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SLOW MOVEMENT OF RANDOM WALK IN RANDOM
ENVIRONMENT ON A REGULAR TREE

BY YUEYUN HU AND ZHAN SHI

Université Paris XIII and Université Paris VI

We consider a recurrent random walk in a random environment on a reg-
ular tree. Under suitable general assumptions concerning the distribution of
the environment, we show that the walk exhibits an unusually slow move-
ment: the order of magnitude of the walk in the first n steps is (logn)3.

1. Introduction. Let T be a rooted b-ary tree, with b ≥ 2. Let ω :=
(ω(x, y), x, y ∈ T) be a collection of nonnegative random variables such that∑

y∈T ω(x, y) = 1 for any x ∈ T. Given ω, we define a Markov chain X :=
(Xn,n ≥ 0) on T with X0 = e and

Pω(Xn+1 = y|Xn = x) = ω(x, y).

The process X is called a random walk in a random environment (or simply
RWRE) on T. (By informally taking b = 1, X would become a usual RWRE on
the half-line Z+.)

We refer to page 106 of [19] for a list of motivations for studying tree-valued
RWREs. For information on a close connection between tree-valued RWREs and
Mandelbrot’s multiplicative cascades, see [16].

We use P to denote the law of ω and the semiproduct measure P(·) :=∫
Pω(·)P(dω) to denote the averaged over the environment.
Some basic notation for the tree is in order. Let e denote the root of T. For any

vertex x ∈ T \ {e}, let
←
x denote the parent of x. As such, each vertex x ∈ T \ {e}

has one parent
←
x and b children, whereas the root e has b children, but no parent.

For any x ∈ T, we use |x| to denote the distance between x and the root e: thus,
|e| = 0 and |x| = |←x | + 1.

We define

A(x) := ω(
←
x , x)

ω(
←
x ,

⇐
x )

, x ∈ T, |x| ≥ 2,(1.1)

where
⇐
x denotes the parent of

←
x .
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Following Lyons and Pemantle [14], we assume throughout the paper that
(ω(x,•))x∈T\{e} is a family of i.i.d. nondegenerate random vectors and that
(A(x), x ∈ T, |x| ≥ 2) are identically distributed. We also assume the existence
of ε0 > 0 such that ω(x, y) ≥ ε0 if either x = ←

y or y = ←
x , and ω(x, y) = 0 other-

wise; in words, (Xn) is a nearest-neighbor walk satisfying an ellipticity condition.
Let A denote a generic random variable having the common distribution of A(x)

(for |x| ≥ 2) defined in (1.1). Let

p := inf
t∈[0,1] E(At ).(1.2)

An important criterion of Lyons and Pemantle [14] says that with P-probability
one, the walk (Xn) is recurrent or transient, according to whether p ≤ 1

b
or p > 1

b
.

It is, moreover, positive recurrent if p < 1
b

. Later, Menshikov and Petritis [16]
proved that the walk is null recurrent if p = 1

b
.

Throughout the paper, we write

X∗
n := max

0≤k≤n
|Xk|, n ≥ 0.

In the positive recurrent case p < 1
b

, X∗
n

logn
converges P-almost surely to a con-

stant c ∈ (0,∞) whose value is known; see [9].
The null recurrent case p = 1

b
is more interesting. It turns out that the behavior

of the walk depends also on the sign of ψ ′(1), where

ψ(t) := log E(At ), t ≥ 0.(1.3)

In [9], we proved that if p = 1
b

and ψ ′(1) < 0, then

lim
n→∞

logX∗
n

logn
= 1 − 1

min{κ,2} , P-a.s.,(1.4)

where κ := inf{t > 1 : E(At ) = 1
b
} ∈ (1,∞], with inf ∅ := ∞.

The delicate case p = 1
b

and ψ ′(1) ≥ 0 was left open and is studied in the
present paper. See Figure 1.

We will see in Remark 2.3 that the case ψ ′(1) > 0 reduces to the case ψ ′(1) = 0
via a simple transformation of the distribution of the random environment. As
pointed out by Biggins and Kyprianou [3] in the study of Mandelbrot’s multiplica-
tive cascades, the case ψ ′(1) = 0 is likely to be “both subtle and important.”

The following theorem reveals an unusually slow regime for the walk.

THEOREM 1.1. If p = 1
b

and ψ ′(1) ≥ 0, then there exist constants 0 < c1 ≤
c2 < ∞ such that

c1 ≤ lim inf
n→∞

X∗
n

(logn)3 ≤ lim sup
n→∞

X∗
n

(logn)3 ≤ c2, P-a.s.(1.5)
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FIG. 1. Case ψ ′(1) = 0 and case ψ ′(1) > 0 with θ defined as in (2.5).

REMARK 1.2. (i) Theorem 1.1 is somewhat reminiscent of Sinai’s result
[21] on slow movement of recurrent one-dimensional RWRE, whereas (1.4) is
a (weaker) analogue of the Kesten–Kozlov–Spitzer characterization [10] of subd-
iffusive behaviors of transient one-dimensional RWREs.

(ii) It is interesting to note that tree-valued RWREs possess both regimes (slow
movement and subdiffusivity) in the recurrent case.

(iii) We mention an important difference between Theorem 1.1 and Sinai’s re-
sult. If (Yn, n ≥ 0) is a recurrent one-dimensional RWRE, then Sinai’s theorem
says that Yn

(logn)2 converges in distribution (under P) to a nondegenerate limit law,
whereas it is known (see [8]) that

lim sup
n→∞

Y ∗
n

(logn)2 = ∞, lim inf
n→∞

Y ∗
n

(logn)2 = 0, P-a.s.,

where Y ∗
n := max0≤k≤n |Yk|.

(iv) It is not clear to us whether X∗
n

(logn)3 converges P-almost surely.

(v) We believe that |Xn|
(logn)3 would converge in distribution under P.

In Section 2, we describe the method used to prove Theorem 1.1. In particular,
we introduce an associated branching random walk and prove an almost sure re-
sult for this branching random walk (Theorem 2.2) which may be of independent
interest. (The two theorems are related via Proposition 2.4.)

The organization of the proof of the theorems is described at the end of Sec-
tion 2. Theorem 1.1 is proved in Section 6.

Throughout the paper, c (possibly with a subscript) denotes a finite and positive
constant; we write c(ω) instead of c when the value of c depends on the environ-
ment ω.
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2. An associated branching random walk. For any m ≥ 0, let

Tm := {x ∈ T : |x| = m},
which stands for the mth generation of the tree. For any n ≥ 0, let

τn := inf{i ≥ 1 :Xi ∈ Tn} = inf{i ≥ 1 : |Xi | = n},
the first hitting time of the walk at level n (whereas τ0 is the first return time to the
root). We write

�n := Pω{τn < τ0}.
In words, �n denotes the (quenched) probability that the RWRE makes an excur-
sion of height at least n.

An important step in the proof of Theorem 1.1 is the following estimate for �n,
in the case ψ ′(1) = 0.

THEOREM 2.1. Assume that p = 1
b

and ψ ′(1) = 0.

(i) There exist constants 0 < c3 ≤ c4 < ∞ such that P-almost surely for all
large n,

e−c4n
1/3 ≤ �n ≤ e−c3n

1/3
.(2.1)

(ii) There exist constants 0 < c5 ≤ c6 < ∞ such that for all large n,

e−c6n
1/3 ≤ E(�n) ≤ e−c5n

1/3
.(2.2)

It turns out that �n is closely related to a branching random walk. But let us first
extend the definition of A(x) to all x ∈ T \ {e}.

For any x ∈ T, let {xi}1≤i≤b denote the set of the children of x. In addition
to the random variables A(x) (|x| ≥ 2) defined in (1.1), let (A(ei),1 ≤ i ≤ b)

be a random vector independent of (ω(x, y), |x| ≥ 1, y ∈ T) and distributed as
(A(xi),1 ≤ i ≤ b) for any x ∈ Tm with m ≥ 1. As such, A(x) is well defined for
all x ∈ T \ {e}. [The values of ω at a finite number of vertices are of no particular
interest. Our choice of (A(ei),1 ≤ i ≤ b) allows us to make unified statements
concerning A(x), V (x), etc., without having to distinguish whether |x| = 1 or
|x| ≥ 2.]

For any x ∈ T \ {e}, the set of vertices on the shortest path relating e and x is
denoted by [e, x]; we also set ]e, x] to be [e, x] \ {e}.

We now define the process V = (V (x), x ∈ T) by V (e) := 0 and

V (x) := − ∑
z∈]e,x]

logA(z), x ∈ T \ {e}.

It is clear that V only depends on the environment ω. In the literature, V is often
referred to as a branching random walk; see, for example, [2].



1982 Y. HU AND Z. SHI

We first state the main result of the section. Let

V (x) := max
z∈]e,x]

V (z),(2.3)

which stands for the maximum of V over the path ]e, x].

THEOREM 2.2. If p = 1
b

and ψ ′(1) ≥ 0, then there exist constants 0 < c7 ≤
c8 < ∞ such that

c7 ≤ lim inf
n→∞

1

n1/3 min
x∈Tn

V (x) ≤ lim sup
n→∞

1

n1/3 min
x∈Tn

V (x) ≤ c8, P-a.s.(2.4)

REMARK 2.3. (i) We cannot replace minx∈Tn
V (x) by minx∈Tn

V (x) in The-
orem 2.2; in fact, it is proved by McDiarmid [15] that there exists a constant c9
such that P-almost surely for all large n, we have minx∈Tn

V (x) ≤ c9 logn.
(ii) If (p = 1

b
and) ψ ′(1) < 0, it is well known [1, 7, 11] that 1

n
minx∈Tn

V (x)

converges P-almost surely to a (strictly) positive constant whose value is known;
thus, minx∈Tn

V (x) grows linearly in this case.
(iii) Only the case ψ ′(1) = 0 needs to be proven. Indeed, if (p = 1

b
and)

ψ ′(1) > 0, then there exists a unique 0 < θ < 1 such that

ψ ′(θ) = 0, E(Aθ ) = 1

b
.(2.5)

We define Ã := Aθ , p̃ := inft∈[0,1] E(Ãt ) and ψ̃(t) := log E(Ãt ), t ≥ 0. Clearly,
we have

p̃ = 1

b
, ψ̃ ′(1) = 0.

Let Ṽ (x) := −∑
z∈]e,x] log Ã(z). Then V (x) = 1

θ
Ṽ (x), which leads us to the case

ψ ′(1) = 0.

The following result contains the promised relation between �n and V for re-
current RWRE on T.

PROPOSITION 2.4. If (Xn) is recurrent, then there exists a constant c10 > 0
such that for any n ≥ 1,

�n ≥ c10

n
exp

(
− min

x∈Tn

V (x)

)
.(2.6)

PROOF. For any x ∈ T, let

T (x) := inf{i ≥ 0 :Xi = x},(2.7)
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which is the first hitting time of the walk at vertex x. By definition, τn =
minx∈Tn

T (x) for n ≥ 1. Therefore,

�n ≥ max
x∈Tn

Pω{T (x) < τ0}.(2.8)

We now compute the (quenched) probability Pω{T (x) < τ0}. We fix x ∈ Tn and
define a random sequence (σj )j≥0 by σ0 := 0 and

σj := inf
{
k > σj−1 :Xk ∈ [e, x] \ {Xσj−1}

}
, j ≥ 1.

(Of course, the sequence depends on x.) Let

Zk := Xσk
, k ≥ 0.(2.9)

In words, Z = (Zk, k ≥ 0) is the restriction of X to the path [e, x]; that is,
it is almost the original walk, except that we remove excursions away from
[e, x]. Clearly, Z is a one-dimensional RWRE with (writing [e, x] = {e =:
x(0), x(1), . . . , x(n) := x})

Pω

{
Zk+1 = x(i+1)|Zk = x(i)} = A(x(i+1))

1 + A(x(i+1))
,

Pω

{
Zk+1 = x(i−1)|Zk = x(i)} = 1

1 + A(x(i+1))

for all 1 ≤ i ≤ n − 1. We observe that

Pω{T (x) < τ0} = ω
(
e, x(1))Pω

{
Z hits x(n) before hitting e|Z0 = x(1)}

= ω
(
e, x(1)) eV (x(1))∑

z∈]e,x] eV (z)
,

the second identity following from a general formula ([22], formula (2.1.4)) for the
exit problem for one-dimensional RWREs. By the ellipticity condition, there exists
a constant c11 > 0 such that ω(e, x(1))eV (x(1)) ≥ c11. Substituting this estimate into
(2.8) yields

�n ≥ max
x∈Tn

c11∑
y∈]e,x] eV (y)

,

completing the proof of Proposition 2.4. �

The proof of the theorems is organized as follows.

• Section 3: Theorem 2.2, upper bound.
• Section 4: Theorem 2.1 (by means of the upper bound in Theorem 2.2; this is

the technical part of the paper).
• Section 5: Theorem 2.2, lower bound (by means of the upper bound in Theo-

rem 2.1).
• Section 6: Theorem 1.1.
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3. Proof of Theorem 2.2: upper bound. Throughout this section, we assume
that p = 1

b
and ψ ′(1) = 0.

Let

B(x) := ∏
y∈]e,x]

A(y), x ∈ T \ {e}.(3.1)

We start by recalling a change-of-probability formula from [2]; see also [6] and [4].

FACT 3.1 ([2]). For any n ≥ 1 and any positive measurable function G,∑
x∈Tn

E
[
B(x)G

(
B(z), z ∈ ]e, x]

)] = E[G(eSi ,1 ≤ i ≤ n)],(3.2)

where Sn is the sum of n i.i.d. centered random variables whose common distrib-
ution is determined by

E[g(S1)] = bE[Ag(logA)]
for any positive measurable function g.

The fact that S1 is centered is a consequence of the assumption ψ ′(1) = 0.
We note that in (3.2), the value of E[B(x)G(B(z), z ∈ ]e, x])] is the same for all
x ∈ Tn.

We now have all of the ingredients needed for the proof of the upper bound in
Theorem 2.2.

Proof of Theorem 2.2: upper bound. By Remark 2.3, only the case ψ ′(1) = 0
needs to be treated. We assume in the rest of the section that (p = 1

b
and)

ψ ′(1) = 0. The proof borrows some ideas of Bramson [5] concerning branching
Brownian motions. Let

Em :=
{
x ∈ Tm : max

z∈]e,x]
|V (z)| ≤ m1/3

}
.

We first estimate E[#Em]:

E[#Em] = ∑
x∈Tm

P
{

max
z∈]e,x]

|V (z)| ≤ m1/3
}
.

By assumption, for any given x ∈ Tm, (V (z), z ∈ ]e, x]) is the set of the first m

partial sums of i.i.d. random variables whose common distribution is A. By (3.2),
this leads to:

E[#Em] = E
(
e−Sm1{max1≤i≤m |Si |≤m1/3}

) ≥ P
{

max
1≤i≤m

|Si | ≤ m1/3, Sm ≤ 0
}
.
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The probability on the right-hand side is a “small deviation” probability with an
unimportant condition on the terminal value. By a general result of Mogul’skii [17],
we have, for all sufficiently large m (say m ≥ m0),

E[#Em] ≥ exp(−c12m
1/3).

We now estimate the second moment of #Em. For any pair of vertices x and y,
we write x < y if x is an ancestor of y, and x ≤ y if x is either y itself or an
ancestor of y. Then

E[(#Em)2] − E[#Em]
= ∑

u,v∈Tm,u 
=v

P{u ∈ Em,v ∈ Em}

=
m−1∑
j=0

∑
z∈Tj

∑
x∈Tj+1:z<x

∑
y∈Tj+1\{x}:z<y

∑
u∈Tm:x≤u

∑
v∈Tm:y≤v

P{u ∈ Em,v ∈ Em}.

In words, z is the youngest common ancestor of u and v, while x and y are distinct
children of z at generation j +1. If j = m−1, we have x = u and y = v, otherwise
x is an ancestor of u and y of v.

Fix z ∈ Tj and let x and y be a pair of distinct children of z. Let u ∈ Tm and
v ∈ Tm be such that x ≤ u and y ≤ v. Then

P{u ∈ Em,v ∈ Em}

≤ P
{

max
r∈]e,z]

|V (r)| ≤ m1/3
}

×
(

P
{

max
r∈]z,x]

|V (r) − V (z)| ≤ 2m1/3
})2

.

We have, by (3.2),

P
{

max
r∈]e,z]

|V (r)| ≤ m1/3
}

= b−j E
[
e−Sj 1{max1≤i≤j |Si |≤m1/3}

] ≤ b−j em1/3
,

and, similarly, P{maxr∈]z,x] |V (r) − V (z)| ≤ 2m1/3} ≤ b−(m−j)e2m1/3
. Therefore,

E[(#Em)2] − E[#Em]

≤
m−1∑
j=0

∑
z∈Tj

∑
x∈Tj+1:z<x

∑
y∈Tj+1\{x}:z<y

∑
u∈Tm:x≤u

∑
v∈Tm:y≤v

bj−2me5m1/3

=
m−1∑
j=0

∑
z∈Tj

b(b − 1)bm−j−1bm−j−1bj−2me5m1/3

= b − 1

b
me5m1/3

.
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Recall that E[#Em] ≥ exp(−c12m
1/3) for m ≥ m0. Therefore, for m ≥ m0,

E[(#Em)2]
{E[#Em]}2 ≤ b − 1

b
me(5+2c12)m

1/3 + ec12m
1/3 ≤ ec13m

1/3
.

By the Cauchy–Schwarz inequality, for m ≥ m0,

P{Em 
= ∅} = P{#Em > 0} ≥ {E[#Em]}2

E[(#Em)2] ≥ e−c13m
1/3

.

A fortiori, for m ≥ m0,

P{∃x ∈ Tm,V (x) ≤ m1/3} ≥ e−c13m
1/3

,

which implies that

P
{

min
x∈Tm

V (x) > m1/3
}

≤ 1 − e−c13m
1/3 ≤ exp(−e−c13m

1/3
).

Let n > m. By the ellipticity condition stated in the introduction, there exists a
constant c14 > 0 such that maxz∈]e,y] V (z) ≤ c14(n − m) for any y ∈ Tn−m. Ac-
cordingly, for m ≥ m0,

P
{

min
x∈Tn

V (x) > m1/3 + c14(n − m)

}

≤ P
{

min
y∈Tn−m

min
x∈Tn:y<x

max
r∈]y,x]

[V (r) − V (y)] > m1/3
}

=
(

P
{

min
s∈Tm

V (s) > m1/3
})bn−m

≤ exp(−bn−me−c13m
1/3

).

We now choose m = m(n) := n − �c15n
1/3
, where the constant c15 is suffi-

ciently large such that
∑

n exp(−bn−me−c13m
1/3

) < ∞. Then, by the Borel–Cantelli
lemma,

lim sup
n→∞

1

n1/3 min
x∈Tn

V (x) ≤ 1 + c14c15, P-a.s.,

yielding the desired upper bound in Theorem 2.2.

4. Proof of Theorem 2.1. Throughout this section, we assume that p = 1
b

and
ψ ′(1) = 0.

Proof of Theorem 2.1: lower bound. The estimate �n ≥ e−c4n
1/3

(P-almost
surely for all large n) follows immediately from the upper bound in Theorem 2.2
(proved in Section 3) by means of Proposition 2.4, with any constant c4 > c8. By
Fatou’s lemma, we have lim infn→∞ ec4n

1/3
E(�n) ≥ 1.
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We now introduce the important “additive martingale” Mn; in particular, the
lower tail behavior of Mn is studied in Lemma 4.1, by means of another martingale
called the “multiplicative martingale.” The upper bound in Theorem 2.1 will then
be proved, based on the asymptotics of Mn and on the lower bound which was just
proven.

Let B(x) := ∏
y∈]e,x] A(y) (for x ∈ T \ {e}), as in (3.1), and let

Mn := ∑
x∈Tn

B(x), n ≥ 1.(4.1)

When E(A) = 1
b

[which is the case if p = 1
b

and ψ ′(1) = 0], the process (Mn,n ≥
1) is a martingale, and is referred to as an associated additive martingale.

It is more convenient to study the behavior of Mn by means of another martin-
gale. It is known (see [12]) that under the assumptions p = 1

b
and ψ ′(1) = 0, there

is a unique nontrivial function ϕ∗ : R+ → (0,1] such that

ϕ∗(t) = E

{
b∏

i=1

ϕ∗(tA(ei))

}
, t ≥ 0.(4.2)

(By nontrivial, we mean that ϕ∗ is not identically 1.) Let

M∗
n := ∏

x∈Tn

ϕ∗(B(x)), n ≥ 1.

The process (M∗
n, n ≥ 1) is also a martingale [12]. Following Neveu [18], we call

M∗
n an associated multiplicative martingale.
Since the martingale M∗

n takes values in (0,1], it converges almost surely (when
n → ∞) to, say, M∗∞, and E(M∗∞) = 1. It is proved by Liu [12] that E{(M∗∞)t } =
ϕ∗(t) for any t ≥ 0.

Recall that for some 0 < α < 1,

log
(

1

ϕ∗(t)

)
∼ t log

(
1

t

)
, t → 0,(4.3)

log
(

1

ϕ∗(s)

)
≥ c16s

α, s ≥ 1;(4.4)

see [12], Theorem 2.5, for (4.3), and [13], Theorem 2.5, for (4.4).

LEMMA 4.1. Assume that p = 1
b

and ψ ′(1) = 0. For any χ > 1/2, there exists
δ > 0 such that for all sufficiently large n,

P{Mn < n−χ } ≤ exp(−nδ).(4.5)

PROOF. Let K > 0 be such that P{M∗∞ > e−K} > 0. Then ϕ∗(t) =
E{(M∗∞)t } ≥ P{M∗∞ > e−K}e−Kt for all t > 0. Thus, there exists c17 > 0 such
that for all t ≥ 1, ϕ∗(t) ≥ e−c17t .
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Let ε > 0. By (4.3) and (4.4), there exists a constant c18 such that

log
(

1

M∗
n

)
= ∑

x∈Tn

log
(

1

ϕ∗(B(x))

)
≤ c18(J1,n + J2,n + J3,n),

where

J1,n := ∑
x∈Tn

B(x)

(
log

1

B(x)

)
1{B(x)<exp(−n(1/2)+ε)},

J2,n := ∑
x∈Tn

B(x)

(
log

e

B(x)

)
1{exp(−n(1/2)+ε)≤B(x)≤1},

J3,n := ∑
x∈Tn

B(x)1{B(x)>1}.

Clearly, J3,n ≤ ∑
x∈Tn

B(x) = Mn, whereas J2,n ≤ (n(1/2)+ε + 1)Mn. Hence,
J2,n +J3,n ≤ (n(1/2)+ε +2)Mn ≤ 2n(1/2)+εMn (for n ≥ 4). Accordingly, for n ≥ 4,

n(1/2)+εMn ≥ 1

2c18
log

(
1

M∗
n

)
− 1

2
J1,n.(4.6)

We now estimate the tail probability of M∗
n . Let λ ≥ 1 and z > 0. By Cheby-

shev’s inequality,

P
{

log
(

1

M∗
n

)
< z

}
≤ eλzE{(M∗

n)λ}.

Since M∗
n is a bounded martingale, E{(M∗

n)λ} ≤ E{(M∗∞)λ} = ϕ∗(λ). Therefore,

P
{

log
(

1

M∗
n

)
< z

}
≤ eλzϕ∗(λ).

Choosing z := 4c18n
−ε and λ := nε , it follows from (4.4) that

P
{

log
(

1

M∗
n

)
< 4c18n

−ε

}
≤ exp(4c18 − c16n

εα).

Substituting this into (4.6) yields that for n ≥ 4,

P
{
n(1/2)+εMn + 1

2J1,n < 2n−ε} ≤ exp(4c18 − c16n
εα).(4.7)

We note that J1,n ≥ 0. By (3.2),

E(J1,n) = E
{
(−Sn)1{Sn<−n(1/2)+ε}

}
.

Recall that Sn is the sum of n i.i.d. bounded centered random variables. It follows
that for all sufficiently large n,

E(J1,n) ≤ exp(−c19n
2ε).
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By (4.7) and Chebyshev’s inequality,

P
{
n(1/2)+εMn < n−ε} ≤ P

{
n(1/2)+εMn + 1

2
J1,n < 2n−ε

}
+ P{J1,n ≥ 2n−ε}

≤ exp(4c18 − c16n
εα) + nε

2
exp(−c19n

2ε),

from which (4.5) follows. �

We have now all of the ingredients needed for the proof of the upper bound in
Theorem 2.1.

Proof of Theorem 2.1: upper bound. We only need to prove the upper bound
in (2.2), namely, that there exists c5 such that for all large n,

E(�n) ≤ e−c5n
1/3

.(4.8)

If (4.8) holds, then the upper bound in (2.1) follows by an application of Cheby-
shev’s inequality and the Borel–Cantelli lemma.

It remains to prove (4.8). For any x ∈ T \ {e}, we define

βn(x) := Pω{starting from x, the RWRE hits Tn before hitting
←
x },

where, as before,
←
x is the parent of x. In the notation of (2.7),

βn(x) = Pω{Tn < T (
←
x )|X0 = x},

where Tn := minx∈Tn
T (x). Clearly, βn(x) = 1 if x ∈ Tn.

Recall that for any x ∈ T, {xi}1≤i≤b is the set of children of x. By the Markov
property, if 1 ≤ |x| ≤ n − 1, then

βn(x) =
b∑

i=1

ω(x, xi)Pω{Tn < T (
←
x )|X0 = xi}.

Consider the event {Tn < T (
←
x )} when the walk starts from xi . There are two pos-

sible situations: either (i) Tn < T (x) [which happens with probability βn(xi), by
definition] or (ii) Tn > T (x) and after hitting x for the first time, the walk hits
Tn before hitting

←
x . By the strong Markov property, Pω{Tn < T (

←
x )|X0 = xi} =

βn(xi) + [1 − βn(xi)]βn(x). Therefore,

βn(x) =
b∑

i=1

ω(x, xi)βn(xi) + βn(x)

b∑
i=1

ω(x, xi)[1 − βn(xi)]

=
b∑

i=1

ω(x, xi)βn(xi) + βn(x)[1 − ω(x,
←
x )] − βn(x)

b∑
i=1

ω(x, xi)βn(xi),
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from which it follows that

βn(x) =
∑b

i=1 A(xi)βn(xi)

1 + ∑b
i=1 A(xi)βn(xi)

, 1 ≤ |x| ≤ n − 1.(4.9)

Together with condition βn(x) = 1 (for x ∈ Tn), these equations determine the
value of βn(x) for all x ∈ T such that 1 ≤ |x| ≤ n.

We introduce the random variable

βn(e) :=
∑b

i=1 A(ei)βn(ei)

1 + ∑b
i=1 A(ei)βn(ei)

.(4.10)

The value of βn(e) for given ω is of no importance, but the distribution of βn(e),
which is identical to that of βn+1(e1), plays a certain role at several points in the
proof. For example, for 1 ≤ |x| < n, the random variables βn(x) and βn−|x|(e)
have the same distribution; in particular, E[βn(x)] = E[βn−|x|(e)]. In the rest of
this section, we make frequent use of this property without further mention. We
also make the trivial observation that for 1 ≤ |x| < n, βn(x) depends only on those
A(y) such that |x| + 1 ≤ |y| ≤ n and x is an ancestor of y.

Recall that �n = Pω{τn < τ0}. Therefore,

�n =
b∑

i=1

ω(e, ei)βn(ei).(4.11)

In particular,

E(�n) = E[βn(ei)] = E[βn−1(e)] ∀1 ≤ i ≤ b.(4.12)

Let aj := E(�j3+1) = E[βj3(e)], j = 0, 1, 2, . . . , �n1/3
. Clearly, a0 = 1 and
j �→ aj is nonincreasing for 0 ≤ j ≤ �n1/3
. We look for an upper bound for
a�n1/3
.

Let m > � ≥ 1 be integers. Let 1 ≤ i ≤ b and let (eij ,1 ≤ j ≤ b) be the set of
children of ei . By (4.9), we have

βm(ei) ≤
b∑

j=1

A(eij )βm(eij ).

Iterating the same argument, we arrive at

βm(ei) ≤ ∑
y∈T�:y<ei

( ∏
z : ei<z,z≤y

A(z)

)
βm(y) = ∑

y∈T�:y<ei

B(y)

A(ei)
βm(y).

By (4.10), this yields

βm(e) ≤
∑b

i=1
∑

y∈T�:y<ei
B(y)βm(y)

1 + ∑b
i=1

∑
y∈T�:y<ei

B(y)βm(y)
=

∑
y∈T�

B(y)βm(y)

1 + ∑
y∈T�

B(y)βm(y)
.
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Fix n and 0 ≤ j ≤ �n1/3
 − 1. Let

� = �(j) := (j + 1)3 − j3 = 3j2 + 3j + 1.

Then

aj+1 = E
[
β(j+1)3(e)

] ≤ E
( ∑

y∈T�
B(y)β(j+1)3(y)

1 + ∑
y∈T�

B(y)β(j+1)3(y)

)
.

We note that (β(j+1)3(y), y ∈ T�) is a collection of i.i.d. random variables distrib-
uted as βj3(e) and independent of (B(y), y ∈ T�).

Let (ξ(x), x ∈ T) be i.i.d. random variables distributed as βj3(e), independent
of all other random variables and processes. Let

Nm := ∑
x∈Tm

B(x)ξ(x), m ≥ 1.

The last inequality can be written as

aj+1 ≤ E
(

N�

1 + N�

)
.(4.13)

By definition,

E
(

N�

1 + N�

)
= ∑

x∈T�

E
(

B(x)ξ(x)

1 + N�

)
= ∑

x∈T�

E{B(x)ξ(x)e−YN�},(4.14)

where Y is an exponential random variable of parameter 1, independent of every-
thing else.

Let us fix x ∈ T�, and estimate E{B(x)ξ(x)e−YN�}. Since Nm = ∑
x∈Tm

B(x)ξ(x)

(for any m ≥ 1), we have

N� ≥ B(
←
x )A(y)ξ(y)

for any y ∈ T� \ {x} such that
←
y = ←

x . Note that by the ellipticity condition,
A(y) ≥ c > 0 for some constant c. Accordingly,

E{B(x)ξ(x)e−YN�} ≤ E
{
B(x)ξ(x)e−cYB(

←
x )ξ(y)}

= E{ξ(x)}E{
B(x)e−cYB(

←
x )ξ(y)}.

Recall that E{ξ(x)} = E{βj3(e)} = aj and that ξ(y) is distributed as βj3(e), inde-

pendent of (B(x), Y,B(
←
x )). At this stage, it is convenient to recall the following

inequality (see [9] for an elementary proof): if E(A) = 1
b

[which is guaranteed by
the assumptions p = 1

b
and ψ ′(1) = 0], then

E
{

exp
(
−t

βk(e)

E[βk(e)]
)}

≤ E{e−tMk } ∀k ≥ 1,∀t ≥ 0,
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where Mk is defined in (4.1). As a consequence,

E{B(x)ξ(x)e−YN�} ≤ aj E
{
B(x)e

−cYB(
←
x )aj M̃

j3
}
,

where M̃j3 is distributed as Mj3 and is independent of everything else. Since

A(x) = B(x)

B(
←
x )

is independent of B(
←
x ) (and Y and M̃j3 ), with E{A(x)} = 1

b
, this

yields

E{B(x)ξ(x)e−YN�} ≤ aj

b
E

{
B(

←
x )e

−caj YB(
←
x )M̃

j3
}
.

Substituting this into (4.14), we see that

E
(

N�

1 + N�

)
≤ aj

∑
u∈T�−1

E
{
B(u)e

−caj YB(u)M̃
j3

}
= aj E{exp(−cajY eS�−1M̃j3)},

the last identity being a consequence of (3.2), the random variables Y , S�−1 and
M̃j3 being independent. By (4.13), aj+1 ≤ E( N�

1+N�
). Thus,

aj+1 ≤ aj E{exp(−cajY eS�−1M̃j3)}.
As a consequence,

a�n1/3
 ≤
�n1/3
−1∏

j=0

E{exp(−cajY eS�−1M̃j3)}.

We claim that for any collection of nonnegative random variables (ηj ,

0 ≤ j ≤ n) and λ ≥ 0,

n∏
j=0

E(e−ηj ) ≤ e−λ +
n∏

j=0

P{ηj < λ}.

Indeed, without loss of generality, we can assume that the ηj are independent; then

n∏
j=0

E(e−ηj ) ≤ E(e−max0≤j≤n ηj )

≤ e−λ + P
{

max
0≤j≤n

ηj < λ

}

= e−λ +
n∏

j=0

P{ηj < λ},

as claimed.
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We have thus proved that

a�n1/3
 ≤ e−n +
�n1/3
−1∏

j=0

P{cajY eS�−1M̃j3 < n}.

Recall that aj = E(�j3+1). By the lower bound in Theorem 2.1 which we have
proved, we have aj ≥ exp(−c6j) for j ≥ j0. Hence, for j0 ≤ j ≤ �n1/3
 − 1,

P{cajY eS�−1M̃j3 ≥ n}

≥ P{Y ≥ 1}P
{
M̃j3 ≥ 1

j3

}
P

{
S�−1 ≥ c6j + log

(
j3n

c

)}
.

Of course, P{Y ≥ 1} = e−1 and by (4.5), P{M̃j3 ≥ 1
j3 } = P{Mj3 ≥ 1

j3 } ≥ 1
2 for

all large j . On the other hand, since � − 1 ≥ 3j2, we have P{S�−1 ≥ c6j +
log(

j3n
c

)} ≥ c20 > 0 for large n and all j ≥ logn. We have thus proved that for
large n and some constant c21 ∈ (0,1),

a�n1/3
 ≤ e−n +
�n1/3
−1∏
j=�logn�

(1 − c21) ≤ exp(−c22n
1/3).

Since a�n1/3
 = E(��n1/3
3+1) ≥ E(�n+1), this yields (4.8) and thus the upper bound
in Theorem 2.1.

5. Proof of Theorem 2.2: lower bound. Without loss of generality (see Re-
mark 2.3), we can assume that ψ ′(1) = 0. In this case, the lower bound in The-
orem 2.2 follows from the upper bound in Theorem 2.1 (proven in the previous
section) by means of Proposition 2.4, with c7 := c3.

6. Proof of Theorem 1.1. For the sake of clarity, Theorem 1.1 is proved in
two distinct parts.

6.1. Upper bound. We first assume that ψ ′(1) = 0. By Theorem 2.1, Pω{τn <

τ0} = �n ≤ exp(−c3n
1/3) P-almost surely for all large n. Hence, by writing

L(τn) := #{1 ≤ i ≤ τn :Xi = e}, we obtain that P-almost surely for all large n

and any j ≥ 1,

Pω{L(τn) ≥ j} = [Pω{τn > τ0}]j ≥ [1 − e−c3n
1/3]j ,

which, by the Borel–Cantelli lemma, implies that for any constant c23 < c3 and
P-almost surely all sufficiently large n,

L(τn) ≥ ec23n
1/3

.
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Since {L(τn) ≥ j} ⊂ {X∗
2j < n}, we obtain the desired upper bound in Theorem 1.1

[case ψ ′(1) = 0], with c2 := 1/(c3)
3.

To treat the case ψ ′(1) > 0, we first consider an RWRE (Yk, k ≥ 0) on the half-
line Z+ with a reflecting barrier at the origin. We write TY (y) := inf{k ≥ 0 :Yk =
y} for y ∈ Z+ \ {0}. Then

Pω{TY (y) ≤ m} =
m∑

i=1

Pω{TY (y) = i} ≤
m∑

i=1

Pω{Yi = y} =
m∑

i=1

ωi(0, y),

where, by an abuse of notation, we use ω(·, ·) to also denote the transition matrix
of (Yk). Since (Yk) is reversible, we have ωi(0, y) = π(y)

π(0)
ωi(y,0), where π is an

invariant measure. Accordingly,

Pω{TY (y) ≤ m} ≤
m∑

i=1

π(y)

π(0)
ωi(y,0) ≤ m

π(y)

π(0)
.

As a consequence, for any n ≥ 1,

Pω{TY (n) ≤ m} ≤ min
1≤y≤n

Pω{TY (y) ≤ m} ≤ m min
1≤y≤n

π(y)

π(0)
.

It is easy to compute π : we can take π(0) = 1 and

π(y) :=
y∑

z=1

log
ω(z, z − 1)

ω(z, z + 1)
, y ∈ Z+ \ {0}.

Therefore, for n ≥ 1,

Pω{TY (n) ≤ m} ≤ m min
y∈]e,x]

A(y) = me−V (x),(6.1)

where V (x) is defined in (2.3).
We now return to the study of X, the RWRE on T. Fix x ∈ Tn. Let Z = (Zk, k ≥

0) be the restriction of X to the path [e, x], as in (2.9). Let TZ(x) := inf{k ≥ 0 :
Zk = x}. By (6.1), we have Pω{TZ(x) ≤ m} ≤ me−V (x). It follows from the trivial
inequality T (x) ≥ TZ(x) that

Pω{τn ≤ m} ≤ ∑
x∈Tn

Pω{T (x) ≤ m} ≤ ∑
x∈Tn

Pω{TZ(x) ≤ m} ≤ m
∑

x∈Tn

e−V (x).

Since ψ ′(1) > 0, we can consider 0 < θ < 1, as in (2.5). Then∑
x∈Tn

e−V (x) ≤ exp
(
−(1 − θ) min

x∈Tn

V (x)

) ∑
x∈Tn

e−θV (x).

Since E(Aθ) = 1, it is easily seen that
∑

x∈Tn
e−θV (x) is a positive martingale.

In particular, supn≥1
∑

x∈Tn
e−θV (x) < ∞ P-almost surely. On the other hand, ac-

cording to Theorem 2.2, we have minx∈Tn
V (x) ≥ c7n

1/3 P-almost surely for all
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large n. Therefore, for any constant c24 < (1 − θ)c7, we have∑
n

Pω{τn ≤ ec24n
1/3} < ∞, P-a.s.,

from which the upper bound in Theorem 1.1 [case ψ ′(1) > 0] follows readily, with
c2 := 1/[(1 − θ)c7]3.

6.2. Lower bound. By means of the Markov property, one can easily obtain a
recurrence relation for Eω(τn), from which it follows that for n ≥ 1,

Eω(τn) = γn(e)

�n

,(6.2)

where �n and γn(e) are defined as follows: βn(x) = 1 and γn(x) = 0 (for x ∈ Tn),
and

βn(x) =
∑b

i=1 A(xi)βn(xi)

1 + ∑b
i=1 A(xi)βn(xi)

,

γn(x) = [1/ω(x,
←
x )] + ∑b

i=1 A(xi)γn(xi)

1 + ∑b
i=1 A(xi)βn(xi)

, 1 ≤ |x| ≤ n,

and �n := ∑b
i=1 ω(e, ei)βn(ei), γn(e) := ∑b

i=1 ω(e, ei)γn(ei), see [20] for more
details. As a matter of fact, βn(x) (for 1 ≤ |x| ≤ n) is the same as the one intro-
duced in (4.9) and �n can also be expressed as Pω{τn < τ0}.

We claim that

sup
n≥1

γn(e)

n
< ∞, P-a.s.(6.3)

By admitting (6.3) for the moment, we are able to prove the lower bound in
Theorem 1.1. Indeed, in view of (the lower bound in) Theorem 2.1 and (6.2), we
have Eω(τn) ≤ c25(ω)n exp(c4n

1/3) P-almost surely for all large n. It follows from
Chebyshev’s inequality and the Borel–Cantelli lemma that P-almost surely for all
sufficiently large n, τn ≤ c25(ω)n3 exp(c4n

1/3), which yields

lim inf
n→∞

X∗
n

(logn)3 ≥ 1

(c4)3 , P-a.s.

This is the desired lower bound in Theorem 1.1.
It remains to prove (6.3). By the ellipticity condition, 1

ω(x,
←
x )

≤ c26, so

γn(x) ≤ c26 +
b∑

i=1

A(xi)γn(xi).
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Iterating the inequality, we obtain

γn(e) ≤ c26

(
1 +

n−1∑
j=1

∑
x∈Tj

∏
y∈]ei ,x]

A(y)

)
= c26

(
1 +

n−1∑
j=1

Mj

)
, n ≥ 2,

Mj having already been introduced in (4.1).
There exists 0 < θ ≤ 1 such that E(Aθ) = 1

b
: indeed, if p = 1

b
and ψ ′(1) = 0,

then we simply take θ = 1, whereas if p = 1
b

and ψ ′(1) > 0, then we take
0 < θ < 1, as in (2.5). We have

Mθ
j ≤ ∑

x∈Tj

∏
y∈]ei ,x]

A(y)θ .

Since j �→ ∑
x∈Tj

∏
y∈]ei ,x] A(y)θ is a positive martingale, we have supj≥1 Mj <

∞ P-almost surely. This yields (6.3) and thus completes the proof of the lower
bound in Theorem 1.1.
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