 and even to C1. The
right-hand side is also allowed to be extended to C2 for the following reason. For
f ∈ C2, let (fn) be a sequence of functions in C3 converging to f when n → ∞,
according to the C2 topology. In particular, the convergence also holds in C1

ν0
.

Since L̂ is continuous with respect to the C1
ν0

topology with values in ν0, we have

L̂fn → L̂f in ν0. Finally, AX(L̂fn) → AX(L̂f ) u.c.p. because of the extended
local time regularity with respect to ν0.

We will, in fact, use the validity of (6.9) for f ∈ C2 with f (0) = 0 and x1 =
f ′(0) and 	 = L̂f. According to Technical Assumption A(ν0)(iv), we have f =
T x1	. Therefore, (6.9) gives

T x1	(Xt) = T x1	(X0) +
∫ t

0
((T x1	)′σ)(Xs) dWs + AX(	).

Again using extended local time regularity with respect to ν0 and the continuity
of T x1 , we can state the validity of the previous expression for each 	 ∈ ν0 with
	(0) = 0, in particular, for 	 ∈ C1 with 	(0) = 0. But in this case, for any f ∈ DL

with f (0) = 0 and 	′ = Lf , we obtain

f (Xt) = f (X0) +
∫ t

0
(f ′σ)(Xs) dWs +

∫ t

0
Lf (Xs) ds.
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This shows the validity of the identity in Definition 5.2 for f ∈ DL and that f (0) =
x0 and x0 = 0. If x0 �= 0, we replace f by f − x0 in the previous identity and use
the fact that L(f − x0) = Lf for any f ∈ DL.

It follows that X fulfills a sharp martingale problem with respect to L.
This shows the reversed sense of the statement. The direct implication was

proven in Proposition 6.7. �

COROLLARY 6.12. We suppose that σ ∈ D1/2 and b ∈ C1/2, or σ ∈ C1/2 and
b ∈ D1/2, with conditions (4.7). We set ν0 = D1/2.

Then equation (6.8) admits ν0-strong existence and pathwise uniqueness.

PROOF. The result follows from Corollaries 6.11 and 5.19. �

7. About C0
b -generalized solutions of parabolic equations. In this section,

we want to discuss the related parabolic Cauchy problem with final condition,
which is associated with our stochastic differential equations with distributional
drift.

We will adopt the same assumptions and conventions as in Section 4. We con-
sider the formal operator L = ∂t + L, where L will hereafter act on the second
variable.

DEFINITION 7.1. Let λ be an element of C0
b([0, T ] × R) and let u0 ∈ C0

b(R).
A function u ∈ C0

b([0, T ] × R) will be said to be a C0
b -generalized solution to

Lu = λ,
(7.1)

u(T , ·) = u0,

if the following are satisfied:

(i) for any sequence (λn) in C0
b([0, T ] × R) converging to λ in a bounded

way,
(ii) for any sequence (u0

n) in C0
b(R) converging in a bounded way to u0,

(iii) such there are classical solutions (un) in C0
b([0, T ] × R) of class

C1,2([0, T [×R) to Lnun = λn, un(T , ·) = u0
n,

then (un) converges in a bounded way to u.

REMARK 7.2. (a) u is said to solve Lu = λ if there exists u0 ∈ C0
b(R) such

that (7.1) holds.
(b) The previous definition depends in principle on the mollifier, but it could be

easily adapted so as not to depend on it.
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(c) The regularized problem admits a solution: if u0
n ∈ C3

b(R) and λn ∈
C

0,1
b ([0, T ] × R), then there is a classical solution un in C1,2([0, T ] × R) of

Lnv = λn,

v(T , ·) = u0
n.

For this, it suffices to apply Theorem 5.19 of [15].

We now state a result concerning the case when the operator L is classical. Even
if the next proposition could be stated when the drift b′ is a continuous function,
we will suppose it to be zero. In fact, it will later be applied to L = L0.

PROPOSITION 7.3. We suppose that b = 0. Let ϕ,ϕn ∈ C0
b(R), g, gn ∈

C0
b([0, T ] × R), n ∈ N, such that ϕn −→ ϕ, gn −→ g in a bounded way on R

and [0, T ] × R.
Let σ be a strictly positive real continuous function.
Suppose that there exist un ∈ C1,2([0, T [×R) ∩ C0

b([0, T ] × R) such that

Lnun = gn,

un(T , ·) = ϕn.

Then (un) will converge to u ∈ C0
b([0, T ] × R) in a bounded way, where the func-

tion u is defined by

u(s, x) = E

(
ϕ(Y

s,x
T ) +

∫ T

s
g(r, Y

r,x
T ) dr

)
,(7.2)

where Y = Y s,x is the unique solution (in law) to

Yt = x +
∫ t

s
σ (Xr) dWr(7.3)

and where (Wt) is a classical Brownian motion on some suitable filtered probabil-
ity space.

REMARK 7.4. Usual Itô calculus implies that

un(s, x) = E

(
ϕn(Y

s,x
T (n)) +

∫ T

s
gn(r, Y

r,x
T (n)) dr

)
,(7.4)

where Y(n) = Y s,x(n) is the unique solution in law to the problem

Yt (n) = x +
∫ t

s
σn(Yr(n)) dWr.(7.5)

Theorem 5.4 (Chapter 5 of [14]) affirms that it is possible to construct a solution
(unique in law) Y = Y s,x to the SDE (7.3) [resp., Y(n) = Y s,x(n) to (7.5)].
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Suppose that L is a classical PDE operator. Let u ∈ C1,2([0, T [×R) be bounded
and continuous on [0, T ] × R. Again, Itô calculus shows that u can be repre-
sented by (7.2) and (7.3). In particular, a classical solution u to Lu = g is also
a C0

b -generalized solution.

PROOF OF PROPOSITION 7.3. We fix s ∈ [0, T ], x ∈ R. Using the Engelbert–
Schmidt construction (see, e.g., the proof of Theorem 5.4, Chapter 5 and 5.7
of [14]), it is possible to construct a solution Y = Y s,x of the SDE on some
fixed probability space which solves (7.3) with respect to some classical Wiener
process (Wt). We set s = 0 for simplicity. The procedure is as follows. We fix a
standard Brownian motion (Bt ) on some fixed probability space one set

Rt :=
∫ t

0

du

σ 2(x + Bu)
.

R is a.s. a homeomorphism on R+ and we define A as the inverse of R. A solu-
tion Y will be then given by Yt = x + BAt ; in fact, it is possible to show that the
quadratic variation of the local martingale Y is

〈Y,Y 〉t =
∫ t

0
σ 2(Ys) ds.

The Brownian motion W is constructed a posteriori and is adapted to the natural
filtration of Y by setting Wt = ∫ t

0
dYs

σ (Ys)
.

So, on the same probability space, we can set Yt (n) = x + BAt(n), A(n) being
the inverse of R(n), where R(n)t := ∫ t

0
du

σ 2
n (x+Bu)

.

Consequently, on the same probability space, we construct Yt (n) = x + BAt(n),
where A(n) is the inverse of R(n) and R(n)t := ∫ t

0
du

σ 2
n (x+Bu)

. Y(n) solves equa-

tion (7.5) with respect to a Brownian motion depending on n.
By construction, the family Y

s,x
T (n) converges a.s. to Y

s,x
T . Using Lebesgue

dominated convergence theorems and the bounded convergence of (ϕn) and (gn),
we can take the limit when n → ∞ in expression (7.4) and obtain the desired
result. �

REMARK 7.5. In particular, the corresponding laws of random variables
(Y s,x(n)) are tight.

Again, we will adopt the same conventions as in Section 4.
We set σh = σh′. L0 is the classical operator defined at (4.9). Let us consider

L0 = ∂t + L0 as a formal operator.

COROLLARY 7.6. Let g ∈ C0
b([0, T ] × R), ϕ ∈ C0

b(R). There is a C0
b -gene-

ralized solution u to L0u = g, u(T , ·) = ϕ. This solution is unique and is given
by (7.2).
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We now return to the original PDE operator L with distributional drift. We again
denote by h the same application defined in Section 5 and discuss existence and
uniqueness of C0

b -generalized solutions of related parabolic Cauchy problems.
A useful consequence of Proposition 7.3 is the following.

THEOREM 7.7. For ϕ ∈ C0([0, T ] × R) or C0(R), we again set ϕ̃ = ϕ ◦ h−1

according to the conventions of Section 2. Again, we consider L0 = ∂t + L0 as a
formal operator.

Let λ ∈ C0
b([0, T ] × R), u0 ∈ C0

b(R).

There is a unique solution u ∈ C0
b([0, T ] × R) to

Lu = λ,
(7.6)

u(T , ·) = u0.

Moreover, ũ solves

L0ũ = λ̃,
(7.7)

ũ(T , ·) = ũ0.

PROOF. In accordance with Section 4, let (hn)n∈N be an approximating se-
quence which is related to Lh = 0. Let us consider the PDE operators Ln defined
at (4.2). Let (λn)n∈N be a sequence in C0

b([0, T ) × R) such that λn → λ, u0
n → u0

in a bounded way and for which there are classical solutions un of

Lnun = λn,

un(T , ·) = u0
n.

We recall that those sequences always exist because of Remark 7.2(c).
We set

gn = λn ◦ h−1
n , ϕn = ϕ ◦ h−1

n , vn = un ◦ h−1
n .

By Lemma 4.14, we have

L0
nvn = gn,

vn(T , ·) = ϕn,

where

L0
nϕ(t, y) = ∂tϕ(t, y) + σ 2

hn
◦ h−1

n (t, y) ∂2
xxϕ(t, y).

By Proposition 7.3, and Corollary 7.6, vn → ũ in a bounded way, where

L0ũ = λ̃,

ũ(T , ·) = ũ0.
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This concludes the proof of the proposition. �

We now discuss how C0
b -generalized solutions are transformed under the action

of the function k introduced at (4.13). A similar result to Lemma 4.13 for the
elliptic case is the following.

PROPOSITION 7.8. For ϕ ∈ C0([0, T ]×R) or C0(R), we set ϕ̄ = ϕ ◦ k−1. We
set σk = σk′ and consider the formal operator

L1f = ∂tf + 1
2 σ̄ 2

k ∂2
xxf + 1

2(σ̄ 2
k )′ ∂xf.

Informally, we can write

L1f = ∂tf + 1
2∂x(σ̄

2
k ∂xf ).

Let λ ∈ C0
b([0, T ] × R), u0 ∈ C0

b(R).

Let u be the unique C0
b -generalized solution in C0

b([0, T ] × R) to

Lu = λ,
(7.8)

u(T , ·) = u0.

Then ū solves

L1ū = λ̄,

ū(T , ·) = ū0.

PROOF. Let v be the unique solution to

L1v = λ̄,

v(T , ·) = ū0,

which exists because of Theorem 7.7, taking L = L1.
We define H : R → R such that

H(0) = 0, H ′(z) = 1

σ 2
k

(z).

Again, (4.7) implies that H is bijective on R. This case corresponds to example (a)
in Remark 4.4 with α = 1.

We set ṽ = v ◦ H−1. Again, by Theorem 7.7, we have

L0,1ṽ = λ̄ ◦ H−1,

ṽ(T , ·) = u0 ◦ (k−1 ◦ H−1),

where L0,1f = a2

2 ∂2
xxf and

a = (σkH
′) ◦ H−1 = 1

σk

◦ H−1.
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Since

σk = (σk′) ◦ k−1 = e�

σ
◦ k−1,

this yields

a = (σe−�) ◦ (H ◦ k)−1.

On the other hand, H ◦ k = h since

H ◦ k(0) = 0 = h(0),

(H ◦ k(x))′ = H ′(k(x))k′(x) = 1

σ 2
k

k′(x) = 1

σ 2k′ = e−� = h′.

We can therefore conclude that L0,1 ≡ L0. Since problem (7.7) has a unique so-
lution, ṽ = ũ, where u solves (7.6) and ũ = u ◦ h−1. Finally,

v = ṽ ◦ H = ũ ◦ H = u ◦ H ◦ h−1 = u ◦ k−1 = ū. �

PROPOSITION 7.9. The unique C0
b -generalized solution to (7.6) admits a

probabilistic representation in the sense that

u(s, x) = E

(
u0(X

s,x
T ) +

∫ T

s
λ(r,X

r,x
T ) dr

)
,(7.9)

where Xs,x is the solution to the martingale problem related to L at time s and
point x.

PROOF. The result follows from Theorem 7.7, Corollary 7.6 and Proposi-
tion 5.10, which collectively imply the following. If X is a solution to the martin-
gale problem related to L at point x at time s, then Y = h(X) solves the stochastic
differential equation (5.3) with initial condition h(x) at time s. �

8. Density of the associated semigroups. We now discuss the existence of a
density law for the solutions Xs,x of the martingale problem related to L. First, we
suppose that L is an operator in divergence form with Lf = (σ 2

2 f ′)′ and that there
are positive constants such that c ≤ σ 2 ≤ C. We will say, in this case, that L has
the Aronson form. This terminology refers to the fundamental paper [1] concerning
exponential estimates of fundamental solutions of nondegenerate parabolic equa-
tions. We begin with some properties (partly classical) stated in [11]. We observe
that point (ix) is slightly modified with respect to [11], but this new configuration
can be immediately deduced from the proof in [11]. This preparatory work will be
applied to the operator L1 introduced in (4.14).
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LEMMA 8.1. We suppose that 0 < c ≤ σ 2 ≤ C. Let σn, n ∈ N, be smooth
functions such that 0 < c ≤ σ 2

n ≤ C and σ 2
n → σ 2 in C0, as at the beginning of

Section 4. We set Lng = (
σ 2

n

2 g′)′. There exists a family of probability measures
(νt (dx, y), t ≥ 0, y ∈ R) [resp., (νn

t (dx, y), t ≥ 0, y ∈ R)] enjoying the following
properties:

(i) νt (dx, y) = pt(x, y) dx, νn
t (dx, y) = pn

t (x, y) dy;
(ii) (Aronson estimates) there exists M > 0, depending only on constants c,

C, with

1

M
√

t
exp

(
−M|x − y|2

t

)
≤ pt(x, y) ≤ M√

t
exp

(
−|x − y|2

Mt

)
;

(iii) we have

∂tνt (·, y) = Lνt (·, y), ν0(·, y) = δy(8.1)

and

∂tν
n
t (·, y) = Lnν

n
t (·, y), νn

0 (·, y) = δy,

where ν (resp., νn) is called the fundamental solution related to the previous par-
abolic linear equation;

(iv) we have

∂tνt (x, ·) = Lν(x, ·),
∂tν

n
t (x, ·) = Lnν

n(x, ·);
(v) the map (t, x, y) 	→ pt(x, y) is continuous from ]0,∞[×R

2 to R;
(vi) the pn are smooth on ]0,∞[×R

2;
(vii) we have limn→∞ pn

t (x, y) = pt(x, y) uniformly on each compact subset
of ]0,∞[×R

2;
(viii) pt(x, y) = pt(y, x) holds for every t > 0 and every x, y ∈ R;
(ix)

∫ T
0 supy(

∫
R

|∂xpt (x, y)|2 dx)1/2 dt < ∞.

The previous lemma allows us to establish the following.

THEOREM 8.2. Let Zs,x be the solution to the martingale problem related
to L at time s and point x. Suppose that L to be of divergence type, having the
Aronson form. Then there is fundamental solution νt = rt (x, y) of

∂tνt (·, y) = Lνt (·, y), ν0(·, y) = δy,

with the following properties:

(i) letting g ∈ C0
b([0, T ] × R), ϕ ∈ Cb(R), the C0

b -generalized solution u to
Lu = g, u(T , ·) = ϕ, is given by

u(s, x) =
∫

R

ϕ(y)rT −s(x, y) dy +
∫ T

s
dr

∫
R

g(r, y)rT −r (x, y) dy;(8.2)
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(ii) the law of Z
s,x
T has rT −s(x, ·) as density with respect to Lebesgue measure.

PROOF. Let (rn
t (x, y)) be the fundamental solution corresponding to the par-

abolic equation associated with Lnf (x) = (
σ 2

n f ′
2 )′, as introduced in Section 4. We

observe that (σ 2
n ) converges in a bounded way to σ 2.

(i) We define

un(s, x) =
∫

R

ϕ(y)rn
T −s(x, y) dy +

∫ T

s
dr

∫
R

g(r, y)rn
T −r (x, y) dy.(8.3)

Points (vi) and (ii) of Lemma 8.1 imply that functions un belong to
C1,2([0, T [×R), so they are classical solutions to

Lnun = g,

un(T , ·) = u0.

According to points (ii) and (vii) of the same lemma, one can prove that un con-
verges in a bounded way to u defined by (8.2). In fact, the coefficients σ 2

n are lower
and upper bounded with a common constant, related to c and C. Therefore, this u

is the C0
b -generalized solution of the Cauchy problem being considered, which is

known to exist. By uniqueness, point (i) is established.
(ii) Setting g = 0, point (i) implies that u(s, x) = ∫

R
ϕ(y)rT −s(x, y) dy is

the C0
b -generalized solution to Lu = 0 with u(T , x) = ϕ(x). By Proposi-

tion 7.9, in particular, using the probabilistic representation, we get E(ϕ(Z
s,x
T )) =∫

R
ϕ(y)rT −s(x, y) dy. �

REMARK 8.3. If L is in the divergence form, as before, then DL = {f ∈ C1

such that there exists g ∈ C1 with f ′ = g

σ 2 }. This is a consequence of Lemma 4.9

and the fact that e−� = 1
σ 2 .

Hereafter, we will consider a general PDE operator L with distributional drift,
as in Section 4, for which the assumption (Aronson) below holds.

c ≤ e�

σ 2 ≤ C.(Aronson)

We observe that the PDE operator in divergence form of the type L1f = (
σ 2

k f ′
2 )′,

where σk = (σk′) ◦ k−1, has the Aronson form, so the previous theorem can be
applied.

THEOREM 8.4. Let Xs,x be the solution to the martingale problem related to
L at time s and point x. Suppose that L fulfills assumption (Aronson). Then there
exists a kernel pt(x, y) such that:
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(i) the law of X
s,x
t has pt−s(x, ·) as density with respect to Lebesgue measure

for each t ∈]s, T ];
(ii) letting g ∈ C0

b([0, T ] × R), ϕ ∈ C0
b(R), the C0

b -generalized solution u to
Lu = g, u(T , ·) = ϕ, is given by

u(s, x) =
∫

R

ϕ(y)pT −s(x, y) dy +
∫ T

s
dr

∫
R

g(r, y)pT −r (x, y) dy.(8.4)

PROOF. (i) Proposition 5.15 says that Zs,x = k(Xs,x) solves the martingale
problem with respect to L1. Let rt (x, y) be the fundamental solution associated
with the parabolic PDE L1 = ∂t + L1. The first point then follows from the next
observation.

REMARK 8.5. By means of a change of variable, it is easy to see that the
density law of X

s,x
t equals

pt(x, x1) = rt (k(x), k(x1))k
′(x1) = rt (k(x), k(x1))

e�

σ 2 (x1).

(ii) This is a consequence of point (i), Fubini’s theorem and Proposition 7.9. �

At this point, we need a lemma which extends to the kernel pt(x, x1) the inte-
grability property of the kernel rt (x, x1) stated in (8.3) concerning the divergence
case.

LEMMA 8.6. Let pt(x, x1) be the kernel introduced in Theorem 8.4. Then:

(i) it is continuous in all variables (t, x, x1) ∈]0, T [×R
2;

(ii) it fulfills Aronson estimates;
(iii)

∫ T
0 (supx1

∫
R

∂xpt (x, x1)
2 dx)1/2 dt < ∞.

PROOF. We recall, by Remark 8.5, that

pt(x, x1) = rt (k(x), k(x1))k
′(x1),

where rt (z, z1) is the fundamental solution associated with the operator L1f =
(
σ 2

k

2 f ′)′, k′ = e�

σ 2 . This, and point (v) of Lemma 8.1, directly imply the validity of
the first point.

Taking into account assumption (Aronson), Aronson estimates for (rt (z, z1))

and the fact that

|k(x) − k(x1)| =
∫ 1

0
k′(αx + (1 − α)x1

)
dα|x − x1|,

result (ii) follows easily.
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With the same conventions as before, we have

∂xpt (x, x1) = ∂zrt (k(x), k(x1))k
′(x)k′(x1).

So, for x ∈ R,(∫
R

(∂xpt (x, x1))
2 dx

)1/2

=
(
k′(x1)

∫
R

(∂zrt (z, k(x1)))
2 dz

)1/2

≤ √
C sup

z1

(∫
R

dz(∂zrt (z, z1))
2
)1/2

.

(iii) Follows after integration with respect to t and because of Lemma 8.1(ix).
�

PROPOSITION 8.7. Let g ∈ C0
b([0, T ] × R) ∩ L1([0, T ] × R), ϕ ∈ C0

b(R) ∩
L1(R). Let u : [0, T ] × R → R be the C0

b -generalized solution to Lu = g,
u(T , ·) = ϕ. Then:

(a)
∫ T

0 dt
∫
R

u2(t, x) dx < ∞;
(b) x 	→ u(t, x) is absolutely continuous,∫ T

0
dt

(∫
R

(∂xu)2(t, x) dx

)1/2
< ∞

and in particular, for a.e. t ∈ [0, T ], ∂xu(t, ·) is square integrable.

REMARK 8.8. Previous assumptions imply that g and ϕ are also square inte-
grable.

PROOF OF PROPOSITION 8.7. We recall the expression given in Theorem 8.4,

u(t, x) =
∫

R

ϕ(x1)pT −t (x, x1) dx1 +
∫ T

t
dr

∫
R

g(r, x1)pT −r (x, x1) dx1.

Using Lemma 8.6 and classical integration theorems, we have

∂xu(t, x) =
∫

R

ϕ(x1) ∂xpT −t (x, x1) dx1

(8.5)

+
∫ T

t
dr

∫
R

ds g(s, x1) ∂xpT −s(x, x1) dx1.

Using Jensen’s inequality, we have

|u(t, x)|2 ≤
∫

R

ϕ(x1)
2pT −t (x, x1) dx1

+ (T − t)

∫ T

t
ds

∫
R

g2(s, x1)pT −s(x, x1) dx1.
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Therefore,∫
R

u2(t, x) dx =
∫

R

dx1 ϕ(x1)
2
∫

R

dx pT −t (x, x1)

+
∫ T

t
ds (T − t)

∫
R

dx1

∫
g2(s, x1)

∫
R

dx pT −s(x, x1).

Using Aronson estimates, this quantity is bounded by

const
(∫

R

dx1 ϕ(x1)
2
∫

R

dx
1√

T − t
p

(
x − x1√
T − t

)

+
∫ T

t
ds

∫
R

dx1

∫
g2(s, x1)

∫
R

dx
1√

T − s
p

(
x − x1√
T − s

))
,

where p is the Gaussian N(0,1) density. This is clearly equal to

const
(∫

R

dx1 ϕ(x1)
2 +

∫ T

0
ds

∫
R

dx1 g2(s, x1)

)
.

This establishes point (a).
Concerning point (b), in order to simplify the framework we will suppose that

g = 0. Expression (8.4) implies that

∂xu(t, x) =
∫

R

ϕ(x1) ∂xpT −t (x, x1) dx1.

Jensen’s inequality implies that

∂xu(t, x)2 ≤
(∫

R

dx1 |ϕ(x1)||∂xpT −t (x, x1)|2
)∫

R

dx1 |ϕ(x1)|.

Integrating with respect to x and taking the square root, we get√∫
R

dx ∂xu(t, x)2 ≤
√∫

R

|ϕ(x1)|dx1

√∫
R

dx1 |ϕ(x1)|
∫

R

dx |∂xpT −t (x, x1)|2

≤
∫

R

dx1 |ϕ(x1)|
√

sup
x1

∫
R

|∂xpt (x, x1)|2 dx.

Integrating with respect to t gives

∫ T

0
dt ‖∂xu(t, ·)‖L2(R) ≤

∫
R

dx1 |ϕ(x1)|
∫ T

0
dt

√
sup
x1

∫
R

∂xpt (x, x1)2 dx.

This quantity is finite due to Lemma 8.6(iii). �
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9. Relation with weak solutions of stochastic partial differential equations.
As in the previous section, we will adopt assumption (Aronson). At this point, we
wish to investigate the link between C0

b -generalized solutions and the notion of
SPDE’s weak solutions for a corresponding Cauchy problem.

We will adopt the same conventions as in Section 4. In this section, we will sup-
pose that coefficients σ, b are realizations of stochastic processes indexed by R. Let
us consider the formal operator L = ∂t + L, where L acts on the second variable.

We consider the equation

Lu = λ,
(9.1)

u(T , ·) = u0.

The aim of this section is to show that a C0
b -generalized solution to (9.1) pro-

vides, when σ = 1, a solution to the (stochastic) PDE of the type (1.1), as defined
in the Definition 1.1, that is, with the help of a symmetric integral via regular-
ization, as defined in Section 3. We denote by D(R) the linear space of C∞ real
functions with compact support.

The link between the SPDE (1.1) and (1.2) is given in the following.

PROPOSITION 9.1. Let u(t, x), v(t, x), t ∈ [0, T ], x ∈ R be two continuous
random fields a.s. in C0,1(]0, T [×R) such that v(t, x) = u(T − t, x). v is a solution
to the SPDE (1.1) if and only if v is a solution to the SPDE (1.2).

PROOF. We observe that ∂xv(t, x) = −∂xu(T − t, x). The proof is elementary.
The only point to check is the following:∫

R

d◦η(x)α(x)

(∫ T

t
ds ∂xu(s, x)

)
= −

∫
R

d◦η(x)α(x)

(∫ t

0
ds ∂xv(s, x)

)
.

This follows by the definition of symmetric integral and the following, obvious,
identity: ∫

R

dx
η(x + ε) − η(x − ε)

2ε
α(x)

(∫ T

t
ds ∂xu(s, x)

)

= −
∫

R

dx
η(x + ε) − η(x − ε)

2ε
α(x)

(∫ t

0
ds ∂xv(s, x)

)

for every ε > 0. �

We continue with a lemma, still supposing σ to be general.

LEMMA 9.2. Let λ (resp., u0) be a random field with parameter (t, x) ∈
[0, T ]×R (resp., x ∈ R) whose paths are bounded and continuous. Let σ, b be con-
tinuous stochastic processes such that � is defined a.s. and assumption (Aronson)
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is satisfied. Let u be the random field which is a.s. the C0
b -generalized solution

to (9.1). The following then holds:∫
R

dx α(x)

(
u(t, x) − u0(x) +

∫ T

t
λ(s, x) ds

)

=
∫

R

e�(x)

(∫ T

t
ds ∂xu(s, x)

)
d◦

(
α

σ 2

2
e−�(x)

)

for every α ∈ D(R).

PROOF. We fix a realization ω. Theorem 8.4 says that the unique solution to
equation (9.1) is given by

u(s, x) =
∫

R

u0(y)pT −s(x, y) dy +
∫ T

s
dr

∫
R

λ(r, y)pT −r (x, y) dy,(9.2)

where (pt (x, y)) is the density law of the solution to the martingale problem re-
lated to L at point x at time s.

Proposition 8.7(b) implies that ∂xu exists and is integrable on ]0, T [×R.
According to Proposition 7.8, we know that

ū(t, z) = u(t, k−1(z))

is a C0
b -generalized solution to

L1ū = λ̄,
(9.3)

ū(T , ·) = ū0,

where

λ̄(t, z) = λ(t, k−1(z)), ū0(z) = u0(k−1(z)).

On the other hand, ū can be represented via (8.2) in Theorem 8.2 through funda-
mental solutions (νt ) = (rt (x, y)) of

∂tνt (·, y) = L1νt (·, y), ν0(·, y) = δy.

Since the previous equation holds in the Schwarz distribution sense, by inspection,
it is not difficult to show that ū is a solution (in the sense of distributions) to (9.3),
which means that we have the following:∫

R

α(z)
(
ū0(z) − ū(t, z)

)
dz − 1

2

∫ T

t
ds

∫
R

α′(z) ∂zū(s, z)σ 2
k (z)

(9.4)

=
∫ T

t
ds

∫
R

α(z)λ̄(s, z)

for every test function α ∈ D(R), t ∈ [0, T ]. We recall, in particular, that ∂zū is in
L1(]0, T [×R).
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We set

D(t, z) =
∫ T

t
∂zū(s, z) ds, D(t, z) = D(t, z)

σ 2
k (z)

2
.

Expression (9.4) shows that

∂zD(t, ·) = −ū0 + ū(t, ·) +
∫ T

t
λ̄(s, ·) ds,(9.5)

in the sense of distributions. So for each t ∈ [0, T ], D is of class C1.
For t ∈ [0, T ] and x ∈ R, we set A(t, x) = ∫ T

t ∂xu(s, x) ds, A(t, x) =
A(t, x)e�(x). We recall that

u(s, x) = ū(s, k(x)), ∂xu(s, x) = ∂xū(s, k(x))k′(x).

Therefore,

A(t, x) = D(t, k(x))k′(x)

so that

A(t, x) = 2D(t, k(x))
k′(x)

σ 2
k (k(x))

= D(t, k(x))
2

σ 2(x)k′(x)

= 2D(t, k(x))e−�(x).

Therefore, A(t, x) = 2D(t, k(x)) and so A is of class C1.
Since ∂xA(t, x) = 2∂zD(t, k(x))k′(x), (9.5) gives

∂xA(t, x) =
(
−u0(x) + u(t, x) +

∫ T

t
λ(s, x) ds

)
2
e�

σ 2 (x).(9.6)

Consequently,

u(t, x) − u0(x) +
∫ T

t
λ(s, x) ds = ∂x

(
e�(x)

∫ T

t
ds ∂xu(s, x)

)
e−�(x) σ

2(x)

2
.

We integrate the previous expression against a test function α ∈ D(R) to obtain∫
R

dx α(x)

(
u(t, x) − u0(x) +

∫ T

t
λ(s, x) ds

)

=
∫

R

dx α(x)

{
∂x

(
e�(x)

∫ T

t
ds ∂xu(s, x)

)
e−�(x) σ

2(x)

2

}
.

Remark 3.1 and integration by parts for the symmetric integral provided by
Remark 3.2(c) allow us to conclude the proof of the lemma. �

Finally, we are able to state the theorem concerning the existence of weak solu-
tions for the SPDE.
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THEOREM 9.3. Let λ (resp., u0) be a random field with parameter in (t, x) ∈
[0, T ] × R (resp., x ∈ R) whose paths are bounded and continuous.

We suppose that σ = 1 and that η is a (two-sided) zero strong cubic variation
process such that there are two finite and strictly positive random variables Z1,Z2

with Z1 ≤ eη(x) ≤ Z2 a.s.
Let u be the random field which is ω a.s. a C0

b -generalized solution to (9.1)
for b = η(ω). We set v(t, x) = u(T − t, x). Then v is a (weak) solution of the
SPDE (1.1).

PROOF. Proposition 9.1 says that it will be enough to verify that

−
∫

R

α(x)u(t, x) dx +
∫

R

α(x)u0(x) dx

− 1
2

∫
R

α′(x)

(∫ T

t
ds ∂xu(s, x)

)
dx +

∫
R

α(x)

(∫ T

t
ds ∂xu(s, x)

)
d◦η(x)

=
∫ T

t
ds

∫
R

dx α(x)λ(s, x)

for every test function α and every t ∈ [0, T ].
After making the identification b = η(ω), the previous Lemma 9.2 says that

∫
R

dx α(x)

(
u(t, x) − u0(x) +

∫ T

t
λ(s, x) ds

)

=
∫

R

e2η(x)

(∫ T

t
ds ∂xu(s, x)

)
d◦

(
αe−2η

2
(x)

)
.

Since η is a zero strong cubic variation process, Proposition 3.8 implies that eη

is also a zero strong cubic variation process. Then the Itô chain rule from Proposi-
tion 3.9, applied with F(x,η(x)) = α(x)eη(x), and Remark 3.1 say that the right-
hand side of previous expression gives

1
2

∫
R

(∫ T

t
ds ∂xu(s, x)

)
d0(

αe−2η(x))

= 1
2

∫
R

(∫ T

t
ds ∂xu(s, x)

)
e2η(x)(α′(x)e−2η(x) dx + α(x)d◦e−2η(x))

= 1
2

∫
R

(∫ T

t
ds ∂xu(s, x)

)
α′(x) dx

−
∫

R

(∫ T

t
ds ∂xu(s, x)

)
α(x)d◦η(x).

This concludes the proof. �
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