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HOW LARGE A DISC IS COVERED BY
A RANDOM WALK IN n STEPS?

BY AMIR DEMBO,1 YUVAL PERES2 AND JAY ROSEN3

Stanford University, University of California at Berkeley
and College of Staten Island, CUNY

We show that the largest disc covered by a simple random walk (SRW)
on Z

2 after n steps has radius n1/4+o(1), thus resolving an open problem
of Révész [Random Walk in Random and Non-Random Environments (1990)
World Scientific, Teaneck, NJ]. For any fixed �, the largest disc completely
covered at least � times by the SRW also has radius n1/4+o(1). However,
the largest disc completely covered by each of � independent simple random

walks on Z
2 after n steps is only of radius n1/(2+2

√
�)+o(1). We complement

this by showing that the radius of the largest disc completely covered at least
a fixed fraction α of the maximum number of visits to any site during the
first n steps of the SRW on Z

2, is n(1−√
α)/4+o(1). We also show that almost

surely, for infinitely many values of n it takes about n1/2+o(1) steps after step
n for the SRW to reach the first previously unvisited site (and the exponent
1/2 is sharp). This resolves a problem raised by Révész [Ann. Probab. 21
(1993) 318–328].

1. Introduction. Consider the simple random walk (SRW) on Z
2 starting at

the origin and run for n steps. Let Rn denote the radius of the largest disc centered
at the origin that is completely covered by the walk (throughout this paper, “disc”
refers to the intersection of Z

2 with a Euclidean disc, but all our results apply if
one takes a square instead). In [3], Theorem 1.4 we showed that for all y > 0,

lim
n→∞ P

(
(log Rn)

2

logn
≥ y

)
= e−4y,(1.1)

as conjectured by Kesten and Révész.
If we ask for the largest disc covered after n steps of the SRW without specifying

the center of the disc, then the answer changes dramatically.
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THEOREM 1.1. If R̃(n) denotes the radius of the largest disc completely cov-
ered by a SRW on Z

2 after n steps, then almost surely R̃(n) = n1/4+o(1), that is,

lim
n→∞

log R̃(n)

logn
= 1

4
a.s.(1.2)

Alternatively, with R(r) denoting the radius of the largest disc completely covered
by a SRW on Z

2 before its first exit of D(0, r) = {x ∈ Z
2 : |x| < r},

lim
r→∞

logR(r)

log r
= 1

2
a.s.(1.3)

The problem of finding the radius of the largest disc completely covered by a
SRW on Z

2 after n steps was first raised by Révész [8], page 247, who later found
upper and lower bounds for the ratio log R̃(n)/ logn (see [9]). We thank Zhan Shi
for informing us of simulations by Arvind Singh which indicated that this ratio
tends to 1/4.

If we require that our disc be multiply covered we obtain the following.

THEOREM 1.2. If R̃(n;k) denotes the radius of the largest disc completely
covered at least k times by a SRW on Z

2 after n steps, then for any 0 < α < 1,

lim
n→∞

log R̃(n;α(logn)2/π)

logn
= 1 − √

α

4
a.s.(1.4)

Consequently, for any fixed k ≥ 1,

lim
n→∞

log R̃(n;k)

logn
= 1

4
a.s.(1.5)

Alternatively, with R(r;k) denoting the radius of the largest disc completely cov-
ered at least k times by a SRW in Z

2 before its first exit of D(0, r), we have that
for any 0 < α < 1

lim
r→∞

logR(r;4α(log r)2/π)

log r
= 1 − √

α

2
a.s.(1.6)

We note in passing that (1.4) deals with the largest disc of α-favorite sites for
the SRW on Z

2 by time n, whereas [2], Section 5 provides information about
the number of such sites. Further, since R̃(n) ≥ R̃(n;k) ≥ R̃(n;α(logn)2/π) for
all n sufficiently large, the statement (1.5) is an immediate consequence of (1.4)
and (1.2).

We can generalize Theorem 1.1 by considering � independent simple random
walks on Z

2.
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THEOREM 1.3. If R̃�(n) denotes the radius of the largest disc completely
covered by each of � independent simple random walks on Z

2 after n steps, then

lim
n→∞

log R̃�(n)

logn
= 1

2 + 2
√

�
a.s.(1.7)

Alternatively, with R�(r) denoting the radius of the largest disc completely covered
by each of � independent SRWs on Z

2, each of whom is run until it first exits
D(0, r),

lim
r→∞

logR�(r)

log r
= 1

1 + √
�

a.s.(1.8)

The SRW needs about r2 steps to exit a disc of radius r . Thus, considering
the random times n in which the SRW is sufficiently inside a completely covered
disc of radius roughly n1/4, with Theorem 1.1 we can also solve a related problem
raised by Révész in [9].

THEOREM 1.4. If V (n) is the number of steps after step n until the SRW on
Z

2 first visits any of the previously unvisited sites, then

lim sup
n→∞

logV (n)

logn
= 1

2
a.s.(1.9)

Of course lim infn→∞ V (n) = 1.
We note in passing that the situation is quite different for the SRW on Z

d for
d ≥ 3, where due to the transience of the process, one has that

lim
n→∞

log R̃(n)

log logn
= 1

d − 2
a.s.(1.10)

as shown in [5], and for d = 1, where 2R̃(n) is the difference between the max-
imum and the minimum of the SRW, which upon scaling by n−1/2 converges in
law to an explicit nondegenerate limit (for finer information on the favorite sites in
one dimension, cf. [11] and the references therein).

We now explain the intuitive picture behind our results, starting with Theo-
rem 1.1. To this end, let τ(r) denote the number of steps until the SRW first exits
D(0, r). Clearly, R(r) = R̃(τ (r)) and (1.2) is equivalent to (1.3) since

lim
r→∞

log τ(r)

log r
= 2 a.s.(1.11)

Similarly, (1.11) implies the equivalence between (1.4) and (1.6), as well as the
equivalence between (1.7) and (1.8).

Turning to (1.3), let rk = ek and for any x ∈ Z
2 consider the family of Euclidean

discs centered at x, {D(x, rk); k = 0,1, . . . ,m}. Fixing 0 < γ < 1 such that γm
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is an integer, let β = 1 − γ . Starting from the sphere ∂D(x, rγm), the probabil-
ity of a planar Brownian motion reaching ∂D(x, rγm−1) before exiting D(x, rm)

is 1 − 1/(βm), so that the probability of it making aβ2m2 excursions from
∂D(x, rγm) to ∂D(x, rγm−1) before exiting D(x, rm) (referred to as γ -excursions)
is about e−aβm. Since there are about e2βm disjoint discs of radius rγm in D(0, rm),
ignoring the fact that they have different centers, we expect that the maximal num-
ber of such γ -excursions among all discs of radius rγm is about 2β2m2. Further,
the probability of the Brownian motion not hitting the disc D(x, r0) during one
γ -excursion is 1 − 1/(γm), so that the probability of not hitting it during aγ 2m2

consecutive γ -excursions is about e−aγm.
Suppose for the moment that the same applies for the SRW, namely, the maxi-

mal number of γ -excursions that the SRW makes is 2β2m2 and the probability of
it not hitting the center of a disc during aγ 2m2 consecutive γ -excursions is about
e−aγm. Then, since there are about e2γm points in each D(x, rγm), ignoring the
fact that they are not centered, the expected number of points not visited during
aγ 2m2 consecutive γ -excursions is about e(2−a)γm. Hence about 2γ 2m2 of the
γ -excursions are needed for the SRW to visit all sites in a given disc D(x, rγm).
To find the maximal possible value of γ for which some disc of radius rγm is cov-
ered by the SRW, equate 2β2m2 and 2γ 2m2 (for β = 1 − γ ), to get γ = β = 1/2,
as stated.

Also, by the preceding reasoning the probability of each of � independent ran-
dom walks having aβ2m2 or more γ -excursions for a given disc D(x, rγm) is
e−a�βm. Considering all possible discs, the maximal value of the preceding para-
meter a is 2/�. As about 2γ 2m2 of the γ -excursions are needed for each SRW
to visit all sites in such a disc, one equates (2/�)β2m2 and 2γ 2m2 to get in the
context of Theorem 1.3 that γ = 1/(1 + √

�), as stated.
To predict the result of Theorem 1.2 one uses the same reasoning, except for

replacing the probability of about exp(−aγm) of the SRW not hitting the center
of a disc during aγ 2m2 consecutive γ -excursions with the probability of about
exp(−(

√
a − √

2α/γ )2γm) that it makes less than (4α/π)m2 visits to the center
of the disc during aγ 2m2 γ -excursions (cf. Lemma 5.1 for the argument leading to
this tail probability). Indeed, using the latter probability we find that about 2(γ +√

α)2m2 of the γ -excursions are needed to assure that all lattice sites in a given
disc D(x, rγm) are α-favorites. Equating this with 2β2m2 yields the value of γ =
(1 − √

α)/2 as stated.
To prove these three theorems one needs nontrivial modifications of the clas-

sical second moment method. Fortunately, adapting the “multiscale refinement”
machinery of [2–4] to the present context, provides the necessary ingredients for
proving these results. Indeed, in Sections 2 and 3 we prove the bounds on R(r)

for Theorem 1.1 (lower bounds and upper bounds, resp.), and in Sections 5 and 6,
extend these bounds to the setting of Theorem 1.2, whereas in Section 4 we ex-
tend both bounds to the setting of Theorem 1.3. Finally, Section 7 is devoted to the
derivation of Theorem 1.4.
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When actually proving these theorems one uses potential theory estimates for
the SRW (e.g., from [7]), in order to justify that its hitting probabilities are suffi-
ciently close to those of the planar Brownian motion. This, as well as the control
of the effect of noncentering and the control of the influence of terminal points of
each excursion (when considering the relevant second moment), require a better
separation of scales. Thus, the proof is carried along the preceding reasoning, but
for a sequence rk which grows at rate eck log k for some c > 0 large enough (c = 3
suffices here). Specifically, taking throughout rk = (k!)3 allows us to best reuse
proofs from [2–4], focusing in this manuscript on those ingredients that are not al-
ready present there. For the same reason, when proving the lower bounds we also
consider rm,k = rm/rk , so, for example, rm,[βm] is roughly of same size as r[γm]
for γ = 1 − β (both being about ecγm logm).

Though we deal here exclusively with the SRW on Z
2, similar results apply for

the whole class of random walks considered in [2], Theorem 5.1 upon appropri-
ately modifying the relevant proofs.

The results of this manuscript also inspired the analogous treatment of extremal
points of the discrete Gaussian free field in the box [−n,n]2 subject to zero bound-
ary conditions, where, for example, the size of the largest sub-box of α-high points
of the field corresponds to (1.4) here (see [1] for details).

Throughout this paper we use o(1m) to denote a function f (m) which converges
to zero as m → ∞ and use the notation am ∼ bm to indicate that am/bm → 1 as
m → ∞.

2. The lower bound for Theorem 1.1. Let (Si, i ≥ 0) denote the SRW on Z
2

with D(x, r) = {y ∈ Z
2 : |y − x| < r} denoting the disc of radius r centered at x.

For any set A ⊆ Z
2 we let

∂A =
{
y ∈ Z

2 :y /∈ A, and inf
x∈A

|y − x| = 1
}

denote the boundary of A in Z
2 and TA = inf{i ≥ 0 :Si ∈ A} the hitting time

of A, so in particular τ(r) = T∂D(0,r). As in the Introduction, we let r0 = 1 and
rk = (k!)3 for k ≥ 1. Using the monotonicity of r �→ R(r) and the fact that
limm→∞ log rm/ log rm−1 = 1, it follows by a simple interpolation argument that
(1.3) is an immediate consequence of

lim
m→∞

logR(rm)

log rm
= 1

2
a.s.(2.1)

We proceed to provide here the relevant lower bound

lim inf
m→∞

logR(rm)

log rm
≥ 1

2
a.s.(2.2)
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deferring the corresponding upper bound to Section 3. It actually suffices to prove
that for any η > 0 there exists pη > 0 such that for all sufficiently large m,

P
(

logR(8rm)

log rm
≥ 1

2
− 2η

)
≥ pη > 0.(2.3)

Indeed, then for all m large enough,

P
(

logR(rm)

log rm+1
≤ 1

2
− 3η

)
≤ 1 − pη < 1.

Further, with R̃([s, t]) denoting the radius of the largest disc completely covered
by {Si : i = s, . . . , t}, we have that

R(rm+1) ≥ max
{
R̃

([
τ
(
(k − 1)rm

)
, τ (krm)

])
:k = 1, . . . , (m + 1)3}

.

So, by the strong Markov property of the SRW at the successive stopping times
τ(krm), k = 1,2, . . . , (m+1)3 and the fact that D(Sτ((k−1)rm), rm) ⊆ D(0, krm) ⊆
D(0, rm+1), we get that

P
(

logR(rm+1)

log rm+1
≤ 1

2
− 3η

)
≤ (1 − pη)

(m+1)3
.

Consequently, an application of the Borel–Cantelli lemma, followed by taking
η ↓ 0 yields the bound of (2.2).

Turning to the proof of (2.3), we next construct a subset of the event appear-
ing in (2.3), the probability of which is easier to bound below. To this end, let
rm,k = rm/rk for k = 1, . . . ,m [so that rm,1 = rm = (m!)3 and rm,m = 1]. Then,
fixing a > 0 we set nk = nk(a) = 3ak2 log k for 3 ≤ k ≤ m − 1 and for any
x ∈ Z

2, let Nx
m,k denote the number of excursions of {Si} from ∂D(x, rm,k) to

∂D(x, rm,k−1) until time T∂D(x,rm). Fixing 0 < β < 1, with some abuse of nota-
tion we let βm denote hereafter the integer part of βm. Let Hx

βm denotes the event
that the SRW visits each point in D(x, rm,βm+1) during the first Nx

m,βm excursions
from ∂D(x, rm,βm) to ∂D(x, rm,βm−1).

We say that a point x ∈ Z
2 is m,β-successful if

Hx
βm occurs and nk(a)−k ≤ Nx

m,k ≤ nk(a)+k for k = 3, . . . , βm.(2.4)

Let Am ⊆ Z
2 be a maximal collection of points in [3rm,4rm]2 such that the dis-

tance between any two points in Am is at least 4rm,βm.
The existence of an m,β-successful point in Am implies that R(8rm) ≥

rm,βm+1. Noting that log rm,βm+1 ∼ (1 − β) log rm, we thus establish (2.3) by
showing that for all β = 1 − γ > 1/2, upon taking a = a(β) < 2 such that

aβ2 > 2γ 2,(2.5)

the probability that there is at least one m,β-successful point in Am is bounded
away from zero as m → ∞.
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As we will show, the fact that a < 2 guarantees that, with a probability that is
bounded away from zero as m → ∞, there exists at least one x ∈ Am for which
nk(a) − k ≤ Nx

m,k ≤ nk(a) + k, k = 3, . . . , βm, and the relation (2.5) guarantees
that with very high probability Hx

βm then holds as well.
Let Vm = ∑

x∈Am
Y (m,x), where Y(m,x) denotes the indicator random vari-

able for the event {x is m,β-successful}. Then, we have (2.3) as soon as we show
that for any δ > 0 and all m sufficiently large,

P(Vm ≥ r2−a−δ
βm ) ≥ cδ > 0(2.6)

Note that |Am| = r2
m/(16r2

m,βm) = r2
βm/16 so that by (2.9) of Lemma 2.1, for some

δ′
m → 0,

E(Vm) ≥ |Am|q̄m ≥ r
2−a−δ′

m

βm .(2.7)

Applying the Paley–Zygmund inequality (see [6], page 8), it thus suffices to show
that E(V 2

m) ≤ C(EVm)2 for some C < ∞ and all m sufficiently large. Furthermore,
EVm → ∞ when m → ∞ [see (2.7)], so it suffices to show that

E

( ∑
x,y∈Am

x �=y

Y (m,x)Y (m,y)

)
≤ C(EVm)2.(2.8)

The next lemma is proven at the end of this section.

LEMMA 2.1. If a and β = 1 − γ satisfy (2.5) then there exists δm → 0 such
that

q̄m := inf
x∈Am

P(x is m,β-successful) ≥ r
−(a+δm)
βm .(2.9)

Further, for some c < ∞, all m and x �= y ∈ Am,

P(x, y are m,β-successful) ≤ cq̄2
mr

a+δk(x,y)

k(x,y) ,(2.10)

where k(x, y) = min{j ≥ 1 :D(x, rm,j + 1) ∩ D(y, rm,j + 1) = ∅} and
k(x, y) ≤ βm when x �= y ∈ Am.

We return to the proof of (2.3). In the sequel, we let Ci denote finite constants
that are independent of m. The definition of k(x, y) ≥ 1 implies that |x − y| <

2(rm,k(x,y)−1 + 1). Note that there are at most C0r
2
m,k−1/r2

m,βm = C0r
2
βm/r2

k−1 =
C′

0|Am|r−2
k−1 points y ∈ Am in the ball of radius 2(rm,k−1 + 1) centered at x. Thus,
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it follows from Lemma 2.1 that for any fixed η > 0 such that 2 − (a + 2η) > 0,∑
x,y∈Am

1≤k(x,y)≤βm

E
(
Y(m,x)Y (m,y)

)

≤ C1
∑

x,y∈Am
1≤k(x,y)≤βm

q̄2
mr

a+η
k(x,y)

(2.11)

≤ C2q̄
2
m|Am|2

βm∑
k=1

r−2
k−1r

a+η
k ≤ C3(|Am|q̄m)2

βm∑
k=1

r
−(2−a−2η)
k

≤ C3(|Am|q̄m)2
∞∑

k=1

r
−(2−a−2η)
k ≤ C4(EVm)2,

which completes the proof of (2.3).

PROOF OF LEMMA 2.1. We say that a point x ∈ Am ⊆ Z
2 is m,β-pre-

successful if

nk(a) − k ≤ Nx
m,k ≤ nk(a) + k for k = 3, . . . , βm.

The proof of Lemma 3.2 of [10] establishes the analog of the statements (2.9) and
(2.10) with m,β-successful replaced by m,β-presuccessful, β = 1 and where in-
stead of rm,k we have m3(m−k)em. This proof works just as well for our choice of β

and rm,k . Since an m,β-successful point is also m,β-presuccessful this establishes
the upper bound of (2.10). It thus remains only to show that uniformly in x ∈ Am

P(x is m,β-successful) ≥ (
1 + o(1m)

)
P(x is m,β-presuccessful).(2.12)

To this end, let Lz,m,β denote the event that z is not visited during the first
nβm(a) − βm excursions from ∂D(x, rm,βm) to ∂D(x, rm,βm−1). We first show
that

ξm = sup
x∈Am

P

( ⋃
z∈D(x,rm,βm+1)

Lz,m,β

)
→ 0 as m → ∞.(2.13)

To see this, note that for x ∈ Am

P

( ⋃
z∈D(x,rm,βm+1)

Lz,m,β

)
≤ 4r2

m,βm+1 sup
z∈D(x,rm,βm+1)

P(Lz,m,β),(2.14)

and by the strong Markov property of the SRW,

P(Lz,m,β) ≤
(

sup
y∈∂D(x,rm,βm)

Py(
Tz > T∂D(x,rm,βm−1)

))nβm(a)−βm

.(2.15)
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Now for any δ′ > 0 and m large enough,

inf
y∈∂D(x,rm,βm)

Py(
Tz < T∂D(x,rm,βm−1)

)
≥ inf

y∈∂D(z,rm,βm+|z−x|) Py(Tz < T∂D(z,rm,βm−1−|z−x|))

= log((rm,βm−1 − |z − x|)/(rm,βm + |z − x|)) + O((m logm)−1)

log(rm,βm−1 − |z − x|) ≥ 1 − δ′

γm

where we have used Proposition 1.6.7 of [7] in the latter equality. Hence, by (2.15),

P(Lz,m,β) ≤
(

1 − 1 − δ′

γm

)nβm(a)−βm

≤ e−(1−2δ′)3aβ2m(logm)/γ .(2.16)

Since r2
m,βm+1 ≤ e2(1+δ′)3γm logm, taking δ′ sufficiently small we get (2.13) from

(2.14), (2.16) and (2.5).

Hereafter we write N
k∼ nk when |N −nk(a)| ≤ k and for any x ∈ Z

2 and ρ < R

let Gx(R;ρ) denote the σ -algebra generated by the excursions of the SRW from
∂D(x,R) to ∂D(x,ρ), including the part of the path till first hitting ∂D(x,R).
Conditioning on Nx

m,βm = � and on Gx
βm := Gx(rm,βm−1; rm,βm), for each x ∈ Am

the event Hx
βm holds if and only if the SRW visits each site in D(x, rm,βm+1)

during its first � excursions from ∂D(x, rm,βm) to ∂D(x, rm,βm−1). Since both
rm,βm+1/rm,βm and rm,βm/rm,βm−1 are of O(m−3) while m−3(logm) ×
nβm(a) → 0, it follows from Lemma 2.4 of [4] that uniformly with respect to

�
βm∼ nβm and x ∈ Am

P(Hx
βm | Gx

βm,Nx
m,βm = �) ≥ (

1 + o(1m)
)
(1 − ξm)1{Nx

m,βm=�}.(2.17)

Since {Nx
m,k

k∼ nk} ∈ Gx
βm for any 3 ≤ k ≤ βm, we deduce by (2.17) that

P(x is m,β-successful)

= P(Nx
m,k

k∼ nk ∀k ∈ [3, βm];Hx
βm)

(2.18)
= ∑

�
βm∼ nβm

P(Nx
m,k

k∼ nk ∀k ∈ [3, βm − 1];Nx
m,βm = �;Hx

βm)

≥ (
1 + o(1m)

)
(1 − ξm)P(Nx

m,k

k∼ nk ∀k ∈ [3, βm]).
Recall that ξm → 0 by the estimate of (2.13), hence

P(x is m,β-successful) ≥ (
1 + o(1m)

)
P(Nx

m,k

k∼ nk ∀k ∈ [3, βm]),
which amounts to (2.12). �
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3. The upper bound for Theorem 1.1. In this section we establish the upper
bound for (2.1):

lim sup
m→∞

logR(rm)

log rm
≤ 1

2
a.s.(3.1)

Fix 0 < γ < 1. We begin by describing a two-tiered collection of discs
in D(0, rm). Let Bm,2 be a maximal collection of points in D(0, rm−1) such
that the discs {D(xi, rγm+2) ; xi ∈ Bm,2} are disjoint and do not intersect
D(0, rγm+2) (hereafter we use γm also for the integer part of γm). For each
x ∈ Bm,2, let Bm,1(x) be a maximal collection of points such that the discs
{D(yi, rγm) ; yi ∈ Bm,1(x)} are disjoint and contained in D(x, rγm+2). Let
Bm,1 = ⋃

x∈Bm,2
Bm,1(x).

For any y ∈ Bm,1, we let N
y
m denote the number of excursions from ∂D(y,

rγm−1) to ∂D(y, rγm) until time τ(rm). Recall the notation nk(a) = 3ak2 logk for
a > 0, k ≥ 3, and taking β = 1 − γ , consider the events


m(a) = ⋂
y∈Bm,1

{Ny
m ≤ nβm(a)},(3.2)

about which the following lemma is proved at the end of the section.

LEMMA 3.1. For any a > 2 we can find ζ = ζ(a, γ ) > 0 such that for all m

sufficiently large,

P(
m(a)) ≥ 1 − e−ζm logm.(3.3)

For any D(x, r) ⊆ Z
2, let C(x, r) denote the number of steps it takes the SRW

to cover D(x, r). Note that if the SRW covers a disc of radius rγm+3 with center
in D(0, rm−1), then it must also cover D(x, rγm+2) for some x ∈ Bm,2. Therefore,
one can easily check that the upper bound (3.1) follows once we show that for any
1/2 < γ < 1

∞∑
m=5

P

( ⋃
x∈Bm,2

{C(x, rγm+2) ≤ τ(rm)}
)

< ∞.(3.4)

Further, by Lemma 3.1 it suffices to show that for some a > 2,
∞∑

m=5

P

( ⋃
x∈Bm,2

{C(x, rγm+2) ≤ τ(rm)} | 
m(a)

)
< ∞.(3.5)

We have

P

( ⋃
x∈Bm,2

{C(x, rγm+2) ≤ τ(rm)} | 
m(a)

)
(3.6)

≤ ∑
x∈Bm,2

P
(
C(x, rγm+2) ≤ τ(rm) | 
m(a)

)
,
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and since |Bm,2| ≤ Cem2
, for γ > 1/2, choosing a(γ ) > 2 sufficiently close to 2,

the summability of (3.5) is a consequence of the next lemma.

LEMMA 3.2. If 0 < γ = 1 − β < 1 and a > 0 are such that

aβ2 < 2γ 2,(3.7)

then for all m large enough,

sup
x∈Bm,2

P
(
C(x, rγm+2) ≤ τ(rm) | 
m(a)

) ≤ e−m3
.(3.8)

PROOF OF LEMMA 3.2. Clearly,

{C(x, rγm+2) ≤ τ(rm)} ⊆ ⋂
y∈Bm,1(x)

{C(y, rγm−2) ≤ τ(rm)}.(3.9)

Let C̃(y, rγm−2;k) denote the event that D(y, rγm−2) is covered in the first k ex-
cursions from ∂D(y, rγm−1) to ∂D(y, rγm). Note that for any y ∈ Bm,1, the events

m(a) and {C(y, rγm−2) ≤ τ(rm)} imply that also C̃(y, rγm−2;nβm(a)) holds. Our
construction of Bm,1 guarantees that for each m, k and y′, y ∈ Bm,1 such that
y′ �= y, the events 
m(a) and C̃(y′, rγm−2;k) are in the σ -algebra Gy(rγm; rγm−1)

generated by the excursions of the SRW from ∂D(y, rγm) to ∂D(y, rγm−1). Fur-
ther, by Lemma 2.4 of [4] we know that uniformly in y ∈ Bm,1

P
(
C̃

(
y, rγm−2;nβm(a)

) | Gy(rγm; rγm−1)
) = (

1+o(1m)
)
P

(
C̃

(
y, rγm−2;nβm(a)

))
.

Consequently, by (3.9),

P
(
C(x, rγm+2) ≤ τ(rm) | 
m(a)

) ≤ P

( ⋂
y∈Bm,1(x)

C̃
(
y, rγm−2;nβm(a)

) | 
m(a)

)

= ∏
y∈Bm,1(x)

(
1 + o(1m)

)
P

(
C̃

(
y, rγm−2;nβm(a)

))
.

We will show that if a, γ and β = 1 − γ satisfy (3.7), then

sup
y∈Bm,1

P
(
C̃

(
y, rγm−2;nβm(a)

)) = o(1m).(3.10)

Since |Bm,1(x)| ≥ m4, this in turn results with the statement (3.8) of the lemma.
To prove (3.10) we fix γ ′ > γ and applying (3.19) of [4] with K = rγ ′m,

R = rγm, r = rγm−1 and N = nβm(a), we deduce that for any δ > 0, uniformly in
y ∈ Bm,1 with probability 1−o(1m) it takes the SRW on the two dimensional torus
Z

2
K of side length K less than T := 2

π
(1 + δ)K2N log(R/r) steps to complete N

excursions from ∂D(y, rγm−1) to ∂D(y, rγm) [since N log(R/r)/ log(K/r) → ∞
as m → ∞]. It is not hard to verify that (3.7) implies that T ≤ 4

π
(1 − δ)(K logK)2

for δ = δ(a, γ ) > 0 sufficiently small and all m large enough. It then follows
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from (1.2) of [4] that when γ ′ is such that (γ /γ ′)2 > (1 − δ), the probability that
the SRW on the torus Z

2
K covers D(y, rγm−2) within that many steps is o(1m),

again uniformly in y. Thus, the probability that the SRW on the torus Z
2
K covers

D(y, rγm−2) during its first N excursions from ∂D(y, rγm−1) to ∂D(y, rγm) is
o(1m). We are interested in the same probability, but for the SRW on Z

2. How-
ever, note that conditioned on their beginning and end points the N excursions in
question are mutually independent and each has the same (conditioned) law for Z

2

and for the torus Z
2
K . Further, from Lemma 2.4 of [4] we know that the probability

we are considering is, up to a factor 1 + o(1m), independent of the beginning and
end points of these excursions. This completes the proof of (3.10) and hence of the
lemma. �

PROOF OF LEMMA 3.1. The proof is similar to that of (2.13). Indeed, fixing
a > 2 it suffices to show that for some ζ = ζ(a, γ ) > 0 and all m large enough

P

( ⋃
y∈Bm,1

{Ny
m > nβm(a)}

)
≤ e−ζm logm.(3.11)

To see this, note that

P

( ⋃
y∈Bm,1

{Ny
m > nβm(a)}

)
≤ |Bm,1| sup

y∈Bm,1

P
(
Ny

m > nβm(a)
)

(3.12)

and by the strong Markov property of the SRW,

P
(
Ny

m > nβm(a)
) ≤

(
sup

x∈∂D(y,rγm)

Px(
T∂D(0,rm) > T∂D(y,rγm−1)

))nβm(a)

.(3.13)

Now for any δ′ > 0 and m large enough,

inf
x∈∂D(y,rγm)

Px(
T∂D(0,rm) < T∂D(y,rγm−1)

)
≥ inf

x∈∂D(y,rγm)
Px(

T∂D(y,rm+|y|) < T∂D(y,rγm−1)

)

= log(rγm/rγm−1) + O(r−1
γm−1)

log((rm + |y|)/rγm−1)
≥ 1 − δ′

βm

where we have used Exercise 1.6.8 of [7] in the latter equality. Hence, by (3.13),

P
(
Ny

m > nβm(a)
) ≤

(
1 − 1 − δ′

βm

)nβm(a)

≤ e−a(1−2δ′)3βm logm.(3.14)

Since |Bm,1| ≤ e2(1+δ′)3βm logm, for a > 2 the estimate (3.11) follows from (3.12)
and (3.14) upon taking δ′ > 0 sufficiently small. �
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4. Proof of Theorem 1.3. By the same argument as in the proof of the lower
bound for (1.3), the lower bound for (1.8) follows once we show that for any η > 0
there exists pη > 0 such that for all sufficiently large m,

P
(

logR�(8rm)

log rm
≥ 1

1 + √
�

− 2η

)
≥ pη > 0.(4.1)

To this end, for x ∈ Z
2, 3 ≤ k ≤ m − 1 and 1 ≤ j ≤ � let N

x,j
m,k denote the

number of excursions of the j ’th SRW from ∂D(x, rm,k) to ∂D(x, rm,k−1) un-
til its hitting time of ∂D(x, rm). Fixing a > 0 and 0 < β = 1 − γ < 1, we set
nk(a) = 3ak2 log k. We say that x ∈ Z

2 is m,β, �-presuccessful if

nk(a) − k ≤ N
x,j
m,k ≤ nk(a) + k for k = 3, . . . , βm, j = 1, . . . , �,

and say that x ∈ Z
2 is m,β, �-successful if in addition for j = 1, . . . , �, each point

in D(x, rm,βm+1) is visited during the first N
x,j
m,βm excursions of the j ’th SRW

from ∂D(x, rm,βm) to ∂D(x, rm,βm−1).
As before, Am ⊆ Z

2 is a maximal collection of points in [3rm,4rm]2 such that
the distance between any two points in Am is at least 4rm,βm. With log rm,βm+1 ∼
γ log rm we establish (4.1) by showing that for some a(β) and any γ = 1 − β <

1/(1 + √
�) the probability that there is at least one m,β, �-successful point in

Am is bounded away from zero as m → ∞. Specifically, as before we show that
if a and β = 1 − γ satisfy (2.5) then uniformly in Am each m,β, �-presuccessful
point is with high probability also m,β, �-successful. Then we show that a < 2/�

guarantees that with a probability that is bounded away from zero as m → ∞, there
exists at least one m,β, �-presuccessful point in Am. This establishes (4.1) because
for γ = 1 − β < 1/(1 + √

�) we can satisfy (2.5) with some a < 2/�. Indeed,
arguing as in Section 2, for a < 2/� the existence of at least one m,β, �-successful
point in Am, is a consequence of our next lemma [simply take η > 0 so that 2 −
�(a + 2η) > 0 when adapting (2.11) to the present context], which thus completes
the proof of the lower bound for (1.8).

LEMMA 4.1. If a and β = 1 − γ satisfy (2.5) then there exists δm → 0 such
that

q̄m,� := inf
x∈Am

P(x is m,β, �-successful) ≥ r
−�(a+δm)
βm .(4.2)

Further, for some c < ∞, all m and x �= y ∈ Am

P(x, y are m,β, �-successful) ≤ cq̄2
m,�r

�(a+δk(x,y))

k(x,y)(4.3)

[where as before k(x, y) = min{j ≥ 1 :D(x, rm,j + 1) ∩ D(y, rm,j + 1) = ∅} ≤
βm].
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PROOF. This is an easy adaptation of the proof of Lemma 2.1. Indeed, as
shown there, (2.5) guarantees that uniformly in Am each m,β, �-presuccessful
point is with high probability also m,β, �-successful [raising the factor (1 +
o(1m))(1− ζm) in (2.18) to the �th power], while since the presuccessful condition
now involves � independent walks, the probabilities in the statement of Lemma 2.1
are now raised to the �th power. �

We turn next to the upper bound for (1.8), which amounts to showing that

lim sup
m→∞

logR�(rm)

log rm
≤ 1

1 + √
�

a.s.(4.4)

To this end, fixing 0 < γ = 1−β < 1 we adapt the argument of Section 3 using the
same two-tiered collection of discs in D(0, rm). For any y ∈ Bm,1 here N

y,j
m de-

notes the number of excursions of the j th SRW from ∂D(y, rγm−1) to ∂D(y, rγm)

until the time τj (rm) in which the j th SRW first exits D(0, rm). Fixing a > 0 and
setting again nk(a) = 3ak2 log k we now consider the events


m,�(a) := ⋂
y∈Bm,1

�⋃
j=1

{Ny,j
m ≤ nβm(a)},(4.5)

about which we show the following.

LEMMA 4.2. For any a > 2/� we can find ζ = ζ(a, γ ) > 0 such that for all
m sufficiently large,

P(
m,�(a)) ≥ 1 − e−ζm logm.(4.6)

PROOF. It suffices to show that when a > 2/� we can find ζ = ζ(a, γ ) > 0
such that for all m sufficiently large,

P

( ⋃
y∈Bm,1

�⋂
j=1

{Ny,j
m > nβm(a)}

)
≤ e−ζm logm.(4.7)

Since the � walks are independent, we have that

P

( ⋃
y∈Bm,1

�⋂
j=1

{Ny,j
m > nβm(a)}

)
≤ |Bm,1|

(
sup

y∈Bm,1

P
(
Ny

m > nβm(a)
))�

(4.8)

and using the upper bound of (3.14) with δ′ sufficiently small, we verify that (4.7)
holds for some ζ > 0 as soon as �a > 2. �

For j = 1, . . . , �, let Cj (x, r) denote the number of steps required until the j th
SRW covers D(x, r). Note that if all � walks cover some disc of radius rγm+3
with center in D(0, rm−1), then necessarily for some x ∈ Bm,2 they all cover
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D(x, rγm+2). It is therefore easy to check that the upper bound of (4.4) follows
once we show that for each 1/(1 + √

�) < γ < 1,

∞∑
m=5

P

( ⋃
x∈Bm,2

�⋂
j=1

{Cj (x, rγm+2) ≤ τj (rm)}
)

< ∞.(4.9)

Further, considering a ↓ 2/�, in view of Lemma 4.2 this is a direct consequence of
our next lemma.

LEMMA 4.3. If 0 < γ = 1−β < 1 and a > 0 satisfy (3.7), then for all m large
enough,

sup
x∈Bm,2

P

(
�⋂

j=1

{Cj (x, rγm+2) ≤ τj (rm)} | 
m,�(a)

)
≤ e−m3

.(4.10)

PROOF. Let C̃j (y, rγm−2;k) denote the event that the j th SRW covers
D(y, rγm−2) during its first k excursions from ∂D(y, rγm−1) to ∂D(y, rγm).
Note that for any y ∈ Bm,1, the events 
m,�(a) and {Cj (y, rγm−2) ≤ τ(rm)} for
j = 1, . . . , �, imply that at least one of the events C̃j (y, rγm−2;nβm(a)) holds as
well. Thus, by the independence of the � walks, as in the proof of Lemma 3.2 we
have that for all x ∈ Bm,2,

P

(
�⋂

j=1

{Cj (x, rγm+2) ≤ τj (rm)} | 
m,�(a)

)

≤ P

( ⋂
y∈Bm,1(x)

�⋃
j=1

C̃j

(
y, rγm−2;nβm(a)

) | 
m,�(a)

)

≤ ∏
y∈Bm,1(x)

[(
1 + o(1m)

) �∑
j=1

P
(
C̃j

(
y, rγm−2;nβm(a)

))]
.

Since a and γ = 1 − β satisfy (3.7), we next apply the bound (3.10) to the pre-
ceding inequality, and with |Bm,1(x)| ≥ m4, thus establish the bound (4.10) of the
lemma. �

5. The lower bound for Theorem 1.2. As seen before, it suffices to consider
the lower bound for (1.6) and the sequence rm. Further, by the same argument as
in the proof of the lower bound for Theorem 1.1, it suffices to prove the analog
of (2.3), namely, to show that

lim inf
m→∞ P

(
logR

(
8rm;4α(log rm)2/π

) ≥ γ log rm
)
> 0,(5.1)

whenever γ = 1 − β < (1 − √
α)/2 or equivalently, 0 < γ < β − √

α. To
prove (5.1), rerun the arguments of Section 2 while replacing the event Hx

βm in
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the definition (2.4) of an m,β-successful point x with the event Hx
βm(α) that

the SRW visits each point in D(x, rm,βm+1) at least α(log rm)2/π times dur-
ing its first Nx

m,βm excursions from ∂D(x, rm,βm) to ∂D(x, rm,βm−1). It is not
hard to check that this strategy works as soon as (2.12) applies for this definition
of m,β-successful points and some a = a(β) < 2, whenever 0 < γ < β − √

α. As
for the latter, let Lz,m,β(α) denote the event that z ∈ D(x, rm,βm+1) is visited less
than 4α(log rm)2/π times during the first nβm(a) − βm excursions of the SRW
from ∂D(x, rm,βm) to ∂D(x, rm,βm−1). Then, following the proof of Lemma 2.1,
we have (5.1) as soon as we show that for 0 < γ < β − √

α and a < 2 sufficiently
close to 2,

ξm(α) = sup
x∈Am

P

( ⋃
z∈D(x,rm,βm+1)

Lz,m,β(α)

)
→ 0 as m → ∞(5.2)

[compare with (2.13)]. Turning to the derivation of (5.2), set R = rm,βm−1 −
rm,βm+1 and ρ = rm,βm + rm,βm+1 and let L′

z,m,β(α) denote the event that z is

visited less than 4α(log rm)2/π times during the first nβm(a) − βm excursions of
the SRW from ∂D(z,ρ) to ∂D(z,R). Note that if z ∈ D(x, rm,βm+1) then

D(x, rm,βm) ⊆ D(z,ρ) ⊆ D(z,R) ⊆ D(x, rm,βm−1),

implying that the SRW makes at least k excursions from ∂D(z,ρ) to ∂D(z,R)

during its first k excursions from ∂D(x, rm,βm) to ∂D(x, rm,βm−1), so in particu-
lar, Lz,m,β(α) ⊆ L′

z,m,β(α). Consequently, with R > rm,βm+1, for some constant
c < ∞

ξm(α) ≤ cr2
m,βm+1 sup

z∈D(x,rm,βm+1)
x∈Am

P(Lz,m,β(α))

(5.3)
≤ cR2 sup

z/∈D(0,ρ)

P(L′
z,m,β(α)).

When 0 < γ = 1 − β < β − √
α, if both δ > 0 and 2 − a > 0 are sufficiently

small, then our next lemma shows that P(L′
z,m,β(α)) ≤ R−2−η for some η =

η(β,α, δ, a) > 0 and all z /∈ D(0, ρ). Combining this bound with (5.3) yields that
(5.2) holds, thus completing the proof of the lower bound for Theorem 1.2.

LEMMA 5.1. If a, δ,β > 0 are such that

(1 − δ)2aβ2 > 2α,(5.4)

then for all m sufficiently large,

sup
z/∈D(0,ρ)

P(L′
z,m,β(α)) ≤ R−((1−δ)β

√
a−√

2α)2/γ 2
.(5.5)
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PROOF. Let L(j, z) denote the number of visits to z during the j th excursion
of the SRW from ∂D(z,ρ) to ∂D(z,R). Setting k = k(a,βm) := nβm(a) − βm

and s = s(α,m) := 4α(log rm)2/π , by Chebyshev’s inequality and the strong
Markov property of the SRW, for any λ > 0

P(L′
z,m,β(α)) = P

(
k∑

j=1

L(j, z) < s

)
(5.6)

≤ eλs
E

(
e
−λ

∑k
j=1 L(j,z)) ≤ eλs

[
sup

y∈∂D(z,ρ)

E
y(

e−λL(z))]k

,

where L(z) denotes the number of visits to z of a SRW that starts at y ∈ ∂D(z,ρ)

and is killed upon reaching ∂D(z,R). Since the preceding bound is independent
of z, we take hereafter z = 0 and let

GR(v,u) := E
v

(
τ(R)∑
i=0

1{Si=u}
)

denote the Green function for the SRW on D(0,R). Clearly, GR(y,0) = E
yL(0)

and conditional on hitting the origin, L(0) is a geometric random variable.
Consequently, Py(L(0) = j + 1) = pqj (1 − q) for j = 0,1, . . . with p =
GR(y,0)/GR(0,0) and q = 1 − 1/GR(0,0). Hence for any λ > 0,

E
y(

e−λL(0)) = 1 − (eλ − 1)GR(y,0)

1 + (eλ − 1)GR(0,0)
.(5.7)

By Proposition 1.6.6 of [7], GR(0,0) ∼ 2
π

logR when R → ∞, so taking λ =
π
2 ϕ/ logR we have that (eλ − 1)GR(0,0) ∼ ϕ as m → ∞ (i.e., R → ∞). Further,
by Proposition 1.6.7 of [7] we have that

inf
y∈∂D(0,ρ)

GR(y,0) = 2

π
log

(
R

ρ

)
+ O(ρ−1).

Recall that our choices of R = rm,βm−1 − rm,βm+1 and ρ = rm,βm + rm,βm+1 are
such that log(R/ρ)/ logR ∼ 1/(γm), so we get from (5.7) that for λ = π

2 ϕ/ logR,
any ϕ, δ > 0 and all m large enough,

sup
y∈∂D(0,ρ)

E
y(

e−λL(0)) ≤ 1 − (1 − δ)

γm

ϕ

1 + ϕ
≤ e−(1−δ)ϕ/(γm(1+ϕ)).(5.8)

Hence, by (5.6), for any ϕ > 0,

P(L′
z,m,β(α)) ≤ RAϕ−Bϕ/(1+ϕ),(5.9)

where by (5.4), for all m large enough,

A := π

2

s(α,m)

(logR)2 = 2α

(
log rm

logR

)2

∼ 2α

γ 2 ,(5.10)

B := (1 − δ)
k(a,βm)

γm logR
= (1 − δ)

nβm(a) − βm

γm logR
∼ (1 − δ)aβ2

γ 2(5.11)
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are such that B > A > 0, in which case a straightforward computation shows that

inf
ϕ>0

(
Aϕ − B

ϕ

1 + ϕ

)
= −(√

B − √
A

)2
.(5.12)

Combining (5.9)–(5.12) we get that (5.5) holds for all m large enough. �

6. The upper bound for Theorem 1.2. As explained before, it suffices to
prove the upper bound in (1.6) for the sequence rm. That is, fixing 1/2 > γ >

(1 − √
α)/2, to show that

lim sup
m→∞

logR(rm;4α(log rm)2/π)

log rm
< γ a.s.(6.1)

More precisely, adapting the proof of the upper bound for Theorem 1.1, we show
that for such γ any disc of radius rγm+3 with center in D(0, rm−1) contains at
time τ(rm) sites which the SRW visited less than 4α(log rm)2/π times. To this
end, let C̃α(y, rγm−2;k) denote the event that every point in D(y, rγm−2) is vis-
ited at least 4α(log rm)2/π times during the first k excursions from ∂D(y, rγm−1)

to ∂D(y, rγm). Using the two-tiered collection of discs as in Section 3, upon ap-
plying Lemma 3.1 and adapting to the present context the reasoning which pre-
cedes (3.10), we find that it suffices to prove the following lemma.

LEMMA 6.1. If β = 1 − γ , 1/2 > γ > β − √
α and a > 2 is sufficiently close

to 2 for
√

aβ − √
2
√

α <
√

2γ,(6.2)

then

sup
y∈Bm,1

P
(
C̃α

(
y, rγm−2;nβm(a)

)) = o(1m).(6.3)

PROOF. In view of (6.2) we fix 0 < η < γ and 1 < h < 2 such that
√

aβ − √
2
√

α <
√

h(γ − 2η).

Setting A = √
a/hβ − γ > 0 let n̂k(h) = 3h(k + Am)2 logm for k = 1, . . . , γm,

noting that

n̂γm(h) = 3aβ2m2 logm ≥ nβm(a),(6.4)

and further, for some a′ < 2α and all m large enough,

n̂ηm(h) + ηm ≤ 3a′m2 logm(6.5)

[e.g., a′ = h(2η + A)2 will do].
Next, let Nz

γm,k for k = 1, . . . , γm − 2, denote the number of excursions of
the SRW from ∂D(z, rk−1) to ∂D(z, rk) during its first n̂γm(h) excursions from
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∂D(z, ρ̂) to ∂D(z, R̂), where R̂ = rγm + rγm−2 and ρ̂ = rγm−1 − rγm−2. We say
that z /∈ D(0, ρ̂) is m,γ -presluggish if

n̂k(h) − k ≤ Nz
γm,k ≤ n̂k(h) + k, for k = ηm, . . . , γm − b,

for some fixed b ≥ 4 to be determined in the sequel. An m,γ -presluggish point z

is called m,γ -sluggish if during the first 3a′m2 logm excursions of the SRW from
∂D(z, rηm−1) to ∂D(z, rηm), it visits z less than 4α(log rm)2/π times, an event we
denote hereafter by L̂z,m,η(α).

Note that if z ∈ D(y, rγm−2) then

D(z, ρ̂) ⊆ D(y, rγm−1) ⊆ D(y, rγm) ⊆ D(z, R̂),

so prior to completing its first n̂γm(h) excursions from ∂D(z, ρ̂) to ∂D(z, R̂), the
SRW completes that many excursions from ∂D(y, rγm−1) to ∂D(y, rγm). Con-
sequently, in view of (6.4) and (6.5), any m,γ -sluggish point in D(y, rγm−2) is
visited by the SRW less than 4α(log rm)2/π times during its first nβm(a) excur-
sions from ∂D(y, rγm−1) to ∂D(y, rγm).

We thus complete the proof of Lemma 6.1 by showing that uniformly in
y ∈ Bm,1, with probability 1 − o(1m) there exists an m,γ -sluggish point in any
maximal set Zηm(y) of 4rηm-separated points in D(y, rγm−2). The key for this is
our next lemma (whose proof is deferred to the end of the section).

LEMMA 6.2. There exists δm → 0 such that

q̂m := inf
z/∈D(0,ρ̂)

P(z is m,γ -sluggish) ≥ r−(γ−η)h−δm
m(6.6)

and

sup
z/∈D(0,ρ̂)

P(z is m,γ -sluggish) = (
1 + o(1m)

)
q̂m.(6.7)

Further, let k(z, z′) = max{j :D(z, rj + 1) ∩ D(z′, rj + 1) = ∅}. Then, for any
ε > 0 there exist C,κ < ∞ which are both independent of b, such that for all m,
and z, z′ /∈ D(0, ρ̂) with ηm ≤ k(z, z′) ≤ γm − b

P(z, z′ are m,γ -sluggish) ≤ q̂2
mmκCγm−k(z,z′)

(
rγm−b

rk(z,z′)

)h+ε

.(6.8)

Furthermore, if γm − b < k(z, z′) and |z − z′| ≤ 2rγm−2 then

P(z, z′ are m,γ -sluggish) ≤ q̂2
m

(
1 + o(1m)

)
.(6.9)

Since there are r
2(γ−η)+o(1m)
m sites in Zηm(y) and h < 2 it follows from (6.6) that

the mean number of m,γ -sluggish points in Zηm(y) diverges as m → ∞. In view
of (6.7) and Chebyshev’s inequality, we complete the proof of Lemma 6.1 by show-
ing that the second moment of this random variable is (1 + o(1m))|Zηm(y)|2q̂2

m,
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hence in any disc D(y, rγm−2) the probability of finding at least one m,γ -sluggish
point is 1−o(1m). To this end, by the bound (6.9) it suffices to consider the contri-
bution to the second moment by z, z′ ∈ Zηm(y) with k = k(z, z′) ≤ γm − b. There
are at most

c2|Zηm(y)|
(

rk+1

rηm

)2

≤ c3|Zηm(y)|2
(

rk

rγm−3

)2

such pairs per given k. Hence, by (6.8), for 0 < ε < 2 − h and b > 3 + κ/6, the
contribution of all such pairs to the second moment is at most |Zηm(y)|2q̂2

m times(
rγm−b

rγm−3

)2

c3m
κ

γm−b∑
k=ηm

Cγm−k

(
rγm−b

rk

)h+ε−2

≤ c4m
κ−6(b−3)

∞∑
j=0

Cjm−3j (2−h−ε) = o(1m),

as required for completing the proof. �

PROOF OF LEMMA 6.2. We first show that an m,γ -presluggish point is with
very high probability also m,γ -sluggish. More precisely, adapting the proof of
Lemma 5.1, we shall show that for any a′ < 2α and η > 0 there exists ε =
ε(α, a′, η) > 0 such that for all large m,

inf
z/∈D(0,ρ)

P(L̂z,m,η(α)) ≥ 1 − R−ε,(6.10)

where now ρ := rηm−1 and R := rηm. Indeed, with L(j, z) denoting the number of
visits to z during the j th excursion of the SRW from ∂D(z,ρ) to ∂D(z,R), and
L(0) denoting the number of visits to 0 of a SRW that starts at y ∈ D(0, ρ) and
is killed upon reaching ∂D(0,R), taking now s = s(α,m) := 4α(log rm)2/π , and
k = k(a′,m) := 3a′m2 logm, we have by Chebyshev’s inequality and the strong
Markov property of the SRW, that for any λ > 0

1 − P(L̂z,m,η(α)) = P

(
k∑

j=1

L(j, z) ≥ s

)
≤ e−λs

[
sup

y∈∂D(0,ρ)

E
y(

eλL(0))]k

.(6.11)

Here log(R/ρ)/ logR ∼ 1/(ηm), so for λ = π
2 ϕ/ logR the computation leading to

(5.8), yields now that for any 1 > ϕ, δ > 0 and all m large enough,

sup
y∈∂D(0,ρ)

E
y(

eλL(0)) ≤ 1 + (1 + δ)

ηm

ϕ

1 − ϕ
≤ e(1+δ)ϕ/(ηm(1−ϕ)).(6.12)

In view of (6.11), taking δ > 0 small enough so (1 + δ)a′ < 2α, for ϕ = 1 −√
B/A > 0 we find that

1 − P(L̂z,m,η(α)) ≤ R−Aϕ+Bϕ/(1−ϕ) = R−(
√

A−√
B)2

,(6.13)
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where we get (6.10) upon checking that

A := π

2

s(α,m)

(logR)2 ∼ 2α

η2 and B := (1 + δ)
k(a′,m)

ηm logR
∼ (1 + δ)a′

η2 ,(6.14)

so a′ and δ are such that A > B > 0 for all m large enough, as needed for (6.13)
and (6.10) to hold.

Following the same outline as of the proof of Lemma 2.1, we employ hereafter
arguments that are very similar to those in the proof of Lemma 10.1 of [4]. That
is, first note that the probability that z is m,γ -sluggish depends on z /∈ D(0, ρ̂)

only via the distribution of the SRW upon first hitting ∂D(z, ρ̂). Since the defi-
nition of such points involves only O(m2 logm) excursions of the walk, whereas
R̂/ρ̂ = O(m3) and ρ̂/rγm−b ≥ O(m3), an application of Lemma 2.4 of [4] shows
that the dependence of this probability on z is negligible, as stated in (6.7). Sim-
ilarly, by (6.10) and the fact that L̂z,m,η(α) is in the σ -algebra of all excur-
sions from ∂D(z, rηm−2) to ∂D(z, rηm−1) completed by the walk during its first
3a′m2 logm excursions from ∂D(z, rηm−1) to ∂D(z, rηm), yet another application
of Lemma 2.4 of [4] shows that

q̂m = (
1 + o(1m)

)
inf

z/∈D(0,ρ̂)
P(Nz

γm,k

k∼ n̂k, k = ηm, . . . , γm − b)

(compare with the derivation leading to (10.10) of [4]). Due to the dependence of
the relevant excursions on their terminal points, {Nz

γm,k} is not a Markov chain.
Nevertheless, applying (5.9) of [4], we find that

q̂m = (
1 + o(1m)

) ∑
�k

k∼n̂k

P(Nz
γm,γm−b = �γm−b)

(6.15)

×
γm−b−1∏

k=ηm

(
�k+1 + �k − 1

�k

)
p

�k

k (1 − pk)
�k+1,

for pk = log(k + 1)/(log k + log(k + 1)). Further, it is not hard to check that for

some c0 < ∞ and all ηm ≤ k ≤ γm, if �k
2k∼ n̂k(h) then∣∣∣∣ �k

�k+1
− 1 + 2

k + Am

∣∣∣∣ ≤ c0

m logm
,

and hence for some c1 < ∞ and any such �k ,

k−3h−1

c1
√

logk
≤

(
�k+1 + �k − 1

�k

)
p

�k

k (1 − pk)
�k+1 ≤ c1k

−3h−1
√

logk
(6.16)

(cf. (10.11) of [4] or Lemma 7.2 of [2]). A similar polynomial bound applies for

P(Nz
γm,k

k∼ n̂k(h)), for example, when k = γm − b, so putting (6.15) and (6.16)
together we arrive at the bound (6.6).
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Since an m,γ -sluggish point is also m,γ -presluggish, it suffices to prove the
upper bounds of (6.8) and (6.9) for P(z, z′ are m,γ -presluggish). To this end, with
b ≥ 4, if |z− z′| ≤ 2rγm−2 then D(z, rγm−b+1) ⊆ D(z′, ρ̂). Thus, when γm− b <

k(z, z′) it is easy to verify that the event {z′ is m,γ -presluggish} is in the σ -algebra
Gz(rγm−b+1; rγm−b). Further, as usual, conditioned on Nz

γm,γm−b+1 = � the event
{z is m,γ -presluggish} is in the σ -algebra of all excursions from ∂D(z, rγm−b−1)

to ∂D(z, rγm−b) completed by the walk during its first � excursions from
∂D(z, rγm−b) to ∂D(z, rγm−b+1). Thus, if � of the preceding is not too large, then
the dependence of {z is m,γ -presluggish} on Gz(rγm−b+1; rγm−b) is negligible.
More precisely, it is not hard to verify that for large enough m,

P
(
Nz

γm,γm−b+1 ≥ m2(logm)2) ≤ e−m2 logm = o(1m)q̂2
m,

and we get (6.9) by an application of Lemma 2.4 of [4]. Finally, the proof of (6.8)
for presluggish points is a simple adaptation of the arguments used when proving
(10.5) of [4]. �

7. Proof of Theorem 1.4. Recall that V (n) is the number of steps after step
n until the SRW (Si, i ≥ 0) in Z

2 visits a previously unvisited site. We first prove
the upper bound, that is, fixing 1/20 > ε > 0, we show that

lim sup
n→∞

logV (n)

logn
≤ 1

2
+ 10ε a.s.(7.1)

To this end, considering the events Jn = {V (n) > n1/2+10ε} and Kn =⋂
m>n{R̃(m) < m1/4+ε}, we shall show that∑

n

P(Jn ∩ Kn) < ∞.(7.2)

Then, by the Borel–Cantelli lemma, almost surely, Jn ∩Kn occurs for only finitely
many values of n. From Theorem 1.1 we know that almost surely Kn occurs for
all n large enough, thus implying that Jn occurs for only finitely many values of n,
and (7.1) ensues.

Turning to prove (7.2), take ρ = ρ(n) = n1/4+2ε and R = R(n) = ρ1+ε , and let
H(m) denote the event that there exists a site x ∈ D(Sm,ρ) which is not visited by
the SRW up to time m + R2+ε . With Fn = σ(Sk, k ≤ n), considering a uniformly
chosen site among those in D(Sm,ρ) that are not visited by the SRW up to time m,
we have by its Markov property that

P(H(m)|Fm) ≤ 1 − inf
y∈D(0,ρ)

Py(T0 < R2+ε).(7.3)

By Propositions 1.6.6 and 1.6.7 of [7], for 0 < ε < 1 and ρ = ρ(n) large enough,

inf
y∈D(0,ρ)

Py(
T0 < τ(R)

) = inf
y∈D(0,ρ)

GR(y,0)

GR(0,0)
≥ ε

2
.(7.4)



LARGE COVERED DISCS FOR RANDOM WALKS 599

Further,

Py(T0 < R2+ε) ≥ Py(
T0 < τ(R)

) − Py(
τ(R) > R2+ε)

and Py(τ (R) > R2+ε) ≤ R−ε/2 for all R large enough and y ∈ D(0,R) (e.g., see
inequality (1.2.1) of [7]). Thus, by (7.3) and (7.4) we deduce that P(H(m)|Fm) ≤
1 − ε/3 for all n large enough. Now, let m(i) = n + 1 + (i − 1)n1/2+8ε for i =
1, . . . , n2ε , and take n large enough for ρ ≥ (n + n1/2+10ε)1/4+ε . Since m(i) +
R2+ε ≤ m(i + 1), it follows that H(m(i)) ∈ Fm(i+1), and further

Jn ∩ Kn ⊆
n2ε⋂
i=1

{R̃(m(i)) < ρ,V (m(i)) > R2+ε} ⊆
n2ε⋂
i=1

H(m(i)).

Consequently, the bound P(H(m)|Fm) ≤ 1 − ε/3 implies that

P(Jn ∩ Kn) ≤ P

( ⋂
i≤n2ε

H(m(i))

)
≤ (1 − ε/3)n

2ε

,

for all n large enough, which results with (7.2).
Fixing 0 < ε < 1/20 we conclude the proof by establishing the lower bound

lim sup
n→∞

logV (n)

logn
≥ 1

2
− 10ε a.s.(7.5)

To this end, consider the stopping times

τk = inf{n ≥ k :Sn ∈ D(x,n1/4−ε) ⊆ (Si, i ≤ n) for some x ∈ Z
2},(7.6)

for the filtration Fn. That is, τk is the first time n ≥ k for which the SRW is in a
disc of radius n1/4−ε having no previously unvisited sites. By Theorem 1.1, almost
surely {R(n) > R(n − 1) > n1/4−ε} for infinitely many n values, each of which
satisfies the conditions of (7.6). Consequently, almost surely τk < ∞ for all k.
Completely ordering Z

2 in agreement with the Euclidean distance from the origin,
let Xk denote the site closest to Sτk

among those x ∈ Z
2 such that every site in

D(x, τ
1/4−ε
k ) is visited by the SRW by time τk . Then, Sτk

∈ D(Xk, τ
1/4−ε
k ) and Xk

is measurable with respect to Fτk
.

We next show that the events

Mk = {V (n) ≥ n1/2−6ε for some τk ≤ n ≤ 2τk},(7.7)

are such that for some finite k0,

P(Mk) ≥ 1
6 ∀k ≥ k0.(7.8)

To this end, let θ(i) denote the shift of the SRW by i, that is, considering {Sn+i}
instead of {Sn}, and let T (k)(A) denote the first hitting time of a set A ∈ Z

2 by
the shifted random walk S

(k)
n := Sn ◦ θ(τk). Consider the stopping times σk :=

T (k)(D(Xk, τ
1/4−2ε
k )) with respect to the canonical filtration of the shifted walk



600 A. DEMBO, Y. PERES AND J. ROSEN

(S
(k)
i , i ≥ 0). Note that S

(k)
0 = Sτk

∈ D(Xk,ρ
1−4ε
k ) for ρk = τ

1/4
k , whereas σk =

inf{i ≥ 0 :S(k)
i ∈ D(Xk,ρ

1−8ε
k )} and ρk ≥ k1/4 by the definition of τk . Therefore,

by the strong Markov property of the SRW at the stopping time τk and considering
the worst possible choice of ρk , Xk and Sτk

, we have that for all k sufficiently
large,

P
(
σk ≤ τk|Fτk

) ≥ inf
R≥k1/4

inf
x

inf
y∈D(x,R1−4ε)

Py(
TD(x,R1−8ε) ≤ R4) ≥ 1

3(7.9)

(using Exercise 1.6.8 of [7] in the rightmost inequality). Similarly, for all k suffi-
ciently large, the events

Vk := {
T (k)(∂D

(
S

(k)
0 , τ

1/4−2ε
k

)) ≥ τ
1/2−5ε
k

}
,

are such that

P
(
Vk ◦ θ(σk)|Fτk

) ≥ inf
R≥k1/4

P
(
τ(R1−8ε) ≥ R2(1−8ε)−4ε) ≥ 5

6 .

The lower bound (7.8) then follows from the inclusion

{σk ≤ τk} ∩ {Vk ◦ θ(σk)} ⊆ Mk.(7.10)

To see this inclusion, note that Sτk+σk
∈ D(Xk, τ

1/4−2ε
k ) and the event Vk ◦ θ(σk)

guarantees that it takes S
(k)
σk+i = Sσk+τk+i at least τ

1/2−5ε
k steps to travel a dis-

tance of τ
1/4−2ε
k from its position at i = 0, a fortiori before exiting the disc

D(Xk, τ
1/4−ε
k ), all the sites of which have been previously visited by the SRW.

Consequently, if also σk ≤ τk , then

V (τk + σk) ≥ τ
1/2−5ε
k ≥ (τk + σk)

1/2−6ε,

hence Mk holds as well.
Since τk are a.s. finite we can find a deterministic function ψ(k) such that

P(τk > ψ(k)) ≤ 1/18 for all k. Then, by (7.8) the events Ik := Mk ∩ {k ≤ τk ≤
ψ(k)} are such that P(Ik) ≥ 1/9 for all k ≥ k0. With Px(Ik) independent of x, we
see by the Markov property of the SRW that for any m,

P
(
Ik ◦ θ(m) | Fm

) = PSm(Ik) = P(Ik) ≥ 1
9 a.s. ∀k ≥ k0.(7.11)

Define inductively the nonrandom t1 = k0 and tj = tj−1 + 3ψ(tj−1) for j ≥ 2.
Then, by (7.11)

∞∑
j=2

P
(
Itj ◦ θ(tj )

) = ∞.(7.12)

With Ik ∈ F3ψ(k), it follows that Itj ◦ θ(tj ) ∈ Ftj+3ψ(tj ) = Ftj+1 . Consequently,
by the Markov property and the fact, mentioned above, that Px(Ik) is independent
of x, the events {Itj ◦ θ(tj ); j ≥ 2} are mutually independent. Therefore, by (7.12)
and the second Borel–Cantelli lemma, with probability one, infinitely many of
them occur. It follows from (7.7) that Ik ◦ θ(k) readily implies that V (n + k) ≥
n1/2−6ε for some n ≥ k. Thus, with tj ↑ ∞, clearly (7.5) follows.
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