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SPECTRAL GAP FOR THE ZERO RANGE PROCESS
WITH CONSTANT RATE

BY BEN MORRIS

University of California, Davis

We solve an open problem concerning the relaxation time (inverse spec-
tral gap) of the zero range process in Zd/LZd with constant rate, proving a
tight upper bound of O((ρ + 1)2L2), where ρ is the density of particles.

1. Introduction.

1.1. Basic definitions. Letting G = (V ,E) be a finite, connected, regular
graph, we define a configuration as follows. In a configuration, a total of r indis-
tinguishable particles are distributed over the vertices in V . For a configuration η,
we denote by η(v) the number of particles in vertex v [so that

∑
v∈V η(v) = r].

We define the density of particles as ρ = r/|V |.
The zero range process with rate λ is the following continuous-time Markov

process on configurations. Suppose that the current state is η. For each vertex v

at rate λ, if η(v) > 0, we expel a particle from v to a random neighbor, that is,
decrease η(v) by one, choose a neighbor w of v uniformly at random (u.a.r.) and
increase η(w) by one.

Note that since the process is irreducible and has symmetric transition rates, the
distribution at time t converges to uniform as t → ∞. Let C denote the space of
configurations, and for probability distributions µ,ν on C, let

‖µ − ν‖ = max
Q⊂C

µ(Q) − ν(Q) = min
X∼µ,Y∼ν

P(X �= Y)

be the total variation distance. The spectral gap, defined as the absolute value of the
second largest eigenvalue of the generator of the process, governs the asymptotic
rate of convergence to the stationary distribution (see, e.g., [6]). More specifically,
we have

gap = min
x

lim
t→∞−1

t
log‖Kt(x, ·) − U‖,(1)

where K is the transition kernel for the zero range process and U is the uniform
distribution over configurations. We define the relaxation time to be

τrelax = 1/gap = max
x

lim
t→∞−t/ log‖Kt(x, ·) − U‖.
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Thus, the relaxation time is the smallest value of τ such that for every starting
configuration x, there is a constant C such that ‖Kt(x, ·) − U‖ ≤ Ce−t/τ for all
t ≥ 0.

This paper is concerned with bounding the relaxation time in the important spe-
cial case where G is the d-dimensional torus Zd/LZd . Note that the spectral gap
is proportional to the rate λ, so we can assume without loss of generality that
λ = 1. We will call this process the ZRP on G. We will take the dimension d to be
arbitrary but fixed and bound the relaxation time as a function of ρ and L.

1.2. Background, motivation and summary of results. The zero range process
is a widely studied Markov chain in statistical mechanics. In the general zero range
model, there is a rate function c(k) that gives the rate at which a site occupied by
k particles expels one [e.g., the assumption of independent random walks corre-
sponds to c(k) = k]. In our model, we have c(k) = 1 for all k, so the rate at which
a vertex expels a particle does not depend on the number of particles there. In the
language of queuing theory, this is a closed queuing network with i.i.d. exponential
service times.

A key estimate needed for hydrodynamic limits is a sharp upper bound on the
relaxation time (see [11]). Landim, Sethuraman and Varadhan [5] used the tech-
niques of Lu and Yau [7] to prove that under certain conditions on the rate func-
tion c(·), the relaxation time is O(L2); see also [1]. However, their conditions did
not apply to a bounded rate function since they required that there be a constant
γ > 0 such that c(k) > γ k for sufficiently large k. Indeed, as they observe (see
Example 1.1 of their paper), their result does not apply to the case of a constant
rate since their bound holds uniformly in ρ, but the relaxation time is of order
(1 + ρ)2L2 when the rate is constant and d = 1. In fact, a lower bound of or-
der (1 + ρ)2L2 holds for all d; this can be seen by substituting the test function
f (η) = ∑

v∈V η(v) cos(πv1
L

) into the variational definition of spectral gap (see,
e.g., [4]). This type of function was used by David Wilson in [12].

While we cannot expect an O(L2) bound to hold uniformly in ρ, it is natural to
ask whether such a bound holds if we incorporate the extra factor (ρ + 1)2. In this
paper, we prove that this is indeed the case.

We will study the ZRP on the torus Zd/LZd , but our proof is easily extended
to variants such as the box {0,1, . . . ,L}d . Indeed, our proof shows that for an
arbitrary regular graph G, the bound on the spectral gap for random walk on G

given by the paths technique (see [3, 9]) also applies, up to constant factors, to the
ZRP on G. Similar results were already known for the exclusion process; see [2].

2. Comparison technique. It turns out that the ZRP is easier to analyze
on the complete graph than on the torus. Fortunately, comparison techniques
(see, e.g., [2]) allow us to reduce to this case. Let G1 = Zd/LZd and let G2
be the complete graph on Ld vertices (not including self-loops). Let V1 denote
the set of configurations of the ZRP on G1, let E1 = {(η, η′) :η,η′ ∈ V1 and
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η → η′ is a transition in the ZRP on G1} and let G1 be the graph 〈V1,E1〉. Note
that the ZRP on G1 can be described as the continuous-time random walk on G1 in
which edges are crossed at rate 1/2d . Similarly, if we define V2,E2 and G2 anal-
ogously (with G2 replacing G1), then the ZRP on G2 is the random walk on G2
in which edges are crossed at rate 1/(Ld − 1). Fairly standard techniques allow us
to estimate the relaxation time for the ZRP on G1 by comparing it with the ZRP
on G2. More specifically, we will set up a suitable multicommodity flow on G1 in
which we route one unit of flow from η to η′ for each (η, η′) ∈ E2 simultaneously.
For any such flow f and any edge e in E1, let f (e) denote the total flow along e;
that is, f (e) is the sum over all ordered pairs (η, η′) ∈ E2 of the η → η′ flow car-
ried by e. Define the congestion C(f ) = 1

Ld−1
maxe f (e), that is, the maximum

flow along any edge normalized by Ld − 1, and the length L(f ) to be the length
of a longest flow-carrying path. The following theorem is a special case of results
in [2] (see also [10]):

THEOREM 1 ([2]). Let τ1 and τ2 denote the relaxation times for the ZRP’s on
G1 and G2, respectively. For any flow f , we have τ1 ≤ 2dC(f )L(f )τ2.

We will bound τ1 by constructing a flow f with congestion C(f ) ≤ L and
length L(f ) ≤ dL. By Theorem 1, this implies τ1 ≤ 2d2L2τ2. We will now de-
scribe the flow f . Let (η, η′) be an edge in E2. Then the configurations η and η′ dif-
fer at only two vertices u and v, with, say, η(u) = η′(u) + 1 and η(v) = η′(v) − 1.
For a vertex w, define χw to be the configuration that has just a single particle,
located at w. Define η ∧ η′ as the vertex-wise minimum of η and η′, so that
η ∧ η′ = η − χu = η′ − χv . We will use η → η′ flows that pass only through
configurations of the form η ∧ η′ + χw; that is, the flow-carrying paths send the
“extra particle” at u to v along a path in G1. To specify such a flow, it is enough to
specify a flow guv from u to v in G1. We will use the one that simply spreads flow
uniformly over all shortest paths from u to v. Note that if (ζ1, ζ2) is an edge in a
shortest path from η to η′, then ζ1 ∧ ζ2 = η ∧ η′.

Fix an edge e = (ζ1, ζ2) ∈ E1. We must bound the total flow through e. Let
ζ = ζ1 ∧ ζ2. Then all pairs (η, η′) such that some η → η′ flow passes through e

must satisfy η ∧ η′ = ζ . For vertices w, define ζw = ζ + χw . Then

f (e) = ∑
u,v

fζu,ζ v (e)

= ∑
u,v

guv(e).

But Lemma 2 below says that
∑

u,v guv(e) ≤ L(Ld − 1). It follows that C(f ) ≤ L.
Finally, note that the flow f also satisfies L(f ) ≤ dL. Hence, Theorem 1 implies
that τ1 ≤ 2d2L2τ2.

The following lemma was used in the estimate for C(f ):
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LEMMA 2. For vertices u, v ∈ Zd/LZd , let guv be the flow that spreads flow
evenly among all shortest paths from u to v. Then, for any edge e,∑

u,v

guv(e) ≤ L(Ld − 1).

PROOF. Define g = ∑
u,v guv . By symmetry, the quantity g(e) does not de-

pend on e. But the maximum length of any shortest path is less than dL, the num-
ber of ordered pairs of distinct vertices is Ld(Ld −1) and the total number of edges

is dLd . Hence e carries at most dL×(Ld)(Ld−1)

dLd = L(Ld − 1) units of flow. �

3. The ZRP on the complete graph. In the previous section we showed that
τ1 ≤ 2d2L2τ2. Thus, to prove an O((ρ + 1)2L2) bound for τ1, we need only show
that the relaxation time τ2 for the ZRP on the complete graph can be bounded by
O((ρ + 1)2), uniformly in the number of vertices.

THEOREM 3. Let Kn denote the complete graph on n vertices. Fix ρ > 0 and
let τ be the relaxation time for the ZRP on Kn with a density ρ of particles. Then
τ ≤ C(ρ + 1)2 for a universal constant C.

PROOF. We will estimate τ using coupling; that is, we construct a process
〈(ηt , η

′
t ), t ≥ 0〉 such that 〈ηt , t ≥ 0〉 and 〈η′

t , t ≥ 0〉 are each ZRP’s and the distrib-
ution of η′

0 is uniform. Let T = inf{t :ηt = η′
t } be the coupling time. It is a standard

fact that

‖Kt(η, ·) − U‖ ≤ Pη(T > t),(2)

where we write Pη( · ) := P( · |η0 = η). The following lemma relates the relaxation
time τ to the tail of the distribution of T :

LEMMA 4. Fix γ > 0 and suppose that E(eγ T ) < ∞. Then τ ≤ 1/γ .

PROOF. If E(eγ T ) < ∞, then limt→∞ eγ tP(T > t) = 0. Hence P(T > t) <

e−γ t for sufficiently large t . Combining this with equation (2) gives τ ≤ 1/γ . �

Zero range process with ranked particles. We will actually study a process
with labeled particles. Suppose that the particles are labeled 1, . . . , r and each
particle x has a rank Rt(x) ∈ {1, . . . , r} at time t . Every particle has a unique
rank, so Rt(·) is a permutation. We assume that when vertex u rings, the high-
est ranking particle at u (i.e., the particle whose rank is the smallest number) is
expelled. Let vt (i) denote the location of the particle of rank i at time t . Then
ηt (u) = ∑r

i=1 1(vt (i) = u), where we write 1(A) for the indicator of the event A.

For positive integers j , we define ηt (u, j) = ∑j
i=1 1(vt (i) = u). We will use the

notation ηt (·, ·) to denote a ZRP with ranked particles.
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We allow the rankings to vary in time. However, we assume that the vertices
ring independently of the rankings. Thus, if the particles of rank 1, . . . , j maintain
a constant rank [or even if the set {x : 1 ≤ R(x) ≤ j} does not change], then the
process 〈ηt (·, j) : t ≥ 0〉 behaves like the ZRP with j particles.

The coupling. We now describe the coupling. The coupling will consist of r

stages, going from Stage 0 to Stage r − 1. At the end of Stage j , configurations
ηt and η′

t will satisfy ηt (·, j + 1) = η′
t (·, j + 1). Thus, we will have ηt = η′

t at
the end of Stage r − 1. We will now describe Stage r − 1. (Earlier stages will be
similar.) The stage consists of two steps:

• Step 1. First, we rank the particles so that the location of each particle whose
rank is less than r is the same in η as it is in η′. Throughout Step 1, we couple
the processes so that corresponding vertices ring at the same time, and when
particles are expelled, they choose the same destination. This ensures that the
locations of the particles of rank 1,2, . . . , r − 1 remain matched. We run the
first step until

ηt

(
vt (r), r − 1

) = η′
t

(
v′
t (r), r − 1

)
,

that is, the number of particles in the same location as the particle of rank r is
the same in η as it is in η′. Let a = vt (r) and b = v′

t (r). Note that

ηt (a) = η′
t (b)(3)

and

ηt (b) = η′
t (a)(4)

at the completion of Step 1.
• Step 2. In Step 2, we couple so that vertex a in η plays the role of vertex b in

η′, and vice versa. This is accomplished as follows. First, the particles located at
vertices a and b are given new rankings so that the particles of vertex a (resp. b)
in η correspond to the particles of vertex b (resp. a) in η′. Second, we couple
so that vertex a (resp. b) rings in the process ηt if and only if b (resp. a) rings
in the process η′

t . If an expelled particle moves to a (resp. b) in ηt , then the
corresponding particle moves to b (resp. a) in η′

t , and so on. This ensures that
(3) and (4) persist throughout the duration of Step 2. We run Step 2 until ηt (a) =
ηt (b). Note that this implies ηt (·, r) = η′

t (·, r), and we are done.

Stage j for 1 ≤ j < r − 1 can be described similarly, except that in Stage j , only
the trajectories of particles 1, . . . , j + 1 are coupled. Particles j + 2, . . . , r are
allowed to move in an arbitrary way. Note that since particles j + 2, . . . , r move
only when there are no higher ranking particles in the same location, they do not
interfere with the trajectories of particles 1, . . . , j + 1, so Stage j can proceed in
similar fashion to Stage r − 1. Stage j finishes when η(·, j + 1) = η′(·, j + 1).
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Let ζt be an encoding of the coupled pair of labeled particle processes and the
rankings at time t , and let staget and stept denote the stage and step, respectively,
in progress at time t . Then the process 〈(ζt , staget , stept ) : t ≥ 0〉 is a Markov chain.
We wish to show that for a universal constant C > 0, the time τ to complete stages
1 through r − 1 satisfies E(eγ τ ) < ∞ for γ ≥ 1/C(ρ + 1)2. The following lemma
says that it is enough to show that for any particular step of any stage, the time T

spent there satisfies E(eγ T ) < ∞ for γ ≥ 1/C(ρ + 1)2:

LEMMA 5. Let Xt be a finite-state Markov chain with k transient classes
S1, S2, . . . , Sk , and suppose that there are no transitions from Sj to Sj−1 for j ≥ 2.
Define Tj = inf{t > 0 :Xt /∈ S1 ∪ · · · ∪ Sj }. Fix γ > 0 and suppose that for all j

and x ∈ Sj , we have Ex(e
γ Tj ) < ∞. Then E(eγ Tk ) < ∞, irrespective of the distri-

bution of X0.

PROOF. Define T0 = 0, and for j ∈ {1, . . . , k}, let Wj = Tj − Tj−1. Then
Tk = ∑k

j=1 Wj . So E(eγ Tk ) = E(eγ (W1+···+Wk)). Let αj = maxx∈Sj
Ex(e

γ Tj ). We

show by mathematical induction that E(eγ (W1+···+Wl)) ≤ ∏l
j=1 αj for all l ≤ k.

The base case l = 1 follows from the definition of α1. Now fix l < k and sup-
pose that E(eγ (W1+···+Wl)) ≤ ∏l

j=1 αj . Let Y be the first state that Xt visits after
leaving Sl . Then,

E
(
eγ

(
W1+···+Wl+1

)) = E
(
E(eγ (W1+···+Wl+1)|W1, . . . ,Wl, Y )

)
= E

(
eγ (W1+···+Wl)E(eγWl+1 |W1, . . . ,Wl, Y )

)
≤ E

(
eγ (W1+···+Wl) max

x∈Sl+1
Ex(e

γ Tl+1)

)

= αj+1E
(
eγ (W1+···+Wl)

)
,

and the result follows. �

To complete the proof of Theorem 3, we need to show that the time T spent
performing a particular step satisfies E(eγ T ) < ∞ for γ ≥ 1/C(ρ + 1)2. Lemmas
9 and 10 below do this for steps of type 2 and 1, respectively. �

We will need the following lemma:

LEMMA 6. Fix v ∈ V and suppose that η0(v) ≤ 2(ρ + 1). Let Z = |{t < (ρ +
1)2 :ηv(t) = 0}|. Then, for universal constants C > 0 and M > 0, we have E(Z ∧
M(ρ + 1)) ≥ C(ρ + 1).

PROOF. Note that the ZRP on Kn can be described in the following way. For
each ordered pair of distinct vertices (u, v) at rate 1/(n − 1), the process attempts



SPECTRAL GAP FOR THE ZERO RANGE PROCESS 1651

to move a particle from u to v; that is, the move is made unless u is empty. Thus,
for any vertex v, the total rate at which attempts to increase ηt (v) are made is 1,
and this is also the rate of attempts to decrease ηt (v). Furthermore, when ηt (v) > 0
it is always possible to decrease ηt (v), so ηt (v) → ηt (v) − 1 at rate 1 in this case.
Let i = η0(v) and let Xt be the continuous-time simple symmetric random walk
on the integers, started at i, that moves in each direction at rate 1.

One can easily couple the processes ηt (v) and Xt so that ηt (v) = 0 whenever
Xt = 0. Thus, it is enough to show that for constants C > 0 and M > 0, we have
E(Y ∧ M(ρ + 1)) ≥ C(ρ + 1), where Y = |{t < (ρ + 1)2 :Xt = 0}|.

We will first show that E(Y ) ≥ D(ρ + 1) for a universal constant D by showing
that if t satisfies 1

2(ρ + 1)2 ≤ t ≤ (ρ + 1)2, then P(Xt = 0) ≥ 2D(ρ + 1)−1.

Note that Xt − i is distributed as the difference of two independent Poisson(t)
random variables. Hence, Xt − i is approximately normal with mean 0 and vari-
ance 2t when t is large. More precisely, the local limit theorem implies that there
is a universal constant D such that for all t ≥ 1

2 and j with |j | ≤ √
8t , we have

P(Xt − i = j) ≥ 2D√
t
.(5)

Recall that i ≤ 2(ρ + 1) and note that if t ∈ [1
2(ρ + 1)2, (ρ + 1)2], then

√
t ≤

(ρ +1) ≤ √
2t . Hence i ≤ √

8t . Thus, we can substitute j = −i into (5) and obtain

P(Xt = 0) ≥ 2D/
√

t ≥ 2D/(ρ + 1).

Next, we will show that Y is unlikely to be a very large multiple of (ρ + 1). Let
T1 = inf{t : Xt = 0} and for k ≥ 2, let Tk = inf{t > Tk−1 + 1 :Xt = 0}. For k ≥ 1,
let Ak be the event that Xt �= 0 for all t ∈ [Tk + 1, Tk + (ρ + 1)2].

Proposition A.2 in the Appendix gives

P0
(
Xt �= 0 for all t ∈ [1, (ρ + 1)2]) ≥ b(ρ + 1)−1,

for a universal constant b. Combining this with the strong Markov property gives

P(Ak |Ac
1 · · ·Ac

k−1) ≥ b(ρ + 1)−1,

and hence P(Ac
1 · · ·Ac

k) ≤ (1 − b(ρ + 1)−1)k .
Recall that Y is the amount of time Xt spends at 0 up to time (ρ +1)2. Note that

Y ≤ N , where N = inf{k :Tk ≥ (ρ + 1)2}. Hence, for every nonnegative integer k,
we have

P(Y > k) ≤ P(N > k)

≤ P(Ac
1 · · ·Ac

k)

≤ (
1 − b(ρ + 1)−1)k

.

Let M = b−1 log(2/Db). Note that

Y = (
Y ∧ M(ρ + 1)

) + W,
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where W = (Y −M(ρ + 1))1(Y > M(ρ + 1)). Since E(Y ) ≥ D(ρ + 1), it follows
that

E
(
Y ∧ M(ρ + 1)

) ≥ D(ρ + 1) − E(W).(6)

But

E(W) ≤ ∑
k≥0

P(W > k)

= ∑
k≥0

P
(
Y > M(ρ + 1) + k

)

≤ ∑
k≥0

(
1 − b(ρ + 1)−1)M(ρ+1)+k

.

By summing the geometric series and then using the fact that 1 + u ≤ eu for all u,
it is easily shown that E(W) ≤ e−bMb−1(ρ + 1) = D

2 (ρ + 1). Combining this with
(6) gives E(Y ∧ M(ρ + 1)) ≥ D

2 (ρ + 1). �

The following lemma is a consequence of Lemma 6. It says that when t is large,
the average fraction of time the vertices spend empty is �(1/(ρ + 1)), with high
probability. For v ∈ V , define

Zt(v) = |{s < t :ηs(v) = 0}|
and let Zt = 1

n

∑
v∈V Zt(v).

LEMMA 7. There exists a universal constant α > 0 such that for every t >

(ρ + 1)2, we have

P
(
Zt <

Ct

4(ρ + 1)

)
≤ e−αt/(ρ+1)2

,

where C is the constant appearing in Lemma 6.

PROOF. Let M be the constant appearing in Lemma 6. For k ∈ {1,2, . . .}, let

Xk(v) = |{(k − 1)(ρ + 1)2 ≤ s ≤ k(ρ + 1)2 :ηs(v) = 0}| ∧ M(ρ + 1)

and let Xk = 1
n

∑
v∈V Xk(v). Markov’s inequality implies that at least half of

the vertices v ∈ V satisfy η0(v) ≤ 2(ρ + 1). For such vertices v, Lemma 6
says that E(X1(v)) ≥ C(ρ + 1). Hence E(X1) ≥ 1

2C(ρ + 1). A similar argu-
ment applies to Xk , for every positive integer k. It follows that if we define
Sk = ∑k

i=1(Xi − 1
2C(ρ + 1)), then 〈Sk :k ≥ 0〉 is a submartingale. Recall Azuma’s

inequality (see Corollary 6.9 on page 166 and Section (c) on page 168 of [8]): if
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Mk is a submartingale with M0 = 0 and |Mk+1 − Mk| ≤ B for all k, then for every
A > 0 and k ≥ 1, we have

P
(

min
j≤k

Mj ≤ −A

)
≤ e−bA2/kB2

,

where b > 0 is a universal constant. (In [8], Azuma’s inequality is stated for mar-
tingales, but since any submartingale can be written as a martingale plus a non-
negative, predictable sequence, clearly the result must hold for submartingales as
well.) Note that {Sk} satisfies |Sk+1 − Sk| ≤ (M + 1

2C)(ρ + 1). Hence, Azuma’s
inequality implies that

P(Sk ≤ −A) ≤ e−b′A2/k(ρ+1)2
,

for a universal constant b′ > 0.
Hence,

P

(
k∑

i=1

Xi ≤ 1
4kC(ρ + 1)

)
= P

(
Sk ≤ −1

4kC(ρ + 1)
) ≤ e−b′C2k/16.

Note that Zk(ρ+1)2 ≥ ∑k
i=1 Xi . Thus, for t = k(ρ + 1)2 and α = b′C2/16, we have

P
(
Zt ≤ Ct

4(ρ + 1)

)
≤ P

(
k∑

i=1

Xi ≤ Ct

4(ρ + 1)

)
≤ e−αt/(ρ+1)2

.(7)

Thus the lemma holds for t of the form k(ρ + 1)2. But since Zt is nondecreasing
in t , we can make (7) true for all t ≥ (ρ + 1)2 by incorporating an extra factor of
1
2 into α. �

We also use the following proposition:

PROPOSITION 8. There is a universal constant A > 0 such that if X and Y

are independent Poisson(λ) random variables for sufficiently large λ, then:

(a) P(|X − λ| ≥ λ/2) ≤ e−Aλ;
(b) P(X − Y ≥ αλ) ≤ e−Aα2λ for every α ∈ [0,1].

PROOF. We prove (b) first. The moment generating function of X is

φX(θ) ≡ E(eθX) = exp
(
λ(eθ − 1)

)
.

It follows that the moment generating function of X − Y is

φX−Y (θ) = φX(θ)φX(−θ)

= exp
(
λ(eθ − 1) + λ(e−θ − 1)

)
= exp

(
λ(θ2 + o(θ2)

)
,
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since eu = 1 + u + 1
2u2 + o(u2). Hence,

P(X − Y ≥ αλ) = P
(
eθ(X−Y ) ≥ eθαλ)

≤ e−θαλφX−Y (θ)

= e−θαλeλ(θ2+o(θ2)),

by Markov’s inequality. Taking logarithms, we get

log
(
P(X − Y ≥ αλ)

) ≤ λ
(
θ2 − θα + o(θ2)

)
.

When θ = α/2, this becomes

λ

(
α2

4
− α2

2
+ o(α2)

)
= λ

(
−1

4
α2 + o(α2)

)
.

Hence P(X − Y ≥ αλ) ≤ e−Aα2λ for a universal constant A and (b) is proved.
For (a), note that

φX−λ(θ) = exp
(
λ(eθ − θ − 1)

); φλ−X(θ) = exp
(
λ(e−θ + θ − 1)

)
.

Using the inequality e|u| ≤ eu + e−u and setting θ = 1
2 gives

φ|X−λ|
(1

2

) ≤ exp
(
λ
(
e1/2 − 1

2 − 1
)) + exp

(
λ
(
e−1/2 + 1

2 − 1
))

≤ 2eλ/10,

since eu − u − 1 ≤ 1/10 whenever u ∈ {−1
2 , 1

2}. Applying Markov’s inequality to
the random variable e|X−λ|/2 gives

P(|X − λ| ≥ λ/2) ≤ e−λ/4 · 2eλ/10 = 2e−3λ/20,

which is at most e−λ/10 when λ is sufficiently large. �

We will now use Lemma 7 to prove Lemmas 9 and 10. It turns out that steps of
type 2 are easier to analyze, so we start with the following:

LEMMA 9. Fix j ∈ {0, . . . , r − 1} and let T be the time spent performing
Step 2 of Stage j . Then E(eγ T ) < ∞ for γ ≥ D(ρ + 1)−2, where D is a universal
constant.

PROOF. We may assume that r = j + 1, since if there are particles that
rank lower than j + 1, they do not affect the behavior of the particles ranking
1, . . . , j + 1 and they increase the value of ρ.

Let vertices a and b be as defined in the description of the coupling and suppose
that ηt (a) ≥ ηt (b) at the beginning of Step 2. Step 2 finishes when ηt (a) = ηt (b),
so Step 2 has been completed by the time that ηt (a) = 0. Thus, it is enough to
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show that for any vertex v, if we define τ = inf{t :ηt (v) = 0}, then E(eγ τ ) < ∞
for γ ≥ D(ρ + 1)−2.

Fix a vertex v, and for t ≥ 0, let Xt be the number of attempts to increase the
occupancy of v minus the number of attempts to decrease the occupancy of v, up
to time t . Let Bt be the number of attempts to increase the occupancy of v, up
to time t , that fail because the potential source vertex is empty. Note that before
time τ , all attempts to decrease the occupancy of v will succeed. Therefore,

ηt (v) = η0(v) + Xt − Bt,

up to time τ . It follows that P(τ > t) ≤ P(Xt − Bt > −η0(v)).
We assume that even when a vertex is empty, it attempts to move a particle to v

at rate 1
n−1 > 1

n
. [We will use the convention that when v is empty, it attempts to

move a particle to itself, and thereby increases Bt , at rate 1/(n−1).] It follows that,
given Zt , the conditional distribution of Bt stochastically dominates a Poisson(Zt )
random variable. (Recall that the sum of the amounts of time the vertices have been
empty up to time t is Zt = nZt .) Thus, for t sufficiently large, we have

P
(
Bt ≤ Ct

8(ρ + 1)

)
≤ P

(
Bt ≤ Ct

8(ρ + 1)

∣∣∣Zt ≥ Ct

4(ρ + 1)

)
(8)

+ P
(
Zt <

Ct

4(ρ + 1)

)

≤ e−AtC/4(ρ+1) + e−αt/(ρ+1)2
,(9)

where the second inequality uses part (a) of Proposition 8 (for the first term) and
Lemma 7 (for the second term). It follows that for sufficiently large t , we have

P
(
Bt ≤ Ct

8(ρ + 1)

)
≤ exp{−ct/(ρ + 1)2},(10)

for a universal constant c. Since Xt is the difference of two independent Poisson(t)
random variables, we can apply part (b) of Proposition 8 to Xt and get

P
(
Xt ≥ Ct

16(ρ + 1)

)
≤ exp{−AC2t/256(ρ + 1)2}.(11)

Equations (10) and (11) together imply that for some constant δ > 0, we have

P
(
Xt − Bt > − Ct

16(ρ + 1)

)
≤ exp{−δt/(ρ + 1)2},

for sufficiently large t , and so

P(τ > t) ≤ P
(
Xt − Bt > −η0(v)

)
≤ exp{−δt/(ρ + 1)2},

for sufficiently large t [e.g., for t such that Ct/16(ρ + 1) > r]. It follows that
E(eδτ/2(ρ+1)2

) < ∞. �
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Next, we consider steps of type 1.

LEMMA 10. Fix j ∈ {0, . . . , r − 1} and let T be the time spent performing
Step 1 of Stage j of the coupling. Then E(eγ T ) < ∞ for γ ≥ D(ρ + 1)−2, where
D is a universal constant.

PROOF. Again we may assume that r = j + 1. In order to analyze Step 1,
we will embed a coupling into a single process as follows. Consider a zero range
process ηt (·, ·) with j + 2 ranked particles, and for t ≥ 0, define ξt and ξ ′

t by

ξt = ηt (·, j) + χvt (j+1), ξ ′
t = ηt (·, j) + χvt (j+2).

So ξt and ξ ′
t are obtained from ηt (·, ·) by deleting the particles of rank j + 2

and j + 1, respectively. Let η0(·, ·) be defined so that (ξ0, ξ
′
0) reflects the state of

the coupling at the beginning of Step 1 of Stage j . Then the time T to complete
Step 1 has the same distribution as W, where W = inf{t :ηt (vt (j + 1), j + 2) =
ηt (vt (j + 2), j + 2)}, because up to time W , the process (ξt , ξ

′
t ) behaves exactly

like the coupling during Step 1. [Note that the particle of rank j +1 cannot interfere
with the particle of rank j + 2 because W ≤ inf{t :vt (j + 1) = vt (j + 2)}.]

We wish to show that E(eγW ) is finite for γ = D(ρ+1)−2. Consider the process
〈ζt : t ≥ 0〉, where for t ≥ 0, we define ζt = (ηt (·), vt (j + 1), vt (j + 2)). [Here,
we write ηt (·) for the function that outputs the number of particles at each site,
but contains no information about their rankings. So ζt encodes only the number
of particles at each vertex at time t and the positions of the two lowest ranking
particles.] The particles of rank 1,2, . . . , j will be called high ranking; note that
in the process ζt , the high ranking particles are indistinguishable. Furthermore,
{ζt : t ≥ 0} is a Markov chain.

It will be convenient to study a modified version of the process obtained by
combining all of the states of the form (η,u,u) into a single state, which we denote
by b. (Note that since the chain does not reach b before time W , making such a
modification does not affect the distribution of W .) We shall also choose transition
rates qb,x out of b that ensure a “nice” stationary distribution. (Again, this does not
affect W .) For all x = (η, s, t) with s �= t , let

qb,x =




1

n − 1
, if η(s) = η(t) = 1,

2

n − 1
, otherwise.

(12)

Recall that if π is a positive function on the state space that solves the balance
equations ∑

y

π(y)qy,x = ∑
y

π(x)qx,y(13)
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for every x, then π can be normalized to be the stationary distribution. [In fact, it is
enough to verify (13) for all but one of the states x.] We claim that if π is defined
by π(b) = 1 and

π(η, s, t) = η(s)η(t)(14)

when s �= t , then π solves (13). For all x, define Qin(x) = ∑
y π(y)qy,x and

Qout(x) = ∑
y π(x)qx,y , so that (13) is equivalent to Qin(x) = Qout(x) for all

x. We will verify this for all x �= b. For configurations x and vertices u and v,
define Qout(x; {u, v}) = ∑

y π(x)qx,y , where the sum is over configurations y ob-
tained from x by either moving a particle from u to v or vice versa, with a similar
definition for Qin(x; {u, v}). Note that

Qout(x) = ∑
{u,v}

Qout(x; {u, v}),(15)

Qin(x) = ∑
{u,v}

Qin(x; {u, v}) + qb,x.(16)

Fix x = (η, s, t) with s �= t . In order to calculate the values of Qout(x, {u, v}), we
shall consider three cases separately:

Case {u, v} ∩ {s, t} = ∅. In this case, it is easy to verify that

Qout(x, {u, v}) = Qin(x, {u, v})
= (

δ(u) + δ(v)
)η(s)η(t)

n − 1
,

where for vertices w, we define

δ(w) =
{

1, if η(w) ≥ 1,
0, otherwise.

Case u = s, v �= t . In this case, we have

Qout(x, {u, v}) = (
1 + δ(v)

)η(s)η(t)

n − 1
.

If η(v) = 0, then

Qin(x, {u, v}) = (η(s) − 1)η(t)

n − 1
+ η(t)

n − 1

= η(s)η(t)

n − 1
.

If η(v) ≥ 1, then

Qin(x, {u, v}) = (η(s) − 1)η(t)

n − 1
+ (η(s) + 1)η(t)

n − 1

= 2η(s)η(t)

n − 1
.

In both cases, Qout(x, {u, v}) = Qin(x, {u, v}).
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Case u = s, v = t . This is the only case where Qout(x, {u, v}) �= Qin(x, {u, v}).
We have

Qout(x, {u, v}) =




1

n − 1
, if η(s) = η(t) = 1,

2η(s)η(t)

n − 1
, otherwise.

If η(s) ≥ 2 and η(t) ≥ 2, then

Qin(x, {u, v}) = (η(s) − 1)(η(t) + 1)

n − 1
+ (η(s) + 1)(η(t) − 1)

n − 1

= 2η(s)η(t) − 2

n − 1
.

If η(s) = 1 and η(t) ≥ 2, then

Qin(x, {u, v}) = 2(η(t) − 1)

n − 1

and if η(s) = η(t) = 1, then Qin(x, {u, v}) = 0. It follows that

Qout(x, {u, v}) − Qin(x, {u, v}) =




1

n − 1
, if η(s) = η(t) = 1,

2

n − 1
, otherwise.

Putting all of this together with equations (12), (15) and (16) verifies the balance
equations.

Since the stationary distribution puts positive mass on every state, it is enough
to show that E(eγW ) is finite if the chain starts in its stationary distribution.

Let qi,j be the rate at which ζt goes from i to j . The time reversal ζ̃t of ζt is the
process that starts in distribution π and has transition rates q̃ given by π(i)qi,j =
π(j)q̃j,i . For events A, we will write P̃(A) to denote the probability of A when
we run ζ̃t instead of ζt , with a similar notation for expectation. Let B be the set of
states (η,u,w) of ζt satisfying η(u) = η(w), including the amalgamated state b.
Then

P(W > t ′) = P(ζt /∈ B for all t ∈ [0, t ′])
= P̃(ζ̃t /∈ B for all t ∈ [0, t ′]) = P̃(W > t ′).

Thus, it is enough to show that Ẽ(eγW ) < ∞. Furthermore, we may modify
the process ζ̃t so that all transitions to b are suppressed, because this can only
increase W (since b ∈ B). If we make this modification, it is then straightforward to
verify, using (14), that the transition rule for the resulting process can be described
as follows. Suppose that the current state is (η,u1, u2) with u1 �= u2. Then, for
every ordered pair of distinct vertices (v,w) at rate (

η(w,j+2)+1
(η(w,j)+1)

)× 1
n−1 , an attempt
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is made to move a particle from v to w, where an attempt proceeds as follows.
If v is empty, or the transition would put the low ranking particles in the same
location, then the attempt fails. Otherwise, a particle is chosen “uniformly” from v

[i.e., a high ranking particle is chosen with probability η(v,j)
η(v,j+2)

and a low ranking
particle is chosen with the remaining probability] and moved to w if the reversed
move is a transition of ζt (i.e., the high ranking particles are always allowed to
move and the low ranking particles are only allowed to move if the destination
vertex is empty).

Note that ζ̃t is somewhat similar to ζt , except for the motions of the low ranking
particles. In ζt , the low ranking particles occasionally jump from an empty vertex
to a nonempty one, whereas in ζ̃t they occasionally jump from a nonempty vertex
to an empty one. The high ranking particles move nearly the same way in both
processes, except that in ζ̃t they have a slight preference for moving to vertices
that contain a low ranking particle.

The reader might wonder why we are studying the time reversal ζ̃t instead of
ζt itself. The reason is that in ζt , since the occupancies of the vertices containing
j + 1 and j + 2, respectively, can make big positive jumps, it is harder to rule out
the possibility that it takes a long time for these occupancies to be the same.

Up to time W , the rate at which any nonempty vertex v expels a particle is at
least 1 − 1

η(v,j+2)
, and the rate at which the process attempts to move a particle to

v is at most 1 + 1
η(v,j+2)

. Let

Mt = max
(
ηt

(
vt (j + 1)

)
, ηt

(
vt (j + 2)

))
,(17)

that is, Mt is the maximum number of particles in a vertex with a low ranking parti-
cle. Before time W , we have ηt (vt (j + 1)) �= ηt (vt (j + 2)). Hence, up to time W ,
the rate at which Mt decreases when Mt = x (i.e., the rate at which the process
moves to a new state that decreases Mt ) is at least 1 − 1

x
, and the rate at which

the process attempts to increase Mt [i.e., the rate at which the process attempts to
move a particle to the vertex that achieves the maximum in (17)] is at most 1 + 1

x
.

Let Bt be the number of attempts to increase M up to time t that fail because the
potential source vertex is empty. Note that when a vertex is empty, it attempts to
move a particle to the vertex that achieves the maximum in (17) at rate at least
1/(n − 1). It follows that, given Zt , the conditional distribution of Bt stochasti-
cally dominates a Poisson(Zt ) random variable. Furthermore, since Zt is in the
σ -field generated by the amounts of time the process spends in each of its states
up to time t , Lemma A.1 in the Appendix implies that the conclusion of Lemma 7
holds with P̃ replacing P. (Formally, Lemmas A.1 and 7 are not enough, because
we altered the process ζ̃ by constructing the amalgamated state b. However, since
this change only takes effect after time W , it does not affect our conclusion here.)

Thus, as in the proof of Lemma 9 [see the equations leading up to equation (10)],
we can apply part (a) of Proposition 8 to show that for t sufficiently large, we have

P̃
(
Bt ≤ Ct

8(ρ + 1)

)
≤ exp

(−ct/(ρ + 1)2)
,(18)
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for a universal constant c.
Let ρ̃ = 64C−1(ρ + 1) and let α = 1

ρ̃(ρ̃+1)
. For integers j ≥ 2, let w(j) =

−max( 1
j (j−1)

, α). Define W(1) = 0 and for j ≥ 2, let W(j) = ∑j
i=2 w(j). When

Mt jumps downward from j to i, where i < j , we define the size of the jump by∑j−1
k=i+1 w(k). Note that the size of a jump is zero unless i < j − 1, and when the

size of a jump is nonzero it is a negative number. Strictly negative jumps can only
occur when a particle ranked either j + 1 or j + 2 moves to an empty vertex, or
when the particle of rank j + 1 moves to the vertex containing the particle of rank
j + 2.

Let Jt be the sum of the sizes of all jumps up to time t and let Ut = W(Mt)+Jt .
For t ≥ 0, let Ft denote the σ -field generated by {(ζ̃s,Bs) : 0 ≤ s ≤ t}.

LEMMA 11. Let Yt = Ut − αBt + 4tα
ρ̃

. Then (Yt∧W,Ft ) is a submartingale.

PROOF. Suppose that t < W and that the current configuration of ζ̃t makes
Mt = x. Let v be the vertex that achieves the maximum in equation (17) and let p

be the the fraction of vertices in V − {v} that are empty. Note that


Bt → Bt + 1, at rate at most p

(
x + 1

x

)
,

Ut → Ut + w(x + 1), at rate at most (1 − p)

(
x + 1

x

)
,

Ut → Ut − w(x), at rate at least
x − 1

x
.

Hence, limε→0
1
ε
Ẽ((Ut+ε − αBt+ε) − (Ut − αBt)|Ft , t < W) is at least

−
[
p

(
x + 1

x

)
α + (1 − p)

(
x + 1

x

)
max

(
1

x(x + 1)
, α

)]

+ x − 1

x
max

(
1

x(x − 1)
, α

)

≥ −
(

x + 1

x

)
max

(
1

x(x + 1)
, α

)
+ x − 1

x
max

(
1

x(x − 1)
, α

)
.

This is zero unless α > 1
x(x+1)

, in which case it is at least

−
(

x + 1

x

)
α +

(
x − 1

x

)
α = −2α

x
.(19)

Recall that α = 1
ρ̃(ρ̃+1)

. Thus, if α > 1
x(x+1)

, then x ≥ ρ̃, so −2α
x

≥ −2α
ρ̃

.
Define Nt = Yt∧W . The above calculation shows that

lim
ε→0

ε−1E(Nt+ε − Nt |Ft , t < W) ≥ 4α/ρ̃ − 2α/ρ̃ = 2α/ρ̃.
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It is also clear that for some universal constant � > 0, we have

ε−1E(Nt+ε − Nt |Ft , t < W) ≥ 0,

for every t , whenever ε < �. Thus, for every t , the discrete-time process
〈Nt+kδ :k = 0,1, . . .〉 is a submartingale whenever δ < �. It follows that for every
s > t , we have E(Ns |Ft ) ≥ Nt , since s can be written as t + kδ for some positive
integer k, and 〈Nt+kδ :k ≥ 0〉 is a submartingale. It follows that Nt is a submartin-
gale. �

We will now briefly sketch how Lemma 11 will be used to prove Lemma 10.
First, we will show that αBt grows much faster than 4tα

ρ̃
as t → ∞. But Lemma 11

and Azuma’s inequality imply that Yt∧W is not likely to be much smaller than 0
when t is large. Since Ut ≤ 0, this means that W is not likely to be very large.

More precisely, let T0 = 0 and for j ≥ 1, let Tj = W ∧ inf{t > Tj−1 : |Yt −
YTj−1 | ≥ 1

2}. For k ≥ 1, let Mk = YTk
. Then {Mk :k ≥ 0} is a submartingale and

|Mk+1 − Mk| ≤ 1 because the magnitudes of the jumps of Yt are at most 1
2 . Thus,

Azuma’s inequality implies that for any constant A > 0, we have

P̃
(

min
j≤k

Mj − M0 < −A

)
≤ e−bA2/k

for a universal constant b > 0. Let Nt = inf{k :Tk ≥ t ∧ W }. The “drift” (viz.,
4α
ρ̃

) and “rate of jumping” [i.e., limε→0 ε−1P̃(Yt+ε �= Yt |Ft )] of Yt are uniformly
bounded. Thus, for universal constants h,γ > 0, Nt is stochastically dominated
by γ t + X, for a Poisson(ht) random variable X. Thus, Proposition 8 implies that
P̃(Nt > γ t + 2ht) ≤ e−Aht for sufficiently large t . So if we define β = γ + 2h,
then P̃(Nt > βt) ≤ e−Aht for sufficiently large t . Note that for any ε > 0, we have
for sufficiently large t ,

P̃
(
MNt − M0 < −εt

) ≤ P̃(Nt > βt) + P̃
(

min
j≤βt

Mj − M0 < −εt

)

≤ e−Aht + e−b(ε2t2)/(βt)(20)

≤ e−dε2t ,(21)

where d > 0 is a universal constant. Note that M0 = Y0 and |MNt − Yt∧W | ≤ 1
2 for

all t . It follows that for every ε > 0 we have

P̃(Yt∧W − Y0 < −εt) ≤ e−dε2t(22)

for sufficiently large t , if we incorporate an extra factor of, say, 1
2 into d .

To complete the proof of Lemma 10, note that

P̃(W > t) ≤ P̃
(
Bt <

Ct

8(ρ + 1)

)
+ P̃

(
W > t,Bt ≥ Ct

8(ρ + 1)

)
(23)

≤ e−ct/(ρ+1)2 + P̃
(
W > t,Bt ≥ Ct

8(ρ + 1)

)
,
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where the second inequality uses equation (18). But if W > t , then Yt is Yt∧W , so

P̃
(
W > t,Bt ≥ Ct

8(ρ + 1)

)

≤ P̃
(
Yt∧W ≤ Ut + 4tα

ρ̃
− αCt

8(ρ + 1)

)

= P̃
(
Yt∧W ≤ Ut − αCt

16(ρ + 1)

)

≤ P̃
(
Yt∧W − Y0 ≤ − αCt

16(ρ + 1)
− Y0

)
,

where the equality holds because ρ̃ = 64C−1(ρ + 1) and the second inequality
holds because Ut ≤ 0. But for sufficiently large t , we have |Y0| ≤ αCt

32(ρ+1)
, so

P̃
(
W > t,Bt ≥ Ct

8(ρ + 1)

)
≤ P̃

(
Yt∧W − Y0 ≤ − αCt

32(ρ + 1)

)

≤ exp
{ −dα2C2t

(32)2(ρ + 1)2

}
,

where the second inequality uses (22). Combining this with (23) completes the
proof. �

APPENDIX

The following lemma was used in the proof of Lemma 10:

LEMMA A.1. Let Xt be an irreducible continuous-time Markov chain on a
finite state space S. Fix s ≥ 0, and for x ∈ S, let Wx = |{0 < t < s :Xt = x}| be the
amount of time the chain spends in state x up to time t . Then there is a constant c,
independent of s, such that for any event A ∈ σ(Wx :x ∈ S), and any y ∈ S, we
have

Py(A) ≤ c max
z∈S

P̃z(A),

where P̃(A) denotes the probability of A when we run the time reversal of Xt .

PROOF. Suppose that Xt has stationary distribution π and let c = |S| ×
maxz,y π(z)/π(y). Suppose that X0 is distributed according to π . Then {Xt : 0 ≤
t ≤ s} has the same distribution as {X̃s−t : 0 ≤ t ≤ s}, where X̃ is the time reversal
of X, with X̃0 having distribution π .

Fix an event A ∈ σ(Wx :x ∈ S). For states i, j , let Ai,j = A ∩ [X0 = i,Xs = j ].
Since {Xt : 0 ≤ t ≤ s} has the same distribution as {X̃s−t : 0 ≤ t ≤ s}, it is clear that
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P(Ai,j ) = P̃(Aji), for all i and j . Hence,

Py(A) = 1

π(y)
P

(⋃
z

Ay,z

)

≤ |S|
π(y)

max
z

P(Ay,z)

= |S|
π(y)

max
z

P̃(Az,y)

≤ |S|
π(y)

max
z

π(z)P̃(A)

≤ c max
z

P̃z(A). �

The following proposition was used in the proof of Lemma 6:

PROPOSITION A.2. Let Xt be the continuous-time simple symmetric random
walk on the integers in which moves in each direction are made at rate 1. Then
there is a universal constant b > 0 such that for every r ≥ 1, we have P0(Xt �= 0
for all t ∈ [1, r2]) ≥ br−1.

PROOF. Let R = �r�. Since the number of jumps by time 1 is Poisson(2), we
have

P0(X1 = 1) ≥ 1
2P(exactly one jump by time 1) = e−2,

and given that X1 = 1, the conditional probability of hitting R before returning to
0 is 1

R
since Xt is a martingale. Call this event B .

It is well known that for any t ≥ 0, the probability that simple random walk
deviates to the left of its starting point by more that

√
t up to time t can be bounded

away from 0 (uniformly in t). Hence, given B , the conditional probability that Xt

does not return to 0 by time R2 is bounded away from 0. It follows that

P0(Xt �= 0 for all t ∈ [1,R2]) ≥ bR−1

for a universal constant b. Since R ∈ [r,2r], the result follows if we incorporate
an extra factor of 1

2 into b. �
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