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ON PATHWISE UNIQUENESS FOR STOCHASTIC HEAT
EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS
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Technion Israel Institute of Technology, University of British Columbia
and University of Delaware

We consider the existence and pathwise uniqueness of the stochastic heat
equation with a multiplicative colored noise term on R? for d > 1. We focus
on the case of non-Lipschitz noise coefficients and singular spatial noise cor-
relations. In the course of the proof a new result on Holder continuity of the
solutions near zero is established.

1. Introduction. This work is motivated by the following question: Does
pathwise uniqueness hold in the parabolic stochastic p.d.e.

(1) %u(z,x):%Au(z‘,x)dt-i—\/u(t,x)W(X,t)?

Here A denotes the Laplacian and W is space—time white noise on Ry x R. It is
known that uniqueness in law holds for solutions to (1) in the appropriate space
of continuous functions and such solutions are the density for one-dimensional
super-Brownian motion (see, e.g., Section II1.4 of [4]). One motivation for study-
ing pathwise uniqueness is the hope that such an approach would be more ro-
bust and establish uniqueness for closely related equations in which /u(z, x)
could be replaced by /y (u(z, x))u(z, x). Such models arise as scaling limits of
critical branching particle systems in which the branching rate at (¢, x) is given
by y (u(t, x)). The method used to establish uniqueness in law for solutions of (1)
is duality. This approach has the advantage of giving a rich toolkit for the study of
solutions to (1), but the disadvantage of being highly nonrobust, although one of
us was able to extend this method to powers of u (¢, x) between 1/2 and 1 (see [3]).

The difficulty in proving pathwise uniqueness in (1) arises from the fact that
J/u is non-Lipschitz. The above equation does have the advantage of having a
diagonal form—that is, when viewed as a continuum-dimensional stochastic dif-
ferential equation, there are no off-diagonal terms in the noise part of the equation
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and the diffusion coefficient for the x coordinate is a function of that coordinate
alone. For finite-dimensional SDEs, this was the setting for Yamada and Watan-
abe’s extension [14] of Itd’s pathwise uniqueness results to Holder continuous
coefficients, and so an optimist may hope this approach can carry over to our
infinite-dimensional setting. As we will be using their conditions later, let us recall
the Yamada—Watanabe result. Let p be a strictly increasing function on Ry such
that

) / p 2 (x)dx = o00.
0+
Now assume that o : R — R is such that, forall x, y e R,

3) lo(x) =oM< plx —yD.

Then pathwise uniqueness holds for solutions of the one-dimensional SDE

t
“) X(t)=X(0)+/0 o(X(1))dB(1),

where B is a standard Brownian motion. The square root function clearly satisfies
the above hypotheses, but the infinite-dimensional setting has stymied attempts to
carry the methodology over. Yamada and Watanabe’s proof has been simplified
(see, e.g., Theorem IX.3.5 of [6]) by the notion of the local time of a semimartin-
gale and the fact that u (¢, x) will not be a semimartingale in ¢ for x fixed (it will
only be Holder continuous of index 1/4) would seem to be a serious obstacle in
directly applying these methods.

We will not resolve the uniqueness question posed above, but will succeed in
extending the above ideas to stochastic heat equations of the form

5) %u(t,x)z%Au(f,x)df+ff(u(t’x))W(x’t)

for colored noises other than white, and appropriate Holder continuous, but not
necessarily Lipschitz continuous, o . Here, u is a random function on R x R? and
we sometimes write u, for u(t, -). The coefficient o is a real-valued continuous
function on R. It is assumed throughout this work to satisfy the following global
growth condition: For all u € R, there exists a constant c¢ such that

(6) lo ()| = ce(1+ [ul).

Here and elsewhere ¢; and ¢; ; will denote fixed positive constants, while C will
denote a positive constant which may change from line to line. The noises
W considered here are Gaussian martingale measures on Ry x R? in the sense
of Walsh [13]. W is defined on a filtered probability space (2, ¥, %, P) and
W (¢p) = fé Jra @ (s, x)W(dx ds) is an F;-martingale for ¢ € C° (R4 x RY), the
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space of compactly supported, infinitely differentiable functions on Ry x R<. If
W (¢) = Woo(¢p), W can be characterized by its covariance functional

Ji(@, ¥) :=E[W(@)W ()]

(7 iy
=/ / / o (s, x)k(x, Y)Y (s, y)dxdyds,
0 JRIJRI

for ¢, ¥ € CP(R,; x RY). We call the function k : R? — R the correlation ker-
nel of W. Some sufficient conditions for the existence of a martingale measure
W corresponding to k are that Ji is symmetric, positive definite and continuous.
Thus, necessarily, k(x,y) = k(y,x) for all x,y € R4, Continuity on C2° is im-
plied, for example, if k is integrable on compact sets. We also note that a gen-
eral class of martingale measures, spatially homogeneous noises, can be described
by (7), where k(x, y) = k(x — y).

If o (1) = u, then equation (5) arises as the diffusion limit of super-Brownian
motion in R? where the offspring law depends on a random environment, whose
spatial correlation is described by k. For k& bounded, this was proven in [11]. More
general coefficients o may be thought of as reflecting an additional dependence of
the offspring law on the local particle density.

If k is bounded, Viot [12] proved pathwise uniqueness for solutions to (5) on
bounded domains of R? for o (1) = /u(l — u), where the subscript indicates
that the positive part of the function is taken. We will extend this result to our
setting for solutions of (5) on R4 with bounded k in Theorem 1.6 below. Note that
white noise will correspond to the case where we set k equal to the generalized
function §¢ in the above. Our main result (Theorem 1.4 below) will interpolate
between these settings and establish pathwise uniqueness for colored noises for
which the correlation is bounded by a Riesz kernel,

8) |k(x, )| <cgllx —y|"*+1] for all x, y € R? and appropriate o > 0.

In order to formulate a condition on the singularity of £ and relate our condi-
tions to those in the literature, we define the spectral measure, u, of a spatially
homogeneous covariance kernel k:

9) L Fwewar= [ Fo@nas)

for any rapidly decreasing test function ¢ where F¢(§) = [gpaexp(—2im§ -
x)¢ (x)dx is the Fourier transform. Later on we will assume u to be a tempered
measure fulfilling, for some 7 € [0, 1],

n(d§)
1o o e <=

To relate (8) with condition (10) used in the literature, we introduce the following:
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(A)y: (n > 0) W is a Gaussian noise with correlation kernel |k(x, y)| < clolz(x —
y),x,y € R? for some symmetric, locally bounded and positive definite
kernel kK whose spectral measure satisfies (10).

(A)g: W is a Gaussian noise and its correlation kernel & is bounded.

REMARK 1.1. Note that (8) implies (A), for a € (0,2n A d) : Here, lg(x) =
|x|7® + 1 and the spectral measure is of the form w(d&) = c11[|&|*"%dE +
80(d&)]. Hence, condition (10) is satisfied if and only if « € (0, 2n A d) (see Chap-
ter V, Lemma 2(a) of [9]). Note also that the positive definite spatially homoge-
neous kernels ky (x, y) = |x — y|~% give a natural family of kernels for which our
results will hold.

In order to make sense of the formal equation (5), we use the variation of con-
stants form of solutions: Denote by p the d-dimensional heat kernel

1 x|
(11) Pt(x) = (27Tt)d/2 eXp(_Z—t)

A stochastic process u:Q x Ry x R? — R, which is jointly measurable and
F;-adapted, is said to be a solution to the stochastic heat equation (5) in the vari-
ation of constants sense with respect to the martingale measure W, defined on €2,
and initial condition ug, if for each ¢ > 0, a.s. for almost all x € R4,

ut,x)= | p(x—yuo(y)dy
(12) fRd

t
+/0 /Rd Pi—s(x = y)o (u(s, y))W(dyds).

Solutions to (12) have been well studied in the case where o is Lipschitz contin-
uous in u. A sufficient condition for strong existence and uniqueness of solutions
is given by (A), for n < 1 see [1] (see also Theorem A.1 in the Appendix) and [5].
Holder continuity of the sample paths was established by Sanz-Solé and Sarra [8]
if n <1 (cf. Lemma A.4 in the Appendix).

To state the main results, we introduce some notation, which will be used
throughout this work: We write C(R?) for the space of continuous functions
on R?. A superscript k, respectively oo, indicates that functions are in addition
k times, respectively infinitely often, continuously differentiable. A subscript b,
respectively ¢, indicates that they are also bounded, respectively have compact
support. We also define

I fllx.00 = sup | f(x)|e ],

xeRd

set Ciem = {f € C(RY), | fllrco < oo for any A > 0} and endow it with the
topology induced by the norms || - ||, 0 for A > 0. That is, f;, = f in Cien iff
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limy o0 | f — fulla,oo =0 for all A > 0. For I C Ry, let C(/, E) be the space
of all continuous functions on / taking values in a topological space E, endowed
with the topology of uniform convergence on compact subsets of /. A stochas-
tically weak solution to (12) is a solution on some filtered space with respect to
some noise W, that is, the noise and space is not specified in advance.

With this notation we can state the following standard existence result whose
proof is outlined in the Appendix:

THEOREM 1.2. Let ug € Ciem, and let o be a continuous function satisfying
the growth bound (6). Assume that (8) holds for some a € (0,2 A d). Then there
exists a stochastically weak solution to (12) with sample paths a.s. in C (R4, Cem).

REMARK 1.3. (a) The proof in fact only requires that (A), hold for some
n € [0, 1), a condition which follows from the above bound on £ by Remark 1.1.

(b) In the case where the correlation kernel is bounded, existence has been
shown for more general initial conditions and solution spaces in [11]: Define
Lf RY) := LP(R4, el dx) and denote the associated norm by || - ll5.,p- Then
if E(Jjugl| f’ p) < 00, for some p > 2 and A > 0, there exists a stochastically weak

solution u € C(R, Lf (R9)) to (12) which satisfies

(13) E( sup |lu(t, -)IIf’p> <0 for any 7" > 0.

0<t<T

We say pathwise uniqueness holds for solutions of (12) in C (R, Ciem) if, for
every ug € Ciem, any two solutions to (12) with sample paths a.s. in C(Ry, Cien)
must be equal with probability 1. For Lipschitz continuous o, it is easy to modify
Theorem 13 of [1] and Theorem 2.1 of [8] to get pathwise uniqueness and Holder
continuity of solutions for ¢ < 2 A d. Also, Theorem 11 and Remark 12 of [1]
show that function-valued solutions will not exist for @ > 2 A d. Here then is our
main result—it holds in any spatial dimension d:

THEOREM 1.4. Assume that, for some o € (0,1), 0 : R — R satisfies (6), is
Holder continuous of index y for some y € (HT“, 11, and

ke, | <cralle=yI™ +11  forallx,y e R".
Then pathwise uniqueness holds for solutions of (12) in C(R4, Ctem)-
REMARK 1.5. The Holder condition on ¢ may be weakened to the local
Hoélder condition: For any K > 0, there exists L = L(K) such that
lo@) —o@)| <L(u—v|" +lu—v)  Vu,v:lul, v <K,

where y is as in Theorem 1.4. The required modifications in the proof are elemen-
tary.
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It also looks possible to weaken the pointwise bound on k to the following
condition:

A;d /de(x, Vh(x)h(y)dxdy < c/]Rd /Rd[lx —y7Y + 1A x) [|h(y)|dx dy,

for all /& in an appropriate class of functions decaying to 0 at infinity. We have used
the stronger pointwise bound as it is more convenient and explicit.

In the above result there is a trade-off between the Holder continuity of o
and the singularity of the covariance kernel of the noise. For d = 1, let-
ting @« — 1— and renormalizing will give white noise. More specifically, if
ko (x —y) = 15%|x — y|7, then for ¢, ¥ € C°(Ry x R), limg_1— Ji (9. 9) =
157 [ & (s, x)¥ (s, x) dx ds. The Holder condition in Theorem 1.4 approaches Lip-
schitz continuity. (As k should be locally integrable, we cannot expect to take
o« = 1.) Hence, although the result does not say anything about white noise itself,
it at least coincides with the known Lipschitz conditions which imply pathwise
uniqueness in the limit as o approaches 1. The same cannot be said for higher
dimensions. Here, the aforementioned results of Dalang, and Sanz-Solé and Sarrd
show that, for a < 2, we will have pathwise unique continuous solutions when
the coefficients are Lipschitz continuous. Unfortunately, our hypotheses become
vacuous in the above uniqueness theorem when a exceeds 1 and so we believe our
condition on the Holder index in Theorem 1.4 is nonoptimal in dimensions greater
than 1. At the other end of the scale, we see that as o approaches 0, the required
Holder exponent approaches 1/2, the critical power in the one-dimensional results
of Yamada and Watanabe. In fact, if the covariance kernel is bounded, we can
weaken the Holder condition on o to precisely the Yamada—Watanabe condition
(2), (3) introduced above. Again, the result holds in any spatial dimension.

THEOREM 1.6. Assume that (A)g holds and that o : R — R satisfies (6) and
(3). Then pathwise uniqueness holds for solutions of (12) in C(Ry, Ciem).

REMARK 1.7. (a) The conclusions of Theorems 1.2, 1.4 and 1.6 remain valid
if we allow for an additional drift term in the heat equation. More precisely, we
can add a term of the form [j [ p;—s(x — y) f (u(s, y)) dy ds to the right-hand side
of (12), where f satisfies the growth bound (6), is continuous in the existence the-
orem, Theorem 1.2, and is Lipschitz continuous for the uniqueness results, Theo-
rems 1.4 and 1.6. The additional arguments are standard.

(b) The pathwise uniqueness conclusions of Theorems 1.4 and 1.6, and weak
existence given by Theorem 1.2 imply the existence of a strong solution to (12),
that is, a solution which is adapted with respect to the canonical filtration of the
noise W. The proof follows just as in the classical SDE argument of Yamada and
Watanabe (see, e.g., Theorem IX.1.7 of [6]).
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(¢) Theorem 1.6 holds true if we consider solutions with paths in C(R4,
Lf (R%)) as was done in Viot’s work [12]. In fact, the arguments given in Sec-
tions 2 and 3 remain the same in this case. The only difference is that a bit more
care has to be taken to justify some of the convergences as the solutions are not
necessarily continuous. But this can be done in a straightforward way.

The proof of our pathwise uniqueness theorems will require some moment
bounds for arbitrary continuous Ciy-valued solutions to the equation (12). Let
St (x) = [ pi(y — x)¢p(y) dy. The following result will be proved in the Appen-
dix.

PROPOSITION 1.8. Let ug € Ciem, and let o be a continuous function satisfy-
ing the growth bound (6). Assume that (8) holds for some o € (0,2 Ad). Then any
solution u € C(R4., Ceem) to (12) has the following properties:

(@) Forany T, ) > 0and p € (0, 00),

(14) E( sup sup |u(t,x)|pe_klx|) < 0.
0<t=<T xeRd

(b) For any & € (0,1 — «/2), the process u(-,-) is a.s. uniformly Holder con-
tinuous on compacts in (0, 00) x R?, and the process Z(t,x) =u(t,x) — Siup(x)
is uniformly Holder continuous on compacts in [0, 00) x R?, both with Hélder
coefficients % in time and & in space.

Moreover, forany T, R > 0, and0 <t,t' < T, x,x’ € R? such that |x — x'| < R,
as well as p € [2,00) and & € (0,1 — «/2), there exists a constant ci5s =
c15(T, p, X, R, &) such that

(15)  E(1Z@t,x) — Z(t', x")|Pe ™) < c15(|t — /| 6/2P 4 |x — x|5P).
REMARK 1.9. The proof of the above will only require (A), for some n €
[0, 1), a condition which is implied by the hypotheses above (see Remark 1.1).

In this case we should take & € (0,1 — n) in (b) as is done in the proof in the
Appendix.

It is straightforward to show that, under the hypotheses of Theorem 1.2, so-
lutions to (12) with continuous Cy-valued paths are also solutions to the heat
equation in its distributional form for suitable test functions ®. More specifically,
for ® € C°(RY),

/u(t,x)cb(x)dx
R4
t
(16) =fRd uo(x)q>(x)dx+f0 fRdu(s,x)%Afb(x)dxds

t
+_/(; _/Rdo(”(&x))q)(x)W(dxds) V> 0as.
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In fact, given an appropriate class of test functions, the two notions of solutions
(12) and (16) are equivalent. In our case, {® € C*®°(R%) : ®(x) < Ce ! for some
C > 0 and all x € R?)} is a suitable class of test functions. For the details of the
proof, we refer to [10], Proposition 3.2.3. There, the setting is a bit different as it
works in the setting of Remark 1.3 with bounded k. However, the arguments do
not change for the case of k unbounded as long as the stochastic integral in (16) is
well defined, which can easily be checked.

We now briefly outline the proof of our main result (Theorem 1.4) and the
contents of the paper. To emulate Yamada and Watanabe, consider a pair of so-
lutions, u! and u?, to (12), set & = u' — u?, and use (16) and Itd’s lemma
to derive a semimartingale decomposition for fé [ (s, x)|Ws(x)dx ds, where
W (x) > 0 is a smooth test function. This involves approximating |i(s, x)| by
¥, (g, (- — x))) as m,n — oo, where {y,} are smooth functions approxi-
mating the absolute value function as in [14], and {®,,} is a smooth approximate
identity. In Section 2 the martingale and standard drift terms which arise are han-
dled in a relatively straightforward manner in a general setting, including that of
both Theorems 1.6 and 1.4 (see Lemma 2.2). Here we may let m, n — oo in any
manner. The problematic term, called 13;"" below, is the one arising from the v,/ /2
term in using Itd’s lemma and so will involve the quadratic variation of the martin-
gale term. In the context of the Yamada—Watanabe proof, it is the one which leads
to the local time at O of the difference of two solutions to the SDE, L?(X I_x?2).
There, this term is shown to be 0 using the modulus of continuity of o and the
regularity of the sample paths of the solutions (the latter implicitly, as one needs
the stochastic calculus associated with continuous semimartingales).

In Section 3 13" is shown to approach 0 if we first let m — oo and then n — oo
in the simpler context of Theorem 1.6. This leads to

t .
(17) /E(W(t,x)l)%(x)dx 5/0 /‘E(|ﬁ(s,x)|)|%A\IJS(x)—i—\IJs(x)|dxds,

from which & = 0 follows easily by taking W,(x) = [ p;—s(y — x)¢p(x)dx. We
feel the ease of this argument is partly related to the greater path regularity & in
this context—it is Holder continuous in space with index 1 — ¢ and in time with
index % — ¢ by results of Sanz-Solé and Sarra (see [8] and Lemma A.4 below).

In Section 4 we complete the proof of Theorem 1.4 by showing lim,,—, Ié""’” =
0 for a judicious choice of m,, which again leads to (17). In this setting u(z, x)
is only Holder continuous of index 1_—;1/2 — ¢ in time and 1 — 5 — & in space
(see Lemma A.4 or [8]) and this additional irregularity makes the argument more
involved. In the Yamada—Watanabe context, the key fact that L?(X I_xH =0
reflects the fact that the solutions must separate “slowly” if they do so at all. In
our setting we will argue along similar lines by showing that (¢, x) is more reg-
ular in (¢, x) at small values of i (¢, x), that is, when the solutions are close (see

Theorem 4.1). For example, they will be Holder of index ll_f‘)f 2A1—¢in space
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near space—time points where # is sufficiently small (see Corollary 4.2). Theo-
rem 4.1 is proved in Section 5 and is the key to the proof of Theorem 1.4 which
is completed in Section 4. This improved modulus of continuity result may be of
independent interest. In fact, a similar result to Theorem 4.1 was derived indepen-
dently by Mueller and Tribe in the context of white noise, in their ongoing work
on the zero set of solutions to (1). The continuity results of Sanz-Solé and Sarra
[8] and the factorization method they use (see [2]) play a critical role in the proof
of Theorem 4.1 in our colored noise setting. The Appendix includes the proofs
of the weak existence theorem (Theorem 1.2) and the required moment estimates
(Proposition 1.8).

2. Some auxiliary results. Let p be as in (2). An elementary argument shows
that f0+(p(x) + ﬁ)_z dx = +o0 [e.g., consider liminfy g ,o_z(x)x > 1 and
liminfy o p~2(x)x < 1 separately]. As we will be using p as a modulus of conti-
nuity [see (3)], we may replace p with p(x) + 4/x and so assume

(18) p(x) = V/x.

As in the proof of Yamada and Watanabe [14], we may define a sequence of func-
tions ¢, in the following way. First, let a, | O be a strictly decreasing sequence
such that ap = 1, and

(19) f o 2(ydx =n.

Second, we define functions ¥, € CZ°(R) such that supp(y,) C (an, an—1), and
that

2072 2
0<¥nlx) =< ) <—
nx
(20) o
for all x € R as well as / Yp(x)dx =1.
an
Finally, set
x| ry
@1) fu(x) = /0 /0 Y (2)dzdy.

From this, it is easy to see that ¢, (x) 1 |x| uniformly in x > 0. Note that each i,
and, thus, also each ¢,, is identically zero in a neighborhood of zero. This implies
that ¢, € C*°(R) despite the absolute value in its definition. We have

[x]
(22) $1() = sgn(x) /O U (y)dy,

(23) ¢, (x) = Y (|x]).

Thus, ¢, (x)| <1, and [ ¢, (x)h(x)dx — h(0) for any function # which is con-
tinuous at zero.
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Now let u' and u? be two solutions of (12) with sample paths in C(Ry, Ciem)
a.s., with the same initial condition, u'(0) = u2(0) = u¢ € Ciem, and the same
noise W in either the setting of Theorem 1.6 or Theorem 1.4. We proceed assum-
ing Proposition 1.8 which will be derived in the Appendix. Define ii = u' —u?. Let
deC (R?) be a positive function with supp(®) C B(0, 1) (the open ball cen-
tered at O with radius 1) such that fps ®(x)dx =1 and set ' (y) = deD(m (x —
y)). Let (-, -) denote the scalar product on L>(R?). By applying It6’s formula to
the semimartingale (i;, ®7') of (16), it follows that

B (iir, D))
= / [l @0 (' 5. )) = 0 (1 (s, ) @Y ()W (dy ds)

+5/0 A; Y (14, 7))

x (o (' (s, ) — o (s, ) (o (' (5. 2)) — o (1(s. 2)))
x OV (y) PV (2)k(y, z)dydzds.

We integrate this function of x against another nonnegative test function W €
C°([0,1] x R%). Assume

24) ={x:¥Y,(x)>03s <t} C B0, K) for some K > 0.

We then obtain by the classical and stochastic version of Fubini’s theorem, and
arguing as in the proof of Proposition I1.5.7 of [4] to handle the time dependence
in ¥, that, for any ¢ > 0,

(60 (i, O™)), W)
t
= [ [0 @)@ 00, wi)(o (0! 5. ) = (w6, ) Widy ds)

+/¢(us, ") (i, L AGT), W) ds

+%/0 [y tnltis, @231

X (G(u1 (s,y)) — a(uz(s, y)))(a(u1 (s,2)) — O’(MZ(S, 2)))
x QT ()P (2)k(y, z)dydz W (x)dx ds

+/ b ((iis, ™)), Wy)ds

=10+ L")+ L)+ 17 (@).



1920 L. MYTNIK, E. PERKINS AND A. STURM

2
We need a calculus lemma. For f € C%(RY), let ||D2f||Oo = max; || % lloo-

LEMMA 2.1. Let f €C 3 (R?) be nonnegative and not identically zero. Then
of N o1 2
sup E(x) F) T f(x)>0p 2D flloo.
1
PROOF. Assume first d = 1. Choose x so that f(x)|f’(x)| > 0. Without loss
of generality, assume f’(x) > 0. Let
x1 =sup{x’ <x: f'(x') =0} € (—o0, x).

By the Cauchy (or generalized mean value) theorem, there is an x € (x1, x) so
that

d((f?)
dx

(f') = faDD) f(x2) = (f(x) = f(x1) (x2)

and, as f’(xp) > 0, we get
F10? = (fx) = fxD)2f" (x2).
Since f is strictly increasing on (x1, x), and f(x1) >0,

f'(x)? f'(x)?
< <201 f"llcc-
f&x) 7 fx) = fxr)
For the d-dimensional case, assume x satisfies f(x) > 0 and let ¢; be the ith unit

basis vector. Now apply the one-dimensional result to g(t) = f(x +te;), t € R, at
t=0. O

We now consider the expectation of expression (25) stopped at a stopping
time 7, which we will specify later on. For all the terms except Ié” ' we can
give a unified treatment for the settings of both Theorems 1.4 and 1.6.

LEMMA 2.2. For any stopping time T and constant t > 0, we have the follow-
ing:

(a)
(26) E(I[{""(tAT))=0  forallm,n.

(b)

tAT
(27)  limsupE(L""(t AT)) < E(/ / i (s, x)|%A\Ifs(x) dx ds).
0 R

m,n— 00
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()
tAT .
(28) lim E(1""(t A T)) :E(/ |11(s,x)|\IJS(x)ds).
m,n— o0 0

PROOF. (a) Let gpmn(s,y) = (¢, (s, @™))P"(y), ¥s). Note first that
I{""(t AT) is a continuous local martingale with square function

tAT
(I oy = fo / / (52 V) gmn (5, (0 (' (5. 1)) — 0 (125, 1))
x (o (u'(s,2)) — o (u*(s, 2)))k(y, 2) dy dzds
tAT
1 2
scfo f/|gm,n(s,y>||gm,n<s,z)|(|u (5, )| + (s, y)| + 1)

x (lu' (s, 2)| + [u%(s, 2)| + 1)z — y| ™ + D dydzds.

An easy calculation shows that |g, (s, ¥)| < [V ]leo1(]y] < K + 1), where K is
defined in (24). Now use Holder’s inequality and (14) to conclude that

ECI"") iaT)

t
SC/() //I(MSK-'_I)]I(M5K+1)(|y—2|_a+1)dydzds<oo

Vt>0.

This shows 1 lm (t AT) is a square integrable martingale and so has mean 0, as
required.
(b) In order to rewrite 1,"", we note that both ¢ ((iiy, ®™)), as well as

(uy, %AQD{"), are in C®(R?) a.s. This follows from the infinite differentiability
of the test functions ¢, and ® and from (14). Denote by A, the Laplacian act-
ing with respect to x. Since i is locally integrable and ® smooth, we have, for
x| =K,

f A(s, )L A, 0" (x — y)dy = f (s, ) LA™ (x — y)dy
R4 R4
(29)
=18, [ s, " = y)dy,
]Rd

for all m. This implies, for any ¢ > 0,

15""(0—// &, ((itg, @ ) A ((its, ™)V (x) dx ds

/ /Rd dx; (CAC s’q)m») (<L‘Ssq>m))‘1’ (x)dxds



1922 L. MYTNIK, E. PERKINS AND A. STURM

f/ &y, (s, @ (<u;,c1>’">)—w (x)dxds
ff U (I, ) |)( (u;,CDm)>2‘~IJS(x)dxds

l t / ~ cDm )i( 7 cDm i\l] )d d
2/0 Rd%((us, ) o (it x>)8xi J(x)dx ds

:_Z /f V(| (iiy, D) |)< (us,d>m)>2\lls(x)dxds

N 0
+Z f/ Y ({5, @ <<us,<I>T>><us,d>;’>a—mws(x)dxds

1
—f—f / ¢ (g, ") (g, © )EA\IJS(x)dxds

- / I (s) + 1257 (s) + 1 (5) ds.
L , ,

Above, we have used that ¢, = ¥, and we have repeatedly used integration by
parts, the product rule as well as the chain rule on ¢, ({iis, ®7')). In order to deal
with the various parts of I;"", we will first jointly consider /,"}" and I,";". For
fixedsandi=1,...,d, we define, a.s.,

\) 8 2 a
A7 = x| — (g, DY) ) Ws(x) < (itg, DY) —
0x; d
N{x:W(x) > 0}
+, -, 0,
=AUAT UAY,

iy, cb%iws(x)}
0x;

i

where
' 0

+, ~
Ai é:Afﬂ a—%<us,¢;1>>0 s
AT =AN i(ﬁs d" <0

1 l axl ’ X ’
A% = AN i(zjs, Py =0

1 axi X

On A:“S we have

0<<i<ﬁs,<b >)w<x><<us,<1> w0,
0 0x;

Xi
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and therefore, for any r > 0,

4 0

[ ]t @), @) 00— G, 07 dxds
0 JA" 0x; i
(8/9x; Vs ()

W (x)

e (30 W (x))?
//Hn {an—1 I iy @) | <ay) | s, YN[ V.0 dxds by (20)

//' (ax W(x))?
— (Vs (x) > 0)—-———dxds
Wi (x)

t
~ m ~ my\2
sfof/ﬁ.swn<|<us,d>x>|><us,<bx> dx ds

2
< ﬂf 21| D> W, || o Area(T) ds = —2.C (W),
n 0 n

where Lemma 2.1 is used in the last line, and IT" is defined in (24). Similarly, on
the set A;

ad ]
0> — (s, DY) W5 (x) = (ity, DY) — W (x).
0x; 0X;
Hence, with the same calculation,

! ]
ff_x U ([{is, 7)) (s, ) — lIJ(x) (iis, ®™) dx ds
0 JA;” 8

0x;
2 (a/axlw (x))?
/ / (Wy(x) > .00 dxds

2an

< —C(lIl)

Finally, for any ¢ > 0,
! ~ m ~ m 8 m
| o s DD s, )50 x,<”“ ) dxds =0,

and we conclude that

E(L'(t AT) + 15t AT)) < 4C(W) 22,
’ ’ n

which tends to zero as n — o0. For Igf é", recall that ¢, (u)u 1 |u| uniformly in u
as n — oo, and that (i, ') tends to u(s, x) as m — oo for all s, x a.s. by the
a.s. continuity of &. This implies that ¢/ ((is, @) (its, P7') — |i(s, x)| pointwise
a.s. as m, n — 0o, where it is unimportant how we take the limit. We also have the
bound

(30) |y, (i, @YD iy, Y] < iy, PN < (lids], DY)
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The a.s. continuity of & implies a.s. convergence for all s, x of (ug|, ') to
|t (s, x)| as m — oo. A simple application of Jensen’s inequality and (14) shows
that |(|itg], @7')| is L? bounded on ([0, ] x B(0, K) x 2, ds x dx x P) uniformly
in m. This implies

(31  {(las|, @) :m} is uniformly integrable on ([0, 1] x B(0, K) x )

and so gives uniform integrability of {|¢,, ((its, 7)) iy, PY)| :m, n} by our earlier
bound (30). This implies

tAT
mggle(lfén(t AT)) =]E(/ /|u(s x)l AW, (x)dxds)

Collecting the pieces, we have shown that (27) holds.
(c) Asin the above argument, we have

(32) ¢n((ug, D)) — lu(s, x)| asm,n — oo a.s. forall x and all s <.

The uniform integrability in (31) and the bound ¢, ({(it5, 7)) < (|us|, ') imply
{¢n((iis, D7) :n, m} is uniformly integrable on [0, f] x B(0, K) x .

Therefore, the result now follows from the above convergence and the bound

|¥, (x)| < C1(Jx| < K). O

3. Proof of Theorem 1.6. Here, we let T = ¢ be deterministic. Given the
results from Section 2, it now remains to estimate IE(I;" (t)). We will then let
m — oo before letting n —> oo. By the boundedness of the correlation kernel k
and Jensen’s 1nequahty, (¢) is bounded by

2||k||<>o// (/ o (' (5. ) — (uz(s,y))tbe(y)dy)2

X Y (|5, D)Wy (x) dx ds
§§||k||oo/ / ul(s,y)) —o(u (s,y)))2

x(/ wn<|<as,¢;">|)d>?<y)ws(x>dx)dyds.
Rd

The integral in parentheses is bounded by a constant, independent of m, is zero for
all m if |y| > K 4+ 1, and as m — 0, converges to vV, (u(s, ¥)) W (y) for all (s, y)
by the continuity of &. Our growth condition on ¢ and (14) imply the integrability
of

/ / u'(5.9)) — o (u*(s, ) Ly <k +1) dy ds.
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Therefore, the dominated convergence theorem implies that

: mon 1 Lo
lgn_)sgopE(g (1) < EllkllooE</0 (W) (0 (uh) — o D))’ \I’s)dS)

(33) ;
= CO)[klloo-

where the last line follows by (3) and (20).

Return to equation (25) and let first m — oo and then n — oco. Use the above
and Lemma 2.2 on the right-hand side, and (32) and Fatou’s lemma on the left-
hand side, to conclude that

t .
(34) /]Rd E(|a(t, x)|) W (x)dx 5/0 /Rd E(|ﬁs(x)|)|%Allls(x)—i—\Ils(x)\dxds.

Let {gn} be a sequence of functions in CZ° (R?) such that gnN ‘R4 - [0, 1],
B(0, N) C{x:gn(x) =1}, B(O,N + 1 C{x:gn(x) =0}
and

sup[[[Venlloo + 1D gn lloc] = C(g) < 00,
N

where V gy denotes the gradient with respect to the spatial variables. Now let ¢ €
C2®(RY), and for (s, x) € [0, 1] x RY, set Wy (s, x) = (S—s¢ (x))gn (x). It is then
easy to check that Wy € C2°([0, ] x R%) and for A > 0, there is a C = C(A, ¢)
such that, for all N,

d 3 9 A
D S (xi)—gn(xi) + Si-s¢ (¥) N (x)

= 0x; 0x;

A )
‘E\IJN(S,X)-F‘IJN(S,X)

< Ce MMyany.

Use this in (34) to conclude that

t
fRdE(lﬁ(t,x)Dqﬁ(x)dx < C/O /RdE(Iﬁ(s,x)|)e_)‘|x|ll{|x|>N}dx ds.

By Proposition 1.8, the right-hand side of the above approaches zero as N — oo

and we see that
E(/ lu(t, x)|dx> =0.
Rd

Therefore, u'(r) = u?(¢) forall r > 0 a.s. by a.s. continuity.
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4. Proof of Theorem 1.4. We continue to use the notation of Section 2 and
also assume the hypotheses of Theorem 1.4. In particular, u' and u? are solutions
of (12), u = u! — u?, o is Holder continuous with exponent y,

lo(u) —o ()| < Llu—v|¥ foru,v e R,

and |k(x, y)| <ci4[lx — y|~* + 1] for some « € (0, 1). We choose p(x) = 4/x for
our smooth approximation of the absolute value function throughout noting that
(3) is not necessarily satisfied for large values. Nevertheless, we will use the test
function ¢, and its derivatives as defined in (21) to (23) corresponding to this p.

Fix some A > 0 and let Tx = inf{t > 0: supxeRd(wl(t, )|+ (@, x))e M >
K} A K. Note that

(35) Tx — oo, P-as.,

since u' € CRy, Ciem)-
Also define a metric d by

d((t, x), (', x)) = /It =t'| + |x — x|, 1, eRy,x,x' eR?,
and set
Zxne={(t,x) eRy xRt < Tk, x| < K,d((t, x), (f, %)) <27V for some
(, %) € [0, Tk ] x RY satisfying |ii(f, £)| <27V,
We will now use the following key result on the improved Holder continuity

of u when # is small. It will be proved in Section 5.

THEOREM 4.1.  Assume the hypotheses of Theorem 1.4, except now allow y €
(0, 1]. Let ug € Ciem and it = u' — u?, where u' is a solution of (12) with sample
paths in C(Ry, Cem) a.s. fori =1,2. Let & € (0, 1) satisfy

INe = Ne(K, w) e Na.s. such thatVN > Ng, (t,x) € Zg N g
(36)
d((t',y), (t,x) <27V, <Tx = lat,x) —a(', y)| <275

LetO <& <[Ey+1— %] A 1. Then there is an Ng; = Ng, (K, w) € N a.s. such
that, for any N > Ng, in N and any (t,x) € Zg N ¢,

(37 d(({,y), (t,x)) <27V, 1t <Tx =i, x)—a(', y)| <2761,

Moreover, there are strictly positive constants R, 5, c33.1, c38.2 depending only on
(&,&1) and N(K) € N, which also depends on K, such that

(38)  P(Ng = N) <cas.1(P(Ne = N/R) + K9 exp(—c3522™)),
provided that N > N (K).
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REMARK. Results similar to the above for white noise were independently
found by Carl Mueller and Roger Tribe in their parallel work on level sets of
solutions of SPDEs.

Recall A > 0 is a fixed parameter used in the definition of Tk .

COROLLARY 4.2. Assume the hypotheses of Theorem 1.4, except now allow
y € (0, 1]. Let ug and u be as in Theorem 4.1, and 1 — % <& < 11—_0142 A 1. There
is an a.s. finite positive random variable Cg g (w) such that, for any ¢ € (0, 1], €
[0, Tx1and |x| < K, if |ii(t, %)| < &° for some |% —x| < ¢, then |ii(t, y)| < Cg,Kés‘E
whenever |x — y| < &. Moreover, there are strictly positive constants &, ¢39.1, C39.2,
depending on &, and an ro(K), which also depends on K, such that

r—=o6 i
P(Ce,xk > 1) <c39.1 [(m)

+ Kd_H exp| —¢ L 8
P\ —¢39.2 (K + De KD

forallr >rg(K) > 6+ (K + et E+D,

(39)

PROOF. By Proposition 1.8(b) and the equality i = Z! — Z2, where Z(t, x) =
u' (¢, x) — S;uo(x), we have (36) with & = &y = %(1 — %). Indeed, u is uniformly
Holder continuous on compacts in [0, 0c0) x R? with coefficient &€ in space and %
in time provided that § <1 — 5.

Inductively, define & 41 = [(Ey + 1 — %) A 11(1 — -13) so that &, 1 11—_“;2 Al
Fix ng so that §,, > § > &,,-1. Apply Theorem 4.1 inductively ng times to get (36)
for §,,—1 and, hence, (37) with §; =§,,.

First consider ¢ < 27N5"0. Choose N € N so that 27V-! < ¢ <27V (N >
Ngno), and assume ¢ < Tk, |x| < K and |u(z,x)| < g8 <27 N8 < 2 Néng-1 for
some |X — x| <& <2~N.Then (t,x) € ZKstg:no—l' Therefore, (37) with § =&,
implies that, if |y — x| <& <27V then

(e, y)| < |u(t, X)| + lu(t, £) —a(t, x)| + |a(t, x) —a(t, y)|
<27 NE 4 2. 07Ny <3.27NE < 3(26)F <66t

For ¢ > Z_NS”O, we have for (¢, x) and (¢, y), as in the corollary,
li(t, y)| < (K 4+ De*E+D < (K + 1) E+DpNeng g€

This gives the conclusion with Cg x = (K + 1)e*& +DoNewy 1 6. A short calcula-
tion and (38) now imply that there are strictly positive constants R, 8, c40.1, €402,
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depending on £ and K, such that

1 r—=6
P(Ce,xk >71) <ca0.1 [P<N1/z(1—a/2) > EM;’z(m))

+ K exp( —c e 5
02\ (K + 1)er&+D

for all » > ro(K). The usual Kolmogorov continuity proof applied to (15) with
i=27"—2Z%inplace of Z [and & = %(1 — 5)] shows there are &, ¢3 > 0 such that

(40)

P(N1j2(1—a/2) > M) < 527 MF
for all M € R. Thus, (39) follows from (40). O

Now fix «, y satisfying the conditions of Theorem 1.4, so ¢ < (2y — 1) and
notice that since 1 > y > %, this implies that ll_f}f 2
& € (0, 1) such that

(41) a<&EQy—-1)

11__0‘){ 2 A 1. This means that & satisfies the conditions of Corol-

> 1. Hence, we can choose

and 1 — 5 <& <
lary 4.2.

We return to the setting and notation in Section 2. In particular, ¥ € C2°([0, 7] x
R with T' = {x : ¥, (x) > 0 3s <1} C B(0, K). Recall Lemma 2.2 is valid in the
setting of Theorem 1.4.

Letm®™ := an__l{g. Note that m™ > 1 for all n. We set co(K) := ro(K) v K2e*K
[where ro(K) is chosen as in Corollary 4.2] and define the stopping time

Tg k =inf{r > 0:1 > Tk ort < Tk and there exist ¢ € (0, 1],
£,x,y e Rwith [x| <K, |i(t, )| <&, |x — %] <&,
|x — y| < & such thatlii(¢, y)| > co(K)e®}.

Assuming our filtration is completed as usual, T¢ g is a stopping time by the stan-
dard projection argument. Note that, for any ¢ > 0, by Corollary 4.2,

P(Te x <1) <P(Tg <t)+P(Ce x > co(K))
<P(Tgx <1)

KZe)\K -6 =4
Teson [((K n 1)eW<+1>>

KZekK -6 )
d+1
(43) + K eXP(—C39.2<W) >],

(42)

which tends to zero as K — oo due to (35).
With this set-up we can show the following lemma:
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LEMMA 4.3. Forallx el and s € [0, Tg k1, if |{us, CDTM)H <au_1, then

sup  |u(s, )| < co(K)an—1.
yeB(x,1/mM)

PROOF. Since | (i, CDT(n))l <a,_1 and 1iz(-) is continuous, there exists a X €
B(x, ﬁ) such that |i(s, X)| < a,—1. Apply the definition of the stopping time
withe =1/ m®™ € (0, 1] and so £ = a,_; to obtain the required bound. [J

Next, we bound | /5" (n)’"| using the Holder continuity of o, as well as the defini-
tion of ¥,. If |o(x) —o(y)| < L|x — y|¥, then

(n)
5" A Te k)|

L2 rinTek | , ,
:ﬂ_ 5 —_ ~ ~
n /o /de {an =1, @1 <)% Vs D715 ()]

8

=

x @ (@™ " (lly — 217 + 11dy dz W, (x) dx ds.
Now set I'l = {x e R¢,d(x,T") < 1}. Since ®(x) < Clp(,1)(x) and
1,1 (m™ (x — y)) - L, (m™ (x —2))
<Lpo,1(m™x —y))-1gon(Em™ (- 2),
we obtain from Lemma 4.3

(n)
|15t A Tx k)|

azy
< cgL2co(K)?r =L
a

nan
INTg g
X 1 -
/O /de {an<I(iis @™ | <a—1)

X CD?(H)()’)(DT(M @Dlly —zI™* 4+ 11dydz Ws(x)dx ds

2
s L2V soco (K @ |

n a,

INTe K e m® w
[T (e mer” @ax )iy - 2+ ndydzds
0 rixri\Jr

A

2
s L2Vl soco(K) ¥t @) |

n a,

d —
x [ ) e (3 (5 = D)Ly =27 + Ndydz
X
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2
_ Cles. LW, ®)eo(K) 71,

" = [(m™)* +1]

 Cles, LW, ®)co(K)> 1 all®

n a,

Observe now that f;;"*l x~ldx ~ n so that a;‘l—" ~ ¢" or (using that ap = 1) a, ~
e~ (" +1)/2 Thys,

(44) lim B(|2"""(t A T x)]) =0

n—oo
ifn(n+1)—Qy — %)(n — 1)n < 0 for n large. This is equivalent to
(07
l—<2y—g)<0 — a<&Qy -1,

which holds by (41).
Use (32) and Fatou’s lemma on the left-hand side of (25), and Lemma 2.2
and (44) on the right-hand side, to take limits in this equation and so conclude

A‘gd E(liat A Te k. x)]) Wy (x) dx

mm
x

<liminf | E(¢n((itinzs g P

n—-oo Jrd

)W (x) dx
AT k .
< IE(/O 5 /H;d |t (s, X) |3 (AW (x) + ¥y (x)) dx ds)

t .
< /0 ./]1-@ E(Ji(s, x)|)| s AWy (x) + Wy (x)| dx ds.
Since T g tends in probability to infinity as K — oo according to (42), we know

that u(t A Tg g, x) — u(t, x) and so we finally conclude with another application
of Fatou’s lemma that

/Rd E(la(t, x)|) W (x) dx

t 3 1 .
Sfo fRdE(lu(svx)l)|§A‘I’s(x)+‘I’s(X)]dxds_

This is (34) of Section 3 and the conclusion now follows as in the proof of Theo-
rem 1.6 given there.

5. Proof of Theorem 4.1. In this section we will first prove three technica