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EXACT HAUSDORFF MEASURE ON THE BOUNDARY OF A
GALTON–WATSON TREE

BY TOSHIRO WATANABE

University of Aizu

A necessary and sufficient condition for the almost sure existence of an
absolutely continuous (with respect to the branching measure) exact Haus-
dorff measure on the boundary of a Galton–Watson tree is obtained. In the
case where the absolutely continuous exact Hausdorff measure does not ex-
ist almost surely, a criterion which classifies gauge functions φ according to
whether φ-Hausdorff measure of the boundary minus a certain exceptional
set is zero or infinity is given. Important examples are discussed in four addi-
tional theorems. In particular, Hawkes’s conjecture in 1981 is solved. Prob-
lems of determining the exact local dimension of the branching measure at a
typical point of the boundary are also solved.

1. Introduction. An interesting history of the classical problem of determin-
ing the Hausdorff and packing dimensions and then the exact Hausdorff and pack-
ing measures of the boundary of a supercritical Galton–Watson tree is found in
the previous paper [46]. It was initiated in 1973 by the thesis of Holmes [18],
whose supervisor and examiner were C. A. Rogers and S. J. Taylor, respectively.
The author [46] completely solved the problem of determining the exact packing
measure of the boundary of the tree by filling the critical gap in the proof of the
theorem of Liu [22], which had been pointed out by Berlinkov and Mauldin [4].
Berlinkov [3] independently studied the exact packing measures of homogeneous
random recursive fractals and, as a corollary, he obtained an analogous result under
a certain additional assumption on the tree. However, it was stated without precise
proof and he could not identify the explicit value of the exact packing measure of
the boundary. Upon an outline of Hawkes [17], the author [46] defined a random
sequence {Y(n)} for n ≤ 0 as Y(−n) := µ(Bn), that is, the branching measure of
the ball Bn with diameter e−n on the boundary of the tree and discovered that it
is a shift self-similar additive random sequence on a certain extended probability
space. It is a key fact for solving this old problem, which enables us to use new
limit theorems for shift self-similar additive random sequences developed by the
author [44]. In the present paper, we extensively employ limit theorems of “lim-
sup” type for the sequence {Y(n)} and find a necessary and sufficient condition for
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the almost sure existence of an absolutely continuous (with respect to the branch-
ing measure) exact Hausdorff measure on the boundary of a Galton–Watson tree.
It is represented by the nondominated variation of the right tail of the martingale
limit of the branching process, equivalently, by the nondominated variation of the
integrated function of the right tail of the offspring distribution. See Corollary 1.1.
In the case where an absolutely continuous exact Hausdorff measure does not ex-
ist, we give a criterion which classifies gauge functions φ according to whether
φ-Hausdorff measure of the boundary minus a certain exceptional set is 0 or ∞.
See Theorem 1.2. The explicit value of φ-Hausdorff measure of the boundary is
determined for each example in three additional theorems by closing the serious
gaps in the proofs of Liu [21]. See Remark 1.4. In particular, Theorem 1.3 can be
applied to obtain upper and lower bounds for the explicit value of the exact Haus-
dorff measure of a homogeneous random recursive fractal such as the limit set
of Mandelbrot’s fractal percolation and the path of a self-avoiding process on the
Sierpinski gasket. See [14] and the examples of Berlinkov [3]. Moreover, a con-
jecture of Hawkes [17] in 1981 is solved. See Theorem 1.6. As is found in the
concluding remarks, our problem of determining the exact Hausdorff measure is
not yet completely solved. However, it is realized that the study of the exceptional
set � defined by (1.7) below will lead to the complete solution.

In what follows, denote by R
d the d-dimensional Euclidean space and let R+ =

[0,∞). Let Z = {0,±1,±2, . . .}, Z+ = {0,1,2, . . .}, N = {1,2,3, . . .}, and denote
U = ⋃∞

n=0 Z
n+ with Z

0+ = ∅. We denote i ∈ Z
n+ by (ik)

n
k=1 or (i1, i2, . . . , in). For

i ∈ Z
n+ ⊂ U, we define |i| = n. Let I = Z

N+. We denote i ∈ I by (ik)
∞
k=1 and de-

fine, for i ∈ I, |i| = ∞. For i = (ik)
n
k=1 and j = (jk)

m
k=1 in U, we define i ∗ j ∈ U

as i ∗ j := (i1, i2, . . . , in, j1, . . . , jm). In particular, we have ∅ ∗ i = i ∗ ∅ = i. We
define i|n = (ik)

n
k=1 for i ∈ U ∪ I with n ∈ Z+ ∪ {∞} satisfying n ≤ |i|. We under-

stand that i|0 = ∅. We say that i ≤ j in U ∪ I if |i| = n ≤ |j| and j|n = i. In this
order, we define i ∧ j ∈ U ∪ I for i, j ∈ U ∪ I as i ∧ j := max{k ∈ U ∪ I : k ≤ i and
k ≤ j}. We define a metric d(i, j) for i, j ∈ I as d(i, j) := e−|i∧j|. Then (I, d) is an
ultrametric space. Denote by B(I) the class of all Borel sets in (I, d). From now
on, let {Ni, i ∈ U} be Z+-valued i.i.d. random variables on a probability space
(�,F ,P ). In particular, put N := N∅. We assume, to avoid the trivial cases,
that the support of the distribution of N is not a one-point set. We denote by
f (s) := ∑∞

n=0 pns
n the probability generating function (p.g.f. for short) of the dis-

tribution of N , where pn := P(N = n) for n ∈ Z+. Let fn(s) be the nth iteration
of f (s) with itself. We assume that

a := E(N) > 1 and E(N logN) < ∞.(1.1)

A set T ⊂ U is called a Galton–Watson tree on (�,F ,P ) with offspring distribu-
tion {pn}n≥0 = {P(N = n)}n≥0 if the following three conditions are satisfied:

(1) ∅ ∈ T.
(2) Let i ∈ T and i ∈ Z+. Then i ∗ i ∈ T if and only if 0 ≤ i ≤ Ni − 1.
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(3) If i ∈ T and j ≤ i, then j ∈ T.

Let T be a Galton–Watson tree. We define the boundary (or branching set) ∂T
of T as

∂T := {i ∈ I : i|n ∈ T for every n ∈ Z+}.
We define Fn ⊂ T and Zn for n ∈ Z+ as

Fn := {i ∈ T : |i| = n} and Zn := CardFn.

Here CardA stands for the cardinality of a set A. Then {Zn,n ∈ Z+} is a supercrit-
ical Galton–Watson branching process with p.g.f. f (s) of the number of offspring.
Thus the distribution of N is the same as that of Z1. We define an R+-valued
random variable W as the following martingale limit:

W := lim
n→∞

Zn

an
.(1.2)

Our assumption (1.1) implies that W exists almost surely with E(W) = 1. Note
that {W = 0} = {∂T = ∅} = {limn→∞ Zn = 0} up to probability zero sets and
that q := P(W = 0) is the first nonnegative solution of the equation f (s) − s = 0.
Thus it is obvious that q = 0 if and only if p0 = 0. See [1] as to the above as-
sertions. In this paper we use the words “increase” and “decrease” in the wide
sense allowing flatness. A nonnegative decreasing function h(x) on R+ is called
of dominated variation as x → ∞ [h(x) ∈ D for short] if h(x) > 0 for x > 0 and
lim infx→∞ h(2x)/h(x) > 0. Note that if h(x) is regularly varying as x → ∞, then
h(x) ∈ D . See [10] and [39]. For two positive functions h1(x) and h2(x) on R+,
we define a relation h1(x) 
 h2(x) as x → ∞ by lim supx→∞ h2(x)/h1(x) < ∞
and lim infx→∞ h2(x)/h1(x) > 0. For a positive increasing function h(x) on
(0,∞), we define the inverse function h−1(x) as

h−1(x) := sup{y :h(y) < x}
with the understanding that sup ∅ = 0. Let α := loga. We define two classes
G and � of functions on R+, depending on a, as

G :=
{
g(x) : g(x) > 0 on R+ and lim sup

n→∞
g(n + 1)/g(n) < a

}
(1.3)

and

� := {φ :φ(t) = tαg(| log t |) on (0,∞) with g(x) ∈ G,

and φ(t) is positive
(1.4)

and increasing on (0, δ1) with some δ1 > 0

satisfying φ(0) := φ(0+) = 0}.
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Note that we assume the monotone property for φ ∈ � but do not for g ∈ G. For
a nonnegative function φ on (0,∞), which is positive and increasing on (0, δ1)

for some δ1 > 0 with φ(0) := φ(0+) = 0, the φ-Hausdorff measure φ-H(E) of a
Borel set E in the metric space (I, d) is defined by

φ-H(E) := lim inf
δ→0+

{ ∞∑
n=1

φ(|Dn|) :E ⊂
∞⋃

n=1

Dn, |Dn| ≤ δ

}
,(1.5)

where |Dn| denotes the diameter of the set Dn ∈ B(I). We can take the set Dn

as a closed ball in the definition (1.5), since (I, d) is an ultrametric space. Under
the single assumption that a > 1, both the Hausdorff and packing dimensions of
∂T are α almost surely on {∂T �= ∅}. See, for Hausdorff dimension, [12, 17, 18]
and [26]; for packing dimension, [4, 22] and [46]. See also [20] for an extension
of Hawkes’s result. A φ-Hausdorff measure is called an exact Hausdorff mea-
sure for ∂T if 0 < φ-H(∂T) < ∞ a.s. on {∂T �= ∅}. Denote by µ the branching
measure on the boundary ∂T. An exact Hausdorff measure is called absolutely
continuous (with respect to the branching measure µ) if φ-H(A) = 0 a.s. provided
that µ(A) = 0 for a Borel set A ⊂ ∂T. A precise definition of the branching mea-
sure µ is given in Section 2. The random sequence {Y (n), n ≤ 0} on an extended
probability space (� × I,F × B(I),Q) will be defined by (2.6) and (2.7) in Sec-
tion 2. There can be more than one exact Hausdorff measure. Our main results are
as follows.

We define an integrated function K(x) of a tail probability on R+ as

K(x) :=
∫ ∞
x

P (N > u)du.(1.6)

We define an exceptional set � in ∂T and a condition (G�) for g ∈ G as follows:

� :=
{

i ∈ ∂T : lim
n→∞

Wi|n
g(n)

= 0
}
,(1.7)

where Wi is defined by (2.3) below and

lim sup
n→∞

(
n−1∑
k=0

Q
(
Y(0) − Y(−1) > δ0g(k)

) − logg(n)

)
= ∞

(G�)
for some δ0 > 0.

The relation between the set � and the condition (G�) is found in Lemma 4.3
below.

THEOREM 1.1. Suppose that K(x) /∈ D . Then there exists an absolutely con-
tinuous exact φ-Hausdorff measure for ∂T with φ(t) = tαg(| log t |) ∈ �. It satis-
fies that

φ-H(∂T) = CφW a.s. on {∂T �= ∅},(1.8)
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where the positive constant Cφ is determined by

∞∑
n=0

Q
(
Y(0) − Y(−�) > δg(n)

)
= ∞, ∃� = �(δ) ≥ 1,

for 0 < δ < C−1
φ ,

< ∞, ∀� ≥ 1, for δ > C−1
φ .

(1.9)

Moreover, it is represented, for A ∈ B(I) satisfying A ⊂ ∂T, as

φ-H(A) = Cφµ(A) a.s.(1.10)

REMARK 1.1. A concrete but not simple example of φ ∈ � for an exact
φ-Hausdorff measure for ∂T is found in the proof of the above theorem in Sec-
tion 4. The condition K(x) /∈ D is equivalent to P(W > x) /∈ D , but not to
P(N > x) /∈ D . See Lemma 2.5.

THEOREM 1.2. Suppose that K(x) ∈ D . Let φ ∈ � with φ(t) = tαg(| log t |)
and let �′ be an arbitrary Borel set in ∂T with µ(�′) = 0 a.s. Then there is no
absolutely continuous exact Hausdorff measure for ∂T. More precisely, we have
the following:

(i) If
∑∞

n=0 K(g(n)) < ∞, then φ-H(∂T \ �′) = φ-H(∂T) = ∞ a.s. on
{∂T �= ∅}.

(ii) If
∑∞

n=0 K(g(n)) = ∞, then φ-H(∂T \ �) = 0 with µ(�) = 0 a.s.
(iii) If

∑∞
n=0 K(g(n)) = ∞ and

lim sup
δ→0+

lim sup
n→∞

n∑
k=0

K(δg(k))/ log
(
g(n) ∨ e

) = ∞,

then φ-H(∂T) = 0 a.s.

REMARK 1.2. In the case where K(x) ∈ D , it is still hard to answer whether
there exists an exact Hausdorff measure for ∂T. However, our results say the fol-
lowing. Suppose that K(x) ∈ D and there exists an exact φ-Hausdorff measure
φ-H for ∂T with φ ∈ �. Then it is singular with respect to the branching measure
µ and satisfies that

0 < φ-H(�) < ∞ and φ-H(∂T \ �) = 0 with µ(�) = 0 a.s.

Further it satisfies that limn→∞ g(n) = ∞ and that

∞∑
n=0

K(g(n)) = ∞ and lim sup
δ→0+

lim sup
n→∞

n∑
k=0

K(δg(k))/ logg(n) < ∞.

COROLLARY 1.1. (i) There exists an absolutely continuous exact φ-Hausdorff
measure for ∂T with φ ∈ � if and only if K(x) /∈ D , that is, P(W > x) /∈ D . It is
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also equivalent to that there exists φ ∈ � such that 0 < φ-H(∂T \ �) < ∞ with
µ(�) = 0 a.s. on {∂T �= ∅}.

(ii) An exact φ-Hausdorff measure for ∂T with φ ∈ � is absolutely continuous
if and only if K(x) /∈ D and φ-H(�) = 0 a.s. If an exact φ-Hausdorff measure
with φ ∈ � satisfies the condition (G�) for its g function, then it is absolutely
continuous.

REMARK 1.3. There is symmetry between the problem on the exact Haus-
dorff measure on the boundary of the tree and that on the exact packing measure.
The former is related to the right tail behavior of the distribution of W and the
latter is to the left tail behavior. The existence of an exact packing measure for the
tree is determined by the nondominated variation of the left tail of the distribution
of W , namely, p0 = p1 = 0. In addition, the exact packing measure is explicitly
given and absolutely continuous with respect to the branching measure. See [46].
Moreover, tα-Hausdorff measure (so-called α-Hausdorff measure) of ∂T is almost
surely zero. On the other hand, tα-packing measure (so-called α-packing measure)
of ∂T is almost surely infinity on {∂T �= ∅}. An analogous symmetry is already
found in the results of [45].

We add the three theorems which were discussed by Liu [21]. Unfortunately, his
proofs of Theorems 1.3 and 1.4 contain serious gaps as was already pointed out by
Watanabe [46]. Theorems 1.3 and 1.4 correspond to Theorems 2 and 3 in [21]. See
Remark 1.4. The results of Bingham [8], Watanabe [45] and Bingham and Doney
[9] on the right tail behavior of the martingale limit W are used in the proof of the
following theorems, respectively.

THEOREM 1.3. Let M := sup{n ≥ 0 :pn > 0}. Suppose that 1 < M < ∞. De-
fine γ and φ0 as γ := logM/ loga and φ0(t) := tα(log | log t |)(γ−1)/γ . Then we
have γ > 1 and

φ0-H(∂T) = τ (γ−1)/γ W a.s. on {∂T �= ∅},(1.11)

where τ is a positive constant determined by

E exp
(
δWγ/(γ−1)) {

< ∞, for 0 < δ < τ ,
= ∞, for δ > τ.

(1.12)

THEOREM 1.4. Let S0 := sup{s > 0 :f (s) < ∞}. Suppose that 1 < S0 < ∞.
Define φ1 as φ1(t) := tα log | log t |. Then we have

φ1-H(∂T) = σW a.s. on {∂T �= ∅},(1.13)

where σ is a positive constant given by

σ := lim
n→∞an+1(

(fn)
−1(S0) − 1

)
,(1.14)

where (fn)
−1(s) is the inverse function of fn(s).
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THEOREM 1.5. Let θ0 := sup{θ ≥ 1 :E(Nθ) < ∞}. Suppose that 1 < θ0 < ∞.
Define b0 and ψb as b0 := 1/(θ0 − 1) and ψb(t) := tα| log t |b for −∞ < b < ∞.
Then we have, a.s. on {∂T �= ∅},

ψb-H(∂T) =
{

0, for b < b0,
∞, for b > b0.

(1.15)

Moreover, if E(Nθ0) < ∞, then ψb0-H(∂T) = ∞ a.s. on {∂T �= ∅}. On the other
hand, if E(Nθ0) = ∞, then ψb0-H(∂T \ �) = 0 with µ(�) = 0 a.s.

Finally we present a resolution for a conjecture of Hawkes [17]. However, it
should be noted that no necessary and sufficient condition for the relation (1.16)
below in terms of the offspring distribution of the branching process is known up
to now.

THEOREM 1.6. Let R(x) := xb�(x) be a positive and increasing function on
(0,∞) with 0 < b ≤ 1 and slowly varying �(x) as x → ∞. Define φ2 as φ2(t) :=
tαR−1(log(e ∨ | log t |)). Suppose that φ2 ∈ � and

− logP(W > x) 
 R(x) as x → ∞.(1.16)

Then we have

φ2-H(∂T) = ξRW a.s. on {∂T �= ∅},(1.17)

where ξR is a positive constant determined by

E exp(R(δW))

{
< ∞, for 0 < δ < ξR ,
= ∞, for δ > ξR.

(1.18)

REMARK 1.4. Each one-half of the proofs of Theorems 1.3 and 1.4 by
Liu [21] has a serious gap. Namely, the first equality on line 7 on page 535 and
the reason for the inequality on line 11 on page 536 of [21] are not true, respec-
tively. The first assertion of Theorem 1.5 was conjectured by Liu [21]. All the
exact Hausdorff measures φj -H (j = 0,1,2) in Theorems 1.3, 1.4 and 1.6 are ab-
solutely continuous because they satisfy the condition (G�) for their g functions.
Thus they satisfy (1.10) with Cφ0 = τ (γ−1)/γ , Cφ1 = σ and Cφ2 = ξR , respectively
satisfying φj -H(�) = 0 a.s. (j = 0,1,2). The constants τ and σ are explained
more precisely in Lemmas 2.4 and 2.5 and Remarks 2.1 and 2.2. The existence
and positivity of ξR are trivial, but the method of the numerical calculation of its
value is not known. We do not know whether ψb0-H(∂T) = 0 a.s., that is, whether
ψb0-H(�) = 0 a.s., in the case where E(Nθ0) = ∞.

The organization of this paper is as follows. In Section 2, we review some use-
ful results on the distribution of W and those on shift self-similar additive random
sequences, and give some preliminary results. In Section 3, we give limit theo-
rems of “limsup” type for a shift self-similar additive random sequence {Y(n)}. In
Section 4, we prove the main theorems and the four additional theorems.
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2. Preliminaries. Let c > 1. An R
d -valued random sequence {X(n),n ∈ Z}

on a probability space (�̃, F̃ , P̃ ) is called a shift c-self-similar additive random
sequence if the following two conditions are satisfied:

(1) The sequence {X(n),n ∈ Z} has shift c-self-similarity, that is,

{X(n + 1), n ∈ Z} d={cX(n),n ∈ Z},
where the symbol =d stands for equality in the finite-dimensional distributions.

(2) The sequence {X(n),n ∈ Z} has independent increments (or additivity),
that is, for every n ∈ Z, {X(k), k ≤ n} and X(n + 1) − X(n) are independent.

The definition for an R
d -valued random sequence {X(n),n ≤ 0} to be a

shift c-self-similar additive random sequence is similar. That is, the sequence
{X(n),n ≤ 0} is called a shift c-self-similar additive random sequence if {X(n +
1), n ≤ −1}=d {cX(n),n ≤ −1} and, for every n ≤ −1, {X(k), k ≤ n} and X(n +
1) − X(n) are independent. Note that shift self-similarity does not imply the usual
self-similarity. We denote by η̂ the characteristic function of a probability distri-
bution η on R

d . Let 0 < b < 1. A probability distribution η on R
d is said to be

b-decomposable if there exists a probability distribution ρ on R
d such that

η̂(z) = η̂(bz)ρ̂(z).(2.1)

For example, semistable distributions and homogeneous self-similar measures
such as Bernoulli convolutions are b-decomposable for some b ∈ (0,1). In the
case where ρ is infinitely divisible, η is also infinitely divisible and is called semi-
self-decomposable. The equality (2.1) is equivalent to

η̂(z) =
∞∏

n=0

ρ̂(bnz)(2.2)

which is convergent if and only if
∫
Rd log(1+|x|)ρ(dx) < ∞. The distribution ρ in

(2.1) is not necessarily uniquely determined by the distribution η. It is uniquely de-
termined by the distribution η in case the support of η is contained in R

d+. See [11,
25, 27, 29] and [30]. Absolute continuity of b-decomposable distributions is very
difficult and is related to Peres–Solomyak numbers (PS numbers, for short) and
Pisot–Vijayaraghavan numbers (PV numbers, for short). See [42, 43] and [47].
Let {Vj } be i.i.d. random variables with the distribution ρ in (2.1). Then the se-
quence {X(n),n ∈ Z} defined by X(n) = ∑n

j=−∞ cjVj with c = b−1 is a shift
c-self-similar additive random sequence with η being the distribution of X(0). For
instance, let {Tn} be a first exit time from an equilateral triangle with side 2n of a
Brownian motion {B(t)} on the extended Sierpinski gasket, starting at the origin.
Then {Tn,n ∈ Z} is a shift 5-self-similar additive random sequence and, for each
n ∈ Z the distribution of Tn is semi-self-decomposable and absolutely continuous
with infinitely differentiable density. Certain limit theorems of “limsup” type and
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“liminf” type for {Tn} are equivalent to the laws of the iterated logarithm of “lim-
inf” type and “limsup” type for {B(t)}, respectively. In particular, the constants
in the laws of the iterated logarithm for {B(t)} are unknown up to now, but their
upper and lower bounds are explicitly obtained together with their candidates by
using analogous constants in the limit laws for {Tn}. The same kinds of results
are also true for Brownian motions on many nested fractals other than Sierpinski
gasket. See [42, 45] and Remark 2.2.

The author [44], motivated by the results of Sato [36], introduced and character-
ized shift self-similar additive random sequences, and studied in detail their tran-
sience and rate of growth. Further, he found in [45, 46] two important examples
of them in relation to general supercritical Galton–Watson branching processes.
See Theorem 1.1 of [45] and Theorem 2.1 of [46]. They are closely related to
self-similar or semi-self-similar additive processes. See [28, 31, 37] and [41]. In
general, finite-dimensional distributions of the shift self-similar additive random
sequence {X(n)} are determined by the distribution of X(0) − X(−1) but not al-
ways by that of X(0). We shall use the following increasing case.

LEMMA 2.1 (Theorem 2.1 of [44]). Let c > 1.

(i) Suppose that {X(n),n ≤ 0} is an increasing shift c-self-similar additive
random sequence. Then the distribution of X(n) is c−1-decomposable on R+ for
n ≤ 0 and limn→∞ X(−n) = 0 a.s. There is a unique in law increasing shift c-self-
similar additive random sequence {X̃(n), n ∈ Z} such that

{X(n),n ≤ 0} d= {X̃(n), n ≤ 0}.
(ii) Conversely, for any c−1-decomposable distribution η on R+, there ex-

ists a unique in law increasing shift c-self-similar additive random sequence
{X(n),n ≤ 0} with the distribution of X(0) being η.

Let T be a Galton–Watson tree on (�,F ,P ) with f (s) being the offspring
p.g.f. We continue to use the notation and the assumptions in Section 1. In partic-
ular, the random variable W is defined by (1.2). We define a shifted tree Ti of T
for i ∈ U by the following two conditions:

(1) ∅ ∈ Ti.
(2) Let j ∈ Ti and i ∈ Z+. Then j ∗ i ∈ Ti if and only if 0 ≤ i ≤ Ni∗j − 1.

We define an R+-valued random variable Wi for i ∈ U as

Wi := lim
n→∞

Card{j ∈ Ti : |j| = n}
an

.(2.3)

The limit Wi exists almost surely. It satisfies that

Wi = 1

a

Ni−1∑
j=0

Wi∗j for i ∈ U,(2.4)
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with the understanding that
∑−1

j=0 = 0. The distribution of Wi is the same as that
of W for i ∈ U. Moreover, Wi and Wj are independent, whenever neither i ≤ j nor
j ≤ i. We define a closed ball Bi in I and its diameter |Bi| for i ∈ U as

Bi := {j ∈ I : i ≤ j} and |Bi| = e−|i|.

Note that {Wi = 0} = {∂T∩Bi = ∅} for i ∈ T up to a probability zero set. A subset
� of T is called a cutset for a subset A of the boundary ∂T if the following three
conditions are satisfied:

(1) Neither i ≤ j nor j ≤ i whenever i, j ∈ � and i �= j.
(2) A ⊂ ⋃

i∈� Bi.
(3) For i ∈ �, Bi ∩ A �= ∅.

Let � be any cutset for ∂T ∩ Bi. We see from (2.4) that

|Bi|αWi = ∑
j∈�

|Bj|αWj.(2.5)

We define a finite measure µ = µω on (I,B(I)) by

µ(Bi) :=
{

a−|i|Wi, for i ∈ T,
0, for i ∈ U \ T.

Note that µ is determined uniquely on (I,B(I)) for each ω ∈ � and the support of
µ is contained in ∂T almost surely. The measure µ is called the branching measure
for the tree T. See [21] as to the above assertions. We define a probability space
(� × I,F × B(I),Q) by assigning Q(A), for A ∈ F × B(I),

Q(A) := E

(∫
1A(ω, i)µω(di)

)
,(2.6)

where 1A stands for the indicator function of a set A. We denote by EQ the
expectation under the probability measure Q. We define a random sequence
{Y (n), n ≤ 0} by

Y(−n) := µ(Bi|n) for n ∈ Z+ and i ∈ I.(2.7)

The shift self-similarity of {Y(n)} was suggested by Hawkes [17], but not so was
the additivity in the following lemma.

LEMMA 2.2 (Theorem 2.1 of [46]). The sequence {Y (n), n ≤ 0} is an increas-
ing R+-valued shift a-self-similar additive random sequence on the probability
space (�× I,F × B(I),Q). In particular, we have Q(Y(0) ≤ x) = E(W1{W≤x})
and the distribution of Y(0) under Q is a−1-decomposable.

For a distribution η on R+, we denote the tail by η̄(x), that is, η̄(x) = η(x,∞)

for x ≥ 0. We denote the convolution of distributions η and ν by η ∗ ν and de-
note the nth convolution power of η by ηn∗ with the understanding that η0∗(dx) =
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δ0(dx), namely, the probability distribution concentrated at 0. Denote the distrib-
ution of W under the probability measure P by νW . The characteristic function of
the distribution νW satisfies Poincaré’s equation, that is,

ν̂W (z) = f (̂νW (z/a)).(2.8)

Define the p.g.f. f̃ (s) = ∑∞
n=0 p̃ns

n and the distribution ηW by

f̃ (s) := f (q + (1 − q)s) − q

1 − q
and ηW(dx) := νW (dx) − qδ0(dx)

1 − q
.(2.9)

Note that p̃0 = 0 and η̄W (x) = (1 − q)−1ν̄W (x) > 0 for any x > 0 and that νW =
ηW if and only if p0 = 0. Define the distributions η′

W and ρW by

η′
W(dx) := ηW(a dx) and ρW(dx) :=

∞∑
n=1

p̃n(η
′
W)(n−1)∗(dx).(2.10)

Then we obtain from (2.8) and (2.9) that

η̂W (z) = f̃ (η̂W (z/a)) and ηW(dx) = η′
W ∗ ρW(dx).(2.11)

That is, ηW is a−1-decomposable. We denote the distributions of Y(0) and Y(0)−
Y(−1) under the probability measure Q by ηY and ρY . Then we have by (2.2) and
Lemma 2.2

ηY (dx) = η′
Y ∗ ρY (dx) and

∫ ∞
1

(logx)ρY (dx) < ∞,(2.12)

where η′
Y (dx) := ηY (a dx).

Bingham [8] proved the following lemma by using a Tauberian theorem of ex-
ponential type of Kasahara [19] and Theorem 3.4 of [16].

LEMMA 2.3 ((11) of [8]). Let M := sup{n ≥ 0 : pn > 0}. Suppose that 1 <

M < ∞. Let γ = logM/ loga. Then we have γ > 1 and

− log(ν̄W (x)) 
 xγ/(γ−1) as x → ∞.(2.13)

Moreover, we see that there exists a positive constant τ determined by (1.12)
and (1.12) is clearly equivalent to

E
(
W exp

(
δWγ/(γ−1))) {

< ∞, for 0 < δ < τ ,
= ∞, for δ > τ.

(2.14)

REMARK 2.1. The positive constant τ is represented by Liu [22] as

τ = lim inf
x→∞

{−xγ/(1−γ ) logP(W > x)
}
.

Numerical calculation of the value of τ is very difficult. See [7] and also [5, 6].
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LEMMA 2.4 (Theorem 2.2 of [45]). Let S0 := sup{s > 0 :f (s) < ∞}. Suppose
that 1 < S0 < ∞. Then there exists a positive constant σ such that

E exp(tW)

{
< ∞, for 0 < t < σ,

= ∞, for t > σ.
(2.15)

Further, it is represented as (1.14) and (2.15) is obviously equivalent to

E(W exp(tW))

{
< ∞, for 0 < t < σ,

= ∞, for t > σ.
(2.16)

REMARK 2.2. Suppose that, for some positive integer k,

f (s) = s

(a − (a − 1)sk)1/k
.

Then we see that

fn(s) = s

(an − (an − 1)sk)1/k

and ν̂W (z) = (1 − ikz)−1/k , that is, νW is the gamma distribution with parame-
ter 1/k and thereby σ = 1/k. See [16] or [8]. The existence and the positivity
of σ are also found in [22] but its representation (1.14) is not therein. It should
be noted that the constant σ can be numerically calculated by using (1.14). In
some cases, the constant σ has a natural relation with the constant of the law
of the iterated logarithm of Brownian motions on some fractals. See [2, 13] and
[45]. The Brownian motion on the Sierpinski gasket is related to the case where
f (s) = s2/(4 − 3s) with a = 5 and S0 = 4/3, and σ is computed numerically by
using (1.14) as σ = 1.318 · · · .

The author [45] proved the following lemma by using a Tauberian theorem
of [41]. It is the most difficult and critical fact in this paper. The regularly vary-
ing case was already known by Bingham and Doney [9] and de Meyer [32] in a
stronger sense. Recall the definition (1.6) of K(x).

LEMMA 2.5 (Theorem 2.3 of [45]). (i) ν̄W (x) ∈ D if and only if K(x) ∈ D .

(ii) If K(x) ∈ D, then

xν̄W (x) 
 K(x) as x → ∞.(2.17)

REMARK 2.3. We can prove as in the proof of Lemma 4.1 of [45] by us-
ing (2.11) that, for some c1 > 0, c1η̄W (ax) ≤ ρ̄W (x) ≤ η̄W (x) for x ≥ 0. It fol-
lows that ρ̄W (x) ∈ D if and only if η̄W (x) ∈ D and that if η̄W (x) ∈ D , then
ρ̄W (x) 
 η̄W (x). Thus it follows from the above lemma that if K(x) ∈ D, then
xρ̄W (x) 
 xη̄W (x) 
 xν̄W (x) 
 K(x) as x → ∞.

LEMMA 2.6. Suppose that η is a−1-decomposable on R+ such that η(dx) =
η′ ∗ ρ(dx) with η′(dx) := η(a dx) and

∫ ∞
1 (logx)ρ(dx) < ∞.
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(i) We have, for some ε ∈ (0,1)

ρ̄(x)
(
1 − η̄(ax)

) ≤ η̄(x) − η̄(ax) ≤ 2ρ̄(εx) for x > 0.(2.18)

(ii) ρ̄(x) ∈ D if and only if η̄(x) − η̄(ax) ∈ D .

(iii) If ρ̄(x) ∈ D, then

ρ̄(x) 
 η̄(x) − η̄(ax) as x → ∞.(2.19)

PROOF. Let x > 0. It follows from (2.1) that

η̄(x) = ρ̄(x) +
∫ x+

0−
η̄
(
a(x − y)

)
ρ(dy)

≥ ρ̄(x) + η̄(ax)
(
1 − ρ̄(x)

)
,

that is,

ρ̄(x)
(
1 − η̄(ax)

) ≤ η̄(x) − η̄(ax).(2.20)

On the other hand, we obtain from (2.1) that, for 0 < ε < 1,

η̄(x) = η̄(ax) +
∫ x+

0−
ρ̄(x − y)η(a dy)

≤ η̄(ax) +
∫ x+
(1−ε)x+

η(a dy) +
∫ (1−ε)x+

0−
ρ̄(εx)η(a dy)

≤ η̄
(
(1 − ε)ax

) + ρ̄(εx),

namely,

η̄(x) − η̄
(
(1 − ε)ax

) ≤ ρ̄(εx).(2.21)

Letting ε satisfy (1 − ε)2a = 1 and adding the following to (2.21):

η̄
(
(1 − ε)ax

) − η̄
(
(1 − ε)2a2x

) ≤ ρ̄
(
ε(1 − ε)ax

)
,

we see that

η̄(x) − η̄(ax) ≤ ρ̄(εx) + ρ̄
(
ε(1 − ε)ax

) ≤ 2ρ̄(εx).(2.22)

Thus we have established (2.18) from (2.20) and (2.22). Assertions (ii) and (iii)
are obvious from assertion (i). �

LEMMA 2.7. (i) ρ̄Y (x) ∈ D if and only if K(x) ∈ D .

(ii) If K(x) ∈ D, then

ρ̄Y (x) 
 K(x) as x → ∞.(2.23)
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PROOF. It follows from Lemma 2.6 that ρ̄Y (x) ∈ D if and only if η̄Y (x) −
η̄Y (ax) ∈ D and that if ρ̄Y (x) ∈ D , then ρ̄Y (x) 
 η̄Y (x) − η̄Y (ax). In the same
way, ρ̄W (x) ∈ D if and only if η̄W (x) − η̄W (ax) ∈ D . Moreover, if ρ̄W (x) ∈ D ,
then ρ̄W (x) 
 η̄W (x) − η̄W (ax). We see from Lemma 2.2 that

η̄Y (x) − η̄Y (ax) =
∫ ax+
x+

yνW (dy)


 x
(
ν̄W (x) − ν̄W (ax)

)
(2.24)


 x
(
η̄W (x) − η̄W (ax)

)
.

Thus we conclude from Lemma 2.6 and Remark 2.3 that each of the six conditions
ρ̄Y (x) ∈ D , η̄Y (x)− η̄Y (ax) ∈ D , η̄W (x)− η̄W (ax) ∈ D , ρ̄W (x) ∈ D , η̄W (x) ∈ D
and ν̄W (x) ∈ D is equivalent to K(x) ∈ D . Further, if K(x) ∈ D , then

ρ̄Y (x) 
 η̄Y (x) − η̄Y (ax) 
 x
(
η̄W (x) − η̄W (ax)

)

 xρ̄W (x) 
 xη̄W (x) 
 xν̄W (x) 
 K(x).

Thus we have proved the lemma. �

LEMMA 2.8 (Theorem 5 of [9]). Let θ > 1. Then E(Wθ) < ∞ if and only if
E(Nθ) < ∞.

LEMMA 2.9. Let θ > 0. Then EQ((Y (0) − Y(−1))θ ) < ∞ if and only if
E(Nθ+1) < ∞.

PROOF. Let θ > 0. We obtain from (2.16) and (2.18) that

EQ

((
Y(0) − Y(−1)

)θ )
< ∞

⇔
∫ ∞

0−
xθρY (dx) < ∞

⇔
∫ ∞

0
xθ−1ρ̄Y (x) dx < ∞

⇔
∫ ∞

0
xθ−1(

η̄Y (x) − η̄Y (ax)
)
dx < ∞.

By the same way we see from Lemma 2.8, Remark 2.3 and (2.18) that

E(Nθ+1) < ∞ ⇔
∫ ∞

0−
xθ+1νW (dx) < ∞

⇔
∫ ∞

0
xθ ν̄W (x) dx < ∞

⇔
∫ ∞

0
xθ η̄W (x) dx < ∞
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⇔
∫ ∞

0
xθ ρ̄W (x) dx < ∞

⇔
∫ ∞

0
xθ (

η̄W (x) − η̄W (ax)
)
dx < ∞.

Thus we conclude by (2.24) that EQ((Y (0) − Y(−1))θ ) < ∞ if and only if
E(Nθ+1) < ∞. �

LEMMA 2.10. Let � ∈ N. Then we have∫ ∞
1

Q
(
Y(0) − Y(−�) > x

)dx

x
< ∞.(2.25)

PROOF. We consider on the probability space (� × I,F × B(I),Q). Since
Y(0) − Y(−�) and Y(−�) are independent and the distributions of Y(−�) and
a−�Y (0) are the same, the distribution of Y(0) is a−�-decomposable. Hence the
log-moment of Y(0) − Y(−�) is finite by (2.2). That is,∫ ∞

1
Q

(
Y(0) − Y(−�) > x

)dx

x
= EQ

(
log

((
Y(0) − Y(−�)

) ∨ 1
))

< ∞. �

3. Limit theorems for {Y(n)}. The author [46] studied the “liminf” type limit
theorems for the sequence {Y(n)}. In this section, we discuss the “limsup” type
limit theorems for the sequence {Y(n)} by improving the results of [45]. Namely,
we study the exact local dimension at typical i ∈ ∂T of the branching measure µ.
Let h(x) be positive measurable function on (A,∞) with A ≥ 0. We say h(x)

is submultiplicative on (A,∞) if there is c > 0 such that h(x + y) ≤ ch(x)h(y)

for all x, y > A. Further we say h(x) is quasi-submultiplicative on (A,∞) if, for
each ε > 0, there are c1, c2 > 0 such that h(x + y) ≤ c1h((1 + ε)x)h(c2y) for all
x, y > A. Obviously every submultiplicative function is quasi-submultiplicative
but the converse is not true. For example, (1 ∨ x)c with c > 0 is submultiplicative
and exp(b1x

b2) with b1 > 0 is submultiplicative for 0 < b2 ≤ 1 and not so but
quasi-submultiplicative for 1 < b2 < ∞ on (0,∞), respectively.

THEOREM 3.1. Let g ∈ G and C ∈ [0,∞]. We have

lim sup
n→∞

anY (−n)

g(n)
= C Q-a.s.(3.1)

if and only if
∞∑

n=0

Q
(
Y(0)−Y(−�) > δg(n)

) {= ∞, ∃� = �(δ) ≥ 1, for 0 < δ < C,
< ∞, ∀� ≥ 1, for δ > C.

(3.2)

Thus there is C ∈ [0,∞] satisfying (3.1) for each g ∈ G.

The proof of the above theorem is obvious from the following lemma.
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LEMMA 3.1. Let g ∈ G and � ∈ N.

(i) If

∞∑
n=0

Q
(
Y(0) − Y(−�) > g(n)

) = ∞,(3.3)

then

lim sup
n→∞

anY (−n)

g(n)
≥ 1 Q-a.s.(3.4)

(ii) If

∞∑
n=0

Q
(
Y(0) − Y(−�) > g(n)

)
< ∞,(3.5)

then

lim sup
n→∞

anY (−n)

g(n)
≤ 1

1 − (a0/a)�
Q-a.s.,(3.6)

where a0 := lim supn→∞ g(n + 1)/g(n) < a for g ∈ G.

PROOF. Let g ∈ G. First we prove assertion (i). Suppose that (3.3) holds for
some � ≥ 1. Then it follows from the shift self-similarity that

∞∑
n=0

Q
(
Y(−n) − Y(−n − �) > a−ng(n)

) = ∞.

Thus there is j0 with 0 ≤ j0 ≤ � − 1 such that

∞∑
n=0

Q
(
Y(−n� + j0) − Y

(−(n + 1)� + j0
)
> a−n�+j0g(n� − j0)

) = ∞.

Thanks to Borel–Cantelli’s lemma, we have Q-a.s.

Y(−n� + j0) − Y
(−(n + 1)� + j0

)
> a−n�+j0g(n� − j0) i.o.

Here the abbreviation “i.o.” stands for “infinitely often.” Hence Q-a.s.

an�−j0Y(−n� + j0)

g(n� − j0)
> 1 i.o.

Therefore we obtain (3.4). Next we prove assertion (ii). Suppose that (3.5) holds
for some � ≥ 1. Then there is a positive integer n0 = n0(ω) such that, for any
n ≥ n0,

Y(−n) − Y(−n − �) ≤ a−ng(n) Q-a.s.
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Note from Lemma 2.1 that

lim
n→∞Y(−n) = 0 Q-a.s.

Hence we see that, for any n ≥ n0,

Y(−n) =
∞∑

j=0

(
Y(−n − j�) − Y

(−n − (j + 1)�
))

≤
∞∑

j=0

a−n−j�g(n + j�)

≤ a−ng(n)
1

1 − ((a0 + ε)/a)�
Q-a.s.

where the positive number ε can be arbitrarily small when we take n0 sufficiently
large. Thus we have (3.6). �

THEOREM 3.2. Let g ∈ G. Suppose that K(x) ∈ D . If

∞∑
n=0

K(g(n)) = ∞ (resp. < ∞),

then

lim sup
n→∞

anY (−n)

g(n)
= ∞ (resp. 0) Q-a.s.

PROOF. Suppose that K(x) ∈ D . Then we see from Lemma 2.5 that

∞∑
n=0

Q
(
Y(0) − Y(−1) > δg(n)

) = ∞ (resp. < ∞) for any δ > 0,

if and only if
∑∞

n=0 K(g(n)) = ∞ (resp. < ∞). Thus we obtain the theorem from
Lemma 3.1. �

THEOREM 3.3. There exist g ∈ G and C ∈ (0,∞) satisfying (3.1); equiva-
lently, there exists g ∈ G such that

lim sup
n→∞

anY (−n)

g(n)
= 1 Q-a.s.(3.7)

if and only if K(x) /∈ D .

PROOF. We see from Theorem 3.2 that if K(x) ∈ D , then there does not exist
g ∈ G satisfying (3.1) with C ∈ (0,∞). Next, suppose that K(x) /∈ D . Then by
Lemma 2.7, ρ̄Y (x) /∈ D . Since the support of νW is unbounded, we see from (2.18)
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and (2.24) that the support of ρY is also unbounded. Thus there is a sequence
yn ↑ ∞ as n → ∞ satisfying yn+1 ≥ 2yn and

2−nρ̄Y (yn) ≥ ρ̄Y (2yn) > 0.

Let a0 ∈ (1, a). We can take a strictly increasing sequence {xn}∞n=0 in such a
way that x0 = 0, xn ↑ ∞ as n → ∞, g(x) = yn on [x2n, x2n+1) with 1 ≤
ρ̄Y (yn)(x2n+1 −x2n −2) ≤ 2; further set g(x) = bna

x
0 on [x2n+1, x2n+2) satisfying

bn > 0, g(x2n+1) = yn and g(x2n+2) = yn+1. Then we have

∞∑
n=0

Q
(
Y(0) − Y(−1) > g(n)

) ≥
∞∑

n=0

ρ̄Y (yn)(x2n+1 − x2n − 2) = ∞.

Define Jn := {k ∈ Z+ :x2n+1 ≤ k < x2n+2}. Since we find from Lemma 2.10 that
for some c1 > 0

∞∑
n=0

∑
k∈Jn

ρ̄Y (bna
k
0) ≤ c1

∞∑
n=0

∫ yn+1

yn

ρ̄Y (y)
dy

y
= c1

∫ ∞
y0

ρ̄Y (y)
dy

y
< ∞,

we see that
∞∑

n=0

Q
(
Y(0) − Y(−1) > 2g(n)

)

≤
∞∑

n=0

(
2−nρ̄Y (yn)(x2n+1 − x2n + 1) + ∑

k∈Jn

ρ̄Y (bna
k
0)

)
< ∞.

Thus we obtain (3.1) with C ∈ (0,∞) from Lemma 3.1 and Theorem 3.1. By
replacing g with Cg, we have (3.7). �

REMARK 3.1. Suppose that K(x) /∈ D . Define φ(t) := tαg(| log t |) by using
g in the proof of the above theorem. Then obviously φ ∈ � with increasing g.

PROPOSITION 3.1. Let C ∈ [0,∞) and g ∈ G. Suppose that g(x) is in-
creasing on R+ and the inverse function g−1(x) is quasi-submultiplicative on
(g(0),∞). If

E(Wg−1(θW))

{
< ∞, for 0 < θ < C−1,
= ∞, for θ > C−1,

(3.8)

then (3.1) holds.

PROOF. Note that, for δ := θ−1 > 0,∫ ∞
0

Q
(
Y(0) > δg(x)

)
dx = EQ(g−1(θY (0))) = E(Wg−1(θW)).
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Suppose that (3.8) holds for 0 ≤ C < ∞. Then we obtain that

∞∑
n=0

Q
(
Y(0) > δg(n)

)
< ∞ for δ > C,

and hence, for every � ≥ 1,

∞∑
n=0

Q
(
Y(0) − Y(−�) > δg(n)

)
< ∞ for δ > C.(3.9)

We see from the quasi-submultiplicativity of g−1(x) that, for any ε > 0,

EQ(g−1(θY (0)))

≤ c1EQ

(
g−1(

(1 + ε)θ
(
Y(0) − Y(−�)

))
g−1(

c2θY (−�)
))

= c1EQ

(
g−1(

(1 + ε)θ
(
Y(0) − Y(−�)

)))
EQ

(
g−1(

c2θY (−�)
))

= c1EQ

(
g−1(

(1 + ε)θ
(
Y(0) − Y(−�)

)))
EQ(g−1(c2a

−�θ(Y (0)))).

Since, for sufficiently large �, EQ(g−1(c2a
−�θY (0))) = E(W(g−1(c2a

−� ×
θW))) < ∞, we have

EQ

(
g−1(

(1 + ε)θ
(
Y(0) − Y(−�)

))) = ∞ for θ > C−1 and any ε > 0,

that is,
∞∑

n=0

Q
(
Y(0) − Y(−�) > δg(n)

) = ∞ for 0 < δ < C.(3.10)

Thus we obtain (3.1) from (3.9) and (3.10) thanks to Theorem 3.1. �

PROPOSITION 3.2. Under the same assumption as Theorem 1.3, we have

lim sup
n→∞

anY (−n)

(logn)(γ−1)/γ
= τ (1−γ )/γ Q-a.s.,(3.11)

where τ is a positive constant determined by (1.12).

PROOF. Let g(x) := (log(e ∨ x))(γ−1)/γ . Then g−1(x) = exp(xγ/(γ−1)) for
x > 1. Thus we see from Lemma 2.3 that (3.8) holds for C = τ (1−γ )/γ and thereby
Proposition 3.1 can be applied. �

PROPOSITION 3.3. Under the same assumption as Theorem 1.4, we have

lim sup
n→∞

anY (−n)

logn
= σ−1 Q-a.s.,(3.12)

where σ is a positive constant given by (1.14).
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PROOF. Let g(x) := log(e ∨ x). Then g−1(x) = expx for x > 1. Thus we see
from Lemma 2.4 that (3.8) holds for C = σ−1 and thereby Proposition 3.1 can be
applied. �

PROPOSITION 3.4. Under the same assumption as Theorem 1.5, we have,
Q-a.s.

lim sup
n→∞

anY (−n)

nb
=

{∞, for b < b0,
0, for b > b0.

(3.13)

Moreover, if E(Nθ0) < ∞ (resp. = ∞), then

lim sup
n→∞

anY (−n)

nb0
= 0 (resp. = ∞) Q-a.s.

PROOF. Let � = 1 and g(x) := δxb with δ > 0 and b > 0. Then g−1(x) =
(x/δ)1/b for x ≥ 0. Note that (3.3) holds if and only if EQ((Y (0) − Y(−1))1/b) =
∞. Thus we see from Lemma 2.9 that, for any δ > 0, (3.3) holds for b < b0
and (3.5) does for b > b0. Therefore we obtain (3.13) from Lemma 3.1 for b > 0
and thereby also for b ≤ 0. The second assertion can be proved in the same manner.

�

PROPOSITION 3.5. Under the same assumption as Theorem 1.6, we have

lim sup
n→∞

anY (−n)

R−1(logn)
= ξ−1

R Q-a.s.,(3.14)

where ξR is a positive constant given by (1.18) and (1.18) is clearly equivalent to

E(W exp(R(δW)))

{
< ∞, for 0 < δ < ξR ,
= ∞, for δ > ξR.

(3.15)

PROOF. Let g(x) := R−1(log(e ∨ x)). Then g−1(x) = exp(R(x)) almost
everywhere for x > R−1(1). It is obvious that g−1(x) satisfies quasi-subexponen-
tiality. Thus we see from (3.15) that (3.8) holds for C = ξ−1

R and thereby Proposi-
tion 3.1 can be applied. �

REMARK 3.2. Propositions 3.2 and 3.3 were proved by Liu [23]. However,
each one-half of their proofs contained a serious gap because they depend on The-
orems 1.3 and 1.4, respectively. See Remark 1.4. The first assertion of Propo-
sition 3.4 was conjectured by Liu [21]. On the other hand, Proposition 3.5 was
conjectured by Hawkes [17]. Many other limit theorems for the sequence {Y(−n)}
are found in [15, 23, 24, 33, 34, 38] and [46]. Further, limit theorems for another
increasing shift self-similar additive random sequence associated with a Galton–
Watson branching process are discussed in [45]. The study of normalizability type
theorems such as Corollary 2.2 of [46] and Theorem 3.3 was motivated by a cele-
brated paper [35] for an increasing random walk.
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4. Proof of the main theorems. In this section, we prove the main and ad-
ditional theorems stated in Section 1 by using the results in Section 3. Lemmas
4.1 and 4.2 are crucial density theorems for the measure φ-H . The first one is sug-
gested by Proposition 3.2 of [21]. As was pointed out in general by Taylor [40],
the second one is difficult to express without the exceptional set �.

LEMMA 4.1. Let C ∈ [0,∞) and φ(t) := tαg(| log t |) ∈ �. Let �′ be an ar-
bitrary Borel set in ∂T with µ(�′) = 0 a.s. If

lim sup
n→∞

anY (−n)

g(n)
≤ C Q-a.s.,(4.1)

then

φ-H(∂T \ �′) ≥ C−1W a.s. on {∂T �= ∅},(4.2)

with the understanding that 0/0 = 0.

PROOF. Suppose that (4.1) holds with 0 ≤ C < ∞. For any ε > 0, there are
compact set K = K(ω) ⊂ ∂T \ �′ and a positive integer n0 = n0(ω) almost surely
such that µ(K) ≥ W − ε and

µ(Bi|n) ≤ (C + ε)φ(|Bi|n|) for every i ∈ K and every n ≥ n0.

Thus we see that almost surely

µ(Bi|n ∩ K) ≤ (C + ε)φ(|Bi|n|) for every i ∈ I and every n ≥ n0.(4.3)

Let {Sj }∞j=0 be an arbitrary cover of the set K with Sj being balls satisfying
|Sj | ≤ e−n0 . Then, since we see from (4.3) that almost surely µ(Sj ∩ K) ≤
(C + ε)φ(|Sj |),

W − ε ≤ µ(K) ≤ µ

( ∞⋃
j=0

(Sj ∩ K)

)

≤
∞∑

j=0

µ(Sj ∩ K) ≤ (C + ε)

∞∑
j=0

φ(|Sj |).

Thereby we obtain from the definition of Hausdorff measure that almost surely

φ-H(∂T \ �′) ≥ φ-H(K) ≥ W − ε

C + ε
.

Letting ε ↓ 0, we have (4.2). �

LEMMA 4.2. Let C ∈ (0,∞] and φ(t) := tαg(| log t |) ∈ �. If

lim sup
n→∞

anY (−n)

g(n)
≥ C Q-a.s.,(4.4)
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then we have

φ-H(∂T \ �) ≤ C−1W with µ(�) = 0 a.s.(4.5)

Thus, if φ-H is absolutely continuous with respect to µ, then

φ-H(∂T) ≤ C−1W a.s.(4.6)

PROOF. Suppose that (4.4) holds for 0 < C ≤ ∞. Define the set �(δ) in ∂T
for δ ≥ 0 as

�(δ) :=
{

i ∈ ∂T : lim sup
n→∞

Wi|n
g(n)

≤ δ

}
.

Note that � = �(0). We prove that

φ-H
(
�(C−) \ �

) = 0 a.s.,(4.7)

with the understanding that �(∞−) = limδ↑∞ �(δ). We see from (4.4) that

µ(�) = µ
(
�(C−)

) = 0 a.s.(4.8)

Let 0 < δ < C and k ∈ N. Then define m = m(i) ≥ k for i ∈ (�(δ))c ∩ ∂T and �k

as

m := inf{n ≥ k :Wi|n > δg(n)} and �k := {i|m(i) : i ∈ (�(δ))c ∩ ∂T}.
Define �′

k and �̃k as

�′
k := {i|k : i ∈ �(δ)} and �̃k := �k ∪ �′

k.

Then �̃k is a cutset for ∂T. Define �k(j) and �̃k(j) for j ∈ U with |j| = k as

�k(j) := {i : j ≤ i ∈ �k} and �̃k(j) := {i : j ≤ i ∈ �̃k}.
Then �̃k(j) is a cutset for ∂T ∩ Bj. Thus we have by (2.5)

φ-H
(
(�(δ))c ∩ Bj

) ≤ ∑
i∈�k(j)

a−|i|g(|i|)

≤ δ−1
∑

i∈�̃k(j)

a−|i|Wi = δ−1a−kWj = δ−1µ(Bj) a.s.

Hence we have for a Borel set A ⊂ ∂T

φ-H
(
(�(δ))c ∩ A

) ≤ δ−1µ(A) a.s.(4.9)

Setting A = �(C−) and then letting δ ↓ 0 in (4.9), we obtain (4.7) from (4.8).
Letting δ ↑ C and setting A = ∂T in (4.9), we have

φ-H
((

�(C−)
)c ∩ ∂T

) ≤ C−1µ(∂T) = C−1W a.s.

Thus we conclude (4.5) from (4.7) and (4.8), and thereby also see (4.6). �
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PROPOSITION 4.1. Let φ(t) := tαg(| log t |) ∈ � and let �′ be an arbitrary
Borel set in ∂T with µ(�′) = 0 a.s. Suppose that (3.1) holds with C ∈ [0,∞].

(i) If 0 < C < ∞, then 0 < φ-H(∂T \ �) = C−1W < ∞ with µ(�) = 0 a.s.
on {∂T �= ∅}. Moreover, for A ∈ B(I) satisfying A ⊂ ∂T\�, φ-H(A) = C−1µ(A)

a.s.
(ii) If C = 0, then φ-H(∂T) = φ-H(∂T \ �′) = ∞ a.s. on {∂T �= ∅}.

(iii) If C = ∞, then φ-H(∂T \ �) = 0 with µ(�) = 0 a.s.

PROOF. Suppose that (3.1) holds with C ∈ [0,∞]. First we prove assertion (i).
If 0 < C < ∞, then we see from Lemmas 4.1 and 4.2 that

0 < φ-H(∂T \ �) = C−1W < ∞ with µ(�) = 0 a.s. on {∂T �= ∅}.
The second assertion follows from the fact that we can find in the same way as the
proof of (4.9) that, for all i ∈ U,

φ-H(∂T ∩ Bi \ �) = C−1µ(Bi).

The proofs of assertions (ii) and (iii) are as follows. If C = 0, then we find from
Lemma 4.1 that

φ-H(∂T) = φ-H(∂T \ �′) = ∞ a.s. on {∂T �= ∅}.
If C = ∞, then we obtain from Lemma 4.2 that

φ-H(∂T \ �) = 0 with µ(�) = 0 a.s. �

LEMMA 4.3. Let φ(t) := tαg(| log t |) ∈ �. If the condition (G�) for g is sat-
isfied, then φ-H(�) = 0 a.s.

PROOF. Thanks to (G�), we can define a positive integer n(k) > k such that,
for some δ0 > 0,

lim sup
k→∞

(
n(k)−1∑
n=k

Q
(
Y(0) − Y(−1) > δ0g(n)

) − logg(n(k))

)
= ∞.(4.10)

Define the sets Ak and A′
k for k ≥ 1 as

Ak := {
i ∈ ∂T :Wi|n − a−1Wi|(n+1) ≤ δ0g(n) for all n ≥ k

}
and

A′
k := {

i ∈ ∂T :Wi|n − a−1Wi|(n+1) ≤ δ0g(n) for k ≤ n ≤ n(k) − 1
}
.

Then we define �k and �′
k as

�k := {i|n(k) : i ∈ Ak} and �′
k := {i|n(k) : i ∈ A′

k}.
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Then �k is a cutset for Ak . We observe that

E

(∑
i∈�′

k

Wi

)
= E

(∑
i∈�′

k

1

)
.(4.11)

Let m := (m0,m1, . . . ,mn(k)−1) ∈ N
n(k) and define events Ek := Ek(i,m) and

Hk := Hk(i,m) for i ∈ Z
n(k)
+ and m ∈ N

n(k) as

Ek := {ω ∈ � :Ni|n = mn for n = 0,1, . . . , n(k) − 1}
and

Hk :=
{
ω ∈ � :

∗(mn−1)∑
i=0

a−1W(i|n)∗i ≤ δ0g(n) for k ≤ n ≤ n(k) − 1

}
,

where the symbol
∑∗(mn−1)

i=0 denotes the sum over i from 0 to mn − 1 except for i

satisfying W(i|n)∗i = Wi|(n+1). Define Gk := {i ∈ Z
n(k)
+ : 0 ≤ in+1 ≤ mn − 1 for 0 ≤

n ≤ n(k) − 1}. By using (2.4) in the second equality, we have

E

(∑
i∈�′

k

Wi

)
= ∑

m∈Nn(k)

∑
i∈Z

n(k)
+

E
(
1Ek

(ω)1�′
k
(i)Wi

)
= ∑

m∈Nn(k)

∑
i∈Gk

E
(
1Hk∩Ek

(ω)Wi
)
.

Since Hk, Ek and Wi for i ∈ Gk are independent, we see from E(Wi) = 1 for
i ∈ Gk that

E

(∑
i∈�′

k

Wi

)
= ∑

m∈Nn(k)

∑
i∈Gk

E
(
1Hk∩Ek

(ω)
)
E(Wi)

= ∑
m∈Nn(k)

∑
i∈Z

n(k)
+

E
(
1Ek

(ω)1�′
k
(i)

)

= E

(∑
i∈�′

k

1

)
.

Thus we have proved (4.11). By using (4.11), the expectation of φ-H(Ak) is esti-
mated as

E
(
φ-H(Ak)

)
≤ E

(∑
i∈�k

φ(|Bi|)
)

= E

(∑
i∈�k

a−n(k)g(n(k))

)
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≤ E

(∑
i∈�′

k

a−n(k)g(n(k))

)
= g(n(k))E

(∑
i∈�′

k

a−n(k)Wi

)

= g(n(k))Q
(
Y(−n) − Y(−n − 1) ≤ a−nδ0g(n) for k ≤ n ≤ n(k) − 1

)
= g(n(k))

n(k)−1∏
n=k

Q
(
Y(−n) − Y(−n − 1) ≤ a−nδ0g(n)

)

≤ exp

(
−

n(k)−1∑
n=k

Q
(
Y(0) − Y(−1) > δ0g(n)

) + logg(n(k))

)
,

where we used the additivity and shift self-similarity of the sequence {Y(n)} in the
last equality and inequality, respectively. Note that � ⊂ limk→∞ Ak = ⋃∞

k=1 Ak.

Thus we see from (4.10) that

E
(
φ-H(�)

) ≤ lim inf
k→∞ E

(
φ-H(Ak)

) = 0.

Therefore we have φ-H(�) = 0 a.s. �

LEMMA 4.4. Let C ∈ (0,∞) and φ(t) := tαg(| log t |) ∈ � with increasing
g ∈ G. Suppose that (3.1) holds. Then there exists φ∗(t) := tαg∗(| log t |) ∈ � such
that g∗(x) ≤ g(x) for x ≥ 0, g∗ satisfies the condition (G�) and

lim sup
n→∞

anY (−n)

g∗(n)
= C Q-a.s.(4.12)

PROOF. Without harming (3.1), we can and do assume from Theorem 3.1
that g ∈ G is left-continuous adding to be increasing. However, g∗(x) ∈ G defined
below is not always increasing and left-continuous. Let {xn}∞n=0 be an increas-
ing sequence satisfying x0 = 0, limn→∞ xn = ∞, and x2n+1 ∈ Z+ for n ∈ Z+.

Let In := {k ∈ Z+ :x2n ≤ k < x2n+1} and Jn := {k ∈ Z+ :x2n+1 ≤ k ≤ x2n+2} for
n ∈ Z+. Define G(n) for n ∈ Z+ as

G(n) := ∑
k∈In

Q
(
Y(0) − Y(−1) > δ0g(k)

)
with sufficiently small δ0 > 0 satisfying

∑∞
n=0 Q(Y(0) − Y(−1) > δ0g(n)) = ∞

owing to (ii) of Lemma 3.1. Let a0 := lim supn→∞ g(n + 1)/g(n) and put a1 as
a1 ∈ (a0, a). We choose the sequence {xn}∞n=0 in such a way that x2n < x2n+1 ≤
x2n+2 and eG(n) ≥ g(x2n) for n ∈ Z+. Up to this step, there is freedom of the
choice of x2n+2 except for x2n+1 ≤ x2n+2 for n ∈ Z+. Next set g∗ ∈ G as follows.
For n ∈ Z+, g∗(x) := g(x) on x2n ≤ x < x2n+1, g∗(x2n+1) := eG(n) ∧ g(x2n+1),

and g∗(x) := bna
x
1 on x2n+1 ≤ x ≤ x2n+2 with some bn > 0. Further, the equality

g∗(x2n+2) := g(x2n+2) and the inequality g∗(x) ≤ g(x) on x2n+1 ≤ x ≤ x2n+2
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are possible by defining x2n+2 := sup{x ≥ x2n+1 :bna
x
1 ≤ g(x)} since g is left-

continuous and the set {x ≥ x2n+1 :bna
x
1 ≤ g(x)} is nonempty and bounded by

virtue of a1 > a0 ≥ 1. Note that g∗(x2n) ≤ g∗(x2n+1) for n ∈ Z+ and that the
equality x2n+1 = x2n+2 can hold in case eG(n) ≥ g(x2n+1). Then we see that

lim sup
n→∞

(x(2n+1)−1∑
k=0

Q
(
Y(0) − Y(−1) > δ0g

∗(k)
) − logg∗(x2n+1)

)

≥
∞∑

n=0

Q
(
Y(0) − Y(−1) > δ0g(n)

) = ∞.

Thus (G�) holds for g∗ ∈ G. Moreover, we find that, for δ > C,

∞∑
n=0

∑
k∈In

Q
(
Y(0) − Y(−�) > δg∗(k)

)

=
∞∑

n=0

∑
k∈In

Q
(
Y(0) − Y(−�) > δg(k)

)
< ∞

and from Lemma 2.10 that with some c1 > 0
∞∑

n=0

∑
k∈Jn

Q
(
Y(0) − Y(−�) > δg∗(k)

)

=
∞∑

n=0

∑
k∈Jn

Q
(
Y(0) − Y(−�) > δbna

k
1
)

≤ c1

∫ ∞
δg(0)

Q
(
Y(0) − Y(−�) > y

)dy

y
< ∞.

Thus we obtain that, for any δ > C and any � ≥ 1,
∞∑

n=0

Q
(
Y(0) − Y(−�) > δg∗(n)

)

≤
∞∑

n=0

(∑
k∈In

+ ∑
k∈Jn

)
Q

(
Y(0) − Y(−�) > δg∗(k)

)
< ∞.

On the other hand, for any δ ∈ (0,C) and some � ≥ 1,
∞∑

n=0

Q
(
Y(0) − Y(−�) > δg∗(n)

)

≥
∞∑

n=0

Q
(
Y(0) − Y(−�) > δg(n)

) = ∞.
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Therefore we have established (4.12) by Theorem 3.1. �

PROOF OF THEOREM 1.1. Suppose that K(x) /∈ D . Then we see from Theo-
rem 3.3, Remark 3.1 and Lemma 4.4 that there is φ∗ ∈ � satisfying the conditions
(G�), (3.1) and (3.2) with g = g∗ and C ∈ (0,∞). Replacing φ by φ∗, we ob-
tain (1.8) from Proposition 4.1 and Lemma 4.3 with Cφ = C−1 ∈ (0,∞). The
second assertion follows from Proposition 4.1. �

PROOF OF THEOREM 1.2. Suppose that K(x) ∈ D and let φ ∈ �. We
first prove assertion (i). If

∑∞
n=0 K(g(n)) < ∞, then we see from Theorem 3.2

that (3.1) holds with C = 0. Thus we obtain assertion (i) from (ii) of Proposi-
tion 4.1. Next we prove assertion (ii). If

∑∞
n=0 K(g(n)) = ∞, then we find from

Theorem 3.2 that (3.1) holds with C = ∞. Thus we obtain assertion (ii) from (iii)
of Proposition 4.1. Lastly we prove assertion (iii). Suppose that

∑∞
n=0 K(g(n)) =

∞ and lim supδ→0+ lim supn→∞
∑n

k=0 K(δg(k))/ log(e ∨ g(n)) = ∞. Then we
observe that (G�) holds. Note from Lemma 2.7 that

Q
(
Y(0) − Y(−1) > x

) 
 K(x) as x → ∞.

Let δ0 > 0. In the case where M0 := lim infn→∞ g(n) < ∞, we find from∑∞
n=0 K(g(n)) = ∞ that

lim sup
n→∞

(
n−1∑
k=0

Q
(
Y(0) − Y(−1) > δ0g(k)

) − logg(n)

)

=
∞∑

n=0

Q
(
Y(0) − Y(−1) > δ0g(n)

) − logM0 = ∞.

In the case where limn→∞ g(n) = ∞, we see that

lim sup
δ0→0+

lim sup
n→∞

∑n−1
k=0 Q(Y(0) − Y(−1) > δ0g(k))

logg(n)

= lim sup
δ0→0+

lim sup
n→∞

∑n−1
k=0 K(δ0g(k))

logg(n)
= ∞.

Thus (G�) holds. It follows from Lemma 4.3 that φ-H(�) = 0 a.s. and thereby
combining with assertion (ii), we conclude that

φ-H(∂T) = φ-H(∂T \ �) = 0 a.s. �

PROOF OF COROLLARY 1.1. The corollary is clear from Theorems 1.1
and 1.2 and Proposition 4.1. In particular, the last assertion of (ii) is obvious from
Lemma 4.3. �

The following lemma is a special case of Lemma 3.2 of [21].
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LEMMA 4.5. Suppose that h(x) is a nonnegative decreasing function on R+
with

∫ ∞
1 h(x) dx = ∞. Then we have, for all δ > 0 and for all ε1 ∈ (0, δ),

lim sup
n→∞

(∫ n1/(1+δ)

1
h(x)xδ dx − nε1/(1+δ)

)
= ∞.(4.13)

The proofs of Theorems 1.3, 1.4 and 1.6 are due to the following proposition.

PROPOSITION 4.2. Let C ∈ (0,∞) and φ(t) := tαg(| log t |) ∈ �. Sup-
pose that g(x) is increasing on R+ and the inverse function g−1(x) is quasi-
submultiplicative on (g(0),∞) and that there is b ∈ (a−1,1) such that

lim sup
x→∞

logg−1(bx)

logg−1(x)
< 1.(4.14)

If (3.8) is satisfied, then (1.8) and (1.10) hold with Cφ = C−1.

PROOF. Thanks to Propositions 3.1 and 4.1 and Lemma 4.3, it is enough to
prove that (G�) holds for g. Choosing c1 > 0 satisfying a−1c−1

1 < C−1 < bc−1
1 ,

we have by (3.8)∫ ∞
0

η̄Y (ac1g(x))dx = E(Wg−1(a−1c−1
1 W)) < ∞(4.15)

and ∫ ∞
0

η̄Y (b−1c1g(x)) dx = E(Wg−1(bc−1
1 W)) = ∞.(4.16)

Note from (4.14) that there are δ1 ∈ (0,1), M1 > 0 and positive constants c2 and c3
such that

g−1(bx) ≤ (g−1(x))δ1 and
(4.17)

g(x) ≤ c2(logx)c3 for x > M1.

Thus we obtain from (2.18), (4.15) and (4.17) with δ0 := εc1 and δ := δ−1
1 −1 that,

for sufficiently large n,

n−1∑
k=0

Q
(
Y(0) − Y(−1) > δ0g(k)

)
≥

∫ n

1
ρ̄Y (εc1g(x)) dx

≥ 2−1
(∫ n

1
η̄Y (c1g(x)) dx −

∫ n

1
η̄Y (ac1g(x)) dx

)
≥ c4

∫ n

1
Q

(
g−1(c−1

1 Y(0)) > x
)
dx
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≥ c4

∫ n

1
Q

(
g−1(bc−1

1 Y(0)) > xδ1
)
dx

= δ−1
1 c4

∫ nδ1

1
Q

(
g−1(bc−1

1 Y(0)) > y
)
yδ dy

with some positive constant c4. Set h(x) := Q(g−1(bc−1
1 Y(0)) > x). Then we see

from (4.16) that
∫ ∞

1 h(x) dx = ∞. It follows from (4.17) and Lemma 4.5 that

lim sup
n→∞

(
n−1∑
k=0

Q
(
Y(0) − Y(−1) > δ0g(k)

) − logg(n)

)

≥ lim sup
n→∞

(
δ−1

1 c4

∫ nδ1

1
h(x)xδ dx − logg(n)

)
≥ ∞ + lim inf

n→∞
(
δ−1

1 c4n
ε1δ1 − log(c2(logn)c3)

) = ∞.

Thus we have established (G�) holds for g. �

PROOF OF THEOREM 1.3. Let g(x) := (log(e ∨ x))(γ−1)/γ . Then g−1(x) =
exp(xγ/(γ−1)) for x > 1. Thus Proposition 4.2 can be applied with C = τ (1−γ )/γ .

�
PROOF OF THEOREM 1.4. Let g(x) := log(e ∨ x). Then g−1(x) = expx for

x > 1. Thus Proposition 4.2 can be applied with C = σ−1. �

PROOF OF THEOREM 1.5. Let g(x) := xb on R+. If b > b0, then
ψb-H(∂T) = ∞ by Propositions 3.4 and 4.1. If b < b0, then choose δ1 ∈ (0,1)

satisfying bδ−1
1 < b0 and set δ := δ−1

1 − 1 and h(x) := Q(Y(0)−Y(−1) > xbδ−1
1 ).

Note from Lemma 2.9 that
∫ ∞

1 h(x) dx = ∞. Thus we obtain from Lemma 4.5
that, for b < b0 and 0 < ε1 < δ,

lim sup
n→∞

(
n−1∑
k=0

Q
(
Y(0) − Y(−1) > g(k)

) − logg(n)

)

≥ lim sup
n→∞

(∫ n

1
Q

(
Y(0) − Y(−1) > yb)

dy − lognb

)

= lim sup
n→∞

(
δ−1

1

∫ nδ1

1
h(x)xδ dx − b logn

)
≥ ∞ + lim inf

n→∞ (δ−1
1 nε1δ1 − b logn) = ∞.

Hence (G�) holds and thereby ψb-H(∂T) = ψb-H(∂T \ �) = 0 a.s. by Proposi-
tions 3.4 and 4.1 and Lemma 4.3. The second assertion is obvious from Proposi-
tions 3.4 and 4.1. �
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PROOF OF THEOREM 1.6. Let g(x) := R−1(log(e ∨ x)). Then g−1(x) =
exp(R(x)) almost everywhere for x > R−1(1). It is obvious that g−1(x) satis-
fies the assumptions of Proposition 4.2. Thus Proposition 4.2 can be applied with
C = ξ−1

R . �

CONCLUDING REMARKS. Hawkes [17] proposed an outline for the resolution
of the problem of determining the exact Hausdorff measure on the boundary of a
Galton–Watson tree. The first step is to study “limsup” type limit theorems for the
sequence {Y(n)}. The second step is to apply those limit theorems to determine the
exact Hausdorff measure. This paper resolved the first step of his outline, but did
not completely resolve the second step. Thus it is still unanswered whether there
exists an exact Hausdorff measure which is not absolutely continuous with respect
to the branching measure. The point is whether φ-H(�) = 0 a.s. for any exact
Hausdorff measure φ-H . However, the exceptional set � is so difficult to manage
that the final goal might be beyond our way of approach. We end this article by
posing the following problem which is an extension of Theorem 1.6 (Hawkes’s
conjecture).

PROBLEM. How is the exact Hausdorff measure explicitly given in the case
where the distribution of W is subexponential or O-subexponential?

This problem is deeply connected with the open problems in the Appendix
of [45]. For the definitions of subexponentiality and O-subexponentiality, see [39].

Acknowledgment. The author is grateful to K. Sato for helpful advice and
comments.
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