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MOMENT INEQUALITIES FOR U-STATISTICS1

BY RADOSŁAW ADAMCZAK

Polish Academy of Sciences

We present moment inequalities for completely degenerate Banach space
valued (generalized) U-statistics of arbitrary order. The estimates involve
suprema of empirical processes which, in the real-valued case, can be re-
placed by simpler norms of the kernel matrix (i.e., norms of some multilinear
operators associated with the kernel matrix). As a corollary, we derive tail
inequalities for U-statistics with bounded kernels and for some multiple sto-
chastic integrals.

1. Introduction. The extensive body of work concerning U-statistics which
emerged during the sixty year period following their introduction by Hoeffding
has lead to an abundance of results including limit theorems and tail inequalities
as well as statistical and combinatorial applications. Most of the results correspond
to the classical theorems for sums of independent random variables, exploring the
properties of U-statistics under assumptions which are necessary and sufficient for
such sums. Although in some cases, such as CLT, those conditions turn out to be
necessary and sufficient also for U-statistics, for other problems (like SLLN or
LIL) the case of U-statistics is much more complicated and the classical methods
of proofs (in particular the existing tail and moment inequalities) are too weak.
The properties of U-statistics depend on the so-called order of degeneracy and the
most troublesome is usually the completely degenerate or canonical case to which
other problems can be reduced by means of Hoeffding decomposition (see [10]).
It turns out that, already for canonical U-statistics of order 2, what matters is not
only the L2- and L∞-norms of the kernels, but also some more involved norms
such as norms of certain operators corresponding to the kernel matrix, as one can
see when examining the inequalities by Giné, Latała and Zinn [5]. These quantities
have also been reflected in the necessary and sufficient conditions for the LIL for
canonical U-statistics of order 2, obtained in [6], and in precise moment estimates
for Gaussian chaoses given recently by Latała [9].

In this paper, we generalize the results of [5] to canonical U-statistics of ar-
bitrary order. The organization of the paper is as follows. First, in Section 2, we
start from U-statistics with values in a Banach space, then specialize to type 2
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spaces. All estimates presented there are expressed in terms of suprema of em-
pirical processes and may be considered counterparts of similar inequalities for
Gaussian chaoses due to Borell [3] and Arcones and Giné [2] (see also [1]). The
main results are contained in Section 3, where we obtain sharp estimates for mo-
ments and tails of canonical U-statistics in the real-valued case. Those estimates
involve “deterministic” quantities only and are optimal up to constants and loga-
rithmic factors. Finally, in Section 4, we give analogous tail inequalities for multi-
ple stochastic integrals of bounded deterministic functions with respect to stochas-
tic processes with independent increments and uniformly bounded jumps, in the
spirit of inequalities obtained by Houdré and Reynaud-Bouret in [7].

2. Estimates involving suprema of empirical processes.

2.1. Basic definitions and notation. Let In = {1, . . . , n} and consider a mea-
surable space (�,F ) (throughout the paper, we will assume it is a Polish space
with the Borel σ -field) and (hi)i∈Id

n
, a multi-indexed matrix of measurable func-

tions hi :�d → B , for a separable Banach space (B, | · |). Consider also a matrix
(X

(j)
i )i∈In,j∈Id

of independent �-valued random variables. To simplify notation,

let hi also stand for hi(X
(1)
i1

, . . . ,X
(d)
id

), where i = (i1, . . . , id). Assume that hi are
canonical (completely degenerate), that is, Ejhi = 0 for all j ≤ d , where Ej de-

notes integration with respect to X(j) = (X
(j)
i )i∈In [for I ⊆ Id , we will similarly

denote by EI integration with respect to (X
(j)
i )i∈In,j∈I ]. Let us define a random

variable

Z :=∑
i∈Id

n

hi
(
X

(1)
i1

,X
(2)
i2

, . . . ,X
(d)
id

)=∑
i∈Id

n

hi.

Our aim is to find precise estimates for the moments of Z. To this end, for J ⊆
I ⊆ Id (not necessarily nonempty) and a fixed value of iI c , let us introduce the
following definition:

DEFINITION 1.∣∣∣∣∣∣(hi)iI

∣∣∣∣∣∣
I,J

= EI\J sup

{
EJ

∑
iI

〈φ,hi〉
∏
j∈J

f
(j)
ij

(
X

(j)
ij

)
:φ ∈ B∗, |φ| ≤ 1,

(1)

f (j) = (f (j)
1 , . . . , f (j)

n

)
, f

(j)
i :� → R, j ∈ J, i ∈ In,

E
∑
i

∣∣f (j)
i

(
X

(j)
i

)∣∣2 ≤ 1, j ∈ J

}

for I 	= ∅. Let us further define |||(hi)i∅ |||∅,∅ = |hi|.
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REMARK. It is worth noting that |||(hi)i|||Id ,∅ = E|∑i hi|. Moreover, for J ⊆
I = Id , |||(hi)iI |||I,J is a deterministic quantity (even a norm), whereas for I 	= Id ,
it is a random variable depending on (X

(k)
ik

)k∈I c .

REMARK. Throughout the paper, we use the letter K to denote universal con-
stants, Kd for constants depending on d only and Kd(B) for constants depending
on d and some characteristic of a Banach space B . In all these cases, the values of
constants may differ between occurrences.

2.2. Inequalities for Banach space valued U-statistics.

THEOREM 1. There exist constants Kd such that for p ≥ 2, we have

E|Z|p ≤ K
p
d

[∑
I⊆Id

∑
J⊆I

pp(#J/2+#I c)
∑
iIc

EI c

∣∣∣∣∣∣(hi)iI

∣∣∣∣∣∣p
I,J

]
.(2)

The main ingredient of the proof of the above theorem is the following lemma
which is a corollary of Talagrand’s tail inequality for empirical processes [12].

LEMMA 1 ([5], Proposition 3.1, see also [4], Theorem 12). Let X1, . . . ,Xn be
independent random variables with values in (�,F ) and T a countable class of
measurable real functions on � such that for all f ∈ T and i ∈ In, Ef (Xi) = 0
and Ef (Xi)

2 < ∞. Consider the random variable S := supf ∈T |∑i f (Xi)|. Then
for all p ≥ 1,

ESp ≤ Kp

[
(ES)p + pp/2σp + ppE max

i
sup
f ∈T

|f (Xi)|p
]
,

where

σ 2 = sup
f ∈T

∑
i

Ef (Xi)
2.

To prove Theorem 1, we will need the following simple corollary of Lemma 1.

LEMMA 2. Let B be a Banach space for which there exists a countable set
D = {ψj } of functionals such that for all x ∈ B ,

‖x‖B = sup
j

|ψj(x)|.

Now, let X1, . . . ,Xn,Y be independent random variables with values in (�,F ).
Let E = L1

Y (B), the space of all B-valued, integrable functions of the form f (Y )
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such that ψj ◦ f is measurable for all j . Consider functions hi :�2 → B (i =
1, . . . , n) such that ψj ◦ hi is measurable for all j , EXhi(Xi, Y ) = 0 Y -a.e. and
hi(Xi, Y ) ∈ E X-a.e. Let S =∑i hi(Xi, Y ) ∈ E. Then for all p ≥ 2,

E‖S‖p
E ≤ Kp

[
(E‖S‖E)p + pp/2σp + ppEX max

i
‖hi(Xi, Y )‖p

E

]

≤ Kp

[
(E‖S‖E)p + pp/2σp + ppEX

∑
i

‖hi(Xi, Y )‖p
E

]
,

where

σ = sup
f =(fi(Xi)) :

∑
Ef 2

i (Xi)≤1

EY sup
j

∣∣∣∣∣
∑
i

EXψj

(
hi(Xi, Y )fi(Xi)

)∣∣∣∣∣
≤ EY sup

j

(∑
i

EXψj

(
hi(Xi, Y )

)2)1/2

.

PROOF. First, we will construct a countable set of vectors of the form φ(Y ) =
(φ1(Y ),φ2(Y ), . . .) such that

∑
j |φj (Y )| = 1 a.e. and for all g(Y ) ∈ E,

‖g(Y )‖E = sup
φ

∣∣∣∣∣
∑
j

EY φj (Y )ψj (g(Y ))

∣∣∣∣∣.(3)

Note that for every random variable k(Y ) = (k1(Y ), . . . , kn(Y )) ∈ L1
Y (�n∞),

there exists a vector φ(Y ) = (φ1(Y ), . . . , φn(Y )) such that

n∑
j=1

|φj (Y )| = 1 a.e.(4)

and

E max
j≤n

|kj (Y )| =
∣∣∣∣∣

n∑
j=1

Eφj (Y )kj (Y )

∣∣∣∣∣,
since for each value of Y , we can put φl(Y ) = sgnkl(Y ), if l = min{i ≤ n :
|ki(Y )| = maxj≤n |kj (Y )|} and φl(Y ) = 0, otherwise. Since all such sequences
φ(Y ), treated as functionals on L1

Y (�n∞), have norm 1 and L1
Y (�n∞) is separable

(here, we use the assumption that � is a Polish space), there exists a countable set
Tn of vectors φ(Y ) satisfying (4) such that

E max
j≤n

|kj (Y )| = sup
φ∈Tn

∣∣∣∣∣
n∑

j=1

Eφj (Y )kj (Y )

∣∣∣∣∣
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for all k(Y ) ∈ L1
Y (�n∞). Now, for g(Y ) ∈ E,

‖g(Y )‖E = sup
n

E max
j≤n

|ψj(g(Y ))| = sup
n

sup
φ∈Tn

∣∣∣∣∣
∑
j≤n

φj (Y )ψj (g(Y ))

∣∣∣∣∣,
so, to obtain (3), it is enough to take a set consisting of all vectors φ(Y ) ∈⋃Tn

completed with zeros to vectors of infinite length.
We thus have S = supφ |∑i

∑
j EY ψj (hi(Xi, Y ))φj (Y )| = supφ |∑i g

i
φ(Xi)|

and can estimate ‖S‖p using Lemma 1 (although, formally, it deals with the case
when the same function is applied to all Xi’s, it is easy to see that it also covers
our situation). Indeed, we have

σ = sup
φ

(∑
i

EXgi
φ(Xi)

2

)1/2

= sup
f =(fi) :

∑
i Efi(Xi)

2≤1
sup
φ

∣∣∣∣∣
∑
j

EY

∑
i

EXψj

(
hi(Xi, Y )fi(Xi)

)
φj (Y )

∣∣∣∣∣
= sup

f

EY sup
j

∣∣∣∣∣
∑
i

EXψj

(
hi(Xi, Y )fi(Xi)

)∣∣∣∣∣.

PROOF OF THEOREM 1. We will proceed by induction with respect to d . For
d = 1 the theorem is an obvious corollary of Lemma 1 since

|||(hi)i |||{1},∅ = EZ,

|||(hi)i |||{1},{1} = sup
|φ|≤1

√∑
i

E〈φ,hi〉2,

∑
i

E|||(hi)i |||p∅,∅ ≥ E max
i

|hi |p.

Let us therefore assume that the inequality is satisfied for all integers smaller
then d . Let us denote Ĩ c = I c \ {d} for I ⊆ Id . The induction assumption for
d1 = d − 1, applied conditionally with respect to X(d), together with Fubini’s the-
orem, implies that

E|Z|p ≤ K
p
d−1

∑
I⊆{1,...,d−1}

∑
J⊆I

[
pp(#J/2+#Ĩ c)

∑
i
Ĩ c

E
Ĩ cEd

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(∑

id

hi

)
iI

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p

I,J

]
.(5)

Note that since, in Definition 1, we can restrict the supremum to a countable set
of functions, Ed |||(∑id

hi)iI |||pI,J can be estimated by means of Lemma 2 [applied
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conditionally on (X
(k)
ik

)
k∈Ĩ c if I 	= Id−1]. We have

pp(#J/2+#Ĩ c)
∑
i
Ĩ c

E
Ĩ c

(
Ed

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(∑

id

hi

)
iI

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
I,J

)p

= pp(#J/2+#(I∪{d})c) ∑
i(I∪{d})c

E(I∪{d})c
∣∣∣∣∣∣(hi)iI∪{d}

∣∣∣∣∣∣p
I∪{d},J .

Moreover, σ from the lemma is bounded by |||(hi)iI∪{d} |||I∪{d},J∪{d} and

pp(#J/2+#Ĩ c)
∑
i
Ĩ c

E
Ĩ cp

p/2∣∣∣∣∣∣(hi)iI∪{d}
∣∣∣∣∣∣p

I∪{d},J∪{d}

= pp(#(J∪{d})/2+#(I∪{d})c)

× ∑
i(I∪{d})c

E(I∪{d})c
∣∣∣∣∣∣(hi)iI∪{d}

∣∣∣∣∣∣p
I∪{d},J∪{d}.

Finally,

pp(#J/2+#Ĩ c)
∑
i
Ĩ c

pp
∑
id

E
Ĩ cEd

∣∣∣∣∣∣(hi)iI

∣∣∣∣∣∣p
I,J

= pp(#J/2+#I c)
∑
iIc

EI c

∣∣∣∣∣∣(hi)iI

∣∣∣∣∣∣p
I,J .

�

THEOREM 2. Let B be a Banach space of type 2. Then there exist constants
Kd(B) depending only on d and the type 2 constant of B such that for all p ≥ 2,

E|Z|p ≤ Kd(B)p

[
max
I⊆Id

EI c max
iIc

(∑
iI

EI |hi|2
)p/2

(6)

+ ∑
I⊆Id

∑
J⊆I

pp(#J/2+#I c)EI c max
iIc

∣∣∣∣∣∣(hi)iI

∣∣∣∣∣∣p
I,J

]
.

As we can see, the aim is to replace the external sums on the right-hand side of
(1) with maxima. To do so, we will use the following lemmas:

LEMMA 3 ([5], inequality (2.6)). Let ξ1, . . . , ξN be independent, nonnegative
random variables. Then for p > 1 and α > 0, we have

pαp
∑
i

Eξ
p
i ≤ 2(1 + pα)max

[
pαpE max

i
ξ

p
i ,

(∑
i

Eξi

)p]
.
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LEMMA 4 ([5], Corollary 2.2). Consider nonnegative kernels gi :�d → R+.
Then for all p ≥ 1,

max
I⊆Id

EI max
iI

(∑
iIc

EI cgi

)p

≤ E

(∑
i∈Id

n

gi

)p

≤ K
p
d

∑
I⊆Id

p#IpEI max
iI

(∑
iIc

EI cgi

)p

.

LEMMA 5. For α > 0, arbitrary nonnegative kernels gi :�d → R+ and
p > 1, we have

pαp
∑
i∈Id

n

Eg
p
i ≤ K

p
d pαd

[
pαpE max

i
g

p
i + ∑

I�{1,...,d}
p#IpEI max

iI

(∑
iIc

EI cgi

)p]
.

PROOF. We use induction with respect to d . For d = 1, the inequality is im-
plied by Lemma 3. Assume that the lemma is true for all integers smaller than d .
Applying the induction assumption to E{1,...,d−1} and using the same notation as
in the proof of Theorem 1, we get

pαp
∑

i

Eg
p
i ≤ K

p
d−1p

α(d−1)Ed

∑
id

[
pαpE{d}c max

i{d}c
g

p
i

+ ∑
I�{1,...,d−1}

p#IpEI max
iI

(∑
i
Ĩ c

E
Ĩ cgi

)p]
.

Lemma 3, together with Lemma 4, gives

K
p
d−1p

α(d−1)Ed

∑
id

pαpE{d}c max
i{d}c

g
p
i

= K
p
d−1p

α(d−1)E{d}cEd

∑
id

pαp max
i{d}c

g
p
i

≤ K
p
d pαdpαpE max

i
g

p
i + K

p
d pαdE{d}c

(∑
i

Edgi

)p

≤ K
p
d pαdpαpE max

i
g

p
i

+ K
p
d pαd

∑
I⊆{1,...,d−1}

p#IpEI max
iI

(∑
iIc

EI cgi

)p

.
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Moreover, for every I � {1, . . . , d − 1}, by Lemma 3 (applied with “α = #I”),
Lemma 4 and the fact that p#I ≤ pd ≤ K

p
d , we get

K
p
d−1p

α(d−1)
∑
id

Edp#IpEI max
iI

(∑
i
Ĩ c

E
Ĩ cgi

)p

= K
p
d−1p

α(d−1)EIp
#Ip
∑
id

Ed max
iI

(∑
i
Ĩ c

E
Ĩ cgi

)p

≤ K
p
d pα(d−1)p#Ip#IpEI∪{d} max

iI∪{d}

( ∑
ı(I∪{d})c

E(I∪{d})cgi

)p

+ K
p
d pα(d−1)p#IEI

(∑
i

EI cgi

)p

≤ K
p
d pdαp#IpEI∪{d} max

iI∪{d}

( ∑
i(I∪{d})c

E(I∪{d})cgi

)p

+ K
p
d pαd

∑
J⊆I

p#JpEJ max
iJ

(∑
iJc

EJ cgi

)p

.
�

LEMMA 6. Let B be a Banach space of type 2. Then there exist constants
Kd(B) depending only on d and the type 2 constant of B such that for all
J ⊆ I ⊆ Id and any fixed value of iI c , one has

∣∣∣∣∣∣(hi)iI

∣∣∣∣∣∣
I,J ≤ Kd(B)

√∑
iI

EI |hi|2.

PROOF. The Cauchy–Schwarz inequality gives

∣∣∣∣∣∣(hi)iI

∣∣∣∣∣∣2
I,J ≤ EI\J sup

φ∈B∗,|φ|≤1
EJ

∑
iJ

〈
φ,
∑
iI\J

hi

〉2

≤∑
iJ

EI

∣∣∣∣∣
∑
iI\J

hi

∣∣∣∣∣
2

≤ Kd(B)
∑
iI

EI |hi|2.
�

PROOF OF THEOREM 2. One starts from Theorem 1, then applies Lemma 5
for I 	= Id to

∑
iIc EI c |||(hi)iI |||pI,J with “p = p/2” and α = 2(#I c + #J/2) + #I c

[taking advantage of the fact that (p/2)αd ≤ K
p
d ] and finally applies Lemma 6.

�
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REMARK. From Lemma 4, one can conclude that in cotype 2 spaces (so, in
particular, in Hilbert spaces), the quantity maxI⊆Id

EI c maxiIc (
∑

iI EI |hi|2)p/2 is
indispensable (at least up to constants) since one has

E|Z|p ≥ 1

Kd(B)p
E

(∑
i

|hi|2
)p/2

≥ 1

Kd(B)p
max
I⊆Id

EI c max
iIc

(∑
iI

EI |hi|2
)p/2

with Kd(B) depending only on d and the cotype 2 constant of B .
Let us also consider a corollary of Theorem 2 which is perhaps more “user-

friendly.” It can easily be obtained by replacing |||(hi)iI |||I,J , for I 	= Id and E|Z| =
|||(hi)|||Id ,∅, with the estimates given in Lemma 6.

COROLLARY 1. If B is of type 2, then there exist constants Kd(B) depending
only on d and the type 2 constant of B such that for p ≥ 2,

E|Z|p ≤ Kd(B)p

[(∑
i

E|hi|2
)p/2

+ ∑
J⊆Id ,J 	=∅

pp#J/2|||(hi)|||pId ,J

+ ∑
I�Id

pp(d+#I c)/2EI c max
iIc

(∑
iI

EI |hi|2
)p/2]

.

3. The real-valued case. The purpose of this section is to simplify the esti-
mates of Theorem 2 in the case of real-valued U-statistics. To be more precise, we
would like to replace the troublesome suprema of empirical processes ‖(hi)iI ‖I,J

by expressions in which the supremum over a class of functions appears outside
the expectation. To do so, let us introduce the following definitions:

DEFINITION 2. For a nonempty, finite set I , let PI be the family consisting
of all partitions J = {J1, . . . , Jk} of I into nonempty, pairwise disjoint subsets.
Let us also define for J (as above), deg(J) = k. Additionally, let P∅ = {∅} with
deg(∅) = 0.

DEFINITION 3. For a nonempty set I ⊆ Id , consider J = {J1, . . . , Jk} ∈ PI .
For an array (hi)i∈Id

n
of real-valued kernels and any fixed value of iI c , define

∥∥(hi)iI

∥∥
J = sup

{∣∣∣∣∣
∑
iI

EI hi
(
X

(1)
i1

, . . . ,X
(d)
id

) deg(J)∏
j=1

f
(j)
iJj

((
X

(l)
il

)
l∈Jj

)∣∣∣∣∣ :

E
∑
iJj

∣∣f (j)
iJj

((
X

(l)
il

)
l∈Jj

)∣∣2 ≤ 1 for j = 1, . . . ,deg(J)

}
.

Moreover, let ‖(hi)i∅‖∅ = |hi|.



MOMENT INEQUALITIES FOR U-STATISTICS 2297

REMARK. If I = Id , then the quantity ‖(hi)iI ‖J is a deterministic norm,

whereas for I 	= Id it is a random variable depending on (X
(j)
ij

)j∈I c (one can see
that it is just an analogous norm, computed conditionally for a sub-array of smaller
dimension).

3.1. Real U-statistics of order d = 3. First, we will consider the case d = 3.
Let us adapt the notation to the simplified situation and write

Z :=
n∑

ijk=1

hijk(Xi, Yj ,Zk),

where in all previous definitions, Yj ,Zk correspond to X
(2)
i2

,X
(3)
i3

, respectively.

REMARK. On closer inspection of Definitions 1 and 3, one can see that

∣∣∣∣∣∣(hi)iI

∣∣∣∣∣∣
I,∅ = EI

∣∣∣∣∣
∑
iI

hi

∣∣∣∣∣≤
√∑

iI

EI |hi|2 = ∥∥(hi)iI

∥∥{I }

and for s ∈ I , |||(hi)iI |||I,{s} ≤ ‖(hi)iI ‖{I }. Moreover, |||(hi)iI |||I,I = ‖(hi)iI ‖J ,
where J is the partition of I into singletons.

Thus, it follows that to replace all the quantities on the right-hand side of (6) by
quantities introduced in Definition 3, one must estimate expressions of the form

|||(hijk)ijk|||{1,2,3},{1,2}

= EZ sup

{∑
k

∑
i,j

EX,Y hijk(Xi, Yj ,Zk)fi(Xi)gj (Yj ) :

∑
i

Efi(Xi)
2,
∑
j

Egj (Yj )
2 ≤ 1

}
.

Note that one can choose em = (e1
m(X1), . . . , en

m(Xn)), fm = (fim(Yi))i≤n—
orthonormal bases in L2(X1) × · · · × L2(Xn) and L2(Y1) × · · · × L2(Yn),
respectively—and denoting aijk(Zk) :=∑lm EXY hlmk(Xl, Ym,Zk)el

i (Xl)fmj (Ym),
write

|||(hijk)ijk|||{1,2,3},{1,2} = E sup

{∑
k

∑
ij

aijk(Zk)xiyj :‖x‖2,‖y‖2 ≤ 1

}

= E

∥∥∥∥∥
∑
k

(aijk(Zk))ij

∥∥∥∥∥
l2→l2

.
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It turns out that the problem is to estimate the expected operator norm of a
sum of independent random matrices (hereafter, we will denote it simply by ‖ · ‖,
suppressing the index l2 → l2).

Before continuing, let us make a few comments concerning the notation. First,
to simplify it, we are going to suppress the outer brackets when writing the
norms of Definition 3. For example, we will write ‖(hijk)‖{1}{2,3} instead of
‖(hijk)‖{{1}{2,3}}. Second, note that any array (aijk(Zk))ijk corresponds to an array

of kernels (h̃(g
(1)
i , g

(2)
j ,Zk))ijk = (aijk(Zk)g

(1)
i g

(2)
j )ijk , where (g

(1)
i , g

(2)
j )ij is an

array of independent standard Gaussian random variables. Thus, for any partition
J (as in Definition 3), we can write ‖(aijk(Zk))iI ‖J = ‖(h̃ijk)iI ‖J (where g(1), g(2)

correspond resp. to X(1),X(2) of Definition 3). The following proposition explains
the connection between these quantities and the corresponding norms of (hijk)ijk :

PROPOSITION 1. For any J, we have ‖(hijk)‖J = ‖(aijk(Zk))‖J . Moreover,

‖(hijk)‖{1,2,3} =
√

E
∑
ijk

h2
ijk =

√
E
∑
ijk

aijk(Zk)2,

‖(hijk)‖{1}{2}{3} =
√√√√√ sup

‖x‖2,‖y‖2≤1

∑
k

E

(∑
ij

aijk(Zk)xiyj

)2

,

‖(hijk)‖{1,3}{2} =
√√√√√ sup

‖x‖2≤1

∑
ik

E

(∑
j

aijk(Zk)xj

)2

,

‖(hijk)‖{1}{2,3} =
√√√√√ sup

‖x‖2≤1

∑
jk

E

(∑
i

aijk(Zk)xi

)2

.

PROOF. This is a simple fact from theory of L2 spaces, so we will only show
the case J = {1,2,3}, just to give the flavor of the proof. We have

‖(hi)‖2{1,2,3} =∑
ijk

Ehijk(Xi, Yj ,Zk)
2

= EZ

∑
k

sup∑
ij Erij (Xi,Yj )2≤1

∣∣∣∣∣
∑
ij

EX,Y hijk(Xi, Yj ,Zk)rij (Xi, Yj )

∣∣∣∣∣
2

,

but each (rij )
n
i,j=1 with E

∑
rij (Xi, Yj )

2 ≤ 1 can be expressed as

rij (Xi, Yj ) =∑
lm

βlmei
l (Xi)f

j
m(Yj )
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with
∑

lm β2
lm ≤ 1 [the sum over l,m is, in general, infinite and the equality is

satisfied in ×i,jL2(Xi, Yj )]. Thus,

sup∑
ij Erij (Xi,Yj )2≤1

∣∣∣∣∣
∑
ij

EX,Y hijk(Xi, Yj ,Zk)rij (Xi, Yj )

∣∣∣∣∣
= sup∑

lm β2
lm≤1

∣∣∣∣∣
∑
lm

∑
ij

βlmEX,Y hijk(Xi, Yj ,Zk)e
i
l (Xi)f

j
m(Yj )

∣∣∣∣∣
= sup∑

lm β2
lm≤1

∣∣∣∣∣
∑
lm

almk(Zk)βlm

∣∣∣∣∣=
∑
ij

aijk(Zk)
2

which already implies that

‖(hijk)‖{1,2,3} =
√

E
∑
ijk

aijk(Zk)2.

Thus, it only remains to be shown that ‖(aijk(Zk))‖{1,2,3} also equals the right-
hand side of this equality. However, we have

‖(aijk(Zk))‖2{1,2,3}

= sup∑
ijk Er(g

(1)
i ,g

(2)
j ,Zk)

2≤1

∣∣∣∣∣
∑
ijk

Eaijk(Zk)g
(1)
i g

(2)
j rijk

(
g

(1)
i , g

(2)
j ,Zk

)∣∣∣∣∣
= E
∑
ijk

aijk(Zk)
2.

�

We will also need to introduce an analogue of Definition 3 for deterministic
matrices. Note that we can define the norms ‖(aijk)‖J for any deterministic array
(aijk)ijk by passing through (aijkg

1
i g

2
j g

3
k )ijk similarly to the way we did in the

case of (aijk(Zk))ijk . We will, however, follow [9] and give an alternate definition
which is equivalent, but more straightforward. Although this section is devoted to
U-statistics of order 3, we will consider a more general setting which will also be
useful for U-statistics of higher orders.

DEFINITION 4. Let (ai)i∈Id
n

be a d-indexed array of real numbers. For J =
{J1, . . . , Jk} ∈ PId

, we define

‖(ai)i‖J = sup

{∑
i

aix
(1)
iJ1

· · ·x(k)
iJk

:
∑
iJ1

(
x

(1)
iJ1

)2 ≤ 1, . . . ,
∑
iJk

(
x

(k)
iJk

)2 ≤ 1

}
.

We then have the following:
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LEMMA 7 ([9], Theorem 2). Consider a 3-indexed matrix A = (aijk). Then
for any p ≥ 2,

E

∥∥∥∥∥
(∑

k

aijkgk

)
ij

∥∥∥∥∥
l2→l2

= E

∥∥∥∥∥
(∑

k

aijkgk

)
ij

∥∥∥∥∥{1}{2}

≤ K

(
‖A‖{1}{2,3} + ‖A‖{2},{1,3}

+ 1√
p

‖A‖{1,2,3} + √
p‖A‖{1}{2}{3}

)
.

REMARK. Although using the same notation for ‖ · ‖J-norms of deterministic
arrays and arrays of kernels seems justified by the aforementioned possibility of
defining the former via Gaussian chaoses (and also if we interpret them as norms of
multilinear operators on proper tensor products of Hilbert spaces), in what follows,
we will use Lemma 7 conditionally on the variables Zk . To avoid ambiguity, we
will write ‖(aijk(Zk))‖J,D to stress that we mean a norm of a deterministic array
obtained by fixing the random variables Zk .

To proceed, we will need another lemma.

LEMMA 8 ([4], Lemma 7). Let X1, . . . ,Xn be independent random variables
with values in (�,F ) and let T be a class of functions f :� → R such that for
all i, one has Ef (Xi) = 0. Then

E sup
f ∈T

∑
i

f 2(Xi) ≤ sup
f ∈T

∑
i

Ef (Xi)
2 + 32

√
EM2E sup

f ∈T

∣∣∣∣∣
∑
i

f (Xi)

∣∣∣∣∣+ 8EM2,

where M := maxi supf ∈T |f (Xi)|.
Now, consider a sequence of independent Rademacher variables ε1, . . . , εn, in-

dependent of X,Y,Z. Using standard symmetrization inequalities, the fact that
Rademacher averages are dominated by Gaussian averages and Lemma 7 condi-
tionally on Z, we then obtain

E

∥∥∥∥∥
(∑

k

aijk(Zk)

)
ij

∥∥∥∥∥
≤ 2E

∥∥∥∥∥
(∑

k

aijk(Zk)εk

)
ij

∥∥∥∥∥≤ 2
√

π

2
E

∥∥∥∥∥
(∑

k

aijk(Zk)gk

)
ij

∥∥∥∥∥
(7)

≤ K

(
E‖(aijk(Zk))‖{1}{2,3},D + E‖(aijk(Zk))‖{2},{1,3},D

+ 1√
p

E‖(aijk(Zk))‖{1,2,3},D + √
p E‖(aijk(Zk))‖{1}{2}{3},D

)
.
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Obviously,
1√
p

E‖(aijk(Zk))‖{1,2,3},D ≤ 1√
p

√
E
∑
ijk

aijk(Zk)2,(8)

so we are left with the remaining terms.
Let us start with E‖(aijk(Zk))‖{1}{2}{3},D . By Lemma 8, we have

E‖(aijk(Zk))‖2{1}{2}{3},D

= E sup
‖x‖2,‖y‖2≤1

∑
k

(∑
ij

aijk(Zk)xiyj

)2

≤ sup
‖x‖2,‖y‖2≤1

E
∑
k

(∑
ij

aijk(Zk)xiyj

)2

+ 32
√

EM2E

∥∥∥∥∥
(∑

k

aijk(Zk)

)
ij

∥∥∥∥∥+ 8EM2,

where M2 = maxk sup‖x‖2,‖y‖2≤1 |∑ij aijk(Zk)xiyj |2 = maxk ‖(aijk(Zk))ij‖2.
We thus obtain

E‖(aijk(Zk))‖{1}{2}{3},D

≤
√

E‖(aijk(Zk))‖2{1}{2}{3},D

≤
√√√√√ sup

‖x‖2,‖y‖2≤1

∑
k

E

(∑
ij

aijk(Zk)xiyj

)2

+ 4
√

2

√√√√(E max
k

‖(aijk(Zk))ij‖2
)1/2

E

∥∥∥∥∥
(∑

k

aijk(Zk)

)
ij

∥∥∥∥∥
+ 2

√
2
√

E max
k

‖(aijk(Zk))ij‖2.

Now using the inequality
√

ab ≤ √
pa/ε + bε/

√
p, we finally obtain, for

0 < ε < 1,

E‖(aijk(Zk))‖{1}{2}{3},D

≤ K

(√√√√√ sup
‖x‖2,‖y‖2≤1

∑
k

E

(∑
ij

aijk(Zk)xiyj

)2

(9)

+ ε√
p

E

∥∥∥∥∥
(∑

k

aijk(Zk)

)
ij

∥∥∥∥∥+
√

p

ε

√
E max

k
‖(aijk(Zk))ij‖2

)
.
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We will now proceed with the term E‖(aijk(Zk))‖{2}{1,3},D .

E‖(aijk(Zk))‖2{2}{1,3},D

= E sup
‖y‖2≤1

∑
i,k

(∑
j

aijk(Zk)yj

)2

= E sup
‖y‖2≤1

∑
k

(
εk

√√√√√∑
i

(∑
j

aijk(Zk)yj

)2)2

(10)

≤ sup
‖y‖2≤1

E
∑
i,k

(∑
j

aijk(Zk)yj

)2

+ 32
√

E max
k

‖(aijk(Zk))ij‖2E sup
‖y‖2≤1

∣∣∣∣∣
∑
k

εk

√√√√√∑
i

(∑
j

aijk(Zk)yj

)2∣∣∣∣∣
+ 8E max

k
‖(aijk(Zk))ij‖2,

where we have again applied Lemma 8, this time to variables Xk = (Zk, εk, k) and

functions fy(Zk, εk, k) = εk

√∑
i (
∑

j aijk(Zk)yj )2.
The problem that remains is to estimate the second factor in the product on

the right-hand side of the last inequality. Let g1, . . . , gn be independent standard
Gaussian random variables, independent of the Zk’s. We have

E sup
‖y‖2≤1

∣∣∣∣∣
∑
k

εk

√√√√√∑
i

(∑
j

aijk(Zk)yj

)2∣∣∣∣∣

≤
√

π

2
E sup

‖y‖2≤1

∣∣∣∣∣
∑
k

gk

√√√√√∑
i

(∑
j

aijk(Zk)yj

)2∣∣∣∣∣
=
√

π

2
E sup

‖y‖2≤1
|Xy | ≤ 2

√
π

2
E sup

‖y‖2≤1
Xy,

where Xy =∑k gk

√∑
i(
∑

j aijk(Zk)yj )2 is a (conditionally) Gaussian process in-
dexed by the l2 unit ball. The covariance structure of X induces a metric on the
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indexing set, given by

dX(y, ỹ)2 = E|Xy − Xỹ |2

=∑
k

(√√√√√∑
i

(∑
j

aijk(Zk)yj

)2

−
√√√√√∑

i

(∑
j

aijk(Zk)ỹj

)2)2

=∑
k

(∥∥∥∥∥
(∑

j

aijk(Zk)yj

)
i

∥∥∥∥∥
2

−
∥∥∥∥∥
(∑

j

aijk(Zk)ỹj

)
i

∥∥∥∥∥
2

)2

≤∑
k

∥∥∥∥∥
(∑

j

aijk(Zk)(yj − ỹj )

)
i

∥∥∥∥∥
2

2

=∑
ik

(∑
j

aijk(Zk)(yj − ỹj )

)2

= d
X̃
(y, ỹ)2,

where X̃y = ∑ik gik

∑
j aijk(Zk)yj is another (conditionally) Gaussian process

(gik being i.i.d. standard Gaussian random variables, independent of the Zk’s).
Thus, by Slepian’s lemma, we get

E sup
‖y‖2≤1

Xy ≤ E sup
‖y‖2≤1

X̃y

≤ E

√√√√√∑
j

(∑
ik

aijk(Zk)gik

)2

≤
√∑

ijk

Eaijk(Zk)2.

Inserting this inequality into (10) and using the inequality
√

ab ≤ √
pa+b/

√
p,

we eventually obtain

E‖(aijk(Zk))‖{2}{1,3},D ≤
√√√√√ sup

‖y‖2≤1

∑
ik

E

(∑
j

aijk(Zk)yj

)2

+ K√
p

√∑
ijk

Eaijk(Zk)2(11)

+ K
√

p

√
E max

k
‖(aijk(Zk))ij‖2.
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By symmetry,

E‖(aijk(Zk))‖{1}{2,3},D ≤
√√√√√ sup

‖y‖2≤1

∑
jk

E

(∑
i

aijk(Zk)yi

)2

+ K√
p

√∑
ijk

Eaijk(Zk)2(12)

+ K
√

p

√
E max

k
‖(aijk(Zk))ij‖2.

Inequalities (7)–(9) (with sufficiently small ε) and (11), (12), together with
Proposition 1, yield the following:

THEOREM 3. For any p ≥ 2,

E

∥∥∥∥∥
(∑

k

aijk(Zk)

)
ij

∥∥∥∥∥
l2→l2

≤ K

[
1√
p

‖(aijk(Zk))‖{1,2,3} + ‖(aijk(Zk))‖{1}{2,3}

+ ‖(aijk(Zk))‖{2}{1,3} + √
p‖(aijk(Zk))‖{1}{2}{3}

+ p

√
E max

k
‖(aijk(Zk))ij‖2

]
.

In particular,

‖(hijk)‖{1,2,3}{1,2} ≤ K

[
1√
p

‖(hijk)‖{1,2,3} + ‖(hijk)‖{1}{2,3}

+ ‖(hijk)‖{2}{1,3} + √
p‖(hijk)‖{1}{2}{3}

+ p

√
EZ max

k
‖(hijk)ij‖2{1}{2}

]
.

Now combining Theorem 2 with Lemma 3 and the remark at the beginning of
the present section, we obtain the following theorem:

THEOREM 4. For any p ≥ 2, we have

E

∣∣∣∣∣
∑
ijk

hijk(Xi, Yj ,Zk)

∣∣∣∣∣
p

≤ Kp

[ ∑
I⊆{1,2,3}

∑
J∈PI

pp(deg(J)/2+#I c)EI c max
iIc

∥∥(hijk)iI

∥∥p
J

]
.



MOMENT INEQUALITIES FOR U-STATISTICS 2305

3.2. Real U-statistics of higher order. To prove a counterpart of Theorem 4,
we will need estimates for |||(hi)i|||Id ,Id−1 = Ed‖(∑id

hi)iId−1
‖{{k} : k∈Id−1}. Note

that, again, as for d = 3, by choosing orthonormal bases, we can translate the
problem into one of estimating expectation of the norm of a sum of independent
random (d −1)-linear operators by the ‖ · ‖J-norms which satisfy a proper version
of Proposition 1. The problem thus reduces to estimating E‖(∑id

ai(Zid ))iId−1
‖ =

E‖(∑id
ai(Zid ))iId−1

‖{1},...,{d−1}.

LEMMA 9 ([9], Theorem 2). There exist constants Kd such that for all p ≥ 2
and any matrix A = (ai)i∈Id

n
,

E

∥∥∥∥∥
(∑

id

aigid

)
iId−1

∥∥∥∥∥{1},...,{d−1}
≤ Kd

∑
J∈PId

p(1+degJ−d)/2‖(ai)‖J.

THEOREM 5. Let Z1, . . . ,Zn be independent random variables with values
in (�,F ). For i ∈ Nd−1 × In, let ai :� → R be measurable functions such that
EZai(Zid ) = 0. There exist constants Kd such that for all p ≥ 2, we have

E

∥∥∥∥∥
(∑

id

ai
(
Zid

))
iId−1

∥∥∥∥∥
≤ Kd

∑
J∈PId

p(1+deg (J)−d)/2∥∥(ai
(
Zid

))
i

∥∥
J

+ Kd

∑
J∈PId−1

p1+(1+deg(J)−d)/2
√

E max
id

∥∥(ai
(
Zid

))
iId−1

∥∥2
J,

where ‖ · ‖ denotes the norm of a (d − 1)-indexed matrix, regarded as a
(d − 1)-linear operator on (l2)

d−1 (thus the ‖ · ‖{1},...,{d−1}-norm in our notation).
In particular,

E

∥∥∥∥∥
(∑

id

hi

)
iId−1

∥∥∥∥∥{1},...,{d−1}

≤ Kd

∑
J∈PId

p(1+deg (J)−d)/2‖(hi)i‖J

+ Kd

∑
J∈PId−1

p1+(1+deg(J)−d)/2
√

E max
id

∥∥(hi)iId−1

∥∥2
J.

PROOF. As in the proof of Theorem 3, we randomize by an independent
Rademacher sequence and apply deterministic estimates conditionally on Z
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(Lemma 9) to obtain

E

∥∥∥∥∥
(∑

id

ai
(
Zid

))
iId−1

∥∥∥∥∥≤ Kd

∑
J∈PId

p(1+degJ−d)/2E
∥∥(ai
(
Zid

))∥∥
J,D.(13)

Let us consider a general term on the right-hand side of (13), corresponding to
J = {J1, . . . , Jk} for deg(J) > 1. Without loss of generality, we can assume that
d ∈ J1. We have (again, by Lemma 8, using arguments similar to those used in the
proof of Theorem 3), for 0 < ε ≤ 1,

p(1+k−d)/2E
∥∥(ai
(
Zid

))
i

∥∥
J,D

≤ p(1+k−d)/2

√√√√√√E sup
‖(x(j)

iJj
)‖2≤1 : j=2,...,k

∑
id

∑
iJ1\{d}

(∑
iId \J1

ai
(
Zid

) k∏
j=2

x
(j)
iJj

)2

= p(1+k−d)/2

×
√√√√√√E sup

‖(x(j)
iJj

)‖2≤1 : j=2,...,k

∑
id

{
εid

[ ∑
iJ1\{d}

(∑
iId \J1

ai
(
Zid

) k∏
j=2

x
(j)
iJj

)2]1/2}2

≤ Kp(1+k−d)/2

×
(∥∥(ai

(
Zid

))∥∥
J

+ ε√
p

E sup
‖(x(j)

iJj
)‖2≤1 : j=2,...,k

∣∣∣∣∣
∑
id

gid

√√√√√ ∑
iJ1\{d}

(∑
iId \J1

ai
(
Zid

) k∏
j=2

x
(j)
iJj

)2∣∣∣∣∣

+
√

p

ε

√
E max

id

∥∥(ai
(
Zid

))
iId−1

∥∥2
J1\{d},J2,...,Jk

)
,

where for J1 = {d}, we slightly abuse the notation and identify the partition
{∅, J2, . . . , Jk} of Id−1 with the partition {J2, . . . , Jk}.

Now, by Slepian’s lemma, we obtain (as in the case d = 3)

E sup
‖(x(j)

iJj
)‖2≤1 : j=2,...,k

∣∣∣∣∣
∑
id

gid

√√√√√ ∑
iJ1\{d}

( ∑
iId \J1

ai
(
Zid

) k∏
j=2

x
(j)
iJj

)2∣∣∣∣∣

≤ 2E sup
‖(x(j)

iJj
)‖2≤1 : j=2,...,k

∣∣∣∣∣
∑
iJ1

giJ1

∑
iId \J1

ai(Zid )

k∏
j=2

x
(j)
iJj

∣∣∣∣∣
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≤ Kd

∑
K∈PId

,deg(K)≤k

p(1+deg(K)−k)/2E
∥∥(ai
(
Zid

))
i

∥∥
K,D,

where, in the last inequality, we again used Lemma 9.
Note that if J1 = {d}, then Slepian’s lemma does not change anything (as was

the case when d = 3), but in order to shorten the (already quite involved) proof,
we do not distinguish this case.

Thus, we obtain

p(1+deg(J)−d)/2E
∥∥(ai
(
Zid

))
i

∥∥
J,D

≤ Kdp(1+deg(J)−d)/2∥∥(ai
(
Zid

))
i

∥∥
J

+ Kdε
∑

K∈PId
,deg(K)≤k

p(1+deg(K)−d)/2E
∥∥(ai
(
Zid

))
i

∥∥
K,D

+ Kdε−1p1+(1+deg(J1\{d},J2,...,Jk)−d)/2

×
√

E max
id

∥∥(ai
(
Zid

))
iId−1

∥∥2
J1\{d},J2,...,Jk

.

The last inequality remains true for deg(J) = 1 (i.e. for J = {Id}) since
E‖(ai(Zid ))i‖{Id },D ≤ ‖(ai(Zid ))i‖{Id }.

Summing over all J ∈ PId
, we get∑

J∈PId

p(1+deg(J)−d)/2E
∥∥(ai
(
Zid

))
i

∥∥
J,D

≤ Kd

∑
J∈PId

p(1+deg(J)−d)/2∥∥(ai
(
Zid

))
i

∥∥
J

+ Kdε
∑

J∈PId

p(1+deg(J)−d)/2E
∥∥(ai
(
Zid

))
i

∥∥
J,D

+ Kd

ε

∑
J∈PId−1

p1+(1+deg(J)−d)/2
√

E max
id

∥∥(ai
(
Zid

))
iId−1

∥∥2
J.

Taking ε sufficiently small, we obtain a bound for the right-hand side of (13)
which allows us to finish the proof. �

DEFINITION 5. We define a partial order ≺ on PI as

I ≺ J

if and only if for all I ∈ I, there exists J ∈ J such that I ⊆ J .

Using the basic theory of L2-spaces and Theorem 5, one obtains the following:
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COROLLARY 2. Let I ∈ PId−1 . Then

Ed

∥∥∥∥∥
(∑

id

hi

)
iId−1

∥∥∥∥∥
I

≤ ∑
J∈PId

: I∪{{d}}≺J

p(deg(J)−deg(I))/2‖(hi)i‖J

+ ∑
J∈PId−1 : I≺J

p1+(deg(J)−deg(I))/2
√

Ed max
id

‖(hi)i‖2
J.

We would now like to prove Theorem 4 for higher order U-statistics. It turns out
that instead of using Theorem 2, it is more convenient to follow its proof and start
the induction argument from the very beginning.

LEMMA 10. There exist constants Kd such that for any p ≥ 2,

E

∣∣∣∣∣
∑

i

hi

∣∣∣∣∣
p

≤ Kd

∑
I⊆Id

∑
J∈PI

∑
iIc

pp(#I c+deg(J)/2)EI c

∥∥(hi)iI

∥∥p
J.(14)

PROOF. We employ an easy induction argument in the spirit of the proof
of Theorem 1. For d = 1, (14) is an immediate consequence of Lemma 1 since

E|∑hi | ≤
√

E
∑

h2
i = ‖(hi)i‖{1}. As for the induction step, one applies the in-

duction assumption (conditionally on X(d)) to
∑

id
hi, then uses Lemma 1 and

estimates Ed‖(∑id hi)iI ‖J (for I ⊆ Id−1,J ∈ PI ) by means of Corollary 2 [using

the fact that
√

Ed maxid ‖(hi)iId−1
‖2
J ≤ (Ed

∑
id

‖(hi)iId−1
‖p
J)1/p]. �

THEOREM 6. There exist constants Kd such that for p ≥ 2,

E

∣∣∣∣∣
∑

i

hi

∣∣∣∣∣
p

≤ Kd

∑
I⊆Id

∑
J∈PI

pp(#I c+deg(J)/2)EI c max
iIc

∥∥(hi)iI

∥∥p
J.

PROOF. To replace the sums in iI c on the right-hand side of (14) with the
maximum over iI c , it is enough to use Lemma 5 for kernels giIc = ‖(hi)iI ‖2

J with
p/2 instead of p and α sufficiently large and to notice that for J ⊆ I c and J ∈ PI ,
we have EI c\J

∑
iIc\J ‖(hi)iI ‖2

J ≤ ‖(hi)iJc ‖2{J c}. �

3.3. Tail estimates for bounded kernels. Chebyshev’s inequality gives the fol-
lowing corollary of Theorem 6:
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THEOREM 7. Assume that all the kernels hi are bounded. Then there exist
constants Kd such that for all p ≥ 2,

P

(∣∣∣∣∣
∑

i

hi

∣∣∣∣∣> Kd

∑
I⊆Id

∑
J∈PI

p#I c+deg(J)/2 max
iIc

∥∥∥∥(hi)iI

∥∥
J

∥∥∞
)

≤ e−p

or, equivalently, for all t ≥ 0,

P

(∣∣∣∣∣
∑

i

hi

∣∣∣∣∣≥ t

)
≤ Kd exp

[
− 1

Kd

min
I⊆Id ,J∈PI

(
t

‖‖(hi)iI ‖J‖∞

)2/(deg(J)+2#I c)]
.

REMARK. The above theorem is, in a sense, optimal. The recent inequalities
for Gaussian chaoses by Latała state that for hi = aig

(1)
i1

· · ·g(d)
id

, we have

P

(∣∣∣∣∣
∑

i

hi

∣∣∣∣∣≥ kd

∑
J∈PId

pdeg(J)/2‖(hi)i‖J

)
≥ kd ∧ e−p,

P

(∣∣∣∣∣
∑

i

hi

∣∣∣∣∣> Kd

∑
J∈PId

pdeg(J)/2‖(hi)i‖J

)
≤ e−p,

which shows (together with the CLT for U-statistics) that apart from constants,
the components p(#I c+deg(J)/2)‖(hi)iI ‖J for I = Id are correct and cannot be
avoided. To discuss the appearance of other components, let us consider a prod-
uct V = G

∏
i∈I Xi , where the Xi’s and G are independent, the Xi’s are cen-

tered Poisson random variables with parameter 1 and G = ∑iIc xiIc

∏
j∈I c g

(j)
ij

is a Gaussian chaos (g(j)
i are i.i.d. standard Gaussian). Then V is the limit law

of U-statistics Vn with kernels
∏

i∈I X
(j)
n,ij

an,iIc

∏
j /∈I g

(j)
ij

(i ∈ I d
n ), where X

(j)
n,ij

are centered Bernoulli random variables with parameter p = 1/n and where the
coefficients aiIc are properly chosen (from the infinite-divisibility of Gaussian
variables or by interpreting G in terms of multiple stochastic integrals). Then
P(V ≥ kdαp

∑
J∈PIc pdeg(J)/2‖(xiIc )‖J) ≥ kd ∧ e−p , where α

1/#I
p logαp ∼ p,

which shows that the other summands are also correct, at least up to a factor of
order (logp)#I .

Further, note that if X
(j)
i are i.i.d. random variables and hi = h for some

function h, then the quantities appearing in the above theorem simplify, namely
‖‖(hi)iI ‖J‖∞ = n#I/2‖‖h‖J‖∞. Thus, we obtain the following:

COROLLARY 3. If hi = h and X
(j)
i are i.i.d. random variables, then for any

t ≥ 0, we have

P

(∣∣∣∣∣
∑

i

hi

∣∣∣∣∣≥ t

)
≤ Kd exp

[
− 1

Kd

min
I⊆Id ,J∈PI

(
t

n#I/2‖‖h‖J‖∞

)2/(deg(J)+2#I c)]
.
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REMARK. In particular, we can see that the tail of the U-statistic generated
by a fixed bounded canonical kernel is of order nd/2 which agrees with the CLT
for such U-statistics. It is also worth pointing out that each of the above theorems
has its “undecoupled” version which can be immediately obtained by applying the
decoupling results by de la Peña and Montgomery-Smith [11].

4. Multiple stochastic integrals with respect to stochastic processes with
independent increments. Theorem 6 also yields tail estimates, in the spirit of
Theorem 7, for some multiple stochastic integrals (see, e.g., [8] for the neces-
sary definitions). Namely, let (N

(i)
t )t∈[0,T ] (i ∈ Id ) be independent càdlàg stochas-

tic processes with independent increments, N
(i)
0 = 0. Let V i(t) = VarN(i)

t < ∞.

Moreover, let �i(t) = EN
(i)
t be the compensator of N(i) and define Ñ (i)(t) =

N(t) − �(t). Finally, assume that all the jumps of N(i) are uniformly bounded,
say by 1, since this is just a matter of normalization and the typical example we
have in mind here is the (not necessarily homogeneous) Poisson process.

DEFINITION 6. For a nonempty subset I ⊆ Id and J = {Ji}ki=1 ∈ PI , we de-
fine the quantities

‖h‖J = sup

{∫
[0,T ]#I

h(t1, . . . , td)

deg(J)∏
j=1

f (j)((ti)i∈Jj

)∏
i∈I

dV i(ti) :

∫
[0,T ]#Jj

∣∣f j ((ti)i∈Jj

)∣∣2 ∏
i∈Jj

dV i(ti) ≤ 1

}
.

We further define ‖h‖∅ = |h|.
Notice that as in the case of U-statistics, ‖h‖J is a norm when I = Id . Moreover,

for I 	= Id , it is a function of (ti)i∈I c .

We then have the following:

THEOREM 8. Let h : [0, T ]d → R be a bounded Borel measurable function.
Consider the stochastic integral

Z =
∫
[0,T ]×···×[0,T ]

h(t1, . . . , td) dÑ
(1)
t1

· · · dÑ
(d)
td

.

Then there exist constants Kd such that for all p ≥ 2,

P

(
|Z| > Kd

∑
I⊆Id

∑
J∈PI

p#I c+deg(J)/2 max
iIc

‖‖h‖J‖∞
)

≤ e−p.
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We would like to approximate h by step functions and the stochastic integral by
proper U-statistics (or even homogeneous chaoses). However, the best approxima-
tion we may hope for is in L2 and almost sure, whereas in Theorems 7 and 8, we
have some L∞-norms. Thus, we must be careful and approximate by step func-
tions hn for which those norms are bounded by the corresponding norms of h. We
will use the following:

LEMMA 11. Consider probability spaces (�i,µi), i ≤ d , and � =
×i=1,...,d�i , µ =⊗i=1,...,d µi . Then there exist constants Kd such that for every
ε > 0 and every measurable subset A ⊆ � with µ(A) > 1− ε, there exists a subset
B ⊆ A such that µ(B) > 1 − Kdε1/2d−1

and for all I � Id and xI ∈ ×i∈I�i , we
have either BI

xI
= ∅ or µIc(BI

xI
) > 1 − Kdε1/2d−1

, where µIc =⊗i∈I c µi and
BI

xI
= {yIc ∈ ×i∈I c�i :y ∈ B,yI = xI }.

PROOF. Let us first make a comment concerning notation. We will be using
induction and, in the process, will be dealing with various subsets C ⊆ ×i∈I�i

for I ⊆ Id . In such a situation, for J � I and xJ ∈ ×i∈J �i , we will denote the set
{yI\J ∈ ×i∈I\J �i :yI ∈ C,yJ = xJ } by CJ

xJ
, which may be slightly inconsistent

with the notation in the statement of the lemma. Moreover, when writing Cartesian
products of several sets, we will pay no attention to the order (regarding the Carte-
sian product as the set of functions defined on the indexing set and thus making it
“commutative”).

Let us now proceed with the proof. For d = 1, the statement is obvious. Let us
thus assume that it is true for all numbers smaller than d > 1. For ∅ 	= I � Id ,
let AI = {xI ∈ ×i∈I�i :µIc(AI

xI
) > 1 −√

ε }. Then by Fubini’s theorem, we have
µI (AI ) > 1 − √

ε and by the induction assumption, there exist sets BI ⊆ AI with
µI (BI ) > 1 − Kd−1ε

1/2d−1
and such that all their sections are either empty or of

measure greater than 1 − Kd−1ε
1/2d−1

. Now, let

B = ⋂
∅ 	=I�Id

⋃
zI ∈BI

{zI } × AI
zI

= ⋂
∅ 	=I�Id

(
BI ×

(
×
i∈I c

�i

))
∩ A.

We have µ(B) > 1 − Kdε1/2d−1
. Let us consider J � Id and arbitrary xJ . Then

BJ
xJ

= {yJ c :y ∈ B,yJ = xJ }
(15)

= ⋂
∅ 	=I�Id

{
yJ c :y ∈ ⋃

zI ∈BI

{zI } × AI
zI

, yJ = xJ

}
.

We will show that BJ
xJ

is either empty or of measure greater than 1−Kdε1/2d−1
.

Assume that there exists xJ c ∈ BJ
xJ

. Let x be the element of ×i∈Id
�i given by the

“concatenation” of xJ and xJ c . Then x ∈ B and thus xI ∈ BI for all I � Id . Thus,
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for I ∩ J c 	= ∅, we have xI∩J c ∈ (BI )
I∩J
xI∩J

, so this set is nonempty and, as such,

by the definition of BI , is of measure greater than 1 − Kd−1ε
1/2d−1

. Let us now
define

U = AJ
xJ

∩ ⋂
I�Id ,I∩J c 	=∅

(
×

i∈J c\I
�i × (BI )

I∩J
xI∩J

)
.

Clearly, µJc(U) > 1 − Kdε1/2d−1
since all the intersected sets are of measure

greater than 1 − Kd−1ε
1/2d−1

(including AJ
xJ

, since xJ ∈ BJ ⊆ AJ ). Now, for
xJ c ∈ U , we have x ∈ A (where x is again the “concatenation” of xJ and xJ c ).
Moreover, for I ∩ J c 	= ∅, xI∩J c ∈ (BI )

I∩J
xI∩J

and thus xI ∈ BI . From the dis-
cussion following the assumption that BJ

xJ
is nonempty, this is also the case for

∅ 	= I ⊆ J . Hence, for any ∅ 	= I � Id , we have x ∈ {xI } × AI
xI

with xI ∈ BI

and so from (15), we have xJ c ∈ BJ
xJ

. We have thus proved that U ⊆ BJ
xJ

which

implies that µJc(BJ
xJ

) > 1 − Kdε1/2d−1
. �

LEMMA 12. There exist step functions, that is, functions of the form

hn = ∑
i∈Id

kn

a
(n)
i 1

(t
(n)
i1

,t
(n)
i1+1]×···×(t

(n)
id

,t
(n)
id+1],

such that hn → h a.e. and in L2 with respect to the product measure on [0, T ]d
with marginals determined by V i and ‖‖hn‖J‖∞ ≤ 3‖‖h‖J‖∞ for all I � Id and
J ∈ PI .

PROOF. First, note that if we replace N(i) with ciN
(i), then ‖h‖J multi-

plies by
∏

i∈I ci , so without loss of generality, we can assume that V (i)(T ) = 1
which will allow us to use Lemma 11. Consider any sequence h̃n of step func-
tions converging a.e. to h with ‖h̃n‖∞ ≤ ‖h‖∞. For any I � Id and J ∈ PI ,
we have ‖h̃n‖J → ‖h‖J a.e., thus we can pass to a subsequence and assume

that for a large subset A
(n)
I c [say (A

(n)
I c )c with measure smaller than ε/2n2d−1

,
ε to be chosen later], we have ‖h̃n‖J ≤ 2‖‖h‖J‖∞. Then let B(n) be the subset

of
⋂

I (A
(n)
I c × [0, T ]I ) given by Lemma 11 applied to the σ -field generated by

sets of the form (t
(n)
i1

, t
(n)
i1+1] × · · · × (t

(n)
id

, t
(n)
id+1], where the t

(n)
i correspond to the

step function hn, as in the formulation of the lemma. Define for t = (t1, . . . , td),
hn(t) = h̃n(t)1B(n)(t). Then hn is a step function and by the Borel–Cantelli lemma,
we still have hn → h a.e. and in L2 (by the Lebesgue dominated convergence the-
orem). Moreover, for all I and tI c , the function gn(tI ) = hn(t) either equals 0 or
differs from h̃n on the set of measure not greater then Kdε1/2d−1

/2n. If gn does not
equal 0, we have tI c ∈ A

(n)
I c and thus ‖h̃n‖J ≤ 2‖‖h‖J‖∞ at tI c . Thus, ‖hn‖J = 0
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or ‖hn‖J ≤ ‖hn− h̃n‖J +‖h̃n‖J ≤ Kd(‖h‖∞+‖h̃n‖∞)ε1/2d
/2n/2 +2‖‖h‖J‖∞ ≤

3‖‖h‖J‖∞ for ε sufficiently small. �

PROOF OF THEOREM 8. We will prove moment inequalities for stochas-
tic integrals of bounded kernels. These will imply the theorem by the Cheby-
shev inequality. Consider functions hn, given by Lemma 12. We can assume that
maxi≤kn |t (n)

i+1 − t
(n)
i | →n 0. Let Zn be the d-fold stochastic integral of hn. Since

hn → h in L2, we have Zn → Z in L2 and we can assume that Zn → Z a.e. Let us
now (with a slight abuse of notation) denote by ‖Zn‖J the ‖ · ‖J-norms of the ma-
trix of kernels which define the homogeneous chaos Zn viewed as a U-statistic (to
distinguish them from ‖hn‖J given in Definition 6). One can see that for J ∈ PId

,
we have ‖Zn‖J ≤ ‖hn‖J and for I � Id , J ∈ PI , any fixed value of iI c and each

tI c ∈ ×k∈I c (t
(n)
ik

, t
(n)
ik+1], we have

‖Zn‖J ≤ ‖hn‖J

∏
k∈I c

∣∣∣Ñ (k)

t
(n)
ik+1

− Ñ
(k)

t
(n)
ik

∣∣∣,
where ‖hn‖J on the right-hand side is taken at the point tI c . Thus, by Fatou’s
lemma, Theorem 6 and the definition of hn, we get

E|Z|p = E lim inf
n

|Zn|p ≤ lim inf
n

E|Zn|p

≤ lim inf
n

K
p
d

( ∑
J∈PId

pp deg(J)/2‖hn‖p
J

+ ∑
I�Id

∑
J∈PI

pp(#I c+deg(J)/2)

× EI c max
iIc

‖‖hn‖J‖p∞
∏
k∈I c

∣∣∣Ñ (k)

t
(n)
ik+1

− Ñ
(k)

t
(n)
ik

∣∣∣p
)

≤ K
p
d

∑
I⊆Id

∑
J∈PI

pp(#I c+deg(J)/2)‖‖h‖J‖p∞

× EI c lim sup
n

max
iIc

∏
k∈I c

∣∣∣Ñ (k)

t
(n)
ik+1

− Ñ
(k)

t
(n)
ik

∣∣∣p

≤ K
p
d

∑
I⊆Id

∑
J∈PI

p#I c+deg(J)/2‖‖h‖J‖p∞,

where, in the two last inequalities, we have used the assumption that the jumps
of N(k) are bounded by 1 (since the lim sup is then also bounded by a constant
and, moreover, the processes N(k) have all moments, which together with Doob’s
inequality allows us to use Fatou’s lemma for lim sup). �
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