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ON THE PAPER “WEAK CONVERGENCE OF SOME CLASSES OF
MARTINGALES WITH JUMPS”

BY YOICHI NISHIYAMA

Institute of Statistical Mathematics

This note extends some results of Nishiyama [Ann. Probab. 28 (2000)
685–712]. A maximal inequality for stochastic integrals with respect to
integer-valued random measures which may have infinitely many jumps on
compact time intervals is given. By using it, a tightness criterion is obtained;
if the so-called quadratic modulus is bounded in probability and if a cer-
tain entropy condition on the parameter space is satisfied, then the tightness
follows. Our approach is based on the entropy techniques developed in the
modern theory of empirical processes.

1. Introduction. This note extends a maximal inequality of [3], and devel-
ops the entropy methods for martingales which have been studied systemati-
cally in [4]. Let (E,E) be a Blackwell space. For every n ∈ N, let µn be an
integer-valued random measure on R+ × E defined on a stochastic basis Bn =
(�n,F n,Fn = (F n

t )t∈R+,P n), and let νn be the predictable compensator of µn.
Let Wn = {Wn,ψ :ψ ∈ �} be a class of predictable functions on �n ×R+ ×E, in-
dexed by an arbitrary set � . Let τn be a finite stopping time. We treat the sequence
of processes (t,ψ) � X

n,ψ
t given by

X
n,ψ
t = Wn,ψ ∗ (µn − νn)t ∀t ∈ R+, ∀ψ ∈ �.

[2] and [3] studied the weak convergence of the sequence as n → ∞, and the
latter showed that, if the so-called quadratic modulus is bounded in probability
and if a certain integrability condition for “partitioning entropy” is satisfied, then
the tightness in �∞([0, t0] × �), where t0 = τn is a constant, of the sequence is
implied. However, [3] assumed the following:

Case An. The process t � W
n ∗ νn

t is locally integrable and νn([0, τ n] × E) <

∞ almost surely.
Here, “W

n = supψ∈� |Wn,ψ |” [the meaning of the quotation mark is that, pre-
cisely speaking, we have to take a “predictable envelope”]. The assumption that
νn([0, τ n]×E) < ∞ a.s. implies that only finitely many jumps of the process may
occur. Although such a case already serves a lot of applications, the above situation
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is far from the general theory of local martingales. The main contribution of this
note is to replace the above assumption by the following two conditions:

Case Bn. t � (|Wn|2 ∧ W
n
) ∗ νn

t is locally integrable; � is countable and is
“asymptotically separated” by a series of finite partitions.

The definition of the notion “asymptotically separate” will be given in Section 2.
Our result is of interest by itself. We refer to [3] for the further discussions on

the background of our results and the history of related works. In addition to the
theoretical interest, the processes with infinitely many jumps have recently been
important in applications, for example, in the context of mathematical finance. Al-
though this short note is not a place to present technical examples, our result would
hopefully yield some new applications, especially semi- and nonparametric statis-
tical inferences. Actually, an application to Lévy processes has been established
in [5].

In Section 2 we give some additions to [3] for which we follow all definitions
and notation. A maximal inequality, which has the same form as [3], is given in
the case where infinitely many jumps may occur. The change of the proof is just
one point, so we try to reach there in as few pages as possible, and to explain
the difference clearly. By using the inequality, we give a sufficient condition for
the processes to take values in �∞-spaces. We state a weak convergence theorem
which is an immediate consequence of those results. Proofs are given in the Ap-
pendix.

2. Results. Let us begin with preparing three definitions.

DEFINITION 2.1. Let (X,A, λ) be a σ -finite measure space. For a given
mapping Z :X → R ∪ {∞}, we denote by [Z]A,λ any A-measurable function
U :X → R ∪ {∞} such that: (i) U ≥ Z holds identically; (ii) Ũ ≥ U holds
λ-almost everywhere, for every A-measurable function Ũ such that Ũ ≥ Z holds
λ-almost everywhere.

The existence of such a random variable [Z]A,λ and its uniqueness up to a
λ-negligible set follow from Lemma 1.2.1 of [6].

DEFINITION 2.2. Let � be an arbitrary set. 	 = {	(ε)}ε∈(0,�	], where
�	 ∈ (0,∞)∩Q, is called a decreasing series of finite partitions (abb. DFP) [resp.,
nested series of finite partitions (abb. NFP)] of � if it satisfies the following (i),
(ii) and (iii) [resp., (i), (ii) and (iii′)]: (i) each 	(ε) = {�(ε;k) : 1 ≤ k ≤ N	(ε)}
is a finite partition of � , that is, � = ⋃N	(ε)

k=1 �(ε;k); (ii) N	(�	) = 1 and
limε↓0 N	(ε) = ∞; (iii) N	(ε) ≥ N	(ε′) whenever ε ≤ ε′; (iii′) 	(ε) ⊃ 	(ε′)
whenever ε ≤ ε′.

Notice that any NFP is a DFP.
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DEFINITION 2.3. We say a DFP 	 = {	(ε)}ε∈(0,�	] of � asymptotically
separates � if for any finite subset F ⊂ � there exists εF such that for every
ε ∈ (0, εF ] each partitioning set �(ε;k) of the partition 	(ε) contains at most one
point of F .

This is not a strong requirement. In fact, consider the case where � is totally
bounded with respect to a metric ρ. When each 	(ε) is a partition generated by
ε-balls which cover � , then 	 = {	(ε)}ε∈(0,�	] asymptotically separates � .

Let us now turn to the context of integer-valued random measure. Let (E,E) be
a Blackwell space. Let µ be an integer-valued random measure on R+ ×E defined
on a stochastic basis B = (�,F ,F = (Ft )t∈R+,P ), and ν a “good” version of
the predictable compensator of µ. Let τ be a finite stopping time. We put �̃ =
� × R+ × E and P̃ = P ⊗ E , where P is the predictable σ -field. Let W = {Wψ :
ψ ∈ �} be a family of predictable functions on �̃ indexed by � . We introduce the
Doléans measure MP

ν on (�̃, P̃ ), which is P̃ -σ -finite, given by

MP
ν (dω,dt, dx) = P(dω)ν(ω;dt, dx).

(See Section II.1 of [1] for the theory of random measures.)
Let us recall the definitions of the predictable envelope W and the quadratic

	-modulus ‖W‖	 given by [3].

DEFINITION 2.4. The predictable envelope W of W = {Wψ :ψ ∈ �} is de-
fined by

W =
[

sup
ψ∈�

|Wψ |
]
P̃ ,MP

ν

.

For a given DFP 	 of � , the quadratic 	-modulus ‖W‖	 of W = {Wψ :ψ ∈
�} is defined as the R+ ∪ {∞}-valued predictable process t � ‖W‖	,t given by

‖W‖	,t = sup
ε∈(0,�	]∩Q

max
1≤k≤N	(ε)

√
|�W(�(ε;k))|2 ∗ νt

ε
∀t ∈ R+,

where

�W(� ′) =
[

sup
ψ,φ∈� ′

|Wψ − Wφ|
]
P̃ ,MP

ν

∀� ′ ⊂ �.

We will consider the two cases:
Case A. The process t � W ∗ νt is locally integrable and ν([0, τ ] × E) < ∞

almost surely.

Case B. The process t � (W
2 ∧ W) ∗ νt is locally integrable, � is countable,

and 	 is a DFP which asymptotically separates � .
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In any case, we define the following:

X
ψ
t = Wψ ∗ (µ − ν)t ∀ψ ∈ �;(1)

X
a,ψ
t = Wψ1{W≤a} ∗ (µ − ν)t ∀ψ ∈ � ∀a > 0;(2)

X̌
a,ψ
t = Wψ1{W>a} ∗ (µ − ν)t ∀ψ ∈ � ∀a > 0.(3)

Our main interest is the process t � X
ψ
t . In both cases, the process t � X

ψ
t is a

local martingale and the process t � X
a,ψ
t is a locally square-integrable martin-

gale. In Case A they have finite variation, while in Case B they may not. In both
cases the process t � X̌

a,ψ
t is a local martingale which has finite variation. (See

Proposition II.1.28 and Theorem II.1.33 of [1].) Notice that, in Case B, the equal-
ity like W ∗ (µ − ν)t = W ∗ µt − W ∗ νt may not hold, and that the processes Xψ

and Xa,ψ are defined for all ψ ∈ � , only almost surely; see [3].
The following theorem gives some maximal inequalities for these processes in

terms of ‖W‖	. Here, the notation “�” means that the left-hand side is not bigger
than the right-hand side up to a multiplicative universal constant.

THEOREM 2.5. The following (i) and (ii) hold not only in Case A but also in
Case B.

(i) For given NFP 	 of � and any constants δ ∈ (0,�	] and K > 0,

E∗ sup
t∈[0,τ ]

max
1≤k≤N	(δ)

sup
ψ,φ∈�(δ;k)

|Xa,ψ
t − X

a,φ
t |1{‖W‖	,τ ≤K}

� K

∫ δ

0

√
log

(
1 + N	(ε)

)
dε,

where the random variables X
a,ψ
t are defined by (2) with a = a(δ,K) =

δK/
√

log(1 + N	(δ/2)).
(ii) For given DFP 	 of � and any constants K,L > 0,

E∗ sup
t∈[0,τ ]

sup
ψ,φ∈�

|Xψ
t − X

φ
t |1{‖W‖	,τ ≤K,|W |2∗ντ ≤L}

� K

∫ �	

0

√
log

(
1 + N	(ε)

)
dε + L

�	K
,

where the random variables X
ψ
t are defined by (1).

Case A was already proved by [3] (Theorem 2.5), and the proof of Case B will
be given in the Appendix.

By using the above result, we present a sufficient condition for the processes
ψ � X

ψ
τ and (t,ψ) � X

ψ
t to have paths which are bounded, almost surely. Ac-

tually, this property is trivial in Case A. On the other hand, in Case B, the result
below gives the starting point of weak convergence theory in �∞-spaces.
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THEOREM 2.6. Consider Case B. For a given DFP 	 of � , suppose that
‖W‖	,τ < ∞ almost surely, and that

∫ �	

0
√

logN	(ε) dε < ∞. Then, the process

ψ � X
ψ
τ takes values in �∞(�), almost surely. Furthermore, if the stopping time is

a fixed time τ = t0, then the process (t,ψ) � X
ψ
t takes values in �∞([0, t0] × �),

almost surely.

The proof will be given in the Appendix.
Now let us address to the context of weak convergence. Let (E,E) be a

Blackwell space, � an arbitrary set and 	 be a DFP of � . We consider a se-
quence of the objects appearing above. That is, for every n ∈ N, let µn, νn,
Wn = {Wn,ψ :ψ ∈ �}, W

n
, ‖Wn‖	 and τn be the same objects as above with

the new suffix n for the sequence. Recall the definitions of Case An and Case Bn

given in Section 1. Notice that Case An is the same as (3.1) + (3.2) of [3]. As a
consequence of Theorems 2.5 and 2.6, we have the following claim.

COROLLARY 2.7. The same assertions as Theorems 3.2 and 3.4 of [3] hold
not only in Case An but also in Case Bn.

REMARK. In Theorem 2.5, no metric is equipped for � . However, as in [3],
we can use the tightness criterion based on partitioning given by van der Vaart and
Wellner [6] (Theorem 1.5.6) rather than the well-known stochastic equicontinuity
criterion.

APPENDIX: PROOFS

PROOF OF THEOREM 2.5(i) IN CASE B. Fix any δ,K > 0; we may assume
δ ∈ Q without loss of generality. For every integer p ≥ 0, we define ap , πpψ and
	pψ as in [3]. Fix any integer q ≥ 1. For every p = 0,1, . . . , q , define Ap(ψ) and
Bp(ψ) as in [3]. We do not introduce the stopping time τq , and (2.4) in [3] should
be read replacing τq by τ .

Here, consider the identity

Wψ − Wπ0ψ = (Wψ − Wπ0ψ)B0(ψ) + · · ·
given by the lines 25–28 on page 691 of [3]. We have

sup
t∈[0,τ ]

sup
ψ∈�

∣∣Xa(δ,K),ψ
t − X

a(δ,K),π0ψ
t

∣∣ ≤ (I1) + (I2) + (II) + (III),

where (I1), (I2) and (III) are from [3], and where

(II) = sup
t∈[0,τ ]

sup
ψ∈�

|(Wψ − Wπqψ)Aq(ψ) ∗ (µ − ν)t |.
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Notice that, in Case B, we do not have the inequality “(II) ≤ (II1) + (II2)”, in
which (II1) and (II2) are from [3]. This point is the difference between [3] and the
present work.

The bounds for the terms (I1), (I2) and (III) are obtained by exactly the same
way as [3]. On the other hand, if � is finite, then the term (II) disappears as
q → ∞, because each �(2−qδ;k) contains only one point for sufficiently large q .
If � is countable, that is, not finite, take a sequence {�m} of finite subsets of �

such that �m ↑ � . The proof is complete. �

PROOF OF THEOREM 2.5(ii) IN CASE B. The same as Theorem 2.5(ii) of [3].
�

PROOF OF THEOREM 2.6. We may assume that 	 is a NFP without loss
of generality (see Lemma 2.4 of [3]), and we will use (i) of the above the-
orem for δ = �	 [note N	(�	) = 1]. Notice that Xψ = Xa,ψ + X̌a,ψ al-
most surely, for any a > 0. For any K > 0, set a = a(K) = a(�	,K) =
�	K/

√
log(1 + N	(�	/2)).

First, we have

sup
t∈[0,τ ]

sup
ψ∈�

∣∣X̌a(K),ψ
t

∣∣ ≤ W1{W>a(K)} ∗ µτ + W1{W>a(K)} ∗ ντ .

Since t � (W
2 ∧ W) ∗ νt is locally integrable, there exists an increasing

sequence {Tm} of stopping times such that, E(W1{W>a(K)} ∗ νTm∧τ ) < ∞,

thus, W1{W>a(K)} ∗ νTm∧τ < ∞ almost surely. By letting m → ∞, we have

W1{W>a(K)} ∗ ντ < ∞ almost surely. Since the residual W1{W>a(K)} ∗ (µ − ν)

is a local martingale, we also have W1{W>a(K)} ∗µτ < ∞ almost surely. Hence, it

holds that supt∈[0,τ ] supψ∈� |X̌a(K),ψ
t | < ∞ almost surely.

Next, by (i) of Theorem 2.5, we have

E sup
t∈[0,τ ]

sup
ψ,φ∈�

∣∣Xa(K),ψ
t − X

a(K),φ
t

∣∣1{‖W‖	,τ ≤K}

� K

∫ �	

0

√
log

(
1 + N	(ε)

)
dε < ∞.

Hence, we have

sup
t∈[0,τ ]

sup
ψ∈�

∣∣Xa(K),ψ
t

∣∣1{‖W‖	,τ ≤K} < ∞ almost surely.

So it holds that

P

(
sup

t∈[0,τ ]
sup
ψ∈�

|Xψ
t | = ∞,‖W‖	,τ ≤ K

)
= 0 ∀K > 0.
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We therefore obtain

P

(
sup

t∈[0,τ ]
sup
ψ∈�

|Xψ
t | = ∞

)
≤

∞∑
K=1

P

(
sup

t∈[0,τ ]
sup
ψ∈�

|Xψ
t | = ∞,‖W‖	,τ ≤ K

)
= 0.

This proves the assertions of the theorem. �
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