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POINCARÉ AND TRANSPORTATION INEQUALITIES FOR
GIBBS MEASURES UNDER THE DOBRUSHIN
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Université Blaise Pascal and Wuhan University

In in this paper we establish an explicit and sharp estimate of the spectral
gap (Poincaré inequality) and the transportation inequality for Gibbs mea-
sures, under the Dobrushin uniqueness condition. Moreover, we give a gen-
eralization of the Liggett’s M − ε theorem for interacting particle systems.

1. Introduction. Consider the configuration space ET of an interacting par-
ticle system where E, some Polish space, represents the spin space, and T , an
at most countable set, represents the sites. Its equilibrium states are described
by the Gibbs measures µ on ET associated with a local specification (µi =
µi(dxi |x))i∈T , that is, for each i ∈ T , the conditional distribution µ(·/x) of xi

knowing xT \{i} coincides with the given µi(·|x).
In the free (no interaction) case, µi is independent of xT \{i} and µ = ∏

i∈T µi .
In that case, we have the following Efron–Stein inequality:

λ1(µ)µ(f,f ) ≤ E
µ

∑
i∈T

µi(f, f ) ∀f ∈ L2(ET ,µ),(1.1)

where λ1(µ) = 1, µ(f,g) denotes the covariance of f,g under µ, and µi(f, g) =
µi(fg) − µi(f )µi(g) is the conditional covariance of f,g under µi with xT \{i}
fixed. That λ1(µ) = 1 is sharp can be seen for functions f (x) = f (xi). This in-
equality is very important for concentration inequalities in statistics and statistical
learning; see the St Flour course by Massart [26].

Our objective is to generalize this inequality to a Gibbs measure with interac-
tion. A first crucial idea is to interpret (1.1) as a Poincaré inequality. To that end,
consider the generator

Lf := ∑
i∈T

[µi(f ) − f ].(1.2)

It generates a Glauber dynamics (a well-known stochastic algorithm) which is a
Markov process of pure jumps described intuitively as follows: if the configuration
at present is x, then at each site i, it will change to yi according to the distribution
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µi(dyi |x) at rate 1 (which depends only on xT \{i}, not on xi ). The semigroup (Pt )

generated by L is symmetric on L2(µ) and the associated Dirichlet form is exactly

E(f, f ) = E
µ

∑
i∈T

µi(f, f ).

So inequality (1.1) becomes a Poincaré inequality for L, and it means that Pt

decays to the equilibrium measure µ exponentially at speed e−λ1(µ)t , in L2(µ).
When E is a continuous spin space, that is, a connected and complete

Riemannian manifold, it is more natural to estimate the spectral gap λ1(µ,∇),
that is, the best constant in the following Poincaré inequality:

λ1(µ,∇)µ(f,f ) ≤ E
µ

∑
i∈T

|∇if |2,(1.3)

where ∇i is the gradient acting on the ith variable xi ∈ E.
The studies on λ1(µ) and λ1(µ,∇) (and related inequalities) are part of a long

story and the field remains very active. Let us review a series of works which
motivate directly our study (the reader is referred to [16, 23] for numerous related
references).

The first important and general result of quantitative type is Liggett’s M −ε the-
orem, which gives an explicit exponential decay e−(ε−M)t of a general interacting
particle system (of pure jumps) to its equilibrium measure, in the triple norm of
Liggett (see [21], Chapter I, Theorem 3.8 for the definition of ε and M). Applied
to L given by (1.2), it yields λ1(µ) ≥ ε − M by Lemma 2.6 in this paper. When
E has exactly two elements, Liggett’s M − ε theorem for L may be regarded as
a dynamical counterpart of Dobrushin’s uniqueness criterion [8, 9]. But Liggett’s
estimate is no longer accurate when E has more than two elements, and becomes
inapplicable for infinite spin space E (since ε = 0 in such case). Of course Liggett’s
theorem does not furnish information about λ1(µ,∇).

Recall that in the two-points spin space case, Maes and Shlosman [22] have
found a constructive criterion for the validity of Liggett’s exponential convergence
(but without an explicit estimate better than Liggett’s theorem), which becomes
necessary for the attractive system.

In an important contribution [38], Zegarlinski proved the logarithmic Sobolev
(log-Sobolev) inequality, which is stronger than the Poincaré inequality, with an
explicit constant under some condition which is inspired by the Dobrushin unique-
ness condition, both for continuous spin space or two-points spin space. His con-
dition (see (0.12) and (0.13) in [38]), though in spirit quite close to the Dobrushin
uniqueness condition (see Section 2), is in reality very different, as seen for a num-
ber of concrete examples (already discussed in [38]; see also Section 5).

The most spectacular advances were made on the qualitative aspect of λ1(µ)

and λ1(µ,∇), that is, about the validity of the Poincaré inequality and the log-
Sobolev inequality. When the spin space E is finite or compact, T is the lat-
tice Z

d , and (µi) is given by a family of interaction functions (φS) with finite
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range, Stroock and Zegarlinski [30, 31] prove essentially the equivalence between
the Poincaré inequality, the log-Sobolev inequality and the Dobrushin–Shlosman
complete analyticity (CA) condition (see [10, 30, 31] for CA). Their method for
establishing those inequalities consists in an iteration procedure, which does not
provide explicit estimates of the involved constants, unlike [38]. See [23] and [16]
for further development and references. The (partial) extension of their impressive
results to the unbounded spin case for Glauber dynamics with a single-site diffu-
sion term was carried out by Helffer [17], Ledoux [19] and Yoshida [37] and so
on. In particular Helffer [17] gave some explicit estimates of λ1(µ,∇) by means
of the Witten Laplacian, and Ledoux [19] realized it by a very simple and elegant
argument based on the �2-technique. More recently, the author [36] obtained an
explicit and sharp estimate for a continuous gas, based on Liggett’s M −ε theorem.

The advantage of the Dobrushin uniqueness condition over the Dobrushin–
Shlosman CA is the following: (1) the Dobrushin uniqueness condition is quan-
titative and explicit; (2) it holds for general graphs T and general interaction of
infinite range. (But in the lattice and finite range case, the Dobrushin uniqueness
condition is more restrictive than the Dobrushin–Shlosman CA.)

In this paper we shall not only provide some explicit sharp estimates of both
λ1(µ) and λ1(µ,∇) based directly on the Dobrushin uniqueness condition, but
also present a unified and particularly simple approach by generalizing Liggett’s
M − ε theorem (avoiding so the high technical difficulties existing in the known
works mentioned above).

Indeed, we shall derive the estimate of λ1(µ,∇) from that of λ1(µ). Our ap-
proach for estimating λ1(µ) is based on an exchange relation between L and the
difference operator Dxj→yj

, largely inspired by the Bochner formula for the com-
mutator between the Laplacian and the gradient on Riemannian manifold or the
�2-method of Bakry–Emery–Ledoux. In reality this method allows us to gener-
alize Liggett’s M − ε theorem from the single-site finite spin space to a general
(possibly continuous or unbounded) single-site spin space, which is stronger than
the Poincaré inequality.

This paper is organized as follows. In Section 2 we recall Dobrushin’s inter-
dependence coefficients of a Gibbs measure and establish a sharp lower bound
for λ1(µ) and λ1(µ,∇) under the Dobrushin uniqueness condition. Our method
described above can be easily generalized to general interacting particle systems,
leading to an extension of Liggett’s M −ε theorem. This is carried out in Section 3.

In Section 4 we investigate another object of this paper: the L1-transportation
inequality for the Gibbs measure. Indeed, we shall interpret the famous Dobrushin
a priori estimate as a variant of (1.1) for the Wasserstein metric. From that new
version we derive easily the L1-transportation inequality by the martingale method
and get Hoeffding’s Gaussian concentration inequality as a corollary. This extends
the corresponding work of Marton [24] and Djellout, Guillin and Wu [7] on con-
tracting Markov chains.

Several concrete examples are provided in Section 5 for illustrating our general
results.
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2. Poincaré inequality for Gibbs measure. As we are mainly interested in
the explicit estimate on the spectral gap for Gibbs measures, so it is enough to get
such an estimate in finite volume, independent of boundary condition and of the
finite volume. That is why we shall work with a probability measure µ on ET only
with T finite, throughout this paper.

Throughout this paper (E,B, d) is fixed as follows: either (E,d) is a metri-
cal complete and separable (say, Polish) space equipped with the Borel field B;
or (E,B) is a measurable space and d(x, y) = 1x �=y (the trivial metric) such that
d is B × B-measurable.

2.1. Dobrushin’s interdependence coefficients. Let M1(E) be the space of
probability measures on (E,B) and M

d,p
1 (E) := {ν ∈ M1(E); (∫E dp(x0, x) ×

ν(dx))1/p < +∞} (x0 ∈ E is some fixed point), where 1 ≤ p ≤ +∞. Given
ν1, ν2 ∈ M

d,p
1 (E), the Lp-Wasserstein distance between ν1, ν2 is given by

Wp,d(ν1, ν2) := inf
π

(∫ ∫
E×E

d(x, y)pπ(dx, dy)

)1/p

,(2.1)

where the infimum is taken over all probability measures π on E × E such that its
marginal distributions are respectively ν1 and ν2. When d(x, y) = 1x �=y (the trivial
metric), it is well known that

W1,d (ν1, ν2) = sup
A∈B

|ν1(A) − ν2(A)| = 1
2‖ν1 − ν2‖TV (total variation).

Recall (cf. [32])

W1,d(µ, ν) = sup
‖f ‖Lip≤1

∫
E

f d(µ − ν), ‖f ‖Lip := sup
x �=y

|f (x) − f (y)|
d(x, y)

.(2.2)

Let µi(dxi |x) be the given regular conditional distribution of xi knowing xT \{i}.
Define the d-Dobrushin interdependence matrix C := (cij )i,j∈T by

cij := sup
x=y off j

W1,d (µi(·/x),µi(·/y))

d(xj , yj )
∀ i, j ∈ T(2.3)

(obviously cii = 0). Then the Dobrushin uniqueness condition [8, 9] is

sup
i

∑
j

cij < 1.

Notice that the l.h.s. above coincides with the norm ‖C‖∞ of C : l∞(T ) → l∞(T ).

2.2. Sharp estimates of the spectral gap. The main result of this section is the
following:
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THEOREM 2.1. Assume that
∫
ET d(xi, yi)

2 dµ(x) < +∞ for all i ∈ T and
for some ( fixed) y ∈ ET . Let rsp(C) be the spectral radius of the Dobrushin matrix
C = (cij )i,j∈T (which is an eigenvalue of C by the Perron–Frobenius theorem).

If rsp(C) < 1, then(
1 − rsp(C)

)
µ(f,f ) ≤ E

µ
∑
i∈T

µi(f, f ) ∀f ∈ L2(ET ,µ).(2.4)

In particular, the lowest eigenvalue above zero λ1(µ) of −L in L2(ET ,µ) (called
the spectral gap of µ) verifies

λ1(µ) ≥ 1 − rsp(C),

where Lf := ∑
i∈T [µi(f ) − f ] ∀f ∈ L2(ET ,µ).

It is an elementary fact that rsp(C) ≤ ‖C‖∞ = supi

∑
j cij , the quantity in the

Dobrushin uniqueness condition. In the free case [i.e., µ(·|x) is independent of x]
C = 0 and the inequality (2.4) becomes the sharp Efron–Stein inequality (1.1).
Notice that the estimate (2.4) on the spectral gap above depends sensitively on the
choice of the metric d via the Dobrushin interdependence matrix C, which allows
us to apply it for the discrete or continuous, compact or noncompact spin spaces.

When E is a complete and connected Riemannian manifold equipped with the
Riemannian metric d , the following pre-Dirichlet form,

E∇(f, f ) := E
µ

∑
i∈T

|∇if |2 ∀f ∈ C1
b(ET ),(2.5)

is more often used to generate the Glauber dynamics, where ∇i is the gradient
acting on the ith coordinate xi ∈ E. Let λ0 be the infimum of the spectral gap
of µi(·/x) w.r.t. ∇i on E over all i ∈ T and x ∈ ET , more precisely,

λ0 := sup
{
λ ≥ 0|λµi(f, f ) ≤

∫
E

|∇if |2 dµi

(2.6)

∀x ∈ ET , i ∈ T , ∀f ∈ C1
b(ET )

}
.

Assume that λ0 > 0, then with E∇(f, f ) given by (2.5),

E
µ

∑
i∈T

µi(f, f ) ≤ 1

λ0
E∇(f, f ) ∀f ∈ C1

b(ET ).

So we derive immediately from Theorem 2.1 the following:

THEOREM 2.2. In the context above, assume that
∫
ET d(xi, yi)

2 dµ(x) < +∞
for all i ∈ T and for some ( fixed) y ∈ ET . If rsp(C) < 1 and λ0 > 0, then

λ0
(
1 − rsp(C)

)
µ(f,f ) ≤ E

µ
∑
i∈T

|∇if |2 ∀f ∈ C1
b(ET ),(2.7)
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that is, the best constant λ1(µ,∇) for the Poincaré inequality (1.3) verifies

λ1(µ,∇) ≥ λ0
(
1 − rsp(C)

)
.

Obviously in the free case this inequality is sharp, just as the inequality (2.4).
The reader might wonder if this procedure of deriving (2.7) from Theorem 2.1 is
sharp in the dependent case. The following example shows that both Theorems
2.1 and 2.2 are sharp in the dependent case.

EXAMPLE 2.3 (Gaussian model). Let T = {1,2}, E = R and µ be the cen-
tered Gaussian measure on R

2 such that

µ(xi, xi) = 1, i = 1,2; µ(x1, x2) = ρ �= 0.

We note the following:

(i) If {i, j} = {1,2}, the conditional law µ(dxi |x) of xi knowing xj is the
Gaussian law N (m,σ 2) with

m = ρxj , σ 2 = 1 − ρ2.

(ii) Since Wp,d(N(m1, σ
2),N(m2, σ

2)) = |m1 −m2| for all 1 ≤ p ≤ +∞ (left
to the reader), then the Dobrushin coefficients w.r.t. the Euclidean metric are given
by

c12 = c21 = |ρ|.
Hence, rsp(C) = |ρ|.
• Sharpness of Theorem 2.1. By (2.4), λ1(µ) ≥ 1 − |ρ|. We claim that λ1(µ) =

1 − |ρ|, showing the sharpness of Theorem 2.1. In fact, taking f (x1, x2) :=
x1 + (ρ/|ρ|)x2, we have

λ1(µ) ≤ E
µ[µ1(f, f ) + µ2(f, f )]

µ(f,f )
= 2(1 − ρ2)

2(1 + |ρ|) = 1 − |ρ|.

• Sharpness of Theorem 2.2. Recall at first that the Gaussian measure ν =
N (m,�) on R

d with mean m ∈ R
d and covariance matrix � satisfies

λ1(ν,∇) = 1

λmax(�)
,

where λmax(�) is the maximal eigenvalue of �.
The covariance matrix of µ is given by � = (1 ρ

ρ 1

)
. Its maximal eigenvalue is

1 + |ρ|. Hence, λ1(µ,∇) = (1 + |ρ|)−1.
Let us see why Theorem 2.2 produces the same result. In fact, the spectral

gap of ν := N(m,σ 2) w.r.t. the Dirichlet form
∫
R

f ′2 dν is exactly 1/σ 2. Hence,
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λ0 defined in (2.6) equals (1−ρ2)−1. Hence, the lower bound of λ1(µ,∇) given
in Theorem 2.2 becomes

λ0
(
1 − rsp(C)

) = 1 − |ρ|
1 − ρ2 = 1

1 + |ρ| ,

which is the exact value of λ1(µ,∇). Thus, for this example, Theorem 2.2 is
sharp.

REMARK 2.4. Let us compare our results with the explicit estimate of the
constant in the log-Sobolev inequality by Zegarlinski [38]. In the continuous spin
space case, his assumptions are the following:

(Z1) There is some c0 ∈ (0,∞) such that

Entµi
(f 2) ≤ 2c0

∫
E

|∇if |2 dµi ∀ i ∈ T ,x ∈ ET ,f ∈ C1
b(E).

Here Entν(f ) := ν(f logf ) − ν(f ) logν(f ) is the Kullback entropy of 0 ≤
f ∈ L1(ν) w.r.t. the probability measure ν.

(Z2) There exist CZ = (cZ
ij ≥ 0)i,j∈T such that

|∇j (µi(f
2))1/2| ≤ [µi(|∇j f |2)]1/2 + cZ

ij [µi(|∇if |2)]1/2

(2.8)
∀f ∈ C1

b(ET )

and

γ = max(‖CZ‖1,‖CZ‖∞) < 1.

Under those conditions, he derived the following log-Sobolev inequality:

EntµT
(f 2) ≤ 2c0

(1 − γ )2 E∇(f, f ) ∀f ∈ C1
b(ET ).(2.9)

It implies that λ1(µT ,∇) ≥ (1 − γ )2/c0. But this estimate is in general less accu-
rate than Theorem 2.2, for cZ

ij is much more difficult to compute and is in general
much larger than cij for concrete models (see discussions in Section 5). Another
important advantage of our approach is that we can choose a metric (not necessar-
ily the Riemannian) w.r.t. which our cij becomes as small as possible. This will be
illustrated in Example 5.3.

In the two-points spin space E = {+,−} case, the explicit estimate of the con-
stant in the log-Sobolev inequality by Zegarlinski [38], Theorem 4.3, is much more
larger and works only in the finite range case.
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2.3. Proof of Theorem 2.1. We shall prove it from a (Glauber) dynamical point
of view, that is, via the analysis of the semigroup Pt = etL. Let FT := BT and bFT

the Banach space of real bounded and measurable functions on (ET ,FT ) equipped
with the sup norm. As Lf = ∑

i∈T [µi(f ) − f ] is bounded on bFT , Pt = etL is a
well-defined Markov semigroup on bFT .

Consider the space of Lipschitzian continuous functions CLip(E
T ) := {f ∈

bFT ; supi∈T δi(f ) < +∞}, where

δi(f ) = sup
x=y off i

|f (y) − f (x)|
d(yi, xi)

.

In fact, we shall prove the stronger.

PROPOSITION 2.5. In the context of Theorem 2.1, let Pt = etL. Then for all
measurable f ∈ bFT such that supi∈T δi(f ) < +∞,

δj (Ptf ) ≤ ∑
i∈T

δi(f )
(
e−t (I−C))

ij ∀ j ∈ T ,(2.10)

where I is the identity matrix. In particular,∑
j∈T

δj (Ptf ) ≤ e−t (1−‖C‖∞)
∑
j∈T

δj (f ),

(2.11)
max
j∈T

δj (Ptf ) ≤ e−t (1−‖C‖1) max
j∈T

δj (f ),

where

‖C‖∞ := sup
i

∑
j

cij ; ‖C‖1 := ‖C‖l1(T )→l1(T ) = sup
j

∑
i

cij .

Once this result is proved, Theorem 2.1 follows immediately from (2.10) and
the following general fact [by choosing D = CLip(E

T )]:

LEMMA 2.6 ([34, 35]). Let (Pt ) be a strongly continuous symmetric Markov
semigroup on L2(µ). Assume that there are a dense subset D ⊂ L2(µ) and a
constant δ > 0 such that ∀f ∈ D , ∃C(f ) > 0,

µ(Ptf,Ptf ) ≤ C(f )e−2δt ∀ t > 0,

then the spectral gap λ1 of −L verifies λ1 ≥ δ.

We now turn to the proof.

PROOF OF PROPOSITION 2.5. Notice at first that, for the transposition Ct , we
have

‖Ct‖1 = ‖C‖∞, ‖Ct‖∞ = ‖C‖1.
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Hence, (2.11) follows from (2.10). Below we prove (2.10) in three steps.
Step 1. Consider the difference operator Dxj→yj

f (x) := f (xyj ) − f (x), where

xyj (i) :=
{

x(i), if i �= j ,
yj , if i = j ,

and yj is some fixed point of E. Our idea is based, roughly, say, on the calculation
of Dxj→yj

Lf − LDxj→yj
f , where f ∈ CLip(E

T ). For such f , when i = j , we
have

Dxj→yj
[µj(f ) − f ] = −Dxj→yj

f,

for µj(f ) is FT \{j}-measurable. When i �= j , by putting xziyj (k) = zi if k = i

and yj if k = j and xk otherwise, we have

Dxj→yj
[µi(f ) − f ](x)

=
∫
E

µi(dzi |xyj )
(
f (xziyj ) − f (xyj )

) −
∫
E

µi(dzi |x)
(
f (xzi ) − f (x)

)

=
∫
E

(
µi(dzi |xyj ) − µi(dzi |x)

)(
f (xziyj ) − f (xyj )

)

+
∫
E

µi(dzi |x)
((

Dxj→yj
f

)
(xzi ) − (

Dxj→yj
f

)
(x)

)
.

Since the Lipschitzian coefficient of zi → f (xziyj ) − f (xyj ) is not greater
than δi(f ), by (2.2) and the definition of cij , the function

gij (x) :=
∫
E

(
µi(dzi |xyj ) − µi(dzi |x)

)(
f (xziyj ) − f (xyj )

)
verifies

|gij | ≤ cij δi(f )d(xj , yj ).

Thus, we obtain the following relation about [Dxj→yj
,L]:

Dxj→yj
Lf = −Dxj→yj

f

+ ∑
i : i �=j

[
µi

(
Dxj→yj

f
) − Dxj→yj

f
] + ∑

i : i �=j

gij ,(2.12)

|gij | ≤ cij δi(f )d(xj , yj ).

Let Lj f := ∑
i: i �=j [µi(f ) − f ]. Dividing both sides of (2.12) by d(xj , yj )

(with the convention that 0/0 := 0) and noting the following obvious but crucial
relation

Lj g(x)

d(xj , yj )
=

(
Lj

g

d(·j , yj )

)
(x),(2.13)
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we get

δj (Lf ) ≤ (‖Lj‖bFT
+ 1

)
δj (f ) + ∑

i : i �=j

cij δi(f ).

Hence, f → Lf is bounded on CLip.
Step 2. Note that Ljf := ∑

i : i �=j [µi(f ) − f ] generates again a Markov semi-
group on bFT . For any λ > 0 and f ∈ CLip(E

T ), let g := f −λLf . By (2.12), we
have

(λ + 1)Dxj→yj
f − λLjDxj→yj

f = Dxj→yj
g + λ

∑
i:i �=j

gij .

Dividing both sides by d(xj , yj ) and putting hj (x) := Dxj →yj
f (x)

d(xj ,yj )
, we obtain, by

(2.12) and (2.13),

(λ + 1)hj − λLjhj ≤ δj (g) + λ
∑

i : i �=j

cij δi(f ).

As the resolvent (λ + 1 − λLj )
−1 on bFT is positive with norm bounded by

(λ + 1)−1, we get

sup
x

hj (x) ≤ 1

λ + 1

(
δj (g) + λ

∑
i : i �=j

cij δi(f )

)
.

Since yj is arbitrary, we get

δj (f ) ≤ 1

λ + 1

(
δj (g) + λ

∑
i : i �=j

cij δi(f )

)
.(2.14)

Step 3. With the crucial estimate (2.14) in hand, the rest of the proof is routine by
following Liggett [21], Chapter I, Theorem 3.8. Now L is bounded on CLip(E

T ),
hence, for all λ > 0 sufficiently small, say, λ ∈ (0, λ0), where 0 < λ0 < 1/rsp(C),
(1 − λL)−1 is bounded on CLip(E

T ) and (1 − λC)−1 is bounded on R
T . On R

T

considering the partial order u ≤ v iff ui ≤ vi for all i, and regarding δ(f ) :=
(δi(f ))i∈T as column vector in R

T , we have, by (2.14),(
1 − λ

λ + 1
Ct

)
δ
(
(1 − λL)−1g

) ≤ 1

λ + 1
δ(g) ∀g ∈ CLip(E

T ).

Since (1 − λC)−1 = ∑∞
n=0 λnCn is a positive matrix, we get

δ
(
(1 − λL)−1g

) ≤ (λ + 1 − λCt)−1δ(g)

and, consequently, for all n ∈ N
∗,

δ
(
(1 − λL)−ng

) ≤ (λ + 1 − λCt)−nδ(g).
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Finally, for each t > 0, letting λ = t/n and n go to infinity in the above estimate,
we obtain

δ(Ptg) ≤ e−t (I−Ct )δ(g),

the desired estimate (2.10). �

3. Generalization of Liggett’s M − ε theorem. In this section we consider
the more general generator on ET given by

Lf (x) := ∑
S⊂T

∫
ES

JS(x, dzS)[f (xzS ) − f (x)] ∀f ∈ CLip(E
T ),(3.1)

where the (local) jump rate JS(x, dzS) is a bounded nonnegative kernel on
ET × FS . Assume that for each S ⊂ T and for every j ∈ T , there is some finite
optimal constant cS(j) ≥ 0,

sup
x=y off j

1

d(xj , yj )

∣∣∣∣
∫
ES

g(zS)
(
JS(x, dzS)

) − JS(y, dzS)

∣∣∣∣
(3.2)

≤ cS(j)
∑
i∈S

δi(g)

for all g ∈ CLip(E
T ). Note that if d is the trivial metric,

cS(j) ≤ 1
2 sup

x=y off j

‖JS(x, ·) − JS(y, ·)‖TV.

The following generalizes Proposition 2.5.

THEOREM 3.1. Let

cij := ∑
S�i

cS(j)(3.3)

and

η := inf
x∈ET

inf
i∈T

∑
S�i

JS(x,ES).(3.4)

Then Pt = etL is a Markov semigroup on bFT , mapping CLip(E
T ) into itself, such

that, for any f ∈ CLip(E
T ),

δj (Ptf ) ≤ ∑
i∈T

δi(f )
(
e−t (η−C))

ij ∀ j ∈ T .(3.5)

REMARK 3.2. When JS(x, dzS) = µi(dzi |x) for S = {i} and 0 otherwise, this
result becomes exactly Proposition 2.5. In the symmetric case, by Lemma 2.6, the
estimate (3.5) in Theorem 3.1 implies that the spectral gap λ1(L) of L in L2(µ)

satisfies

λ1(L) ≥ η − rsp(C).
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REMARK 3.3. There is a quite subtle point in this result: if (J̃S) is another
family of jump rates such that J̃S(x, ·\{xS}) = JS(x, ·\{xS}), then (J̃S) determines
the same generator L as (JS). One must choose JS(x, {xS}) so that JS(x,ES) is
independent of x for ensuring CS(j) < +∞. For instance, in the framework of
Proposition 2.5, JS = µi for S = {i} seems to be the best choice.

REMARK 3.4. Let us compare this result with Liggett’s M − ε-theorem
(cf. [21], Chapter I, Theorem 3.8) and the results of Maes–Shlosman [22]:

(i) At first for continuous spins, the constant ε in Liggett’s M − ε theorem be-
comes zero so that it cannot be applied for obtaining the exponential convergence
in that situation.

(ii) In Liggett’s M − ε theorem, only the trivial metric is used and its proof
seems not to work for more general metrics.

(iii) The method of Maes–Shlosman [22], based on the coupling method and a
time-discretization procedure, works well for two-states spin space E, but seems
difficult to work in the present general setting.

PROOF OF THEOREM 3.1. The proof is similar to that of Proposition 2.5, but
with an important difference in Step 2.

Step 1. Fix f ∈ CLip(E
T ), j ∈ T and yj ∈ E. When j /∈ S, by putting

xzSyj (k) = zi if k ∈ S, yj if k = j and xk otherwise, we have

Dxj→yj

[∫
ES

JS(·, dzS)f (·zS ) − f (·)
]
(x)

=
∫
ES

JS(xyj , dzS)
(
f (xzSyj ) − f (xyj )

)

−
∫
ES

JS(x, dzS)
(
f (xzS ) − f (x)

)

=
∫
ES

(
JS(xyj , dzS) − JS(x, dzS)

)(
f (xzSyj ) − f (xyj )

)

+
∫
ES

JS(x, dzS)
((

Dxj→yj
f

)
(xzS ) − (

Dxj→yj
f

)
(x)

)
.

Since δi[zi → f (xzSyj ) − f (xyj )] ≤ δi(f ) for each i ∈ S, the function

gSj (x) :=
∫
ES

(
JS(xyj , dzS) − JS(x, dzS)

)(
f (xzSyj ) − f (xyj )

)
verifies, by the definition of cS(j) in (3.2),

|gSj | ≤ cS(j)d(xj , yj )
∑
i∈S

δi(f ).
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Now letting j ∈ S, we have

Dxj→yj

[∫
ES

JS(·, dzS)f (·zS ) − f (·)
]
(x)

=
∫
ES

JS(xyj , dzS)
(
f (xzS ) − f (xyj )

) −
∫
ES

JS(x, dzS)
(
f (xzS ) − f (x)

)

=
∫
ES

(
JS(xyj , dzS) − JS(x, dzS)

)(
f (xzS ) − f (xyj )

)

−
∫
ES

JS(x, dzS)
((

Dxj→yj
f

)
(x)

)
= gSj (x) − JS(x,ES)Dxj→yj

f (x),

where

gSj (x) :=
∫
E

(
JS(xyj , dzS) − JS(x, dzS)

)(
f (xzS ) − f (xyj )

)
satisfies again [by the definition of cS(j) in (3.2)]

|gSj | ≤ cS(j)d(xj , yj )
∑
i∈S

δi(f ).

Thus, letting

Ljf (x) := ∑
S:j /∈S

∫
ES

JS(x, dzS)
(
f (xzS ) − f (x)

)
,

we obtain, by summarizing the previous discussions,

Dxj→yj
Lf (x) = Lj

[
Dxj→yj

f
]
(x)

− ∑
S : j∈S

J (x,ES)Dxj→yj
f + ∑

S

gSj(3.6)

|gSj | ≤ cS(j)d(xj , yj )
∑
i∈S

δi(f ).

Dividing both sides by d(xj , yj ) and noting

Lj g(x)

d(xj , yj )
=

(
Lj

g

d(·j , yj )

)
(x)(3.7)

(with the convention that 0/0 := 0), we get

δj (Lf ) ≤ ‖Lj‖bFT
δj (f )

+ sup
x

∑
S : j∈S

J (x,ES)δj (f ) + ∑
S

cS(j)d(xj , yj )
∑
i∈S

δi(f ).

Hence, f → Lf is bounded on CLip.
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Step 2. Note that Ljf := ∑
S : j /∈S

∫
ES JS(x, dzS)(f (xzS ) − f (x)) generates

again a Markov semigroup on bFT . Let Vj (x) := ∑
S:j∈S J (x,ES). By the de-

finition of η in (3.4), Vj ≥ η. Consequently, by the Feynman–Kac formula,
(λ + Vj − λLj )

−1 is bounded, positive on bFT with norm bounded by (λ + η)−1

for any λ > 0 (this is the key for the proof ).
For any λ > 0 and f ∈ CLip(E

T ), let g := f − λLf . By (3.6), we have

(λ + Vj )Dxj→yj
f − λLjDxj→yj

f ≤ Dxj→yj
g + λ

∑
S

gSj .

Dividing both sides above by d(xj , yj ) and putting hj (x) := Dxj →yj
f (x)

d(xj ,yj )
, we ob-

tain, by (3.7) and the estimate (3.6) for gSj ,

(λ + Vj − Lj )hj ≤ δj (g) + λ
∑
S

cS(j)
∑
i∈S

δi(f ) = δj (g) + λ
∑
i

cij δi(f ).

Since the resolvent (λ + Vj − λLj )
−1 on bFT is positive with norm bounded by

(λ + η)−1 as noted above, we get

sup
x

hj (x) ≤ 1

λ + η

(
δj (g) + λ

∑
i

cij δi(f )

)
.

Since yj is arbitrary, we get

δj (f ) ≤ 1

λ + η

(
δj (g) + λ

∑
i

cij δi(f )

)
.

Step 3. The rest of the proof is same as that of Proposition 2.5. �

On the product space, consider the metric

dl1(x, y) := ∑
i∈T

d(xi, yi).(3.8)

It is the usual Hamming distance if d(x, y) = 1x �=y . Theorem 3.1 yields an explicit
estimate of the exponential decay of Pt in CLip. Let us translate it as (this type of
translation has been given by Zhang [39]) the following:

COROLLARY 3.5. In the context of Theorem 3.1, assume rsp(C) < 1. Then
(Pt ) has a unique invariant measure µ such that

∫
ET dl1(x, y)µ(dy) < +∞ for

every (or some) x; moreover, for each x ∈ ET ,

W1,dl1

(
Pt(x, ·),µ) ≤ e−ηt max

j

∑
i

(etC)ij

∫
ET

dl1(x, y)µ(dy)

≤ e−t (η−‖C‖1)
∫
ET

dl1(x, y)µ(dy).
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PROOF. Notice that the Lipschitzian coefficient ‖f ‖Lip(dl1 ) of f w.r.t. dl1

equals exactly to maxi∈T δi(f ). Hence, for any f ∈ CLip(E
T ) such that

‖f ‖Lip(dl1 ) = maxi∈T δi(f ) ≤ 1, we have, by (3.5),

max
j∈T

δj (Ptf ) ≤ max
j∈T

e−ηt
∑
i

(etC)ij = e−ηt‖etC‖1

≤ e−ηt et‖C‖1 = e−t (η−‖C‖1).

Thus, for every x, y ∈ ET ,

|Ptf (x) − Ptf (y)| ≤ dl1(x, y)e−ηt‖etC‖1.

Let ν1, ν2 ∈ M
dl1 ,1
1 (ET ) and π(dx, dy) a coupling of ν1, ν2. In the inequality

above, integrating w.r.t. π(dx, dy), and next taking the infimum over all couplings
π(dx, dy) of (ν1, ν2), we get

|(ν1Pt)f − (ν1Pt)f | ≤ W1,dl1
(ν1, ν2)e

−ηt‖etC‖1,

where it follows, by (2.2),

W1,dl1
(ν1Pt , ν2Pt) ≤ W1,dl1

(ν1, ν2)e
−ηt‖etC‖1.(3.9)

As the last quantity tends to zero (exponentially), there is some t0 > 0 such

that ν → νPt is a strict contraction on the complete metric space (M
dl1 ,1
1 (ET ),

W1,dl1
) [32]. Hence, Pt0 has a unique invariant measure µ ∈ M

dl1 ,1
1 by the fixed

point theorem. Moreover, the previous relation implies that Pnt0(x, ·) → µ in the
Wasserstein distance for every x ∈ ET . Thus, µ is the unique invariant measure
of Pt0 , therefore that of (Pt ).

Now the desired estimate follows immediately by (3.9). �

4. Transportation inequality T1 for Gibbs measures.

4.1. An interpretation of the a priori estimate of Dobrushin. We begin with
the fundamental a priori estimate of Dobrushin [9].

LEMMA 4.1. Let µ be the Gibbs measure associated with the given one-point
specification (µi)i∈T . Assume that the spectral radius rsp(C) of the Dobrushin in-
terdependence matrix is strictly smaller than 1. Then for any probability measure ν

on ET [denoted by ν ∈ M1(E
T )] and f ∈ CLip(E

T ),∣∣∣∣
∫
ET

f d(µ − ν)

∣∣∣∣ ≤ ∑
i,j

δi(f )DijE
νWd

1 (µj , νj ),(4.1)

where D := (I − C)−1 = ∑∞
n=0 Cn, νi = ν(·/FT \{i}) (regular conditional distrib-

ution of xi under ν knowing FT \{i}).
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This is due to Dobrushin [9] when d is the trivial metric, and is extended to
general metrics by Föllmer [12] (see also [13], Theorem 8.20).

Consider the metric dl1(x, y) given in (3.8). Notice that the Lipschitzian coeffi-
cient ‖f ‖Lip(dl1 ) of f w.r.t. dl1 equals exactly to maxi∈T δi(f ). Hence, taking the
supremum in (4.1) over all f such that maxi∈T δi(f ) ≤ 1, we obtain, by (2.2),

W
dl1
1 (µ, ν) ≤ ∑

i,j

DijE
νWd

1 (µj , νj ) ≤ sup
j

∑
i

Dij

∑
j

E
νWd

1 (µj , νj ).

Furthermore, it is obvious that if ‖C‖1 = supj

∑
i Cij < 1,

sup
j

∑
i

Dij = ‖(I − C)−1‖1 ≤ 1

1 − ‖C‖1
.

Consequently, we have shown the following:

PROPOSITION 4.2. Assume that ‖C‖1 < 1. Then for any probability mea-
sure ν on ET ,

W
dl1
1 (µ, ν) ≤ 1

1 − ‖C‖1

∑
j

E
νWd

1 (µj , νj ).(4.2)

This result is the counterpart for the Wasserstein distance of Theorem 2.1.

4.2. T1-transportation inequality and Hoeffding’s inequality. Now recall that
µ is said to satisfy the T1-transportation inequality w.r.t. the metric d , if there is
some constant positive K such that, for all probability measures ν,

Wd
1 (ν,µ) ≤

√
2Kh(ν/µ),(4.3)

where h(ν/µ) is the relative entropy (or Kullback information) of ν w.r.t. µ, given
by

h(ν/µ) :=



∫
dν

dµ
log

dν

dµ
dµ, if ν � µ,

+∞, otherwise.

This relation will be denoted by µ ∈ T1(K/d). Recall that when d is the trivial
metric, (4.3) holds with K = 1/4, which is the well-known Pinsky–Csiszär in-
equality.

In the following result we assume, moreover, that, for each S ⊂ T , there is a
regular conditional distribution µS(dxS |x) of xS knowing xT \S under µ such that,
for each i ∈ S, µi(·/x) (fixed at the beginning) constitutes a regular conditional
distribution of xi knowing xS\{i} under µS(·/x) for every x ∈ ET .
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THEOREM 4.3. Assume ‖C‖1 < 1 and that there is some constant K > 0 such
that µ-a.s.,

µS(dxi |x) ∈ T1(K/d) ∀x ∈ ET , i ∈ S ⊂ T .(4.4)

Then for any probability measure ν on ET ,

W
dl1
1 (ν,µ) ≤

√
2K|T |

(1 − ‖C‖1)2 h(ν/µ),(4.5)

that is, µ ∈ T1(K(1 − ‖C‖1)
−2|T |/dl1). Equivalently (due to Bobkov–Götze), for

any F :ET → R such that maxi∈T δi(F ) = α < +∞,

E
µ exp(F − E

µF) ≤ exp
(

K|T |α2

2(1 − ‖C‖1)2

)
,(4.6)

where |T | is the cardinality of T .
In particular, when the diameter of E, D := supx,y∈E d(x, y) < +∞, both

(4.5) and (4.6) hold with K = D2/4.

Before proving this theorem, let us give a quick application. Assume that
f :E → R is a bounded measurable function with a ≤ f ≤ b. Consider the func-
tional related with the CLT,

F(x) := 1√|T |
∑
i∈T

(
f (xi) − E

µf (xi)
)
.

Then w.r.t. the trivial metric d , δi(F ) ≤ (b − a)/
√|T | for every i ∈ T . Thus, by

Theorem 4.3, (4.6),

E
µeλF ≤ exp

(
1

8(1 − ‖C‖1)2 λ2(b − a)2
)

∀λ ∈ R,

which, in the independent case, is the well-known sharp Hoeffding inequality.

REMARK 4.4. For an E-valued homogeneous Markov chain (Xk)k≥1 with
transition kernel P(x, dy), Marton [24] proved that the law Pn of (Xk)1≤k≤n sat-
isfies the transportation inequality “T1” w.r.t. the Hamming metric on En with the
constant Kn = n

4(1−r)2 , where

r := 1
2 sup

x �=y

‖P(x, ·) − P(y, ·)‖TV = Wd,1
(
P(x, ·),P (y, ·))

(d being the trivial metric). This result is generalized by Djellout, Guillin and
the author [7] to general stochastic sequences w.r.t. a general metric. One can then
regard Theorem 4.3 as a generalization of those results to the case of random fields.

After the first version of this paper was submitted, we learned a new work of
Marton [25] in which she establishes the T2-transportation inequality for Gibbs
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measures, by means of similar Dobrushin’s interpendence coefficients (but her ap-
proach is completely different). Her T2-transportation inequality, though qualita-
tively stronger than the T1’s in Theorem 4.3, contains, however, an extra absolute
constant (it is then much less precise) and works only in continuous spin space
cases.

The study on transportation inequalities is very active at present; see Villani [32]
and the recent thesis of Gozlan [15] for an account of art. On a Riemannian mani-
fold, the T1-transportation inequality is weaker than the log-Sobolev inequality, but
is neither stronger nor weaker than the Poincaré inequality. For instance, the mea-
sure e−|x| dx/2 satisfies the Poincaré inequality, but not the T1-transportation in-
equality; the measure (1[−2,−1](x)+ 1[1,2](x)) dx/2 satisfies the T1-transportation
inequality, but not Poincaré’s.

PROOF OF THEOREM 4.3. We prove at first a general known claim: any
probability measure ν on (E,d) with D = supx,y∈E d(x, y) < +∞ satisfies
T1(K/d) with K = D2/4. In fact, for any f ∈ CLip(E) with ‖f ‖Lip ≤ 1, δ(F ) =
supx F (x) − infx F (x) ≤ D. Hence, we have (a good exercise for undergraduate
students)

E
νef −ν(f ) ≤ eD2/8.

This implies the desired T1(K/d) with K = D2/4 by Bobkov–Götze’s theo-
rem [2].

The equivalence between (4.5) and (4.6) follows from Bobkov–Götze’s theorem
(cf. [2]) and the fact that the Lipschitzian coefficient ‖F‖Lip(dl1 ) of F w.r.t. dl1

equals exactly to maxi∈T δi(F ).
Let us prove (4.6) by the martingale method (as in [7]) in two steps.
Step 1. Identifying T as {1,2, . . . , n}, where n = |T | (the cardinality of T ), we

consider the martingale

M0 = E
µF, Mk(x

k
1) =

∫
F(xk

1 , xn
k+1)µ(dxn

k+1|xk
1), i ≥ 1,

where x
j
i = (xi, xi+1, . . . , xj ), µ(dxn

k+1|xk
1) = µS(dxn

k+1|x) with S = {k +
1, . . . , n}, given previously. Since Mn = F , we have

E
µeF−E

µF = E
µ exp

(
n∑

k=1

(Mk − Mk−1)

)
.

By recurrence, for (4.6), it suffices to establish that, for each k = 1, . . . , n, µ-a.s.,∫
exp

(
Mk(x

k−1
1 , xk) − Mk−1(x

k−1
1 )

)
µ(dxk/x

k−1
1 )

(4.7)

≤ exp
(

Kα2

2(1 − ‖C‖1)2

)
.
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Step 2. By the assumption (4.4) and the Bobkov–Götze theorem, for (4.7), it is
enough to show that

|Mk(x
k−1
1 , xk) − Mk(x

k−1
1 , yk)| ≤ α

1 − ‖C‖1
d(xk, yk).

By the triangle inequality, we have

|Mk(x
k−1
1 , xk) − Mk(x

k−1
1 , yk)|

=
∣∣∣∣
∫

F(x)µ(dxn
k+1/x

k
1) −

∫
F(xyk )µ(dxn

k+1/x
k−1
1 , yk)

∣∣∣∣
≤

∣∣∣∣
∫

F(x) − F(xyk )µ(dxn
k+1/x

k−1
1 , yk)

∣∣∣∣
+

∣∣∣∣
∫

F(x)[µ(dxn
k+1/x

k
1) − µ(dxn

k+1/x
k−1
1 , yk)]

∣∣∣∣
≤ αd(xk, yk) +

∣∣∣∣
∫

F(x)[µ(dxn
k+1/x

k
1) − µ(dxn

k+1/x
k−1
1 , yk)]

∣∣∣∣.
By the dual characterization (2.2), the last term above is

≤ αW
dl1
1

(
µ(dxn

k+1/x
k−1
1 , yk),µ(dxn

k+1/x
k
1)

)
.

Now by Proposition 4.2, this quantity is bounded from above by

α

1 − ‖C‖1

n∑
l=k+1

E
µ(·/xk−1

1 ,yk)Wd
1

(
µl(·/x),µl(·/xyk )

)

≤ α

1 − ‖C‖1

n∑
l=k+1

clkd(xk, yk) ≤ α‖C‖1

1 − ‖C‖1
d(xk, yk).

Thus, in summary we have

|Mk(x
k−1
1 , xk) − Mk(x

k−1
1 , yk)| ≤

(
α + α‖C‖1

1 − ‖C‖1

)
d(xk, yk)

= α

1 − ‖C‖1
d(xk, yk),

the desired estimate. �

5. Several concrete examples. In this section we consider Gibbs measures
on EZ

d
associated with interaction (φS)S⊂⊂Zd , where S ⊂⊂ Z

d means that S is
a finite subset of Z

d . More precisely, for each finite T ⊂ Z
d and the boundary

condition y on T c, the (local) Gibbs measure µT (dxT |y) is given by

exp(
∑

S∩T �=∅ φS(xT yT c))

ZT (y)

∏
i∈T

m(dxi),
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where m is some reference σ -finite measure, and ZT (y) is the normalization con-
stant. Here φS is FS := σ(xi, i ∈ S)-measurable. Though the Dobrushin unique-
ness condition works for general graphs rather than the lattice Z

d and all our results
below have easy counterparts for graphs, we choose still the lattice Z

d because in
that case the known results are numerous and the reader could compare more easily
then with ours.

5.1. Two examples of discrete spin models. For a wide variety of discrete spin
models w.r.t. the discrete metric d(x, y) = 1x �=y , the Dobrushin interdependence
matrix C has been estimated explicitly; see [13] and references therein.

EXAMPLE 5.1. E := {−1,1},
S(x) := −J (S)xS , where xS := ∏
i∈S xi , m is

the counting measure on {−1,1}. For this model, by Georgii [13], page 145, for
each µ = µT (·|x), where T is a finite subset of Z

d ,

max{‖C‖1,‖C‖∞} ≤ sup
i∈Zd

∑
S : S�i

(|S| − 1) tanh |J (S)| =: r.

(This estimate is optimal in some sense.) So when r < 1, all our general results
apply.

When d = 1, J (S) = β if S = {i, j} with |i − j | = 1 and J (S) = 0, other-
wise (one-dimensional nearest-neighbor Ising model), a pretty result of Minlos
and Trishch [27] says that

λ1(µ) = 1 − tanhβ.

Theorem 2.1 yields only λ1(µ) ≥ 1 − r = 1 − 2 tanhβ . Anyway, as there is no
phase transition in the one-dimensional case, certainly one should use other pa-
rameters than the Dobrushin interdependence matrix to yield an explicit estimate
of λ1(µ) in dimension one.

Of course, our results become interesting when d ≥ 2.

EXAMPLE 5.2 (Potts anti-ferromagnet for large number of spin states). E =
{1,2, . . . ,N}, m is the counting measure on E and


S(x) =
{

J1xi=xj
, if S = {i, j}, |i − j | = 1,

0, otherwise.

Here J > 0 is a constant. For this model, Salas and Sokal [28] (communicated to
the author by one referee) proved that w.r.t. the trivial metric, cij ≤ (N − 2d)−1

for |i − j | = 1. Hence, for every µ = µT (dxT |x) where T is a finite subset of Z
d ,

max{‖C‖1,‖C‖∞} ≤ 2d

N − 2d
,

independent of the interaction strength J . Once N > 4d , all our general results
apply.

For this example, Proposition 2.5 is much better than Liggett’s M − ε theorem.
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5.2. Two continuous spin models.

EXAMPLE 5.3 (N -vector model [14, 20, 33]). Let E = Sp (p ≥ 1 integer),
the unit sphere in R

p+1, equipped with the normalized Lebesgue measure m(dx),
and


S(x) =
{−J (i − j)xi · xj , if S = {i, j}(i �= j),

0, otherwise,

where x · y is the standard inner product in R
p+1, and the interaction coefficients

{J (i)}i∈Zd with J (0) = 0 is pair and absolutely summable, that is, J (−i) = J (i)

and

γ := ∑
i∈Zd

|J (i)| < +∞.

This is the so-called N -vector model with N = p + 1.

We begin with the estimate of λ0 in Theorem 2.2 and of the constant K in
the transportation inequality of µT (dxi |x) in Theorem 4.3. For every h ∈ R

p+1,
consider the probability measure on Sp ,

µh(dx) := 1

Z(h)
eh·xm(dx),(5.1)

where Z(h) is the normalization constant.

LEMMA 5.4. Let ∇ be the Riemannian gradient on Sp , then

λ0(p, γ ) := inf
h∈Rp+1,|h|≤γ

λ1(µh,∇) ≥ (p − 1 − γ )π2

8(1 − exp[−(π2/8)(p − 1 − γ )]) .(5.2)

In particular, for all i ∈ Z
d, x ∈ (Sp)Z

d
,

λ1
(
µi(dxi |x),∇) ≥ λ0(p, γ ).(5.3)

Furthermore, w.r.t. the Riemannian metric d on Sp , for every finite T ⊂ Z
d ,

µT (dxi |x) ∈ T1(K0/d), K0 = min
{
π2

4
; e2γ

p

}
.(5.4)

PROOF. By the famous Lichnerowicz estimate [4], we have λ1(µ0,∇) = p.
Now for every measure ν(dx) = e−Wm(dx)/C, where W ∈ C2(Sp) whose
Hessian matrix HessW ≥ βI (in the order of nonnegative definiteness) and C is
the normalization constant, the Bakry–Emery curvature [1] Ric(Sp) + Hess(W)

of ν is bounded from below by Ric(Sp) + β = p − 1 + β , we have

λ1(ν,∇) ≥ (p − 1 − β)π2

8(1 − exp[−(π2/8)(p − 1 − β)]) ,
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by a sharp estimate due to Chen and Wang [6]. Now for ν = µh, we have
W(x) = hx and HessW ≥ −|h|I ≥ −γ I whenever |h| ≤ γ , so we get (5.2).
Hence, (5.3) follows since µi(dxi |x) = µh(dxi) with

h = ∑
j : j �=i

J (i − j)xj , |h| ≤ γ.

For (5.4), by Theorem 4.3, we have K0 ≤ π2/4. To show K0 ≤ e2γ /p, we begin
with the following sharp log-Sobolev inequality due to Bakry–Emery [1]:

Entm(f 2) ≤ 2

p

∫
Sp

|∇f |2m(dx) ∀f ∈ C1(Sp),

where Entν(f ) = E
νf log f

ν(f )
is the relative entropy of f ≥ 0 w.r.t. ν. Since the

marginal law of µT (·|x) at xi ,

νT,i(dxi) := µT (dxi |x) =
∫

µi(dxi |x)µT

(
dxT \{i}|x) = e−W(xi)m(dxi)/C,

where W satisfies δ(W) := supxi
W − infxi

W ≤ 2γ , hence, νT,i satisfies the log-
Sobolev inequality,

EntνT,i
(f 2) ≤ 2

e2γ

p

∫
Sp

|∇f |2 dνT,i ∀f ∈ C1(Sp),

by a remark in [19]. This implies, by Ledoux [18] (using the Herbst method),

E
νT,i ef −νT,i (f ) ≤ exp

(e2γ ‖f ‖2
Lip

2p

)
∀f ∈ C1(Sp),

which is equivalent to (Bobkov–Götze’s theorem)

νT,i ∈ T1(K/d), K = e2γ

p
.

Thus, (5.4) is established. �

PROPOSITION 5.5. W.r.t. the Euclidean metric dE of R
p+1 restricted to Sp ,

the coefficient of interdependence of Dobrushin satisfies

cE
ij ≤ |J (i − j)|σE(p, γ )√

p + 1
,(5.5)

where

σ 2
E(p, γ ) := sup

f,h

µh(f ;f ) ≤ min{1,1/λ0(p, γ )}.(5.6)
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Here the supremum is taken over all h ∈ R
p+1 with |h| ≤ γ and f :Sp → R such

that its Lipschitzian coefficient ‖f ‖Lip(dE) w.r.t. dE is less than 1, and λ0(p, γ ) is
given in (5.3). In particular, if

γ := ∑
i∈Zd

|J (i)| <
√

p + 1

σE(p, γ )
,(5.7)

then for every finite T ⊂ Z
d ,

λ1(µT ) ≥ 1 − γ σE(p, γ )√
p + 1

, λ1(µT ,∇) ≥
(

1 − γ σE(p, γ )√
p + 1

)
λ0(p, γ ).(5.8)

Furthermore, if

γ <
√

(p + 1)λ0(p, γ )(5.9)

[stronger than (5.7)], then

µT ∈ T1
(
K̃|T |/dl1

)
, K̃ = min{e2γ /p,π2/4} · λ0(p, γ )(p + 1)

(
√

(p + 1)λ0(p, γ ) − γ )2
,(5.10)

where dl1(xT , yT ) := ∑
i∈T d(xi, yi) (d being the Riemannian metric on Sp).

PROOF. For the spectral gap estimate (5.8), it is enough to prove (5.5) and (5.6)
by Theorem 2.2.

Let i, j ∈ Z
d two different sites. Given x, y ∈ (Sp)Z

d
such that x = y off j , let

h(t) := ∑
k �=i

J (i − k)
(
(1 − t)xk + tyk

)
, t ∈ [0,1],

and consider µh(t) as given by (5.1). Then µh(0) = µi(·|x) and µh(1) = µi(·|y).
For every f :Sp → R such that ‖f ‖Lip(dE) ≤ 1, we have∫

Sp
f d(µ1 − µ0) =

∫ 1

0

d

dt

∫
Sp

f dµh(t) dt

(5.11)

= |yj − xj |
∫ 1

0
µh(t)(f ; e · x)dt,

where e = (yj − xj )/|yj − xj |. Since |h(t)| ≤ γ , we have by Cauchy–Schwarz,

µh(t)(f ; e · x) ≤
√

µh(f ;f ) · µh(t)(e · x; e · x) ≤ σE(p, γ )
√

µh(t)(e · x; e · x).

Hence, for (5.5), by the dual formula (2.2), it remains to prove that, for any
h, e ∈ R

p+1 with |e| = 1,

µh(e · x; e · x) ≤ 1

p + 1
.(5.12)
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Let êk, k = 1, . . . , p + 1 be an orthonormal basis of R
p+1 such that ê1 · h = |h|,

and e is a linear combination of e1, e2. Let x̂k := êk · x. We have

µh(x̂k; x̂k) = µ(x̂k)
2 ≤ 1

p + 1
∀ k ≥ 2,

by [20], (3.15) (due to Dyson–Lieb–Simon [11]) and

µh(x̂1; x̂1) ≤ 1

p + 1

by Levin [20], (3.28) (those two estimates can be easily derived by the correlation
inequalities on Sp in [14]). Now noting that x̂1, x̂1 are orthogonal in L2(Sp,µh),
we obtain (5.12) and so the desired (5.5).

To prove (5.6), note that, for any f ∈ C1(Sp) such that ‖f ‖Lip(dE) ≤ 1, we have
a ≤ f ≤ b with two constants satisfying b−a ≤ 2 (for the diameter of Sp w.r.t. dE

is 2). Thus,

µh(f ;f ) ≤
∫
Sp

(
f − a + b

2

)2

dµh ≤ (b − a)2

4
≤ 1,

where it follows Simon’s bound σ 2
E(p, γ ) ≤ 1 [29]. Furthermore, as the Rie-

mannian distance d on Sp is larger than dE , we also have ‖f ‖Lip(d) ≤ 1. Thus,
by the Poincaré inequality,

µh(f ;f ) ≤ 1

λ1(µh,∇)

∫
Sp

|∇f |2 dµh ≤ 1

λ1(µh,∇)
,

which yields σ 2
E(p, γ ) ≤ 1/λ0(p, γ ). This completes the proof of (5.6).

To prove the T1-transportation inequality, we should estimate the coefficients cij

of interdependence of Dobrushin w.r.t. the Riemannian metric d . By the same
proof as that of (5.5), we have

cij ≤ |J (i − j)|σR(p, γ )√
p + 1

,

where

σ 2
R(p, γ ) := sup

‖f ‖Lip(d)≤1,|h|≤γ

µh(f ;f ).

By the Poincaré inequality as above, we have

σ 2
R(p, γ ) ≤ 1

λ0(p, γ )
.

Hence, (5.10) follows by Theorem 4.3. �

REMARK 5.6. Let us compare Proposition 5.5 with known results:
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(i) For the uniqueness of Gibbs measure, “γ < 1” is Faris’ condition, the bet-
ter condition “γ <

√
p + 1” is due to Simon [29]. And when p ≥ 5, Levin [20]

improved the bound of Simon as follows:

γ <
p + 1√

5
.

Even our stronger condition (5.9) is better than Simon’s for p ≥ 4 [since
λ0(p, γ ) > 1 once γ < p − 1 by Lemma 5.4] and better than Levin’s for all p ≥ 5
since our condition (5.7) is satisfied once

γ <
2

1 + √
1 + 4a

(p − 1), a := 8

π2 · p − 1

p + 1
.(5.13)

Anyway, we are still far from the conjecture in [20], Remark 3.7, which says that
the uniqueness of Gibbs’ measure holds once γ < p+1, where p+1 is the known
critical value for the phase transition of the corresponding mean field model.

(ii) Wick [33] proved that for p = 1,2 and the nearest-neighbor case, if√
5
24γ < 1, then no phase transition occurs and the Glauber dynamics associated

with the Dirichlet form E∇ is exponentially ergodic. His range of γ is much more
restrictive than ours.

(iii) The most simple way to obtain some explicit estimate on the spectral
gap or the constant in the log-Sobolev inequality for this model is via Bakry–
Emery’s criterion. Indeed, since µT (dxT |x) = e−HT (x)m⊗T (dxT )/CT , where
HessHT ≥ −2γ I on the product space (Sp)T , the Bakry–Emery curvature of µT

satisfies

Ric((Sp)T ) + HessWT ≥ (p − 1 − 2γ )I.

Hence, when 2γ < p − 1, we have, by the criterion of Bakry–Emery [1],

(p − 1 − 2γ )EntµT
(f 2) ≤ 2E

µT
∑
i∈T

|∇if |2 ∀f ∈ C1((Sp)T ),(5.14)

which implies λ1(µT ,∇) ≥ p − 1 − 2γ and µT ∈ T1(K|T |/dl1), where K = (p −
1 − 2γ )−1. Our condition (5.7) in Proposition 5.5 is better as seen from (5.13).

(iv) For this model, Zegarlinski [38], Lemma 3.2, Example 3.3, found that his
coefficents of interdepence cZ

ij given in (2.8) verifies

cZ
ij ≤

√
2

λ0
|J (i − j)|

[in his expression (3.13), c0 can be replaced by 1/λ0 by the proof of Lemma 3.2
where only the single site Poincaré inequality (3.15) is used]. This estimate has an
extra factor

√
2(p + 1) w.r.t. our estimate of cij (w.r.t. the Riemannian metric) in

the proof of Proposition 5.5.
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Guionnet and Zegarlinski [16], basing on the Föllmer covariance estimate [12],
proved the log-Sobolev inequality under the Dobrushin uniqueness condition for
compact spin models, which is much stronger than λ1(µ,∇) > 0, but without a
robust estimate of the involved constant.

EXAMPLE 5.7 (The φ4 Euclidean quantum field on the lattice). This model is
given by

E = R, m(dx) = e−u(x) dx/C,


S(x) = −J (i − j)xixj , if S = {i, j} and 
S = 0 otherwise,

where u(x) = ax4 − bx2 with a > 0, b ∈ R, C is the normalization con-
stant and J : Zd → R is pair and absolutely summable with J (0) = 0. No-
tice that, for every finite T ⊂ R

d , every boundary condition x ∈ R
Z

d
such that∑

k |J (i − k)||xk| < +∞ for every i, µT (·|x) is well defined. In the following µT

denotes the local Gibbs measure with such a boundary condition.
For this unbounded spin model, we can not use the trivial metric, for which

cij = +∞ in general. So only the Euclidean metric on R will be used below. We
first recall a result of Helffer [17] and Ledoux [19]:

λ1(µT ,∇) ≥ λ0 + h,(5.15)

where h is the infimum of the spectrum in l2(Zd) of the matrix (γij )i,j∈Zd , where
γij = −J (i − j) and

λ0 = inf
θ∈R

λ1(mθ ,∇), mθ(dx) := e−u(x)+θx dx/Cθ .(5.16)

Applying the previous general results, we will get the following:

PROPOSITION 5.8. Let

σ 2 = the variance of x under m =
∫

R

x2 dm(x).(5.17)

If

γ := ∑
k∈Zd

|J (k)| < 1

σ 2 ,(5.18)

then for every finite T ⊂ Z
d ,

λ1(µT ) ≥ 1 − σ 2γ, λ1(µT ,∇) ≥ (1 − σ 2γ )λ0,(5.19)

where λ0 is given in (5.16), and

µT ∈ T1
(
K̃|T |/dl1

)
, K̃ = K0

(1 − γ σ 2)2 ,(5.20)

where K0 is the best positive constant such that

µS(dxi |x) ∈ T1(K0/d) ∀ i ∈ S ⊂⊂ Z
d, x.
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REMARK 5.9. By Cassandro, Olivieri, Pellegrinotti and Presutti [3], 1/σ 2 is
the critical value of the interaction strength γ of the corresponding mean field
ferromagnetic model. In other words, our condition (5.18) is sharp in this point of
view.

By the definition of the spectral gap,

λ1(m,∇)m(x;x) = λ1(m,∇)σ 2 ≤ 1,

and since f (x) = x is not an eigenfunction of the generator L = d2

dx2 − u′(x) dx

associated to the Dirichlet form
∫
R
(f ′)2m(dx), we have

λ1(m,∇)σ 2 < 1.

In particular, λ0σ
2 < 1, where λ0 is given in (5.16).

On the other hand, in the ferromagnetic case, that is, J (i) ≥ 0, it is easy to
see that the infimum h of the spectrum in l2(Zd) of the matrix (−J (i − j))i,j∈Zd

coincides with −∑
k∈Zd J (k) = −γ . In such a situation, our estimate (5.19) is

better than the known (5.15).

REMARK 5.10. Let c0 be the best constant such that νT,i = µT (dxi |x) satis-
fies the log-Sobolev inequality

EntνT,i
(f 2) ≤ 2c0

∫
R

(f ′)2 dνT,i ∀f ∈ C1
0(R),

for all i ∈ T ⊂⊂ Z
d and all boundary conditions x. Ledoux [19] proved that

c0 < +∞ (and an estimate of c0). Hence, the “T1” transportation constant K0
in (5.20) satisfies K0 ≤ c0 and the spectral gap λ0 ≥ 1/c0.

When J (·) is of finite range, since Yoshida [37] has proven the equivalence
between the Poincaré and log-Sobolev inequality, we have also the log-Sobolev
inequality for µT , uniformly over T and the boundary condition, once if γ < 1/σ 2.
A challenging open question is to give a robust estimate of the constant in that log-
Sobolev inequality, better than Ledoux’s [19].

REMARK 5.11. For this model, the results of Zegarlinski [38], Proposi-
tions 3.4, 3.6, do not apply.

PROOF OF PROPOSITION 5.8. Fix the finite subset T of Z
d and the boundary

condition x such that
∑

k |J (· − k)||xk| < +∞. Let us estimate the Dobrushin
coefficient cij associated with µT (·|x) and the Euclidean metric d , where i, j are

two different sites in T . To this end, consider y ∈ R
Z

d
such that x = y off j and

µ0(dxi) = µi(dxi |x) = eψ0m(dx0)/C0,

µ1(dxi) = µi(dxi |y) = eψ1m(dx0)/C1,
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where ψ0(xi) = −∑
k J (i − k)xixk , ψ1(xi) = −∑

k J (i − k)xiyk . Let ψt = ψ0 +
t (ψ1 − ψ0) and

µt := eψt m(dxi)∫
E eψt m(dxi)

.

For any function f ∈ C1(R) with ‖f ‖Lip ≤ 1, we have as in the proof of Proposi-
tion 5.5, ∫

R

f d(µ1 − µ0) =
∫ 1

0
µt(f ;ψ1 − ψ0) dt.

Since ‖f ‖Lip ≤ 1,‖ψ1 − ψ0‖Lip = |J (i − j)||xj − yj |, we have

µt(f ;ψ1 − ψ0) = 1

2

∫ ∫
R2

(
f (xi) − f (zi)

)
× [(ψ1 − ψ0)(xi) − (ψ1 − ψ0)(zi)]dµt(xi) dµt(zi)

≤ |J (i − j)||xj − yj |
2

∫ ∫
R2

(xi − zi)
2 dµt(xi) dµt(zi)

= |J (i − j)||xj − yj |µt(x;x).

But µt = mθ given in (5.16) for some θ ∈ R. By the famous GHS correlation
inequality ([14], Corollary 4.3.4 where the condition θ ≥ 0 can be removed by the
symmetry x → −x, because we are faced only to one site),

µt(x;x) = mθ(x;x) ≤ m(x;x) = σ 2.

Thus,

W1,d

(
µi(·|x),µ1(·|y)

) ≤ σ 2|J (i − j)|d(xj , yj ),

that is,

cij ≤ σ 2|J (i − j)|.(5.21)

Then ‖C‖1 ∨ ‖C‖∞ ≤ σ 2γ . Hence, λ1(µT ) ≥ 1 − σ 2γ by Theorem 2.1.
Next, since µi(·|x) = mθ for some θ , we have

λ1
(
µi(·|x),∇) ≥ inf

θ∈R

λ1(mθ ,∇) = λ0,

hence the second estimate in (5.19) follows by Theorem 2.2.
The last transportation inequality follows by Theorem 4.3 by the estimate of cij

above. �

Acknowledgments. This work has been reported in the Workshop of Beijing
Normal University, May 2004 and that of Fudan University on September 2004.
I am grateful to Professors M. F. Chen and J. G. Ying for their kind invita-
tions and warm hospitability, and especially to the first for the communication
of [5] and [27].



1988 L. WU

One referee has given a long constructive and conscientious report with a review
of known results on the examples in Section 5 (of which the author unaware), lead-
ing to considerable improvements in Examples 5.2 and 5.3 and in the presentation
of the paper in general.
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