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QUENCHED INVARIANCE PRINCIPLE FOR MULTIDIMENSIONAL
BALLISTIC RANDOM WALK IN A RANDOM ENVIRONMENT

WITH A FORBIDDEN DIRECTION

BY FIRAS RASSOUL-AGHA AND TIMO SEPPÄLÄINEN1

University of Utah and University of Wisconsin–Madison

We consider a ballistic random walk in an i.i.d. random environment that
does not allow retreating in a certain fixed direction. We prove an invariance
principle (functional central limit theorem) under almost every fixed environ-
ment. The assumptions are nonnestling, at least two spatial dimensions, and
a 2 + ε moment for the step of the walk uniformly in the environment. The
main point behind the invariance principle is that the quenched mean of the
walk behaves subdiffusively.

1. Introduction. This paper studies random walk in a random environment
(RWRE) on the d-dimensional integer lattice Zd . This is a basic model in the field
of disordered or random media. Our main result is a quenched invariance principle
in dimension d ≥ 2.

Here is a description of the model. An environment is a configuration of vectors
of jump probabilities

ω = (ωx)x∈Zd ∈ � = P Zd

,

where P = {(pz)z∈Zd :pz ≥ 0,
∑

z pz = 1} is the simplex of all probability vectors
on Zd . We use the notation ωx = (πx,x+y)y∈Zd for the coordinates of the probabil-
ity vector ωx . The space � is equipped with the canonical product σ -field S and
with the natural shift πxy(Tzω) = πx+z,y+z(ω), for z ∈ Zd . On the space (�,S)

we are given an i.i.d. product measure P. This means that the random probability
vectors (ωx)x∈Zd are i.i.d. across the sites x under P.

The random walk operates as follows. An environment ω is chosen from the
distribution P and fixed for all time. Pick an initial state z ∈ Zd . The random walk
in environment ω started at z is then the canonical Markov chain X̂ = (Xn)n≥0
with state space Zd whose path measure P ω

z satisfies

P ω
z (X0 = z) = 1 (initial state),

P ω
z (Xn+1 = y|Xn = x) = πxy(ω) (transition probability).
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The probability distribution P ω
z on random walk paths is called the quenched law.

The joint probability distribution

Pz(dX̂, dω) = P ω
z (dX̂)P(dω)

on walks and environments is called the joint annealed law, while its marginal
on walks Pz(dX̂,�) is called simply the annealed law. E, E0 and Eω

0 denote
expectations under, respectively, P, P0 and P ω

0 .
We impose assumptions on the model that create a drift in some spatial direc-

tion û. We also prohibit the walk from retreating in direction û, a condition we
express by saying that the walk has forbidden direction −û. However, there is
some freedom in the choice of û. The long-term velocity v of the walk need not be
in direction û, although of course the assumptions will imply û · v > 0.

We prove a quenched functional central limit theorem for the random walk.
This means that, for P-almost every ω, under the measure P ω

0 the scaled ran-
dom walk converges to a nondegenerate Brownian motion with a diffusion matrix
that we describe. This result comes by a combination of regeneration, homoge-
nization (studying the environment process) and martingale techniques. Our un-
derlying proof strategy applies the approach of Maxwell and Woodroofe [9] and
Derriennic and Lin [5] to the environment chain. This part is not spelled out in the
present paper, but summarized in a theorem we quote from our earlier article [10].
The arguments of [9] and [5] themselves can be regarded as adaptations of the
Kipnis–Varadhan method [8] to nonreversible situations.

The major technical part of our proof goes toward showing that the quenched
mean Eω

0 (Xn) has variance of order nγ for some γ < 1. Bounding the variance of
the quenched mean in turn is reduced to bounding the number of common points
between two independent walks in a common environment. If we assume strictly
more than a finite quenched third moment on the step of the walk, uniformly in the
environment, we obtain γ = 1/2. Under a pth moment assumption with 2 < p ≤ 3
we can take any γ > 1

p−1 . The correct order of the variance of the quenched mean
is an interesting question for this model, and for more general ballistic random
walks. In the special case of space–time walks in 1+1 dimensions with bounded
steps, it has been proved that the quenched mean process, scaled by n−1/4, con-
verges to a certain Gaussian process [1].

The resulting quenched invariance principle admits two possible centerings, the
asymptotic displacement nv and the quenched mean. The approach and part of the
result fail in one-dimensional walks and in certain other walks that are restricted to
a single path by the environment (still considering only walks that satisfy the for-
bidden direction condition). In these cases a quenched invariance principle holds
if the walk is centered at its quenched mean. But the quenched mean process it-
self also behaves diffusively with a Brownian motion limit. These other cases are
explored in the paper [11].

There is a handful of quenched central limit theorems for RWRE in the liter-
ature. For the types of walks that we study, with a strong drift, Bolthausen and
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Sznitman [2] proved a quenched invariance principle. Their basic assumption is
nonnestling which creates the drift, and for technical purposes they need an as-
sumption of small noise and spatial dimension at least 4. (We get around these by
making the forbidden direction assumption.) There is a certain analogy between
our proof and the proof in [2]. Both proceed by bounding the variance of a cer-
tain quenched mean through control on the intersections of two independent paths.
However, this similarity does not extend to the technical level, for we study a dif-
ferent variance and handle the intersections in a different manner.

For general overviews of recent developments in RWRE the reader can turn to
the lectures [3, 12] and [13]. The introduction of [10] also presents a brief list of
papers on central limit theorems for RWRE.

2. Results. Throughout the paper û is a fixed nonzero element of Rd . We
make a basic assumption called nonnestling that forces ballistic behavior on the
walk.

HYPOTHESIS (N). There exists a positive deterministic constant δ such that

P

(∑
z

(z · û) π0z ≥ δ

)
= 1.

In order to get the regeneration structure we need, we strengthen this assump-
tion by requiring that the walk never retreats in the direction û. Let us say the
distribution P on environments has forbidden direction −û if

P

( ∑
z:z·û≥0

π0z = 1

)
= 1.(2.1)

This condition says that Xn · û never decreases along the walk.
We also make a moment assumption uniformly in the environments. Let | · |

denote the �1- or the �2-norm on Zd (in all but a few computations the actual norm
used is immaterial). For the invariance principle we need strictly more than a finite
second moment, but other auxiliary results need fewer moments. Hence the power
p in the next hypothesis will be a parameter. Each time the hypothesis is invoked
a bound for p will be given, such as p > 1 or p > 2.

HYPOTHESIS (M). There exist finite, deterministic positive constants p and
M such that

P

(∑
z

|z|pπ0z ≤ Mp

)
= 1.
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To take advantage of the renewal structure given by the nonnestling and forbid-
den direction assumptions, define a sequence of stopping times: σ0 = 0, and for
k ≥ 1,

σk+1 = inf
{
n > σk :Xn · û ≥ Xσk

· û + 1
}
.(2.2)

Under the above assumptions the companion paper [11] shows these facts:
E0(σk) < ∞ for all k, Xσ1 has p̄th moment under P0 for any 1 ≤ p̄ < p, and the
walk has a long-term velocity v = E0(Xσ1)/E0(σ1) in the sense that n−1Xn → v

P0-almost surely. See Theorem 3.3 and Lemma 3.4 in [11].
For the invariance principle we consider two centerings, the long-term displace-

ment nv and the quenched mean Eω
0 (Xn). So we define two scaled processes. For

t ∈ R+ let

Bn(t) = X[nt] − [nt]v√
n

and B̃n(t) = X[nt] − Eω
0 (X[nt])√
n

.

Here [x] = max{n ∈ Z :n ≤ x} for x ∈ R. Let DRd ([0,∞)) denote the space of
right-continuous Rd -valued paths with left limits, endowed with the usual Skoro-
hod topology (see the standard theory in [7]). For ω ∈ � let Qω

n , respectively Q̃ω
n ,

denote the distribution of Bn, respectively B̃n, induced by P ω
0 on the Borel sets of

DRd ([0,∞)).
A quenched invariance principle cannot hold unless the walk is random under a

fixed environment. This and more is contained in our final assumption of ellipticity.

HYPOTHESIS (E). One has

P(∀ z �= 0 :π0,0 + π0z < 1) > 0.(2.3)

Moreover, the walk is not supported by any one-dimensional subspace. More
precisely, if J = {y ∈ Zd : E(π0y) > 0} is the set of all points that are accessi-
ble from 0 with one jump, then J is not contained in any subspace of the kind
Ru = {su : s ∈ R} for any u ∈ Rd . In particular, this rules out the case d = 1.

Let 	t denote the transpose of a vector or matrix 	. An element of Rd is re-
garded as a d × 1 matrix, or column vector. For a symmetric, nonnegative defi-
nite d × d matrix 	, a Brownian motion with diffusion matrix 	 is the Rd -valued
process {W(t) : t ≥ 0} such that W(0) = 0, W has continuous paths, independent
increments, and for s < t the d-vector W(t)−W(s) has Gaussian distribution with
mean zero and covariance matrix (t − s)	. The matrix 	 is degenerate in direction
ξ ∈ Rd if ξ t	ξ = 0. Equivalently, ξ · W(t) = 0 almost surely.

The diffusion matrix of our limiting process is defined by

D = E0[(Xσ1 − vσ1)(Xσ1 − vσ1)
t ]

E0[σ1] .(2.4)
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One can check that this matrix D is degenerate in direction u if, and only if, u is or-
thogonal to the vector space spanned by {x − y : E(π0x)E(π0y) > 0} (Theorem 4.1
in [11]). Degeneracy in directions that are orthogonal to all x − y, where x and y

range over admissible jumps, cannot be avoided. This can be seen from the sim-
ple example of a homogeneous random walk that chooses with equal probability
between two jumps a and b. The diffusion matrix is then 1

4(a − b)(a − b)t .
We can now state the main theorem.

THEOREM 2.1. Let d ≥ 2 and consider an i.i.d. product probability mea-
sure P on environments with a forbidden direction −û ∈ Qd \ {0} as in (2.1). As-
sume nonnestling (N) in direction û, the moment hypothesis (M) with p > 2, and
ellipticity (E). Then as n → ∞, for P-almost every ω the distributions Qω

n and Q̃ω
n

both converge weakly to the distribution of a Brownian motion with diffusion ma-
trix D. Furthermore, the two centerings are asymptotically indistinguishable:

lim
n→∞ max

0≤s≤t
|B̃n(s) − Bn(s)| = lim

n→∞n−1/2 max
k≤[nt] |E

ω
0 (Xk) − kv| = 0

for P-almost every ω.

Note that we assumed for Theorem 2.1 that the vector û has rational coordinates.
Hypotheses (N) and (2.1) are not affected if û is multiplied by a constant. Hence
later in the proof we can assume that û has integer coordinates.

In the special case where the step distribution of the walk is finitely supported,
it turns out that if there is any nonzero vector û that satisfies both (2.1) and
nonnestling (N), then there is also a rational one. We show this in Lemma A.1
in the Appendix. Thus for this case there is no restriction on û. Since this case is
perhaps the most important, we state it as a corollary.

COROLLARY 2.2. Let d ≥ 2 and consider an i.i.d. product probability mea-
sure P on environments with a forbidden direction −û ∈ Rd \ {0} as in (2.1).
Assume the step distribution is finitely supported, in other words that the set
J = {y ∈ Zd : E(π0y) > 0} is finite. Assume nonnestling (N) in direction û and
ellipticity (E). Then all the conclusions of Theorem 2.1 hold.

We make a few remarks about ellipticity hypotheses. When (2.3) is violated,
the environment ω determines completely the set of points {Xn :n ≥ 0} visited by
the walk, and only the rate of advance remains random. In this case the process
Bn does not satisfy the quenched invariance principle. Same is true for the one-
dimensional case. But B̃n does satisfy an invariance principle in these cases, and
furthermore, the quenched mean behaves diffusively. The companion paper [11]
addresses these points.
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One of the most popular hypotheses used in studies of RWRE is uniform ellip-
ticity. One fixes a finite set N and a constant 0 < κ < 1, and then assumes that
P-almost surely

π0z = 0 for z �= N and κ ≤ π0z ≤ 1 for z ∈ N .

Suppose our forbidden direction assumption is made. Assume that N contains at
least one point x such that x · û > 0 and at least one other point y such that x and y

do not lie on a common line through the origin. Then all our other hypotheses
(N), (M) and (E) follow. In particular, under the forbidden direction assumption,
uniform ellipticity with a reasonably chosen N (such as that part of an �p-ball of
radius ≥ 1 that satisfies x · û ≥ 0) implies nonnestling.

The remainder of the paper proves Theorem 2.1. In several of our lemmas we
indicate explicitly which assumptions are needed. In particular, d ≥ 2 is not re-
quired everywhere, nor is the ellipticity assumption (E). We rely on a companion
paper [11] for some basic results.

After the preliminaries the main work of the paper goes toward bounding the
variance of the quenched mean. We record the result here.

THEOREM 2.3. Let d ≥ 2 and consider an i.i.d. product probability measure
P on environments with a forbidden direction −û ∈ Qd \ {0} as in (2.1). Assume
nonnestling (N) in direction û, the moment hypothesis (M) with p > 2, and ellip-
ticity (E). Let γ > 1

p−1 . Then there is a constant C such that, for all n ≥ 1,

E[|Eω
0 (Xn) − E0(Xn)|2] ≤

{
Cn1/2, if p > 3,
Cnγ , if 2 < p ≤ 3.

(2.5)

Without affecting the validity of the bound (2.5), one can perform either one or
both of these replacements: E0(Xn) can be replaced by nv, and E can be replaced
by E∞, expectation under the equilibrium measure of the environment chain intro-
duced below in Theorem RS2. As pointed out in the Introduction, n1/2 is known
to be the correct order of the variance for some walks in d = 2.

3. Preliminaries for the proof. To prove the invariance principle we use the
point of view of the particle. More precisely, we consider the Markov process on
� with transition kernel

π̂ (ω,A) = P ω
0 (TX1ω ∈ A).

For integers n define σ -algebras Sn = σ(ωx :x · û ≥ n). Define the drift as

D(ω) = Eω
0 (X1) = ∑

z

zπ0z(ω).

The proof of the quenched invariance principle is based on the next theorem
from our earlier article [10]. This theorem is an application of the results of
Maxwell and Woodroofe [9] and Derriennic and Lin [5] to random walk in random
environment.
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THEOREM RS1. Let d ≥ 1 and let P∞ be any probability measure on (�,S)

that is invariant and ergodic for the Markov process on � with transition kernel π̂ .
Assume that ∑

z

|z|2E∞(π0z) < ∞.(3.1)

Assume also that there exists an 0 ≤ α < 1/2 such that

E∞[|Eω
0 (Xn) − nE∞(D)|2] = O(n2α).(3.2)

Then for P∞-almost every ω the distribution Qω
n of the process {Bn(t) : t ∈ R+}

converges weakly on the space DRd ([0,∞)) to the distribution of a Brownian mo-
tion with a symmetric, nonnegative definite diffusion matrix that does not depend
on ω. Moreover, for P∞-almost every ω,

lim
n→∞n−1/2 max

k≤n
|Eω

0 (Xk) − kE∞(D)| = 0(3.3)

and, therefore, the same invariance principle holds for Q̃ω
n .

Above, E∞ denotes expectation under the measure P∞. To apply Theorem RS1,
we need some preliminary results on equilibrium, the law of large numbers and
the annealed invariance principle. These are contained in the next theorem that
summarizes results from [11].

THEOREM RS2. Let d ≥ 1 and consider a product probability measure P

on environments with a forbidden direction −û ∈ Rd \ {0} as in (2.1). Assume
nonnestling (N) in direction û.

(a) Ergodic equilibrium. Assume the moment hypothesis (M) with p > 1. Then
there exists a probability measure P∞ on (�,S) that is invariant for the Markov
process with transition kernel π̂ and has these properties:

(i) P = P∞ on S1, P and P∞ are mutually absolutely continuous on S0, and
P∞ is absolutely continuous relative to P on Sk with k ≤ 0.

(ii) The Markov process with kernel π̂ and initial distribution P∞ is ergodic.

(b) Law of large numbers. Assume the moment hypothesis (M) with p > 1.
Define v = E∞(D). Then we have the law of large numbers

P0

(
lim

n→∞n−1Xn = v

)
= 1.

Moreover, E0(σ1) < ∞, v = E0(Xσ1)/E0(σ1) and

sup
n

|E0(Xn) − nv| < ∞.(3.4)
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(c) Annealed invariance principle. Assume the moment hypothesis (M) with
p > 2. Then the distribution of the process {Bn(t) : t ∈ R+} under P0 converges
weakly to the distribution of a Brownian motion with diffusion matrix D defined
by (2.4).

The main idea for the proof of Theorem RS2 is that (Xσk
−Xσk−1, σk −σk−1)k≥1

is a sequence of i.i.d. random variables under the annealed measure P0.
Some comments follow. We have an explicit formula for the equilibrium distri-

bution: if A is S−k-measurable for some k ≥ 0, then

P∞(A) = E0(
∑σk+1−1

m=σk 1{TXmω ∈ A})
E0(σ1)

.(3.5)

The absolute continuity of P∞ relative to P given by part (a) of Theorem RS2 has
this consequence: moment assumption (M) is also valid under P∞. Hence the drift
D can be integrated to define v = E∞(D). Then, if assumption (M) is strengthened
to p ≥ 2, it follows that hypothesis (3.1) of Theorem RS1 is fulfilled.

The course of the proof of Theorem 2.1 is now clear. Part (a) of Theorem RS2
gives the invariant measure needed for Theorem RS1. The real work goes toward
checking (3.2). We first show, in Proposition 4.1 of Section 4, that it is enough to
check (3.2) for E instead of E∞. Then, in Sections 4 and 5, we check the latter
condition is satisfied. At this point our proof will require more than two moments
for X1.

Suppose the hypotheses of Theorem RS1 have been checked. Let

A = {ω :Qω
n and Q̃ω

n converge to the law of a Brownian motion and (3.3) holds }.
The conclusion of Theorem RS1 is then P∞(A) = 1. Since A is S0-measurable,
mutual absolute continuity of P and P∞ on S0 implies that P(A) = 1. Theo-
rem RS1 does not give the expression for the diffusion matrix. But the P-almost
sure quenched invariance principle must have the same limit as the annealed invari-
ance principle. Hence part (c) of Theorem RS2 allows us to identify the limiting
Brownian motion as the one with diffusion matrix D from (2.4).

The upshot of this discussion is that in order to prove Theorem 2.1 only (3.2)
remains to be verified. We finish this section of preliminaries by quoting part of
Lemma 3.1 from [11]. Its proof uses standard ideas.

LEMMA 3.1. Let d ≥ 1 and consider a T -invariant probability measure P

on environments with a forbidden direction −û ∈ Rd \ {0} as in (2.1). Assume
nonnestling (N) in direction û, and the moment hypothesis (M) with p > 1.
Then there exist strictly positive, finite constants C̄m(M, δ,p), Ĉp̄(M, δ,p) and
λ0(M, δ,p) such that for all x ∈ Zd , λ ∈ [0, λ0], n,m ≥ 0 and P-a.e. ω,

Eω
x (|Xm − x|p̄) ≤ Mp̄mp̄ for 1 ≤ p̄ ≤ p,(3.6)
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P ω
x (σ1 > n) ≤ eλ(1 − λδ/2)n,(3.7)

Eω
x (σm

1 ) ≤ C̄m,(3.8)

Eω
x

(∣∣Xσ1 − x
∣∣p̄) ≤ Ĉp̄ for 1 ≤ p̄ < p.(3.9)

4. Bound for the variance of the quenched mean. By the discussion in the
previous section, it only remains to check (3.2) to derive the invariance princi-
ple Theorem 2.1 through an application of Theorem RS1. First we show in the
next proposition that (3.2) is satisfied if it is true when P∞ is replaced by P. Sub-
sequently we reduce this estimate to bounding the number of common points be-
tween two independent walks in a common environment. X[0,n] = {Xk : 0 ≤ k ≤ n}
will denote the set of sites visited by the walk.

PROPOSITION 4.1. Let d ≥ 1 and consider a product probability measure P

on environments with a forbidden direction −û ∈ Rd \ {0} as in (2.1). Assume
nonnestling (N) in direction û, and the moment hypothesis (M) with p ≥ 2. Let
P∞ be the measure in Theorem RS2(a). Assume that there exists an α < 1/2 such
that

E
(|Eω

0 (Xn) − E0(Xn)|2) = O(n2α).(4.1)

Then condition (3.2) is satisfied with this same α.

PROOF. Due to (3.4) the hypothesis becomes

E
(|Eω

0 (Xn) − nv|2) = O(n2α).(4.2)

Next, notice that |v|2 ≤ M2 due to the moment hypothesis (M) and that P∞ 	 P

on S0. Notice also that (3.5) with k = 0 implies that the Radon–Nikodym deriv-
ative g0 = d(P∞|S0)/d(P|S0) is σ(ωx :x · û < 1)-measurable. Now the bound
comes from a multistep calculation:

E∞[|Eω
0 (Xn) − nE∞(D)|2]

= E∞[|Eω
0 (Xn − nv,σ1 ≤ n) + Eω

0 (Xn − nv,σ1 > n)|2]
≤ 2E∞[|Eω

0 {Xn − (n − σ1)v, σ1 ≤ n} − Eω
0 {σ1v,σ1 ≤ n}|2]

+ 4(M2 + |v|2)n2E∞[P ω
0 (σ1 > n)2]

by an application of (3.6),

≤ 4E∞
[∣∣∣∣∣ ∑

x,m≤n

P ω
0 (Xm = x,σ1 = m)Eω

x {Xn−m − (n − m)v}
∣∣∣∣∣
2]

+ 4(M2 + 2|v|2)E∞[Eω
0 (σ1)

2]
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by restarting the walk at time σ1, by |a + b|2 ≤ 2|a|2 + 2|b|2 and by combining
the expectations of σ1,

≤ 4
∑

x,m≤n

E∞[P ω
0 (Xm = x,σ1 = m)|Eω

x {Xn−m − (n − m)v}|2]

+ 12M2E∞[Eω
0 (σ1)

2]
by an application of Jensen’s inequality on the first term and by |v| ≤ M ,

= 4
∑

x,m≤n

E[g0P
ω
0 (Xm = x,σ1 = m)|Eω

x {Xn−m − (n − m)v}|2]

+ 12M2E∞[Eω
0 (σ1)

2]
= 4

∑
x,m≤n

E[g0P
ω
0 (Xm = x,σ1 = m)]E[|Eω

x {Xn−m − (n − m)v}|2]

+ 12M2E∞[Eω
0 (σ1)

2]
because the i.i.d. assumption on P makes the two integrands independent,

≤ 8
∑

x,m≤n

E∞[P ω
0 (Xm = x,σ1 = m)]E[|Eω

0 {Xn−m − (n − m)v}|2]

+ 8E∞
[
Eω

0
(∣∣Xσ1

∣∣2)] + 12M2E∞[Eω
0 (σ1)

2]
by shifting the initial state of Eω

x back to 0, and by |a + b|2 ≤ 2|a|2 + 2|b|2 again,

= O(n2α).

The final estimate above comes from (4.2) and the bounds in Lemma 3.1. �

Now, we will concentrate our attention on showing that (4.1) holds. This will
be carried out in several steps. First, using Lemma 4.2, we bound the left-hand
side of (4.1) by the expected number of intersections of two independent random
walkers driven by the same environment. This is done in Proposition 4.3. Then, in
Proposition 5.1 of Section 5, we bound this number of intersections and conclude
the proof of Theorem 2.1.

For U ⊂ Zd we use the notation ωU = (ωx)x∈U . Recall that X[0,n−1] denotes
the set of sites visited by the walk during time 0, . . . , n − 1.

LEMMA 4.2. Let d ≥ 1 and consider a product probability measure P on
environments with a forbidden direction −û ∈ Rd \ {0} as in (2.1). Assume
nonnestling (N) in direction û, and the moment hypothesis (M) with p > 1. Fix
z ∈ Zd such that z · û ≥ 0. Define the half-space U = {x ∈ Zd :x · û > z · û}. Let
ω be an environment and ω̃ another environment such that ω̃x = ωx for all x �= z.
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Then there exists a constant C0 = C0(M, δ) such that for all z, P-almost every ω,
P-almost every choice of ω̃z, and all n ≥ 1,∣∣∣∣ ∫ [Eω

0 (Xn) − Eω̃
0 (Xn)]P(dωU)

∣∣∣∣ ≤ C0P
ω
0

(
z ∈ X[0,n−1]

)
.

Note that the right-hand side above is a function only of ωUc so there is no incon-
sistency.

PROOF. Let Xn and X̃n denote walks that obey environments ω and ω̃, respec-
tively. We couple Xn and X̃n as follows. Given ω, for each x ∈ Zd pick a sequence
of i.i.d. directed edges (bi(x) = (x, yi))i≥1 from the distribution (πxy(ω))y . Each
time Xn visits x, the walker takes a new edge bi(x), follows it to the next site yi ,
discards the edge bi(x), and repeats this step at its new location. Since the edge
bi(x) is discarded, next time Xn visits x, bi+1(x) will be used.

The directed edges b̃i (x) that govern the walk X̃n are defined by taking b̃i(x) =
bi(x) for x �= z and by picking i.i.d. directed edges (b̃i(z) = (z, yi))i≥1 from the
distribution (πzy(ω̃))y .

Let P
ω,ω̃
x,x̃

denote this coupling measure under which the walks start at x and x̃.
If the walks start at 0, they stay together until they hit z. Let

τ = inf{n ≥ 0 :Xn = z} = inf{n ≥ 0 : X̃n = z}
be the common hitting time of z for the walks. Let

σ = inf{n ≥ 0 :Xn · û > z · û} and σ̃ = inf{n ≥ 0 : X̃n · û > z · û}
be the times to enter the half-space U .

Note that σ and σ̃ are different from σ1 for a walk started at z. In fact, σ ≤ σ1.
We have

Eω
0 (Xn) − Eω̃

0 (Xn) = E
ω,ω̃
0,0 (Xn − X̃n)

= E
ω,ω̃
0,0

(
(Xn − X̃n)1{τ < n})

= E
ω,ω̃
0,0 (Xn1{τ < n}) − E

ω,ω̃
0,0 (X̃n1{τ < n}).

Using the Markov property, one writes

E
ω,ω̃
0,0 (Xn1{τ < n}) =

n∑
m=1

∑
y

P
ω,ω̃
0,0 (τ < n,σ ∧ n = m,Xm = y)Eω

y (Xn−m).

Note above that if τ < n, then necessarily τ < σ ∧ n, so the event {τ < n,

σ ∧ n = m} is measurable with respect to σ {X0, . . . ,Xm}. Rewrite the above as

E
ω,ω̃
0,0 (Xn1{τ < n})

= ∑
1≤m,m̃≤n

∑
y,ỹ

P
ω,ω̃
0,0 (τ < n,σ ∧ n = m,

σ̃ ∧ n = m̃,Xm = y, X̃m̃ = ỹ)Eω
y (Xn−m).
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Develop the corresponding formula for X̃n, and subtract the two formulae to get

Eω
0 (Xn) − Eω̃

0 (Xn)

= ∑
1≤m,m̃≤n

∑
y,ỹ

P
ω,ω̃
0,0 (τ < n,σ ∧ n = m, σ̃ ∧ n = m̃,Xm = y, X̃m̃ = ỹ)(4.3)

× (
Eω

y (Xn−m) − Eω
ỹ (X̃n−m̃)

)
.(4.4)

Note that the expectations on line (4.4) depend only on ωU . For X̃ this is because
if m̃ = n, then Eω

ỹ
(X̃n−m̃) = ỹ, while if m̃ < n, then σ̃ = m̃ and ỹ ∈ U and the

walk never leaves U . The same reasoning works for the expectation of Xn−m. In
fact, on line (4.4) we can drop the notational distinction between X and X̃.

Furthermore, the probabilities on line (4.3) are independent of ωU . They depend
only on the environment in the complementary half-space {x ∈ Zd :x · û ≤ z · û}.

Consider those terms in the sum on lines (4.3) and (4.4) with m ≤ m̃. Then
n − m ≥ n − m̃ and we can write

Eω
y (Xn−m) − Eω

ỹ (Xn−m̃)

= Eω
y (Xn−m̃) − Eω

ỹ (Xn−m̃) + Eω
y (Xn−m − Xn−m̃)

= y − ỹ + E
Tyω

0 (Xn−m̃) − E
Tỹω

0 (Xn−m̃) + Eω
y (Xn−m − Xn−m̃).

Similarly for m > m̃,

Eω
y (Xn−m) − Eω

ỹ (Xn−m̃)

= y − ỹ + E
Tyω

0 (Xn−m) − E
Tỹω

0 (Xn−m) − Eω
ỹ (Xn−m̃ − Xn−m).

In both cases, when we integrate against P(dωU) and use (3.6), we get

y − ỹ + (a term bounded in vector norm by M|m − m̃|).
Substituting back into (4.3) and (4.4) gives∣∣∣∣ ∫ (

Eω
0 (Xn) − Eω̃

0 (Xn)
)
P(dωU)

∣∣∣∣
≤ ∑

1≤m,m̃≤n

∑
y,ỹ

P
ω,ω̃
0,0 (τ < n,σ ∧ n = m, σ̃ ∧ n = m̃,

Xm = y, X̃m̃ = ỹ)|y − ỹ|
+ ∑

1≤m,m̃≤n

∑
y,ỹ

P
ω,ω̃
0,0 (τ < n,σ ∧ n = m, σ̃ ∧ n = m̃,

Xm = y, X̃m̃ = ỹ)M|m − m̃|.
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For the first term to the right-hand side of the inequality, noting again that on the
event {τ < n} we have τ < σ ∧ σ̃ ∧ n, one can write∑

1≤m,m̃≤n

∑
y,ỹ

P
ω,ω̃
0,0 (τ < n,σ ∧ n = m, σ̃ ∧ n = m̃,Xm = y, X̃m̃ = ỹ)|y − ỹ|

= E
ω,ω̃
0,0 (1{τ < n}|Xσ∧n − X̃σ̃∧n|)

=
n−1∑
�=0

E
ω,ω̃
0,0 (1{τ = �}|Xσ∧n − X̃σ̃∧n|)(4.5)

=
n−1∑
�=0

P ω
0 (τ = �)Eω,ω̃

z,z

(∣∣Xσ∧(n−�) − X̃σ̃∧(n−�)

∣∣)

≤
n−1∑
�=0

P ω
0 (τ = �)

[
Eω

z

(∣∣Xσ∧(n−�) − z
∣∣) + Eω̃

z

(∣∣Xσ∧(n−�) − z
∣∣)].

Note now that by (3.6) and (3.7) we have, for all n ≥ 0,

Eω
z (|Xσ∧n − z|) ≤ Eω

z (|Xσ − z|) + Eω
z (|Xn − z|, σ > n)

≤ ∑
m≥1

Eω
z (|Xm − z|p)1/pP ω

z (Xm−1 · û = z · û)(p−1)/p

+ Eω
z (|Xn − z|p)1/pP ω

z (Xn · û = z · û)(p−1)/p

≤ Ĉ.

Therefore, we can bound (4.5) by ĈP ω
0 (τ < n). For the remaining sum there is a

similar bound:∑
1≤m,m̃≤n

∑
y,ỹ

P
ω,ω̃
0,0 (τ < n,σ ∧ n = m, σ̃ ∧ n = m̃,Xm = y, X̃m̃ = ỹ)M|m − m̃|

= ME
ω,ω̃
0,0 (1{τ < n}|σ ∧ n − σ̃ ∧ n|)

= M

n−1∑
�=0

P ω
0 (τ = �)Eω,ω̃

z,z [|σ ∧ (n − �) − σ̃ ∧ (n − �)|]

≤ MP ω
0 (τ < n)[Eω

z (σ1) + Eω̃
z (σ1)]

≤ 2C̄1MP ω
0 (τ < n).

Putting the bounds together gives∣∣∣∣ ∫ [Eω
0 (Xn) − Eω̃

0 (Xn)]P(dωU)

∣∣∣∣ ≤ (Ĉ + 2C̄1M)P ω
0 (τ < n),

which is the claim. �
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Now we take one step toward proving (4.1). We write Px,y and Ex,y for
probabilities and expectations on a probability space on which are defined the
P-distributed environments, and two walks Xn and X̃n that are independent given
the environment, and whose initial points are X0 = x and X̃0 = y. Similarly, P ω

x,y

and Eω
x,y will be the quenched probabilities and expectations. Note that this cou-

pling of walks Xn and X̃n is quite different from the one in the proof of Lemma 4.2.
Let |A| denote the cardinality of a set A ⊆ Zd . We have the following:

PROPOSITION 4.3. Let d ≥ 1 and consider a product probability measure P

on environments with a forbidden direction −û ∈ Rd \ {0} as in (2.1). Assume
nonnestling (N) in direction û, and the moment hypothesis (M) with p > 1. Let C0
be as in Lemma 4.2. Then we have for all n ≥ 0,

E[|Eω
0 (Xn) − E0(Xn)|2] ≤ C2

0E0,0
(∣∣X[0,n−1] ∩ X̃[0,n−1]

∣∣).(4.6)

PROOF. For L ≥ 0, define BL = {x ∈ Zd : |x| ≤ L}. Also, for B ⊂ Zd , let
SB = σ(ωB). Fix n ≥ 1 and L ≥ 0 and let (xj )j≥1 be some fixed ordering of BL

satisfying

∀ i ≥ j :xi · û ≥ xj · û.

Set U0 to be the trivial σ -field and define the filtration Uj = σ(ωx1, . . . ,ωxj
) and

the variables ζj = E(Eω
0 (Xn)|Uj ).

(ζj − ζj−1)j≥1 is a sequence of L2(P)-martingale differences, and so

E
[∣∣E(

Eω
0 {Xn}|SBL

) − E0(Xn)
∣∣2] =

|BL|∑
j=1

E(|ζj − ζj−1|2)

≤ C2
0

∑
z∈BL

E
[
P ω

0
(
z ∈ X[0,n−1]

)2]
≤ C2

0

∑
z

E
[
P ω

0,0
(
z ∈ X[0,n−1] ∩ X̃[0,n−1]

)]
= C2

0E
[
Eω

0,0
(∣∣X[0,n−1] ∩ X̃[0,n−1]

∣∣)],
where the first inequality is due to Lemma 4.2. By (3.6) Eω

0 (Xn) is a bounded
random variable and, therefore, E[Eω

0 (Xn)|SBL
] converges in L2(P) to Eω

0 (Xn).
Thus, taking L to infinity proves the proposition. �

5. Bound for number of common points between two independent paths.
In this section we show that the right-hand side of (4.6) is O(n1−δ) where δ > 0
depends on the strength of our moment hypothesis (M). We say that x belongs
to level � if x · û = �. We will count the number of common points between two
paths by levels. This is where the assumption that û is a rational vector is needed.
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Otherwise the levels could accumulate and we would not be able to number them.
As mentioned in the remarks following Theorem 2.1, if û ∈ Qd \ {0}, then we can
and will assume, without any loss of generality, that û ∈ Zd \ {0}. This way we
only need to consider integral levels �. The assumption of integral û also has the
effect that the stopping times {σk} defined by (2.2) mark the successive jumps to
new levels. Define

Vd = {y ∈ Zd :y · û = 0}
and recall that J = {y : E(π0y) > 0}. Recall also that under P ω

x,y the walks X and X̃

are independent in the common environment ω with initial points X0 = x and
X̃0 = y, and Px,y = ∫

P ω
x,yP(dω). Now for the first time we need the ellipticity

assumptions.

PROPOSITION 5.1. Let d ≥ 2 and consider a product probability measure P

on environments with a forbidden direction −û ∈ Zd \ {0} as in (2.1). Assume
nonnestling (N) in direction û, the moment hypothesis (M) with p > 2 and ellip-
ticity (E). Let γ > 1

p−1 . Then there exists a constant C1 < ∞ such that

E0,0
(∣∣X[0,n−1] ∩ X̃[0,n−1]

∣∣) ≤
{

C1n
1/2, if p > 3,

C1n
γ , if 2 < p ≤ 3.

PROOF. Denote the times of reaching a level at or above � by

λ� = inf{n ≥ 0 :Xn · û ≥ �} and λ̃� = inf{n ≥ 0 : X̃n · û ≥ �}.
We may occasionally write λ(�) for λ� to avoid complicated subscripts on sub-
scripts. Note that X hits level � if, and only if, Xλ�

· û = �. Common points
of the two paths can occur only on levels that are visited by both paths, or
“common levels.” These common levels are denoted by the random variables
0 = L0 < L1 < L2 < · · · defined by

Lj = inf
{
� > Lj−1 :Xλ�

· û = X̃λ̃�
· û = �

}
.

Let Fn be the filtration of the walk Xn, and similarly F̃n for X̃n. Let H0 be the
trivial σ -field, and

H� = σ
({ωx :x · û < �},Fλ�

, F̃λ̃�

)
.

The Lj ’s are stopping times for the filtration {H�}. Lemma 5.3 below shows that
Lj is finite for all j .

Now we can rewrite the mean number of common points as follows. Write
temporarily

N� = ∣∣{x ∈ Zd :x · û = �, x ∈ X[0,∞) ∩ X̃[0,∞)

}∣∣
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for the number of common points on level �:

E0,0
(∣∣X[0,n−1] ∩ X̃[0,n−1]

∣∣)
≤

∞∑
�=0

E0,0
[
N�1

{
Xλ�

· û = X̃λ̃�
· û = �,λ� ∨ λ̃� < n

}]

=
∞∑

�=0

E0,0
[
E0,0(N�|H�)1

{
Xλ�

· û = X̃λ̃�
· û = �,λ� ∨ λ̃� < n

}]
.

Introduce the function

h(z) = Ez,0
(∣∣X[0,σ1) ∩ X̃[0,σ̃1)

∣∣)
for z ∈ Vd . Then on the event Xλ�

· û = X̃λ̃�
· û = �

E0,0(N�|H�) = h
(
Xλ�

− X̃λ̃�

)
.

Introduce the process

Zj = Xλ(Lj ) − X̃λ̃(Lj ) ∈ Vd(5.1)

to rewrite the previous development as

E0,0
(∣∣X[0,n−1] ∩ X̃[0,n−1]

∣∣)
≤

∞∑
�=0

E0,0
[
h
(
Xλ�

− X̃λ̃�

)
1
{
Xλ�

· û = X̃λ̃�
· û = �,λ� ∨ λ̃� < n

}]

=
∞∑

j=0

E0,0
[
h(Zj )1

{
λLj

∨ λ̃Lj
< n

}]
.

Finally observe that λLj
≥ j because it takes at least j jumps to get to the j th

common level. This gives us the inequality

E0,0
(∣∣X[0,n−1] ∩ X̃[0,n−1]

∣∣) ≤
n−1∑
j=0

E0[h(Zj )].(5.2)

Equation (5.2) is the starting point for the analysis. The subscript in the last E0
above is the initial point Z0 = 0 ∈ Vd .

To complete the proof of Proposition 5.1 we need to control the function h and
the process Zj . We start with h.

LEMMA 5.2. Let d ≥ 1 and consider a product probability measure P on envi-
ronments with a forbidden direction −û ∈ Zd \ {0} as in (2.1). Assume nonnestling
(N) in direction û, and the moment hypothesis (M) with p > 2. Then the function
h is summable: ∑

z∈Vd

h(z) < ∞.
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PROOF. Define b(x) = |x| + 1 for x ∈ Zd . Below we will use the properties
b(x) = b(−x) and b(x + y) ≤ b(x)b(y). Notice that the number of points on the
path X[0,σ1) is at most σ1. Bound h(0) simply by h(0) ≤ E0(σ1). We bound the
sum of the remaining terms as follows:∑

z·û=0,z �=0

h(z) ≤ ∑
z·û=0,z �=0

Ez,0
(
σ11

{
X[0,σ1) ∩ X̃[0,σ̃1) �= ∅

})
≤ ∑

z·û=0,z �=0

Ez,0
(
σ11{σ1 > b(z)})

+ ∑
z·û=0,z �=0

b(z)Pz,0
(
X[0,σ1) ∩ X̃[0,σ̃1) �= ∅

)
.

The first sum after the last inequality is finite by the exponential tail bounds (3.7).
We decompose the last sum according to the first site y along the X-walk that

is also visited by the X̃-walk. Then the X̃-walk from 0 to y does not intersect the
X-walk from z to y, except at y. To formalize this, for z �= 0 and y ∈ Vd , let
	(z,0, y) be the set of all pairs of paths (γ, γ̃ ) such that γ = {z = x0, x1, . . . , xm =
y}, γ̃ = {0 = y0, y1, . . . , yn = y}, all points reside on level 0, and y is the first
common point along the two paths. Paths γ = {z} and γ̃ = {0} are also considered
when either y = z or y = 0. Use the notation

P ω(γ ) = πx0,x1(ω)πx1,x2(ω) · · ·πxm−1,xm(ω)

for the probability that the X-walk follows path γ , and similarly for P ω(γ̃ ). For
any pair (γ, γ̃ ) ∈ 	(z,0, y) the random variables P ω(γ ) and P ω(γ̃ ) are indepen-
dent under P. Let H(z, y) be the collection of all paths from z to y on level 0 that
contain y only as the last site, and analogously for H(0, y). Then∑

z·û=0,z �=0

b(z)Pz,0
(
X[0,σ1) ∩ X̃[0,σ̃1) �= ∅

)
= ∑

z·û=0,z �=0

b(z)
∑

y·û=0

∑
(γ,γ̃ )∈	(z,0,y)

E[P ω(γ )]E[P ω(γ̃ )]

≤ ∑
y·û=0

b(y)
∑

γ̃∈H(0,y)

E[P ω(γ̃ )] ∑
z·û=0

b(y − z)
∑

γ∈H(z,y)

E[P ω(γ )]

= ∑
y·û=0

b(y)
∑

γ̃∈H(0,y)

E[P ω(γ̃ )] ∑
x·û=0

b(x)
∑

γ∈H(0,x)

E[P ω(γ )]

=
( ∑

x·û=0

b(x)
∑

γ∈H(0,x)

E[P ω(γ )]
)2

=
( ∑

x·û=0

b(x)P0
(
x ∈ X[0,σ1)

))2

≤
(
E0

[
σ1−1∑
n=0

(1 + |Xn|)
])2

< ∞.
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The finiteness of the last term can be seen by the usual application of Hölder’s
inequality to E0(|Xn|1{σ1 > n}), along with (3.7) and (3.9). �

Next we analyze the process Zj . Under the annealed probability it is a Markov
chain because the walks can be restarted from the points (Xλ(Lj ), X̃λ̃(Lj )) of each
new common level, and then they see a new environment independent of the past.
We shall show that Zj is also a martingale with certain uniform moment bounds
on its increments.

Let L = L1 denote the first common level above zero. We generalize the treat-
ment to two walks Xn and X̃n that both start at level zero, but not necessarily at
the same point. The first task is to bound L.

LEMMA 5.3. Let d ≥ 1 and consider a product probability measure P on envi-
ronments with a forbidden direction −û ∈ Zd \ {0} as in (2.1). Assume nonnestling
(N) in direction û, and the moment hypothesis (M) with p > 2. Then for any
p̄ ∈ [2,p) there exists a constant C2 = C2(p̄) such that Ez,0(L

p̄−1) ≤ C2 for all
choices of z ∈ Vd .

PROOF. Either the very first new levels of X and X̃ are common, or not, so

Ez,0(L
p̄−1) = Ez,0

[(
Xσ1 · û)p̄−11

{
Xσ1 · û = X̃σ̃1 · û}]

(5.3)
+ ∑

x·û�=x̃·û
Ez,0

[
Lp̄−11

{
Xσ1 = x

}
1
{
X̃σ̃1 = x̃

}]
.

The first term after the equality sign is bounded by a constant independently of z

by (3.9). We rewrite the last sum by introducing the levels visited by the X-walk
until the first common level. It becomes∑

k≥1

(ĩ,i1,...,ik)∈Ak

∑
x·û=i1,x̃·û=ĩ

i
p̄−1
k Pz,0

(
Xσ1 = x,Xσm · û = im for m = 2, . . . , k,

X̃σ̃1 = x̃, X̃-walk does not visit

levels i1, . . . , ik−1 but does visit level ik
)
,

where Ak is the set of positive integer (k + 1)-vectors (ĩ, i1, . . . , ik) such that:

(i) if k = 1, then 0 < ĩ < i1, while
(ii) if k ≥ 2, then 0 < i1 < · · · < ik , ĩ ≤ ik and ĩ /∈ {i1, . . . , ik−1}.

This accounts for all the possible ways of saying that the walks continue from
disjoint levels i1 and ĩ and first meet at level ik . It can happen that ik = i1 or ik = ĩ,
but not both.
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Write the probability in the above sum as

E
[
P ω

z

(
Xσ1 = x

)
P ω

0
(
X̃σ̃1 = x̃

)
P ω

x

(
Xσm · û = im+1 for m = 1, . . . , k − 1

)
× P ω

x̃ (X̃-walk does not visit levels i1, . . . , ik−1 but does visit level ik)
]

= Pz,0
(
Xσ1 = x, X̃σ̃1 = x̃

)
Px(Xσm · û = im+1 for m = 1, . . . , k − 1)

× Px̃(X̃-walk does not visit levels i1, . . . , ik−1 but does visit level ik).

Above we used independence: the probabilities

P ω
z

(
Xσ1 = x

)
P ω

0
(
X̃σ̃1 = x̃

)
are functions of (ωy :y · û = 0), the probability

P ω
x

(
Xσm · û = im+1 for m = 1, . . . , k − 1

)
is a function of (ωy :y · û ∈ {i1, . . . , ik−1}), while probability

P ω
x̃ (X̃-walk does not visit levels i1, . . . , ik−1 but does visit level ik)

is a function of (ωy : 0 < y · û < ik, y · û /∈ {i1, . . . , ik−1}).
By translation, the last sum in (5.3) can now be written as∑

i1 �=ĩ

Pz,0
(
Xσ1 · û = i1, X̃σ̃1 · û = ĩ

)

×
{
i
p̄−1
1 P0

(
ĩ + X̃σn · û = i1 for some n ≥ 1

)
+ ∑

k≥2,(i2,...,ik):
(ĩ,i1,...,ik)∈Ak

i
p̄−1
k P0

(
i1 + Xσj

· û = ij+1 for j = 1, . . . , k − 1
)

× P0
(
ĩ + X̃σj

· û /∈ {i1, . . . , ik−1} for all j ≥ 0,

but ĩ + X̃σn · û = ik for some n ≥ 0
)}

.

The quantity in braces can be represented as E(L
p̄−1
i1,ĩ

) where the random variable

L
i1,ĩ

is defined as the first common time (or “level”) of two independent delayed
renewal processes:

Li,j = inf

{
� ≥ 1 : for some m,n ≥ 0, i +

m∑
k=1

Yk = � = j +
n∑

k=1

Ỹk

}
,

where {Yk} is an i.i.d. positive integer-valued sequence distributed like {(Xσk
−

Xσk−1) · û} under P0, and {Ỹk} is an independent copy. It follows from Lemma 3.1
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that E(Y
p̄
1 ) < ∞. By Lemma A.3 in the Appendix, E(L

p̄−1
i1,ĩ

) ≤ C(1 + i
p̄−1
1 +

ĩ p̄−1). Substituting this back into (5.3) gives

Ez,0(L
p̄−1) ≤ C + C

∑
i1 �=ĩ

Pz,0
(
Xσ1 · û = i1, X̃σ̃1 · û = ĩ

)
(1 + i

p̄−1
1 + ĩ p̄−1)

which is bounded by a constant by (3.9). This completes the proof of Lemma 5.3.
�

Having bounded L, we turn to develop a martingale. We have

Eω
z,0

(
Xλk+1 |Hk

) = 1
{
Xλk

· û ≥ k + 1
}
Xλk

+ 1
{
Xλk

· û = k
}(

Xλk
+ Eω

Xλk

(
Xσ1 − X0

))
= Xλk

+ 1
{
Xλk

· û = k
}
Eω

Xλk

(
Xσ1 − X0

)
.

Consequently

Mk = Xλk
−

k−1∑
j=0

1
{
Xλj

· û = j
}
Eω

Xλj

(
Xσ1 − X0

)
is a vector of martingales under P ω

z,0 with Eω
z,0(Mk) = M0 = z. Let M̃k denote the

corresponding vector-valued martingale for X̃k . We have Eω
z,0(M̃k) = M̃0 = 0.

Let us observe that these martingales have nicely bounded moments. First
by (3.9), ∣∣∣∣∣

�−1∑
j=0

1
{
Xλj

· û = j
}
Eω

Xλj

(
Xσ1 − X0

)∣∣∣∣∣ ≤ C3�.(5.4)

By another application of (3.9),

Ez,0[(Mk − Mk−1)
2|Hk−1] ≤ C4.(5.5)

In particular, M and M̃ are L2-martingales. We wish to apply optional stopping to
the martingales M and M̃ and the stopping time L, justified by the next lemma.
Given p̄ ∈ (2,p), let us write

p̂ = (p̄ − 1) ∧ 2, a number that satisfies 1 < p̂ ≤ 2 < p.(5.6)

LEMMA 5.4. Let d ≥ 1 and consider a product probability measure P on envi-
ronments with a forbidden direction −û ∈ Zd \ {0} as in (2.1). Assume nonnestling
(N) in direction û, and the moment hypothesis (M) with p > 2.

(a) There exists a constant C5 such that Ez,0(|X̃λ̃L
|p̂) ≤ C5 for all choices of

z ∈ Vd . Same is true for XλL
− z.
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(b) For P-almost every ω, {M�∧L :� ≥ 0} and {M̃�∧L :� ≥ 0} are uniformly in-
tegrable martingales under P ω

z,0, for all choices of z ∈ Vd .

PROOF. Part (a). We do the proof for X̃λ̃L
. M̃L∧k is also an L2-martingale.

By orthogonality of martingale increments, by Hj−1-measurability of {L ≥ j} =
{L ≤ j − 1}c, by (5.5), and by the integrability of L (Lemma 5.3),

Ez,0(|M̃L∧�|2) =
�∑

j=1

Ez,0
(∣∣M̃L∧j − M̃L∧(j−1)

∣∣2)

=
�∑

j=1

Ez,0(|M̃j − M̃j−1|2,L ≥ j) ≤ C4
∑
j≥1

Pz,0(L ≥ j) ≤ C.

(Above | · | is the �2-norm.) Then by Fatou’s lemma Ez,0(|M̃L|2) ≤ C. Invok-
ing (5.4) we finally get

Ez,0
(∣∣X̃λ̃L

∣∣p̂) ≤ CEz,0(|M̃L|p̂) + CEz,0(L
p̂) ≤ C5.

Part (b). The P-full probability set of ω’s is defined by the conditions
Eω

z,0(L
p̄−1) < ∞ and (3.9). This set is evidently of full P-probability by Lem-

mas 3.1 and 5.3.
We prove the uniform integrability for M�∧L, since the case of M̃�∧L is the

same. Due to (5.4), it suffices to check that {Xλ(�∧L)} is uniformly integrable. By
part (a) we only need to show the uniform integrability of {Xλ�

1(L ≥ �)}. For that,
pick q1 so that 1 < q1 <

1+p̄
2 ∧ (p̄ − 1), let q2 = q1/(q1 − 1) be the conjugate

exponent, and let ν = 1/q2 = 1 − 1/q1. Then q1(1 + ν) = 2q1 − 1 < p̄ and so
(3.9) can be applied with exponent q1(1 + ν):

Eω
z,0

[∣∣Xλ�

∣∣1+ν1(L ≥ �
]

≤ Eω
z,0

[
�ν

�∑
j=1

∣∣Xλj
− Xλj−1

∣∣1+ν1(L ≥ �)

]

≤
∞∑

j=1

Eω
z,0

[
Lν1(L ≥ j)

∣∣Xλj
− Xλj−1

∣∣1+ν]

≤
∞∑

j=1

(Eω
z,0[L])1/q2

(
Eω

z,0
[
1(L ≥ j)

∣∣Xλj
− Xλj−1

∣∣(1+ν)q1
])1/q1

≤ C

∞∑
j=1

(Eω
z,0[L])1/q2P ω

z,0(L ≥ j)1/q1

≤ C

∞∑
j=1

(Eω
z,0[L])1/q2(Eω

z,0[Lp̄−1])1/q1j−(p̄−1)/q1 < ∞
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where the convergence of the series comes from (p̄ − 1)/q1 > 1. In the second-to-
last inequality we used the H�−1-measurability of the event {L ≥ �} and (3.9) with
exponent q1(1 + ν). �

The conclusion from uniform integrability is that by optional stopping
Eω

z,0(ML) = M0 and Eω
z,0(M̃L) = M̃0. With this we get

Eω
z,0

(
XλL

− X̃λ̃L

)
= Eω

z,0

(
ML − M̃L +

L−1∑
j=0

1
{
Xλj

· û = j
}
Eω

Xλj

(
Xσ1 − X0

)

−
L−1∑
j=0

1
{
X̃λ̃j

· û = j
}
Eω

X̃
λ̃j

(
Xσ1 − X0

))

= z + Eω
z,0

(
L−1∑
j=0

1
{
Xλj

· û = j
}
Eω

Xλj

(
Xσ1 − X0

)

−
L−1∑
j=0

1
{
X̃λ̃j

· û = j
}
Eω

X̃
λ̃j

(
Xσ1 − X0

))
.

Abbreviate

S =
L−1∑
j=0

1
{
Xλj

· û = j
}

and S̃ =
L−1∑
j=0

1
{
X̃λ̃j

· û = j
}

for the numbers of levels that the walks visit before level L. Integrating out the
environments then gives

Ez,0

[
L−1∑
j=0

1
{
Xλj

· û = j
}
Eω

Xλj

(
Xσ1 − X0

)]

=
∞∑

j=0

Ez,0
[
1{j < L}1{

Xλj
· û = j

}
Eω

Xλj

(
Xσ1 − X0

)]

= E0
(
Xσ1

) ∞∑
j=0

Ez,0
[
1{j < L}1{

Xλj
· û = j

}]
= E0

(
Xσ1

)
Ez,0(S)

with a corresponding formula for the X̃-walk. Substituting this back up leads to

Ez,0
(
XλL

− X̃λ̃L

) = z + E0
(
Xσ1

)
Ez,0(S − S̃).
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Project this equation onto û. Since XλL
· û− X̃λ̃L

· û = 0 by the definition of L and
z · û = 0 while Xσ1 · û ≥ 1, we conclude that Ez,0(S − S̃) = 0. Substituting this
back up gives this conclusion:

Ez,0
(
XλL

− X̃λ̃L

) = z,(5.7)

which is a mean-zero increment property.
Recall the definition (5.1) of the Vd -valued Markov chain Zn that tracks the

difference of the walks X and X̃ on successive new common levels. The transition
probability of Zn is given for x, y ∈ Vd by

q(x, y) = Px,0
[
XλL

− X̃λ̃L
= y

]
.

To paraphrase the formula, in order to find the next state y from the present state x,
put the X-walk at x, put the X̃-walk at the origin, let the walks run until they have
reached a new common level L above 0 and let y be the difference of the entry
points at level L.

We are now all set for controlling the chain (Zk). Recall that p̂ = (p̄ − 1) ∧ 2
and p̄ ∈ (2,p).

LEMMA 5.5. Let d ≥ 1 and consider a product probability measure P on envi-
ronments with a forbidden direction −û ∈ Zd \ {0} as in (2.1). Assume nonnestling
(N) in direction û and the moment hypothesis (M) with p > 2. Then the transition
q(x, y) has these properties for all x ∈ Vd :∑

m∈Vd

mq(x, x + m) = 0(5.8)

and there exists a constant C6 < ∞ such that∑
m∈Vd

|m|p̂q(x, x + m) ≤ C6.(5.9)

In addition to the assumptions above, assume d ≥ 2 and ellipticity (E). Then there
exists a constant ε > 0 such that

q(x, x) ≤ 1 − ε for all x ∈ Vd .(5.10)

PROOF. Property (5.8) follows from (5.7), and property (5.9) from
Lemma 5.4(a).

We prove property (5.10) carefully, for even though the argument is elemen-
tary, it is here that the proof needs the ellipticity hypotheses. By assumption (2.3)
in the ellipticity hypothesis (E) we can fix two nonzero vectors z �= y such that
E(π0zπ0y) > 0. Pick their names so that z · û ≥ y · û. If y · û = z · û = 0, then by
nonnestling (N) there exists a vector u with u · û > 0 and E(π0zπ0yπ0u) > 0. Thus
by replacing z with u if necessary we can assume z · û > 0. Recall that we are
assuming û is an integer vector, so all the dot products are also integers.
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Let x ∈ Vd . We distinguish three cases.
Case 1. y · û = 0. Then

1 − q(x, x) ≥ q(x, x − y) ≥ Px,0(X1 = x + z, X̃1 = y, X̃2 = y + z)

= Eπx,x+zπ0,yπy,y+z =


(Eπ0z)
2Eπ0y, if x /∈ {0, y},

E[π0zπ0y]Eπ0z, if x = 0,
E[π2

0z]Eπ0y, if x = y.

Case 2. y · û > 0 and y /∈ Rz. Let n,m ≥ 1 be such that nz · û = my · û is the
least common multiple of y · û and z · û. We have

1 − q(x, x)

≥ q(x, x + nz − my)

≥ Px,0(Xi − Xi−1 = z, X̃j − X̃j−1 = y, for i = 1, . . . , n and j = 1, . . . ,m)

=
{

(Eπ0z)
n(Eπ0y)

m, if x �= 0,
E[π0zπ0y](Eπ0z)

n−1(Eπ0y)
m−1, if x = 0.

Case 3. y · û > 0 and y ∈ Rz. Together with the earlier assumption y · û ≤ z · û
these imply y · û < z · û. The ellipticity hypothesis (E) implies the existence of
a vector w /∈ Rz such that E(π0w) > 0. Consider the positive integer solutions
(�,m,n) of the equation

�(z · û) = m(y · û) + n(w · û).

Such solutions exist. For if w · û = 0, then � = y · û, m = z · û together with any
n > 0 works. If w · û > 0, then one solution is � = w · û, m = w · û, n = z · û−y · û.
Fix a solution where � is minimal. Define a path (x̃j )

m+n
j=1 such that x̃1 = y, x̃2 =

y +w, and after that each step is either y or w but so that x̃m+n = my +nw. Define
another path (xk = kz)�k=1. Paths (x̃j )

m+n
j=1 and (xk)

�
k=1 do not have a common level

until at x̃m+n · û = x� · û. To see this, note two points:

(i) x̃1 · û = xk · û is impossible due to the assumption y · û < z · û.
(ii) An equality x̃j · û = xk · û with 2 ≤ j ≤ m+n and 1 ≤ k < � would produce

a solution (�,m,n) with smaller �.

Note also that, since z, y,w �= 0 and by the linear independence of w and z,

x + x� − x̃m+n = x + �z − my − nw �= x for any x.

So

1 − q(x, x) ≥ q(x, x + x� − x̃m+n)

≥ Px,0(Xk = x + xk for 1 ≤ k ≤ � and X̃j = x̃j for 1 ≤ j ≤ m + n)

=
{

(Eπ0z)
�(Eπ0y)

m(Eπ0w)n, if x �= 0,
E[π0zπ0y](Eπ0z)

�−1(Eπ0y)
m−1(Eπ0w)n, if x = 0.
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The three cases give finitely many positive lower bounds on 1 − q(x, x) that are
independent of x. Let ε be their minimum. �

We can now finish the proof of Proposition 5.1. Write

Gn(x, y) =
n∑

k=0

qk(x, y) = Ex

[
n∑

k=0

1{Zk = y}
]
,

where qk(x, y) is the k-step transition probability from x to y, and now Ex is the
expectation on the path space of {Zk} when the initial state is Z0 = x.

Continue from (5.2) and apply Lemma A.4 from the Appendix and the summa-
bility of h:

E0,0
(∣∣X[0,n−1] ∩ X̃[0,n−1]

∣∣) ≤
n−1∑
j=0

E0[h(Zj )] = ∑
x∈Vd

h(x)Gn−1(0, x)

≤ C6n
1/p̂

∑
x∈Vd

h(x) ≤ Cn1/p̂.

Recalling that p̂ = (p̄ − 1) ∧ 2 and p̄ ∈ (2,p), this completes the proof of Propo-
sition 5.1, and thereby the proof of Theorem 2.1. �

APPENDIX

A.1. A linear algebra lemma. Let us say that a vector is rational if it has
rational coordinates, and analogously a vector is integral if it has integer coordi-
nates. The lemma below implies that for a finitely supported step distribution the
requirement of a rational vector in the forbidden direction assumption (2.1) and in
the nonnestling hypothesis (N) is no more restrictive than requiring a general real
vector. This justifies the derivation of Corollary 2.2 from Theorem 2.1.

LEMMA A.1. Let A be a finite subset of Zd . Suppose there exists a vector
v̂ ∈ Rd such that v̂ · x ≥ 0 for all x ∈ A. Then there exists a vector û with integer
coordinates such that, for all x ∈ A,

û · x > 0 if and only if v̂ · x > 0 and

û · x = 0 if and only if v̂ · x = 0.

The proof is mainly done in the next lemma. Let us recall this notion of vector
product: if h1, . . . , hd−1 are vectors in Rd , let z = F(h1, . . . , hd−1) be the vector
defined by the equations

det[h1, . . . , hd−1, x] = x · z, for all x ∈ Rd .
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Here [h1, . . . , hd−1, x] denotes a matrix in terms of its column decomposition.
Explicitly, z = [z(1), . . . , z(d)]t with coordinates

z(i) = (−1)i+d det[h1, . . . , hd−1]{i},
where [h1, . . . , hd−1]{i} is the (d − 1) × (d − 1) matrix obtained from [h1, . . . ,

hd−1] by removing row i. Consequences of the definition are that z ·hi = 0 for each
hi , and z �= 0 if, and only if, h1, . . . , hd−1 are linearly independent. The explicit
formula shows that if all hi are integer (resp. rational) vectors, then so is z.

LEMMA A.2. Let v1, . . . , vn be linearly independent vectors in Rd that lie in
the orthogonal complement {v̂}⊥ of some vector v̂ ∈ Rd . Suppose v1, . . . , vn all
have integer coordinates. Then for each ε > 0 there exists a vector w with rational
coordinates such that |w − v̂| ≤ ε and v1, . . . , vn ∈ {w}⊥.

PROOF. If n = d − 1, then z = F(v1, . . . , vd−1) is a vector with integer co-
ordinates and the property span{v1, . . . , vd−1} = {z}⊥. The spans of z and v̂ must
then coincide, so in particular we can take rational multiples of z arbitrarily close
to v̂.

Assume now n < d − 1. Find vectors ξn+1, . . . , ξd−1 so that

v1, . . . , vn, ξn+1, . . . , ξd−1

is a basis for {v̂}⊥. Next find rational vectors ηm
n+1, . . . , η

m
d−1 such that for each

n + 1 ≤ k ≤ d − 1, ηm
k → ξk as m → ∞, and so that

v1, . . . , vn, η
m
n+1, . . . , η

m
d−1

are linearly independent for each m.
This can be achieved by the following argument. Suppose that for a particular

m ≥ 1 and n ≤ k < d − 1, vectors ηm
n+1, . . . , η

m
k have been chosen so that |ηm

j −
ξj | ≤ 1/m for n + 1 ≤ j ≤ k, and the system v1, . . . , vn, η

m
n+1, . . . , η

m
k is linearly

independent. The case k = n corresponds to the case where none of these vectors
has been chosen yet, for the given m. The subspace

U = span{v1, . . . , vn, η
m
n+1, . . . , η

m
k }

has dimension k < d − 1 and is a closed subset with empty interior in Rd . Con-
sequently the set B1/m(ξk+1) \ U is nonempty and open, and we can choose any
rational vector ηm

k+1 from this set.
Once the rational vectors ηm

n+1, . . . , η
m
d−1 have been defined, let

ζm = F(v1, . . . , vn, η
m
n+1, . . . , η

m
d−1).

This ζm is a rational vector. Next let sm be the real number defined by

|smζm − v̂| = inf{|tζm − v̂| : t ∈ R}
and then let qm be a rational such that |sm − qm| < 1/m. Finally, let wm = qmζm.
Clearly, {wm}⊥ contains v1, . . . , vn. We claim that wm → v̂ as m → ∞.
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The product F is continuous in its arguments, so

ζm → ζ = F(v1, . . . , vn, ξn+1, . . . , ξd−1).

Since ζ and v̂ both span the orthogonal complement of {v1, . . . , vn, ξn+1, . . . ,

ξd−1}, there is a real s such that v̂ = sζ . Consequently sζm → sζ = v̂. Now

|wm − v̂| = |qmζm − v̂| ≤ |qm − sm| · |ζm| + |smζm − v̂|.
The first term after the above inequality vanishes as m → ∞ by the choice of qm

and because |ζm| → |ζ |. By the definition of sm

|smζm − v̂| ≤ |sζm − v̂| → 0

as observed earlier. This completes the proof of the lemma. �

PROOF OF LEMMA A.1. Let

M = max{|x| :x ∈ A} < ∞ and δ = min{v̂ · x :x ∈ A, v̂ · x > 0} > 0.

Let v1, . . . , vn be a maximal linearly independent set from A ∩ {v̂}⊥. If this set
is not empty, then pick a rational vector w from Lemma A.2 with ε = δ/(2M).
Otherwise, just pick any rational vector w ∈ Bε(v̂). Then for x ∈ A we have on the
one hand

v̂ · x = 0 �⇒ x ∈ span{v1, . . . , vn} �⇒ w · x = 0,

and on the other hand

v̂ · x > 0 �⇒ v̂ · x ≥ δ �⇒ w · x ≥ v̂ · x − |(w − v̂) · x| ≥ δ − M|w − v̂| ≥ δ/2.

Now let û be a large enough positive integer multiple of w. �

A.2. A renewal process bound. Write N∗ = {1,2,3, . . .} and N =
{0,1,2, . . .}. The setting for the next technical lemma is the following. Let
{Yi : i ∈ N∗} be a sequence of i.i.d. positive integer-valued random variables, and
{Ỹj : j ∈ N∗} an independent copy of this sequence. Y denotes a random variable
with the same distribution as Y1. The corresponding renewal processes are defined
by

S0 = S̃0 = 0, Sn = Y1 + · · · + Yn and S̃n = Ỹ1 + · · · + Ỹn for n ≥ 1.

Let h be the largest positive integer such that the common distribution of Yi and
Ỹj is supported on hN∗. For i, j ∈ hN define

Li,j = inf{� ≥ 1 : there exist m,n ≥ 0 such that i + Sm = � = j + S̃n}.
The restriction � ≥ 1 in the definition has the consequence that Li,i = i for i > 0
but L0,0 is nontrivial. The next lemma is proved in the Appendix of [11].

LEMMA A.3. Let 1 ≤ r < ∞ be a real number, and assume E(Y r+1) < ∞.
Then there exists a finite constant C such that for all i, j ∈ hN,

E(Lr
i,j ) ≤ C(1 + ir + j r).
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A.3. A Green function estimate.

LEMMA A.4. Let V be a subset of some Zd , d ≥ 1. Consider a Markov chain
Zn on V whose transition q(x, y) has properties (5.8)–(5.10) with 1 < p̂ ≤ 2. Then
there exists a constant C7 < ∞ such that

Gn(x, y) =
n∑

k=0

qk(x, y) = Ex

(
n∑

k=0

1{Zk = y}
)

≤ C7n
1/p̂

for all n ≥ 1 and all x, y ∈ V.

PROOF. First we use the familiar argument to reduce the proof to the diagonal
case. For k ≥ 1, let

f k(x, y) = Px(Z1 �= y, . . . ,Zk−1 �= y,Zk = y)

be the probability that after time 0 the first visit from x to y occurs at time k. Note
that

∑
k f k(x, y) ≤ 1. Then for x �= y

Gn(x, y) =
n∑

k=1

qk(x, y) =
n∑

k=1

k∑
j=1

f j (x, y)qk−j (y, y)

=
n∑

j=1

f j (x, y)

n∑
k=j

qk−j (y, y)

≤
n∑

j=1

f j (x, y)

n∑
k=0

qk(y, y) ≤
n∑

k=0

qk(y, y) = Gn(y, y).

We can now take x = y and it remains to show

Ex

(
n∑

k=0

1{Zk = x}
)

≤ C7n
1/p̂.

Keep x fixed now, and consider the Markov chain Zn under the measure Px on
its path space. By properties (5.8) and (5.9), Zn is an Lp̂-martingale relative to
its own filtration {F Z

n }, with initial point Z0 = x. Furthermore, (5.9) implies a
uniform bound on conditional p̂th moments of increments:

Ex(|Zk − Zk−1|p̂|F Z
k−1) ≤ C6.(A.1)

Let 0 = τ0 < τ1 < τ2 < · · · be the successive times of arrivals to x after leaving
x, in other words

τj+1 = inf{n > τj :Zn = x and Zk �= x for some k : τj < k < n}.
Let Tj (j ≥ 0) be the durations of the sojourns at x; in other words

Zn = x if, and only if τj ≤ n < τj + Tj for some j ≥ 0.
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Given that an arrival has happened, the sojourns are independent of the past and
have geometric distributions, so on the event {τj < ∞},

Ex

(
Tj |F Z

τj

) = 1

1 − q(x, x)
.

Let Jn = max{j ≥ 0 : τj ≤ n} mark the last sojourn at x that started by time n.
With these notations

Ex

(
n∑

k=0

1{Zk = x}
)

≤ Ex

(
Jn∑

j=0

Tj

)

=
∞∑

j=0

Ex(1{τj ≤ n}Tj )(A.2)

= 1

1 − q(x, x)
Ex(1 + Jn).

To bound the number Jn of arrivals to x from somewhere else we use the up-
crossing lemma from martingale theory. Write Zn = (ξ1

n , . . . , ξd
n ) in terms of the

(standard) coordinates, and similarly x = (t1, . . . , td). Let Ui
n count the number of

upcrossings of the martingale ξ i across the interval [t i − 1, t i] up to time n. Simi-
larly V i

n counts the number of downcrossings across the interval [t i , t i + 1] made
by the martingale ξ i up to time n. Quite obviously

Jn ≤
d∑

i=1

(Ui
n + V i

n)

since each arrival to x means that some coordinate arrived at t i from either above
or below. By the upcrossing inequality ([6], (2.9) in Chapter 4)

Ex(U
i
n) ≤ Ex

[(
ξ i
n − (t i − 1)

)+] − Ex

[(
ξ i

0 − (t i − 1)
)+]

≤ Ex[|ξ i
n − t i |] + 1 − 1 = Ex[|ξ i

n − t i |].
Similarly Ex(V

i
n) ≤ Ex[|ξ i

n − t i |], by applying the upcrossing inequality to −ξ i

and the interval [−ti − 1,−ti]. Now follows

Ex[Jn] ≤
d∑

i=1

(Ex[Ui
n] + Ex[V i

n])

≤ 2
d∑

i=1

Ex[|ξ i
n − t i |] = 2

d∑
i=1

Ex[|ξ i
n − ξ i

0|].
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In the next stage we apply the increment bound (A.1). Since 1 < p̂ ≤ 2 we can
apply the Burkholder–Davis–Gundy inequality ([4], Theorem 3.2) to derive

2
d∑

i=1

Ex[|ξ i
n − ξ i

0|] ≤ 2
d∑

i=1

{Ex[|ξ i
n − ξ i

0|p̂]}1/p̂

≤ 2C

d∑
i=1

{
Ex

[(
n∑

k=1

(ξ i
k − ξ i

k−1)
2

)p̂/2]}1/p̂

≤ 2C

d∑
i=1

{
Ex

n∑
k=1

|ξ i
k − ξ i

k−1|p̂
}1/p̂

≤ Cn1/p̂.

The next-to-last inequality came from noticing that p̂/2 ∈ (0,1] and hence, for any
nonnegative summands,

(x1 + · · · + xn)
p̂/2 ≤ x

p̂/2
1 + · · · + xp̂/2

n .

Substituting the bounds back up to line (A.2) and applying property (5.10) gives

Gn(x, x) = Ex

[
n∑

k=0

1{Zk = x}
]

≤ 1 + Cn1/p̂

1 − q(x, x)
≤ 1 + Cn1/p̂

ε
≤ C7n

1/p̂

for a new constant C7. The proof of the lemma is complete. �
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