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ASYMPTOTIC BEHAVIOR OF EDGE-REINFORCED
RANDOM WALKS
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In this article, we study linearly edge-reinforced random walk on gen-
eral multi-level ladders for large initial edge weights. For infinite ladders, we
show that the process can be represented as a random walk in a random en-
vironment, given by random weights on the edges. The edge weights decay
exponentially in space. The process converges to a stationary process. We
provide asymptotic bounds for the range of the random walker up to a given
time, showing that it localizes much more than an ordinary random walker.
The random environment is described in terms of an infinite-volume Gibbs
measure.

1. Introduction. Edge-reinforced random walk on a locally finite undirected
graph is the following process: Every edge is assigned a weight which changes
with time. Initially, all weights equal a constant a. The random walker starts at a
vertex 0. At every time, the random walker jumps to a neighboring vertex with
probability proportional to the weight of the traversed edge at that time. Each time
an edge is traversed, its weight is increased by 1.

This model was introduced by Diaconis in [1] and [2]. The process is partially
exchangeable. Already in 1980, Diaconis and Freedman [3] proved for the more
general class of partially exchangeable processes a representation as a mixture of
Markov chains, provided the process is recurrent.

In the late 1980s, Diaconis asked whether edge-reinforced random walk on Zd

is recurrent. Except for d = 1, this problem is still unsolved. On an infinite bi-
nary tree, Pemantle [8] showed a phase transition in the recurrence and transience
behavior of edge-reinforced random walk. For general finite graphs, Coppersmith
and Diaconis [1] found an explicit description for the limiting fraction of time
spent at the edges. Their result was extended by Keane and Rolles [6]. In [9],
Rolles showed that a class of models can be represented as a mixture of reversible
Markov chains. This result applies in particular to edge-reinforced random walk
on any finite graph. Edge-reinforced random walks were used in [4] to provide
natural Bayesian priors for reversible Markov chains.

In [7], we proved that the edge-reinforced random walk on the ladder Z×{1,2}
is recurrent for all initial edge weights a > 3/4. This result was generalized by one
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of the authors in [10] to graphs of the type Z × G and N0 × G, where G is a finite
tree, provided that the initial weights are sufficiently large.

In this article, we examine the asymptotic behavior of these edge-reinforced
random walks on the infinite ladder N0 × G in much more detail beyond recur-
rence.

Formal description of the model and notation. We consider edge-reinforced
random walk on a graph G = (V ,E). The vertex set V is of the type V = N0 × V

with a finite set V , |V | ≥ 2. The set V is assumed to be the vertex set of a finite
tree G = (V ,E). Two vertices (i, v), (i′, v′) ∈ V are connected by an edge in E iff
i = i ′ and v, v′ are connected by an edge in E, or |i − i ′| = 1 and v = v′. The edges
of G are undirected. The edge-reinforced random walker starts at level 0 of G, that
is, in a vertex 0 = (0, v).

Furthermore, we assume the initial weights a to be sufficiently large. More
quantitatively, we assume a > amin, where amin = 3/4 if V = {1,2}, and other-
wise amin = amin(G) denotes the lower bound specified in formula (1.7) of [10].
Optimizing the lower bound for a is not treated in this paper.

The edge-reinforced random walk on G is formally defined as follows: Let

Xt :V
N0 → V denote the canonical projection on the t th coordinate; Xt is in-

terpreted as the location of the random walker at time t . For t ∈ N0, we define

wt(e) :V
N0 → R+, the weight of edge e at time t , recursively as follows:

w0(e) := a for all e ∈ E,(1.1)

wt+1(e) :=
{

wt(e) + 1, for e = {Xt,Xt+1} ∈ E,
wt(e), for e ∈ E \ {{Xt,Xt+1}}.

(1.2)

The distribution P0 of the edge-reinforced random walk is a probability measure

on V
N0 , defined by

X0 = 0, P0-a.s.,(1.3)

P0[Xt+1 = v|Xi, i = 0,1, . . . , t] =
{

wt({Xt, v})∑
{e∈E : Xt∈e} wt(e)

, if {Xt, v} ∈ E,

0, otherwise.
(1.4)

For a vertex (i, v) ∈ V , we set |(i, v)| := |i|, and we abbreviate vi := (i, v). If
e = {u, v} is an edge in the finite graph G, we set ei := {ui, vi}. For an edge e =
{u, v} ∈ E, we denote by |e| its distance from level 0: we set |e| := min{|u|, |v|}.
Constants are denoted by ci , i ≥ 1. They keep their meaning throughout the whole
article.

2. Results.

2.1. Position of the random walker at large times. Typically, at time t , simple
random walk is located at a distance of the order

√
t from its starting point. In
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contrast to this fact, the typical location of edge-reinforced random walk at time
t does not go to infinity as t grows. In fact, the location of the reinforced random
walk at time t is stochastically bounded by a random variable with exponential
tails, uniformly for all times t . This is the claim of the following theorem:

THEOREM 2.1 (Uniform exponential tails for the location of the random walk).
There exist constants c1, c2 > 0, depending only on G and a, such that for all
t, n ∈ N0, the following bound holds:

P0(|Xt | ≥ n) ≤ c1e
−c2n.(2.1)

As a consequence, up to time t , the edge-reinforced random walk can travel at
most a distance of the order ln t :

COROLLARY 2.2 (Range of the random walk path up to a given time). There
exists a constant c3 = c3(G,a) > 0 such that P0-a.s.,

max
s=0,...,t

|Xs | ≤ c3 ln t for all t large enough.(2.2)

Simple random walk does not converge to an equilibrium distribution. Rein-
forcement makes this behavior change drastically. As is shown in the following
theorem, the law of the location of the reinforced random walk tends to an equi-
librium distribution as time grows.

However, the graph G has a chessboard structure. Half of the vertices can only
be reached in an even number of steps, and the other half only in an odd number
of steps. Therefore, we can only expect limit theorems for the reinforced random
walk restricted to all even or all odd times. For these two restricted processes, we
have indeed the following limit theorem:

THEOREM 2.3 (Convergence to equilibrium). As t → ∞, the distributions of
X2t and X2t+1 converge in the following sense: There exist probability functions
µeven and µodd on the vertex set V , such that for all vertices v ∈ V , the following
hold:

lim
t→∞P0(X2t = v) = µeven(v),(2.3)

lim
t→∞P0(X2t+1 = v) = µodd(v).(2.4)

With the constants c1, c2 > 0 from Theorem 2.1, one has for all vertices v ∈ V :

µeven(v) ≤ c1e
−c2|v| and µodd(v) ≤ c1e

−c2|v|.(2.5)

Let V even and V odd denote the set of vertices v ∈ V which can be reached in an
even and odd number of steps, respectively, by the random walker starting from 0.
The measures µeven and µodd are supported on V even and V odd, respectively.
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2.2. Random walk in random environment representation. Edge-reinforced
random walk on any finite graph can be represented as a unique mixture of re-
versible Markov chains. This is shown in Theorem 3.1 of [9].

Recall that the transition probabilities of any irreducible reversible Markov
chain on any graph (V,E) can be described by weights x = (xe)e∈E , xe ≥ 0, on the
edges of the graph; the probability to traverse an edge is proportional to its weight.
More precisely, denoting the distribution of the Markov chain induced by the edge
weights x with starting vertex v by Qv,x , one has

Qv,x(Xt+1 = u′|Xt = u) = x{u,u′}
xu

,(2.6)

where here and in the following we set

xu := ∑
e∈E : u∈e

xe.(2.7)

Edge-reinforced random walk on the infinite graph G can also be represented
as a unique mixture of reversible Markov chains. Moreover, the corresponding
random weights (xe)e∈E are summable. This is shown by the following theorem.

We introduce the infinite simplex � := {(xe)e∈E ∈ (0,1)E :
∑

e∈E xe = 1}.

THEOREM 2.4 (Mixture of positive recurrent Markov chains). The edge-
reinforced random walk on the infinite ladder G can be represented as a unique
mixture of the reversible Markov chains Qv,x . Even more, the mixing measure is
supported on positive recurrent Markov chains. Hence, there is a unique probabil-
ity measure Q on � such that

P0(A) =
∫
�

Q0,x(A)Q(dx)(2.8)

is valid for all events A ⊆ V
N0 .

Let G
(n) = (V

(n)
,E

(n)
) be the restriction of G to the finite vertex set

{0,1, . . . , n}×V . On G
(n)

, we can also describe the mixing measure as a measure
on the space of weights. Let x(n) = (x

(n)
e )

e∈E
(n) denote the edge weights, normal-

ized such that
∑

e∈E
(n) x

(n)
e = 1. We denote the mixing measure for the weights x(n)

by Q(n).
Let e∗

0 be a fixed edge in the rung at level 0, incident to the starting vertex 0,
that is, e∗

0 = {(0, u), (0, v)} for some {u, v} ∈ E and 0 ∈ e∗
0. The following theorem

shows that the edge weights decay exponentially in space with probabilities expo-
nentially close to 1, even when we normalize the weights by dividing by x

(n)

e∗
0

. This
is true on the infinite ladder, but also on any finite ladder, uniformly in the size of
the ladder.
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THEOREM 2.5 (Exponential decay of the edge weights). There exist positive
constants c4, c5, c6 depending only on G and a such that for all n ∈ N and all

edges e of G
(n)

, we have

Q(n)(x(n)
e > x

(n)

e∗
0

e−c4|e|) ≤ c5e
−c6|e|,(2.9)

uniformly in n. On the infinite ladder G, we have the similar bound

Q
(
xe > xe∗

0
e−c4|e|) ≤ c5e

−c6|e|(2.10)

for all e ∈ E.

As a corollary, we obtain that the weights decay exponentially in space almost
surely, even uniformly from a certain (random) point on. We can use any fixed
edge f to normalize the weights.

COROLLARY 2.6 (Exponential decay of the edge weights). Let f ∈ E be a
fixed edge. There exists a positive constant c4(G,a) > 0 with the following prop-
erty: For Q-almost all x ∈ �, there exists a (random) n ∈ N0, such that for all
edges e with |e| ≥ n, one has

xe ≤ e−c4|e|/2xf .(2.11)

Let π = (v0 = 0, v1, . . . , vk) be a finite path in G. Conditioned on (X0, . . . ,

Xk) = π , the shifted process (Xk+t )t∈N0 is again an edge-reinforced random walk
starting at vk with initial edge weights given by

a +
k∑

i=1

1{{vi−1,vi}=e}, e ∈ E.(2.12)

The shifted process can also be represented as a unique mixture of reversible
Markov chains:

THEOREM 2.7 (ERRW conditioned on a finite path). For any finite path π =
(v0 = 0, v1, . . . , vk), there exists a unique probability measure Qπ on �, such that

for all measurable A ⊆ V
N0 , we have

P0
(
(Xk+t )t∈N0 ∈ A|(Xs)s=0,...,k = π

) =
∫
�

Qvk,x(A)Qπ(dx).(2.13)

The measure Qπ is absolutely continuous with respect to Q; the Radon–Nikodym
derivative is given by

dQπ

dQ
(x) = Q0,x((Xs)s=0,...,k = π)

P0((Xs)s=0,...,k = π)
, x ∈ �.(2.14)
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The next theorem is concerned with the infinite-volume limit of the random
environment. It shows that the random environment for finite ladders converges to
the random environment for the infinite ladder as the size of the ladder grows.

THEOREM 2.8 (Infinite-volume limit). As n → ∞, the finite-dimensional
marginals of Q(n) converge weakly to the corresponding marginals of Q.

The next theorem tells us that ratios of the random weights of edges do not
fluctuate too much: For neighboring edges e, e′, the random variables xe/xe′ are
tight. The theorem makes even a more quantitative statement:

THEOREM 2.9 (Tail behavior of edge weights). Let e, e′ be edges on level i, j ,
respectively. With respect to Q, the random variable

ln
xe

xe′
(2.15)

has exponential tails. More precisely, there exist positive constants c7(a), c8(a)

such that for all i, j ∈ N, edges e, e′ as above, and M > 0, one has

Q

[∣∣∣∣ln xe

xe′

∣∣∣∣ ≥ M

]
≤ c7 max{|i − j |,1} exp

{
− c8M

max{|i − j |,1}
}
.(2.16)

2.3. Convergence to equilibrium. In this subsection, we extend and refine the
convergence result of Theorem 2.3. First, we describe the equilibrium measures
µeven and µodd from that theorem in terms of the random environment.

We define xeven, xodd :V → [0,1], by

xeven(v) := 1V even
(v)xv and xodd(v) := 1V odd

(v)xv.(2.17)

Since every e ∈ E contains one vertex in V even and one vertex in V odd, we have∑
v∈V

xeven(v) = ∑
v∈V

xodd(v) = ∑
e∈E

xe = 1.(2.18)

Hence xeven and xodd are probability functions. By averaging these probability
functions over the environment, we get the equilibrium distributions µeven and
µodd. This is the claim of the following theorem:

THEOREM 2.10 (Annealed equilibrium measures are mixtures). The mea-
sures µeven and µodd from Theorem 2.3 have the following representation:

µeven(v) =
∫
�

xeven(v)Q(dx),

(2.19)
µodd(v) =

∫
�

xodd(v)Q(dx) (v ∈ V ).
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For any probability function µ :V → [0,1] and x ∈ �, we define the law of the
random walk in the environment x with starting distribution µ:

Qµ,x := ∑
v∈V

µ(v)Qv,x.(2.20)

In analogy to the convergence in distribution of X2t and X2t+1 as stated in
Theorem 2.3, there is a convergence result for the whole process:

THEOREM 2.11 (Convergence to equilibrium of the process). As s → ∞, the
distributions of (X2s+t )t∈N0 and (X2s+1+t )t∈N0 converge in the following sense:

For all measurable sets A ⊆ V
N0 , one has

P0
(
(X2s+t )t∈N0 ∈ A

) s→∞−→
∫
�

Qxeven,x(A)Q(dx),(2.21)

P0
(
(X2s+1+t )t∈N0 ∈ A

) s→∞−→
∫
�

Qxodd,x(A)Q(dx).(2.22)

We can interpret xeven(v) and xodd(v) as the asymptotic probabilities to visit a
vertex v at even and at odd times, respectively, as time goes to infinity, conditioned
on the environment. Even more, conditioned on the environment, the whole shifted
process converges to a Markov chain, started in equilibrium:

THEOREM 2.12 (Convergence to equilibrium, conditioned on the environment).
For all x ∈ �, the laws of X2t and of X2t+1 with respect to Q0,x converge:

lim
t→∞Q0,x(X2t = v) = xeven(v),(2.23)

lim
t→∞Q0,x(X2t+1 = v) = xodd(v) for all v ∈ V .(2.24)

More generally, for all A ⊆ V
N0 measurable,

Q0,x

(
(X2s+t )t∈N0 ∈ A

) s→∞−→ Qxeven,x(A)(2.25)

and

Q0,x

(
(X2s+1+t )t∈N0 ∈ A

) s→∞−→ Qxodd,x(A).(2.26)

2.4. A representation of the random environment by an infinite-volume Gibbs
measure. In this subsection, we show that the random environment for the rein-
forced random walk on the infinite graph G can be written in terms of an infinite-
volume Gibbs measure. For finite pieces of G, the description in terms of finite-
volume Gibbs measures is one of the central ideas in [7] and [10]. Here, we deal
with the thermodynamic limit of these Gibbs measures. But first, we review the
state spaces for the local spin variables; for more details in the finite-dimensional
setup see [7] and [10]. Roughly speaking, every level of the ladder corresponds
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to a “compound spin variable.” Although the precise form of the state spaces is
irrelevant for almost all arguments that will follow, we explain very briefly their
intuitive meaning: The rungs of the ladder are the subgraphs {i} × G, that is, the
vertical edges if we view the ladder as going from the left to the right. On the other
hand, the (horizontal) edges connecting these subgraphs constitute the “slices” of
the ladder.

Very roughly speaking, the spin variables consist of logarithms of ratios of
neighboring edge weights. Besides, the spin variables have also discrete compo-
nents. These discrete components provide local descriptions of spanning trees on
the one hand and on the other hand some signs which are not encoded in the log-
arithms above. The precise connection between the spin variables and the edge
weights is given in Definitions 2.19 and 3.2, below.

In the whole article, we use the more general notation, the state spaces, and
the variable transforms from [10] rather than [7]. However, in the special case
G = N0 × {1,2}, the variant described in [7] could also be used. This variant uses
a slightly different variable transform, and it applies to all initial weights a > 3/4
rather than only large a. Therefore, we include below also citations of [7]. Readers
interested only in large a may ignore them.

DEFINITION 2.13 (State spaces). As in Definition 2.15 of [10] (see also Def-
inition 2.8 of [7]), we fix two different vertices vtree, v∗ ∈ V , and we set

�left := RE,
(2.27)

�slice := RV × {±1}V \{vtree,v∗} × RV \{vtree,v∗} × Treevar,

�rung := RE × R;(2.28)

here Treevar is a finite set (see Definition 2.7 of [10]). Furthermore, we define the
index set

I := {left} ∪ {(rung, i), (slice, i) : i ∈ N}.(2.29)

For any � ⊆ I, we define

�� := ∏
ι∈�

�ι,(2.30)

where �rung,i = �rung and �slice,i = �slice for i ∈ N. We abbreviate � = �I. The
σ -algebra on ��, induced by the canonical projections, is denoted by B(��).

For most parts of our arguments, even the precise form of the components of
the compound spin variables is irrelevant. Thus, we introduce abbreviations for
the compound spins:
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DEFINITION 2.14 (Local state variables). For � ⊆ I, we denote the canoni-
cal element of �� by ω� := (ωι)ι∈�. We use the following notation from Defini-
tion 2.15 of [10] for the components of ωι (see also Definition 2.8 of [7]):

ωslice,i := (
(Xi(v))v∈V ,

(
σi(v),Wi(v)

)
v∈V \{vtree,v∗}, Ti

)
,(2.31)

ωrung,i := (
(Zi(e))e∈E,�i

)
,(2.32)

where i ∈ N. In addition,

ωleft := ((Z0(e))e∈E).(2.33)

The components Xi(v), Wi(v), Zi(e), and �i take values in R, whereas σi(v)

and Ti take only finitely many values. We denote by dω� the Lebesgue measure
on the continuous components times the counting measure on the discrete compo-
nents.

For n ∈ N, we consider the index set

[0, n] := {left} ∪ {(rung, i), (slice, i) : i = 1, . . . , n} ⊂ I(2.34)

with boundary ∂[0, n] := {(slice, n + 1)}.
Let Hmiddle := Hmiddle,a,1/4 and Hleft := Hleft,a be the local Hamiltonians as

defined in Definitions 2.18 and 2.20, respectively, of [10] (see also Definitions
2.10 and 2.11 of [7]). Their explicit form is irrelevant for this paper. Since the
initial weight a is kept constant, we suppress it in the notation. Using these local
Hamiltonians, the finite-volume Gibbs measures are defined in the standard way
as follows.

DEFINITION 2.15 (Finite-volume Gibbs measures with boundary conditions).
Let n ∈ N and � = [0, n]. We define the finite-volume Hamiltonian with boundary
conditions ω∂� by

H[0,n]
(
ω[0,n]|ω∂[0,n]

) := Hleft(ωleft,ωslice,1)
(2.35)

+
n∑

i=1

Hmiddle(ωslice,i ,ωrung,i ,ωslice,i+1).

Furthermore, for any bounded and measurable function F :�� → R, we introduce
gF

� :�∂� → R by

gF
�(ω∂�) :=

∫
��

F(ω�)e−H�(ω�|ω∂�) dω�.(2.36)

The finite-volume Gibbs measure P�(·|ω∂�) is given by the Markov kernel
K� :B(��) × �∂� → [0,1], where

K�(A,ω∂�) := g
1A
� (ω∂�)

g1
�(ω∂�)

.(2.37)
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FIG. 1. Interactions in the Gibbs measure.

Figure 1 illustrates the interactions in the Gibbs measures as described by the
local Hamiltonians. The local interactions Hmiddle are drawn nonsymmetrically;
this represents symbolically the absence of reflection symmetry caused by the
symmetry-breaking terms �i/4 arising in the summand Hmiddle(ωslice,i ,ωrung,i ,

ωslice,i+1) (see (2.41) of [10] and (2.42) of [7]; recall that in the notation of these
articles, Hmiddle = Hmiddle,a,1/4).

A central role in our analysis is played by the transfer operator and its leading
eigenfunctions from the left and from the right. The transfer operator is an integral
operator with an integral kernel k defined as follows: As in Definition 4.1 and in
particular (4.4) of [10] (see also Definition 4.2 and (4.5) of [7]), we define

k(ωslice,ω
′
slice) :=

∫
�rung

e−Hmiddle(ωslice,ωrung,ω
′
slice) dωrung;(2.38)

in the notation of [7] and [10], k = kϒ
η for η = 1/4 and ϒ ≡ 1. The transfer op-

erators, that is, the (left and right) integral operators with integral kernel k, have
a positive leading eigenvalue λ, as was shown in Lemma 4.2 of [10] (see also
Lemma 4.4 of [7]). Let υ , υ∗ denote their leading eigenfunctions; they are positive
and unique up to normalization:∫

�slice

k(ωslice,ω
′
slice)υ

∗(ω′
slice) dω′

slice = λυ∗(ωslice),(2.39)

∫
�slice

υ(ωslice)k(ωslice,ω
′
slice) dωslice = λυ(ω′

slice).(2.40)

The infinite-volume Gibbs measures are defined by averaging finite volume
Gibbs measures with boundary conditions weighted according to the right eigen-
function of the transfer operator, just as always in one-dimensional Gibbs systems
with short-range interactions.

DEFINITION 2.16 (Infinite-volume Gibbs measure). We define the infinite-
volume Gibbs measure P as the unique probability measure on B(�) satisfying

P(ω� ∈ A) =
∫
�∂�

g
1A
� (ω∂�)υ∗(ω∂�)dω∂�∫

�∂�
g1

�(ω∂�)υ∗(ω∂�)dω∂�

(2.41)
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for all � = [0, n] and A ∈ B(��).

LEMMA 2.17 (Infinite-volume Gibbs measure). The infinite-volume Gibbs
measure P is well defined.

Indeed, the infinite-volume Gibbs measure satisfies the DLR-conditions:

THEOREM 2.18 (Dobrushin–Landford–Ruelle conditions). The kernel K� is
a regular conditional distribution of ω� with respect to P conditioned on ω∂�. In
particular, for any set A ∈ B(��), we have

P(ω� ∈ A|ω∂�) = K�(A,ω∂�).(2.42)

Slightly more generally, for any bounded measurable function F :� → R∫
�

F dP =
∫
�

∫
��

F(χ�,ω�c)K�(dχ�,ω∂�)P(dω).(2.43)

Next, we define a transformation from ω ∈ � to the edge weights (x̃e)e∈E ∈ RE+.
Up to a normalization, the x̃e turn out to be the random environment for the rein-
forced random walk; see Theorem 2.21, below. The transformation is the same
as in Definition 2.17 of [10] with the abbreviations from Definition 2.16 of [10]
plugged in (see also Definition 2.9 of [7]). The form of this transformation is mo-
tivated in [7] and [10]. Its precise form is used in [7] and [10] to derive bounds
which are also relevant in the present paper. However, the precise form of the
transformation is not used below.

For the following definition, recall the notation ei for edges, introduced after
formula (1.4).

DEFINITION 2.19 (Transformation from state variables to random environ-
ment). For ω ∈ �, we define

x̃(ω) = (x̃e(ω))e∈E ∈ RE+ = (0,∞)E(2.44)

as follows: We set for v ∈ V and i ∈ N

x̃{vi−1,vi} := eX1(v
∗)−Z0(e

∗) exp

[
Xi(v) − Xi(v

∗) −
i−1∑
j=1

�j

]
(2.45)

and for e ∈ E

x̃e0 := exp[Z0(e) − Z0(e
∗)],(2.46)

x̃ei
:= eX1(v

∗)−Z0(e
∗)

(2.47)

× exp

[
Zi(e) − 1

2{Xi(v
∗) + Xi+1(v

∗) + �i} −
i−1∑
j=1

�j

]
.

We define Q̃ to be the law of x̃ with respect to P.
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Clearly, x̃e∗
0
= 1. We want to change the normalization of the edge weights (x̃e)e

in such a way that they sum up to one. This is done in the following definition. Note
that multiplying all edge weights (xe)e∈E by the same positive constant does not
change the measure Qv,x .

DEFINITION 2.20 (Changing the normalization). We define x(ω) =
(xe(ω))e∈E ∈ � by

xe := x̃e∑
e′∈E x̃e′

,(2.48)

whenever these random variables are well defined.

By a slight abuse of notation, we use the same symbol xe in two slightly different
ways: On the one hand, x = (xe)e ∈ E denotes weights of the random environment,
for example, in Theorem 2.4. On the other hand, for example, in (2.48), xe(ω)

denotes the value of a random variable on �. The following theorem justifies this
little abuse of notation:

THEOREM 2.21 (Representation by an infinite-volume Gibbs measure). Let ω

be a random variable with distribution P. Then, the distribution Q̃ of x̃(ω) equals
the distribution of the random environment, normalized such that the reference
edge e∗

0 gets weight x̃e∗
0
= 1.

In addition, x(ω) is almost surely well defined. Its distribution equals Q, the
distribution of the random environment, normalized such that

∑
e∈E xe = 1.

3. Proofs.

Organization of this paper. The order in which the results are proven differs
from the order in which we presented them. The complicated dependence structure
between the theorems is best represented graphically: Figure 2 displays the mutual
dependence of the lemmas, theorems and corollaries in this paper. Lemma 2.17 (P
is well defined) and Theorem 2.18 (Dobrushin–Landford–Ruelle conditions) are
not represented in Figure 2.

3.1. Analysis of the infinite-volume Gibbs measure.

PROOF OF LEMMA 2.17. First, observe that the integrands arising in (2.41)
decay exponentially at infinity. For Hmiddle and Hleft, this is shown in Propositions
3.1 and 3.9 of [10] (see also Propositions 3.2 and 3.5 of [7]). Because of the eigen-
value equation (2.39), the decay of the local Hamiltonians implies the exponential
decay of υ∗. Thus, the numerator and the denominator of the fraction in (2.41) are
both finite. The denominator is strictly positive.
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FIG. 2.

The set of events of the form “ω� ∈ A” is closed under intersections and gen-
erates B(�). Hence, it remains to show that the definition (2.41) does not depend
on the choice of �, that is,

P(ω�′ ∈ A′) = P(ω� ∈ A)(3.1)

holds whenever � ⊂ �′, A ∈ B(��), and A′ is the inverse image of A with respect
to the projection ��′ → ��. It suffices to take �′ one step bigger than �.

Let � = [0, n − 1], �′ = [0, n]. By the definition (2.41) of P,

P(ω�′ ∈ A′) :=
∫
�∂�′ g

1A′
�′ (ω∂�′)υ∗(ω∂�′) dω∂�′∫

�∂�′ g
1
�′(ω∂�′)υ∗(ω∂�′) dω∂�′

.(3.2)

Observe that �′ = � ∪ ∂� ∪ {(rung, n)} and

H�′(ω�′ |ω∂�′) = H�(ω�|ω∂�) + Hmiddle(ω∂�,ωrung,n,ω∂�′).(3.3)

Hence, by Fubini’s theorem,

g
1A′
�′ (ω∂�′) =

∫
��′

dω�′1A′(ω�′)e−H�′ (ω�′ |ω∂�′ )

=
∫
�∂�

dω∂�

∫
�rung

dωrunge
−Hmiddle(ω∂�,ωrung,ω∂�′ )

(3.4)
×

∫
��

dω�1A(ω�)e−H�(ω�|ω∂�)

=
∫
�∂�

dω∂� k(ω∂�,ω∂�′)g1A(ω∂�).

Rewriting (2.39) as∫
�∂�′

k(ω∂�,ω∂�′)υ∗(ω∂�′) dω∂�′ = λυ∗(ω∂�)(3.5)
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and applying Fubini’s theorem, we conclude that∫
�∂�′

g
1A′
�′ (ω∂�′)υ∗(ω∂�′) dω∂�′

(3.6)
= λ

∫
�∂�

g
1A
� (ω∂�)υ∗(ω∂�)dω∂�.

The last identity with A replaced by �� and A′ replaced by ��′ gives an identity
for the denominator in (3.2). Combining these two identities yields the claim (3.1).

�

PROOF OF THEOREM 2.18. It suffices to prove (2.43) for nonnegative func-
tions F that depend on only finitely many components, say F :��′ → R, where
�′ ⊇ � ∪ ∂�. We decompose H�′ as

H�′(ω�′ |ω∂�′) = H�(ω�|ω∂�) + H�′,�(ω�′\�|ω∂�′)(3.7)

with a sum of local Hamiltonians H�′,�(ω�′\�|ω∂�′) := H�′(ω�′ |ω∂�′) −
H�(ω�|ω∂�) that depends only on ω�′\� and ω∂�′ . We calculate for ω∂�′ ∈ �∂�′ :∫

��′
dω�′e−H�′ (ω�′ |ω∂�′ )F (ω�′)

=
∫
��

dχ�

∫
��′\�

dω�′\�e−H�(χ�|ω∂�)e
−H�′,�(ω�′\�|ω∂�′ )

× F(χ�,ω�′\�)

g1
�(ω∂�)

∫
��

dω�e−H�(ω�|ω∂�)

(3.8)
=

∫
��

dω�

∫
��′\�

dω�′\�e−H�(ω�|ω∂�)e
−H�′,�(ω�′\�|ω∂�′ )

×
∫
��

dχ�e−H�(χ�|ω∂�) F (χ�,ω�′\�)

g1
�(ω∂�)

=
∫
��′

dω�′e−H�′ (ω�′ |ω∂�′ )
∫
��

K�(dχ�,ω∂�)F (χ�,ω�′\�);

recall definition (2.37) of the Markov kernel K�. Claim (2.43) follows using the
definition (2.41) of P: one multiplies the finite-volume DLR-equation (3.8) by the
eigenfunction υ∗(ω∂�′), integrates with respect to dω∂�′ , and divides by the nor-
malizing constant

∫
�∂�′ g

1
�′(ω∂�′)υ∗(ω∂�′) dω∂�′ . �

Recall that G
(n) = (V

(n)
,E

(n)
) denotes the restriction of the graph G to the

finite piece V
(n) = {0, . . . , n} × V .
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DEFINITION 3.1 (Finite-volume Gibbs measures). For n ∈ N, we define in
analogy to Definition 2.13:

�right := RE,(3.9)

I(n) := {left} ∪ {(rung, i), (slice, i) : 1 ≤ i ≤ n − 1} ∪ {(slice, n), right}
= [0, n − 1] ∪ {(slice, n), right},(3.10)

�(n) := ∏
ι∈I(n)

�ι.(3.11)

The canonical element of �(n) is denoted by ω(n).
Let Hright := Hright,a be as in Definition 2.21 of [10] (see also Definition 2.11

of [7]). We define the finite-volume Hamiltonian over I(n) as follows:

H(n)(ω(n)) := Hleft(ωleft,ωslice,1)

+
n−1∑
i=1

Hmiddle(ωslice,i ,ωrung,i ,ωslice,i+1)

(3.12)
+ Hright(ωslice,n,ωright)

= H[0,n−1]
(
ω[0,n−1]|ω∂[0,n−1]

) + Hright
(
ω∂[0,n−1],ωright

)
.

Finally, the finite-volume Gibbs measure P(n) is defined to be the probability mea-
sure given by

P(n)(ω(n) ∈ A
) :=

∫
�(n) 1A(ω(n))e−H(n)(ω(n)) dω(n)∫

�(n) e−H(n)(ω(n)) dω(n)
.(3.13)

For A ∈ B(�[0,n−1]), this comes down to

P(n)(ω[0,n−1] ∈ A
) =

∫
�slice

g
1A[0,n−1](ωslice)gright(ωslice) dωslice∫

�slice
g1[0,n−1](ωslice)gright(ωslice) dωslice

(3.14)

= 〈g1A[0,n−1]gright〉
〈g1[0,n−1]gright〉 ,

where

gright(ωslice) =
∫
�right

e−Hright(ωslice,ωright) dωright(3.15)

and 〈fg〉 is a short notation for
∫
�slice

f (ωslice)g(ωslice) dωslice.
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DEFINITION 3.2 (Transformation of variables—finite volume version). For
ω(n) ∈ �(n), we define

x̃(n)(ω(n)) = (
x̃(n)
e

(
ω(n)))

e∈E
(n) ∈ RE

(n)

+(3.16)

as follows: Whenever e is not an edge in the right border of the finite ladder G
(n)

,
that is, whenever e �= {un, vn} for all {u, v} ∈ E, we define x̃

(n)
e just as in (2.45),

(2.46) and (2.47) in Definition 2.19. However, if e is an edge in the right border of

the finite ladder G
(n)

, that is, if e = en = {un, vn}, we set

x̃(n)
en

:= eX1(v
∗)−Z0(e

∗) exp

[
Zn(e) − Xn(v

∗) −
n−1∑
j=1

�j

]
.(3.17)

Let Q̃(n) denote the law of x̃(n)(ω(n)) = (x̃
(n)
e (ω(n)))

e∈E
(n) , provided that ω(n) has

the distribution P(n). Finally, we set

x(n)
e := x̃

(n)
e∑

e′∈E
(n) x̃

(n)
e′

.(3.18)

Thus, we use two different normalizations: The “tilde” version, where the ref-
erence edge e∗

0 gets weight 1, and the “no-tilde” version, where all weights sum
up to 1. Note that, in addition to (3.18), we have the following conversion between
the “tilde” and “no-tilde” normalization:

x̃(n)
e = x

(n)
e

x
(n)

e∗
0

, x̃e = xe

xe∗
0

and xe = x̃e∑
e′∈E x̃e′

.(3.19)

It turns out that the x
(n)
e (ω(n)) have the distribution Q(n), provided that ω(n) has

the law P(n). This is a consequence of Lemma 3.3 below.
As a mnemonic aid, Table 1 summarizes the finite-volume and infinite-volume

measures and the corresponding random variables.
Note that P, Q̃, P(n), and Q̃(n) are by definition the laws of the random variables

ω, x̃(ω), ω(n) and x̃(n)(ω(n)), respectively. However, the fact that Q is the law of
x(ω) is stated in Theorem 2.21, and the fact that the Q(n) is the law of x(n)(ω(n)) is
a consequence of the results in [7] and [10]. This is made precise in the following
lemma:

LEMMA 3.3 (Connection between Gibbs measure and random environment—
finite-volume version). The measure Q(n), that is, the mixing measure describing

the random environment for reinforced random walk on the finite ladder G
(n)

,
equals the joint distribution of the random variables (x

(n)
e (ω(n)))

e∈E
(n) , provided

that ω(n) has the law P(n).



ASYMPTOTIC BEHAVIOR OF ERRW 131

TABLE 1

Random variable Normalization Law

Infinite-volume
State variable ω P

Random environment x̃ x̃e∗
0

= 1 Q̃

Random environment x
∑

e∈E xe = 1 Q

Finite-volume
State variable ω(n) P(n)

Random environment x̃(n) x̃
(n)
e∗

0
= 1 Q̃(n)

Random environment x(n) ∑
e∈E

(n) x
(n)
e = 1 Q(n)

Moreover, let F ⊂ E be finite. Take n large enough so that F ⊆ E
(n−2)

. Then
(x̃e(ω))e∈F equals (x̃

(n)
e (ω(n)))e∈F , provided that ω[0,n−1] = ω

(n)
[0,n−1].

PROOF. Combining Lemma 2.24 of [10] and Definition 2.17 of [10] (see also
Lemma 2.13 of [7] and Definition 2.9 of [7]), the first claim follows.

To prove the second claim, note that each x̃e(ω) depends only on finitely many
components of ω. More precisely, it depends only on ω[0,n−1], if the edge e is

on a level strictly less than n − 1. Consider a finite ladder G
(n)

and any edge

e ∈ E
(n−2)

. Then, the transformation ω �→ x̃e(ω) described for the infinite ladder in

Definition 2.19 coincides with the map ω(n) �→ x̃
(n)
e (ω(n)) for the finite ladder G

(n)
,

given in Definition 3.2; see also Definition 2.17 of [10] and Definition 2.9 of [7].
This proves the second claim. �

LEMMA 3.4 (Thermodynamic limit). As n → ∞, the finite-dimensional mar-
ginals of P(n) converge weakly to the corresponding marginals of P. Even more,
for any measurable bounded function f depending only on finitely many coordi-
nates ωi , i ∈ I , we have

lim
n→∞

∫
f (ωi, i ∈ I )P(n)(dω) =

∫
f (ωi, i ∈ I )P(dω).(3.20)

A similar statement holds for Q̃(n) → Q̃.

PROOF. Let K : L2(�slice) → L2(�slice),

Kf (ωslice) :=
∫
�slice

k(ωslice,ω
′
slice)f (ω′

slice) dω′
slice(3.21)

denote the integral operator with integral kernel k, defined in (2.38). Furthermore,
normalizing the integral operator by its leading eigenvalue λ, we set K̂ := λ−1K .
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Let l ∈ N, and take a bounded measurable function f depending only on ω[0,l].
Take n > l. Then, using the boundary function gright from (3.15), we write

∫
f (ω�)P(n)(dω) = 〈gf

[0,l]Kn−lgright〉
〈g1[0,l]Kn−lgright〉

= 〈gf
[0,l]K̂n−lgright〉

〈g1[0,l]K̂n−lgright〉
;(3.22)

recall the definition (2.36) of g
f
[0,l] ∈ L2(�slice). Now, for fixed l ∈ N, Corollary 4.3

in [10] (see also Corollary 4.5 in [7]) states that

K̂n−lgright
n→∞−→ υ∗〈υgright〉 in L2(�slice),(3.23)

where we assume that the eigenfunctions υ and υ∗ are normalized such that
〈υυ∗〉 = 1. Note that the scalar product 〈υgright〉 of positive functions does not
vanish. We get

lim
n→∞

∫
f (ω�)P(n)(dω) = 〈gf

[0,l]υ∗〉〈υgright〉
〈g1[0,l]υ∗〉〈υgright〉

(3.24)

= 〈gf
[0,l]υ∗〉

〈g1[0,l]υ∗〉 =
∫

f (ω�)P(dω),

using the definition (2.41) of P in the last step. This proves the claim (3.20).
To prove the statement for Q̃(n) → Q̃, consider a bounded measurable function
g((x̃e)e∈F ), depending on finitely many components (x̃e)e∈F , F ⊂ E being finite.
Consequently, using the second part of Lemma 3.3, one has for all large n:∫

g
(
x̃(n)
e ; e ∈ F

)
Q̃(n)(dx̃) =

∫
g
(
x̃(n)
e

(
ω(n)); e ∈ F

)
P(n)(dω)

n→∞−→
∫

g
(
x̃e(ω); e ∈ F

)
P(dω)(3.25)

=
∫

g(x̃e; e ∈ F) Q̃(dx̃),

which completes the proof of the lemma. �

LEMMA 3.5 (Exponential decay of the edge weights). There exist positive
constants c4, c5, c6 depending only on G and a such that for all n ∈ N and all

edges e of G
(n)

, we have

P(n)(x̃(n)
e > e−c4|e|) ≤ c5e

−c6|e|,(3.26)

uniformly in n. On the infinite ladder G, we have the similar bound

P
(
x̃e > e−c4|e|) ≤ c5e

−c6|e|.(3.27)
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PROOF. We denote by P
(n)
0 the distribution of the edge-reinforced random

walk on the finite graph G
(n)

. For e ∈ E and t ∈ N, let kt (e) denote the num-
ber of times the reinforced random walker traverses the edge e up to time t . By
Theorem 1.2 of [10] (see also Theorem 1.2 of [7]), there exist positive constants

c4, c5, c6 depending only on G and a such that for all n ∈ N and all edges e ∈ E
(n)

,
we have

P
(n)
0

(
lim

t→∞
kt (e)

kt (e
∗
0)

> e−c4|e|
)

≤ c5e
−c6|e|,(3.28)

uniformly in n. By Theorem 1 of [6], the limit limt→∞ kt (e)/t exists P
(n)
0 -a.s. and

is strictly positive; the distribution of the limiting vector limt→∞(kt (e)/t)
e∈E

(n)

equals Q(n), the distribution of the random environment on G
(n)

. Furthermore,
by (3.19), x

(n)
e /x

(n)

e∗
0

= x̃
(n)
e . Hence, the left-hand side of (3.28) equals

P
(n)
0

(
lim

t→∞
kt (e)/t

kt (e
∗
0)/t

> e−c4|e|
)

= Q(n)

(
x

(n)
e

x
(n)

e∗
0

> e−c4|e|
)

(3.29)
= P(n)(x̃(n)

e

(
ω(n)) > e−c4|e|).

We used Lemma 3.3 in the last step. Thus, the bound (3.28) and equation (3.29)
imply the estimate (3.26).

Taking the limit as n → ∞ in (3.26), the claim (3.27) follows from Lemma 3.4.
�

LEMMA 3.6 (Normalizability). The infinite series
∑

e∈E x̃e is P-almost surely
finite.

PROOF. This follows from (3.27) by a Borel–Cantelli argument. �

PROOF OF THEOREMS 2.4 AND 2.21. The sum
∑

e∈E x̃e is P-almost surely
finite by Lemma 3.6. Hence, x(ω), as defined in (2.48), is P-almost surely well
defined, and clearly,

∑
e∈E xe(ω) = 1.

Let π = (v0 = 0, v1, . . . , vk) be a path in G. For n > k, the random walker

cannot visit the ends of the finite graph G
(n)

up to time k. Hence, the probability
to follow the path π up to time k agrees for the reinforced random walker on G

and on G
(n)

:

P0
(
(Xs)s=0,...,k = π

) = P
(n)
0

(
(Xs)s=0,...,k = π

)
.(3.30)

Recall that the edge-reinforced random walk on G
(n)

can be represented as a mix-
ture of reversible Markov chains with mixing measure Q(n). Hence, using Lemmas
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3.3 and 3.4,

P
(n)
0

(
(Xs)s=0,...,k = π

) =
∫

Q0,x(n)

(
(Xs)s=0,...,k = π

)
Q(n)(dx(n))

=
∫

Q0,x̃(n)(ω(n))

(
(Xs)s=0,...,k = π

)
P(n)(dω(n))

n→∞−→
∫

Q0,x̃(ω)

(
(Xs)s=0,...,k = π

)
P(dω)(3.31)

=
∫

Q0,x̃

(
(Xs)s=0,...,k = π

)
Q̃(dx̃);(3.32)

recall that Q̃ is the law of x̃ with respect to P.
Now, any random walk distribution is uniquely determined by its values on the

events A = {(Xs)s=0,...,k = π}. Thus, (3.30) and (3.32) imply that edge-reinforced
random walk on G has the same distribution as a random walk in a random en-
vironment with weights having the distribution Q̃. By (2.46), the environment is
normalized so that x̃e∗

0
= 1.

Moreover, the weights x̃e and xe are proportional by (3.19); hence the Markov
chain probabilities Q0,x̃ and Q0,x coincide. Thus, it follows from (3.30) and (3.31)
that edge-reinforced random walk on G has also the same distribution as a random
walk in a random environment Q, given by weights x(ω), where ω has the distri-
bution P.

By Theorem (7) of [3], the mixing measure Q is uniquely determined, because
the reinforced random walk on G is recurrent as was shown in Lemma 5.2 of [7]
and Proposition 5.1 of [10]. We conclude that (2.8) holds. �

PROOF OF THEOREM 2.5. By the conversion (3.19), x
(n)
e /x

(n)

e∗
0

= x̃
(n)
e and

xe/xe∗
0
= x̃e. Using Lemma 3.3 and Theorem 2.21, the claims follow immediately

from Lemma 3.5. �

Let us summarize the key statements in Lemma 3.3 and Theorem 2.21.
Connection between the random environment and the Gibbs measures:

Q equals the law of x(ω) if ω has law P.
Q(n) equals the law of x(n)(ω(n)) if ω(n) has law P(n).

3.2. Properties of the random environment.

PROOF OF THEOREM 2.7. First, we show that for any finite path ρ =
(vk, . . . , vl) with l ≥ k, we have

P
(
(Xs)s=k,...,l = ρ|(Xs)s=0,...,k = π

)
(3.33)

=
∫
�

Qvk,x

(
(Xs)s=k,...,l = ρ

)Q0,x((Xs)s=0,...,k = π)

P0((Xs)s=0,...,k = π)
Q(dx).
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Let πρ denote the concatenation of π and ρ. By the Markov property for Q·,x
and the representation of the edge-reinforced random walk as a mixture of Markov
chains [identity (2.8) in Theorem 2.4], the right-hand side of (3.33) equals∫

� Q0,x((Xs)s=0,...,l = πρ)Q(dx)

P0((Xs)s=0,...,k = π)

= P0((Xs)s=0,...,l = πρ)

P0((Xs)s=0,...,k = π)
(3.34)

= P0((Xs)s=k,...,l = ρ|(Xs)s=0,...,k = π).

Thus, (3.33) holds.
Since the distribution of (Xk+t )t∈N0 is uniquely determined by its values on

events of the form {(Xs)s=k...l = ρ}, (3.33) generalizes to

P
(
(Xk+t )t∈N0 ∈ A|(Xs)s=0,...,k = π

)
(3.35)

=
∫
�

Qvk,x

(
(Xk+t )t∈N0 ∈ A

)Q0,x((Xs)s=0,...,k = π)

P0((Xs)s=0,...,k = π)
Q(dx).

This proves the claim (2.13) for the measure Qπ with the Radon–Nikodym

derivative (2.14). In particular, taking A = V
N0 in (2.13), we see that Qπ is a prob-

ability measure. The uniqueness of Qπ follows immediately from the uniqueness
of Q stated in Theorem 2.4. �

PROOF OF THEOREM 2.8. By Lemma 3.4, the finite-dimensional marginals
of Q̃(n) converge weakly to the corresponding marginals of Q̃. By Theorem 10.1
in Chapter 3 of [11], there exists a coupling ((x̂

(n)
e )e∈E,n ∈ N, (x̂e)e∈E) with a

coupling measure Q̂, such that

lim
n→∞ x̂(n)

e = x̂e pointwise for all e ∈ E,(3.36)

(x̂e)e∈E has the law Q̃, and (x̂
(n)
e )e∈E has the law Q̃(n). More precisely, we set

x̂
(n)
e = 0 whenever e is not an edge in G

(n)
, and we let (x̂

(n)
e )

e∈E
(n) have the

law Q̃(n).
We claim that

lim
n→∞

∑
e∈E

x̂(n)
e = ∑

e∈E

x̂e, Q̂-a.s.(3.37)

This can be seen as follows. Recall that x̃e = xe/xe∗
0
. Hence, from (2.10) of Theo-

rem 2.5, we know that for every edge e,

Q̂
(
x̂e > e−c4|e|) ≤ c5e

−c6|e|.(3.38)
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Let ε > 0. Take m so large that
∑

e∈E\E(m) c5e
−c6|e| < ε/2 and

∑
e∈E\E(m) e−c4|e| <

ε/2. We estimate∣∣∣∣∣
∑
e∈E

x̂(n)
e − ∑

e∈E

x̂e

∣∣∣∣∣
(3.39)

≤ ∑
e∈E

(m)

∣∣x̂(n)
e − x̂e

∣∣ + ∑
e∈E\E(m)

[∣∣x̂(n)
e

∣∣ + |x̂e|].
The convergence (3.36) implies that the first sum on the right-hand side of (3.39)
converges to 0 Q̂-a.s. as n → ∞. Therefore, we conclude

Q̂

(
lim sup
n→∞

∣∣∣∣∣
∑
e∈E

x̂(n)
e − ∑

e∈E

x̂e

∣∣∣∣∣ > ε

)

≤ Q̂

(
lim sup
n→∞

∑
e∈E\E(m)

[∣∣x̂(n)
e

∣∣ + |x̂e|] > ε

)
(3.40)

≤ ∑
e∈E\E(m)

[
Q̂

(
x̂(n)
e > e−c4|e|) + Q̂

(
x̂e > e−c4|e|)] < ε.

This implies the claim (3.37).
As a consequence of our normalization x̂e0 = 1, we know

∑
e∈E x̂e ≥ 1. Hence,

(3.36) and (3.37) imply that we have for all e ∈ E

lim
n→∞

x̂
(n)
e∑

e′∈E
(n) x̂

(n)
e′

= lim
n→∞

x̂
(n)
e∑

e′∈E x̂
(n)
e′

= x̂e∑
e′∈E x̂e′

, Q̂-a.s.(3.41)

We know that the Q̂-distribution of (x̂
(n)
e /

∑
e′∈E

(n) x̂
(n)
e′ )

e∈E
(n) equals Q(n) by

Lemma 3.3, and the Q̂-distribution of (x̂e/
∑

e′∈E x̂e′)e∈E equals Q by Theorem
2.21. Hence, (3.41) implies that the finite-dimensional marginals of Q(n) converge
weakly to the corresponding marginals of Q. �

PROOF OF THEOREM 2.9. Since the sum of finitely many random variables
with exponential tails has again exponential tails, Theorem 2.2 of [10] (see also
Theorem 2.3 of [7]) implies the following tail estimate in finite volume: There
exist positive constants c7(a), c8(a), depending only on a, such that one has for all
n ∈ N, i, j ∈ {0,1, . . . , n} with |i − j | ≤ 1 and M > 0,

Q(n)

[∣∣∣∣ln xe

xe′

∣∣∣∣ ≥ M

]
≤ c7e

−c8M,(3.42)

whenever e, e′ are edges on level i, j , respectively.
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Now, let e, e′ be edges on arbitrary levels i �= j , respectively. Then, we can write
ln(xe/xe′) as a sum of |i − j | terms of the form ln(xf /xf ′) with f and f ′ edges
on neighboring levels. Hence,

Q(n)

[∣∣∣∣ln xe

xe′

∣∣∣∣ ≥ M

]
≤ c7|i − j |e−c8M/|i−j |(3.43)

follows. Note that the constants c7 and c8 are independent of n. By Theorem 2.8,
we can take the limit as n → ∞ in the inequality (3.43); note that the distributions
of all ln(xe/xe′), e �= e′, with respect to the limit law Q are continuous. This yields
the claim (2.16) and completes the proof of the theorem. �

PROOF OF COROLLARY 2.6. Fix f ∈ E. For e ∈ E, we define the event

Ae := {
xe > e−c4|e|/2xf

}
(3.44)

with c4 as in Theorem 2.5. By (2.46) the weights x̃e are normalized so that x̃e∗
0
= 1.

Furthermore, x̃e and xe are proportional with x̃e = xe/xe∗
0
. An application of the

estimate (2.10) from Theorem 2.5 and the bound (2.16) from Theorem 2.9 yield

Q(Ae) ≤ Q
(
xe > e−c4|e|xe∗

0

) + Q
(
xe∗

0
> ec4|e|/2xf

)
(3.45)

≤ c5e
−c6|e| + c9e

−c10|e|

with constants c9(f ) > 0 and c10(f ) > 0. Thus,
∑

e∈E Q(Ae) < ∞, and the Borel–
Cantelli lemma implies that Q-a.s., the event Ae holds for at most finitely many
e ∈ E, that is, Q-a.s., there exists n0 such that for all n ≥ n0, the claim (2.11) holds.

�

3.3. Asymptotic properties of the reinforced random walk.

PROOF OF THEOREM 2.1. Let v ∈ V be a vertex and x ∈ �. Since∑
e∈E xe = 1, we know

∑
v∈V xv = 2; recall the notation (2.7). Furthermore, with

respect to the invariant distribution π = (xv/2)v∈V , the random walk Qπ,x in the
fixed environment x is reversible; see, for example, Example 4.5 on pages 298–299
of [5]. We conclude that

x0Q0,x(Xt = v) = xvQv,x(Xt = 0)(3.46)

and therefore

Q0,x(Xt = v) = xv

x0
Qv,x(Xt = 0) ≤ xv

x0
≤ xv

xe∗
0

.(3.47)

Taking now a random environment x, we consider the event

Av =
{

xv

xe∗
0

≥ ke−c4(|v|−1)

}
,(3.48)
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where k denotes the coordination number of G, i.e. the maximal number of imme-
diate neighbors that a vertex in G can have. We estimate, using the bound (3.27)
from Lemma 3.5 and the fact xv/xe∗

0
= ∑

e∈E : v∈e x̃e,

P(Av) ≤ ∑
e∈E:v∈e

P
(
x̃e ≥ e−c4(|v|−1))

≤ ∑
e∈E:v∈e

P
(
x̃e ≥ e−c4|e|)(3.49)

≤ kc5e
−c6(|v|−1);

note that |e| ≥ |v| − 1 if v ∈ e. Using the representation (2.8) of P0 as a mixture of
the Q0,x , we get the bound

P0(Xt = v) =
∫
�

Q0,x(ω)(Xt = v)P(dω)

=
∫
Ac

v

Q0,x(Xt = v) dP +
∫
Av

Q0,x(Xt = v) dP

(3.50)
≤

∫
Ac

v

xv

xe∗
0

dP + P(Av)

≤ ke−c4(|v|−1) + kc5e
−c6(|v|−1).

The claim (2.1) of Theorem 2.1 follows from this bound by summation over all
vertices v with |v| ≥ n. �

PROOF OF COROLLARY 2.2. By Theorem 2.1, we know that for all c3 > 0
and t ≥ 2, the following holds:

P0

(
max

s=0,...,t
|Xs | > c3 ln t

)
≤

t∑
s=1

P0(|Xs | > c3 ln t) ≤ tc1e
−c2c3 ln t .(3.51)

We choose c3 large enough that 1 − c2c3 ≤ −2. Then

P0

(
max

s=0,...,t
|Xs | > c3 ln t

)
≤ c1t

−2;(3.52)

in particular the probabilities in (3.52) are summable over t . Hence, by the Borel-
Cantelli lemma, we know that P0-a.s. the claim (2.2) holds. �

PROOF OF THEOREM 2.12. Let x ∈ �. Recall that (xv/2)v∈V is a reversible
probability distribution for the Markov chain Q·,x . All closed paths in G = N0 ×G

have an even length because G is acyclic. Hence, all states v ∈ V have period 2.
Furthermore, the Markov chain Q·,x is irreducible. Consequently, by the conver-
gence theorem (5.7) on page 315 of [5], (2.23) and (2.24) follow.
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To prove (2.25), let A ⊆ V
N0 be measurable. Note that the convergence in (2.23)

holds also in the l1-norm on RV by the discrete version of Scheffé’s theorem.
Hence, we can exchange infinite sum and limit in the following calculation:

lim
s→∞Q0,x

(
(X2s+t )t∈N0 ∈ A

)
= lim

s→∞
∑
v∈V

Q0,x

(
(X2s+t )t∈N0 ∈ A|X2s = v

)
Q0,x(X2s = v)

= lim
s→∞

∑
v∈V

Qv,x

(
(Xt)t∈N0 ∈ A

)
Q0,x(X2s = v)(3.53)

= ∑
v∈V

Qv,x

(
(Xt)t∈N0 ∈ A

)
lim

s→∞Q0,x(X2s = v)

= Qxeven,x(A).

By the same argument, the last claim (2.26) follows. �

PROOF OF THEOREMS 2.3 AND 2.10. We combine the representation of the
reinforced random walk as a mixture of Markov chains (Theorem 2.4) and the
convergence to equilibrium, conditioned on the environment (Theorem 2.12). By
the dominated convergence theorem, this yields

lim
t→∞P0(X2t = v) =

∫
�

lim
t→∞Q0,x(X2t = v)Q(dx)

(3.54)
=

∫
�

xeven(v)Q(dx) =: µeven(v)

for all v ∈ V . Since xeven is a probability function, by the monotone convergence
theorem, µeven is a probability function as well.

In order to prove the upper bound for µeven(v), we use (3.54) and Theorem 2.1:

µeven(v) = lim
t→∞P0(X2t = v) ≤ lim sup

t→∞
P0(|X2t | ≥ |v|) ≤ c1e

−c2|v|.(3.55)

The convergence of the distribution of X2t+1 and the claims for µodd are proved
analogously. �

PROOF OF THEOREM 2.11. The claim follows from Theorems 2.4 and 2.12
and the dominated convergence theorem. �
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