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SUBTREE PRUNE AND REGRAFT: A REVERSIBLE REAL
TREE-VALUED MARKOV PROCESS

BY STEVEN N. EVANS1 AND ANITA WINTER

University of California at Berkeley and Universität Erlangen–Nürnberg

We use Dirichlet form methods to construct and analyze a reversible
Markov process, the stationary distribution of which is the Brownian con-
tinuum random tree. This process is inspired by the subtree prune and regraft
(SPR) Markov chains that appear in phylogenetic analysis.

A key technical ingredient in this work is the use of a novel Gromov–
Hausdorff type distance to metrize the space whose elements are compact
real trees equipped with a probability measure. Also, the investigation of the
Dirichlet form hinges on a new path decomposition of the Brownian excur-
sion.

1. Introduction. Markov chains that move through a space of finite trees are
an important ingredient for several algorithms in phylogenetic analysis, partic-
ularly in Markov chain Monte Carlo algorithms for simulating distributions on
spaces of trees in Bayesian tree reconstruction and in simulated annealing algo-
rithms in maximum likelihood and maximum parsimony tree reconstruction (see,
e.g., [21] for a comprehensive overview of the field). (Maximum parsimony tree re-
construction is based on finding the phylogenetic tree and inferred ancestral states
that minimize the total number of obligatory inferred substitution events on the
edges of the tree.) Usually, such chains are based on a set of simple rearrangements
that transform a tree into a “neighboring” tree. One widely used set of moves is the
nearest-neighbor interchanges (NNI) (see, e.g., [6, 7, 9, 21]). Two other standard
sets of moves that are implemented in several phylogenetic software packages but
seem to have received less theoretical attention are the subtree prune and regraft
(SPR) moves and the tree bisection and reconnection (TBR) moves that were first
described in [32] and are further discussed in [6, 21, 30]. We note that an NNI
move is a particular type of SPR move and that an SPR move is a particular type
of TBR move and, moreover, that every TBR operation is either a single SPR move
or the composition of two such moves (see, e.g., Section 2.6 of [30]). Chains based
on other moves are investigated in [5, 14, 29].
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In an SPR move, a binary tree T (i.e., a tree in which all nonleaf vertices have
degree 3) is cut “in the middle of an edge” to give two subtrees, say T ′ and T ′′.
Another edge is chosen in T ′, a new vertex is created “in the middle” of that edge
and the cut edge in T ′′ is attached to this new vertex. Last, the “pendant” cut edge
in T ′ is removed along with the vertex it was attached to in order to produce a new
binary tree that has the same number of vertices as T . See Figure 1.

As remarked in [6],

The SPR operation is of particular interest as it can be used to model biological
processes such as horizontal gene transfer and recombination.

(Horizontal gene transfer is the transfer of genetic material from one species to
another. It is a particularly common phenomenon among bacteria.) Section 2.7
of [30] provides more background on this point as well as a comment on the role
of SPR moves in the two phenomena of lineage sorting and gene duplication and
loss.

FIG. 1. An SPR move. The dashed subtree tree attached to vertex x in the top tree is reattached
at a new vertex y that is inserted into the edge (b, c) in the bottom tree to make two edges (b, y)

and (y, c). The two edges (a, x) and (b, x) in the top tree are merged into a single edge (a, b) in the
bottom tree.
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In this paper we investigate the asymptotics of the simplest possible tree-valued
Markov chain based on the SPR moves, namely the chain in which the two edges
that are chosen for cutting and for reattaching are chosen uniformly (without re-
placement) from the edges in the current tree. Intuitively, the continuous-time
Markov process we discuss arises as limit when the number of vertices in the tree
goes to infinity, the edge lengths are rescaled by a constant factor so that the initial
tree converges in a suitable sense to a continuous analogue of a combinatorial tree
(more specifically, a compact real tree), and the time scale of the Markov chain is
sped up by an appropriate factor.

We do not, in fact, prove such a limit theorem. Rather, we use Dirichlet form
techniques to establish the existence of a process that has the dynamics one would
expect from such a limit. Unfortunately, although Dirichlet form techniques pro-
vide powerful tools for constructing and analyzing symmetric Markov processes,
they are notoriously inadequate for proving convergence theorems (as opposed to
generator or martingale problem characterizations of Markov processes, e.g.). We
therefore leave the problem of establishing a limit theorem to future research.

The Markov process we construct is a pure jump process that is reversible with
respect to the distribution of Aldous’ continuum random tree (i.e., the random tree
which arises as the rescaling limit of uniform random trees with n vertices when
n → ∞ and which is also, up to a constant scaling factor, the random tree asso-
ciated naturally with the standard Brownian excursion—see Section 4 for more
details about the continuum random tree, its connection with Brownian excursion
and references to the literature).

Somewhat more precisely, but still rather informally, the process we construct
has the following description.

To begin with, Aldous’ continuum random tree has two natural measures on it
that can both be thought of as arising from the measure on an approximating finite
tree with n vertices that places a unit mass at each vertex. If we rescale the mass of
this measure to get a probability measure, then in the limit we obtain a probability
measure on the continuum random tree that happens to assign all of its mass to
the leaves with probability 1. We call this probability measure the weight on the
continuum tree. On the other hand, we can also rescale the measure that places a
unit mass at each vertex to obtain in the limit a σ -finite measure on the continuum
tree that restricts to one-dimensional Lebesgue measure if we restrict to any path
through the continuum tree. We call this σ -finite measure the length.

The continuum random tree is a random compact real tree of the sort inves-
tigated in [20] (we define real trees and discuss some of their properties in Sec-
tion 2). Any compact real tree has an analogue of the length measure on it, but in
general there is no canonical analogue of the weight measure. Consequently, the
process we construct has as its state space the set of pairs (T , ν), where T is a
compact real tree and ν is a probability measure on T . Let µ be the length mea-
sure associated with T . Our process jumps away from T by first choosing a pair of
points (u, v) ∈ T × T according to the rate measure µ ⊗ ν and then transforming
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T into a new tree by cutting off the subtree rooted at u that does not contain v and
reattaching this subtree at v. This jump kernel (which typically has infinite total
mass—so that jumps are occurring on a dense countable set) is precisely what one
would expect for a limit (as the number of vertices goes to infinity) of the particular
SPR Markov chain on finite trees described above in which the edges for cutting
and reattachment are chosen uniformly at each stage.

The framework of Dirichlet forms allows us to translate this description into rig-
orous mathematics. An important preliminary step that we accomplish in Section 2
is to show that it is possible to equip the space of pairs of compact real trees and
their accompanying weights with a nice Gromov–Hausdorff-like metric that makes
this space complete and separable. We note that a Gromov–Hausdorff-like metric
on more general metric spaces equipped with measures was introduced in [31]. The
latter metric is based on the Wasserstein L2 distance between measures, whereas
ours is based on the Prohorov distance. Moreover, we need to understand in detail
the Dirichlet form arising from the combination of the jump kernel with the con-
tinuum random tree distribution as a reference measure, and we accomplish this
in Sections 5 and 6, where we establish the relevant facts from what appears to
be a novel path decomposition of the standard Brownian excursion. We construct
the Dirichlet form and the resulting process in Section 7. We use potential theory
for Dirichlet forms to show in Section 8 that from almost all starting points (with
respect to the continuum random tree reference measure) our process does not hit
the trivial tree consisting of a single point.

We remark that excursion path-valued Markov processes that are reversible with
respect to the distribution of standard Brownian excursion and have continuous
sample paths have been investigated in [34–36], and that these processes can also
be thought of as real tree-valued diffusion processes that are reversible with respect
to the distribution of the continuum random tree. However, we are unaware of a
description in which these latter processes arise as limits of natural processes on
spaces of finite trees.

2. Weighted R-trees. A metric space (X,d) is a real tree (R-tree) if it satis-
fies the following axioms.

AXIOM 0 (Completeness). The space (X,d) is complete.

AXIOM 1 (Unique geodesics). For all x, y ∈ X there exists a unique isometric
embedding φx,y : [0, d(x, y)] → X such that φx,y(0) = x and φx,y(d(x, y)) = y.

AXIOM 2 (Loop-free). For every injective continuous map ψ : [0,1] → X one
has ψ([0,1]) = φψ(0),ψ(1)([0, d(ψ(0),ψ(1))]).

Axiom 1 says simply that there is a unique “unit speed” path between any two
points, whereas Axiom 2 implies that the image of any injective path connecting
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two points coincides with the image of the unique unit speed path, so that it can
be reparameterized to become the unit speed path. Thus, Axiom 1 is satisfied by
many other spaces such as Rd with the usual metric, whereas Axiom 2 expresses
the property of “treeness” and is only satisfied by Rd when d = 1. We refer the
reader to [12, 15–17, 33] for background on R-trees. In particular, [12] shows
that a number of other definitions are equivalent to the one above. A particularly
useful fact is that a metric space (X,d) is an R-tree if and only if it is complete,
path-connected and satisfies the so-called four point condition, that is,

d(x1, x2) + d(x3, x4)
(2.1)

≤ max{d(x1, x3) + d(x2, x4), d(x1, x4) + d(x2, x3)}
for all x1, . . . , x4 ∈ X.

Let T denote the set of isometry classes of compact R-trees. In order to equip
T with a metric, recall that the Hausdorff distance between two closed subsets A,
B of a metric space (X,d) is defined as

dH(A,B) := inf{ε > 0 :A ⊆ Uε(B) and B ⊆ Uε(A)},(2.2)

where Uε(C) := {x ∈ X :d(x,C) ≤ ε}. Based on this notion of distance between
closed sets, we define the Gromov–Hausdorff distance, dGH(X,Y ), between two
metric spaces (X,dX) and (Y, dY ) as the infimum of the Hausdorff distance
dH(X′, Y ′) over all metric spaces X′ and Y ′ that are isomorphic to X and Y , re-
spectively, and that are subspaces of some common metric space Z (cf. [10, 11,
23]).

A direct application of the previous definition requires an optimal embedding
into a space Z which it is not possible to obtain explicitly in most examples. We
therefore give an equivalent reformulation which allows us to get estimates on the
distance by looking for “matchings” between the two spaces that preserve the two
metrics up to an additive error. In order to be more explicit, we require some more
notation. A subset � ⊆ X × Y is said to be a correspondence between sets X and
Y if for each x ∈ X there exists at least one y ∈ Y such that (x, y) ∈ �, and for
each y ∈ Y there exists at least one x ∈ X such that (x, y) ∈ �. The distortion of
� is defined by

dis(�) := sup{|dX(x1, x2) − dY (y1, y2)| : (x1, y1), (x2, y2) ∈ �}.(2.3)

Then

dGH
(
(X,dX), (Y, dY )

)= 1
2 inf� dis(�),(2.4)

where the infimum is taken over all correspondences � between X and Y (see,
e.g., Theorem 7.3.25 in [11]).

It is shown in Theorem 1 in [20] that the metric space (T, dGH) is complete and
separable.
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In the following we will be interested in compact R-trees (T , d) ∈ T equipped
with a probability measure ν on the Borel σ -field B(T ). We call such objects
weighted compact R-trees and write Twt for the space of weight-preserving isome-
try classes of weighted compact R-trees, where we say that two weighted, compact
R-trees (X,d, ν) and (X′, d ′, ν′) are weight-preserving isometric if there exists an
isometry φ between X and X′ such that the push-forward of ν by φ is ν′:

ν′ = φ∗ν := ν ◦ φ−1.(2.5)

It is clear that the property of being weight-preserving isometric is an equivalence
relation.

We want to equip Twt with a Gromov–Hausdorff type of distance which incor-
porates the weights on the trees, but first we need to introduce some notions that
will be used in the definition.

An ε-(distorted) isometry between two metric spaces (X,dX) and (Y, dY ) is a
(possibly nonmeasurable) map f :X → Y such that

dis(f ) := sup
{∣∣dX(x1, x2) − dY

(
f (x1), f (x2)

)∣∣ :x1, x2 ∈ X
}≤ ε(2.6)

and f (X) is an ε-net in Y .
It is easy to see that if for two metric spaces (X,dX) and (Y, dY ) and ε > 0

we have dGH((X,dX), (Y, dY )) < ε, then there exists a 2ε-isometry from X to Y

(cf. Lemma 7.3.28 in [11]). The following lemma states that we may choose the
distorted isometry between X and Y to be measurable if we allow a slightly bigger
distortion.

LEMMA 2.1. Let (X,dX) and (Y, dY ) be two compact real trees such that
dGH((X,dX), (Y, dY )) < ε for some ε > 0. Then there exists a measurable
3ε-isometry from X to Y .

PROOF. If dGH((X,dX), (Y, dY )) < ε, then by (2.4) there exists a correspon-
dence � between X and Y such that dis(�) < 2ε. Since (X,dX) is compact
there exists a finite ε-net in X. We claim that for each such finite ε-net SX,ε =
{x1, . . . , xNε} ⊆ X, any set SY,ε = {y1, . . . , yNε} ⊆ Y such that (xi, yi) ∈ � for all
i ∈ {1,2, . . . ,Nε} is a 3ε-net in Y . To see this, fix y ∈ Y . We have to show the
existence of i ∈ {1,2, . . . ,Nε} with dY (yi, y) < 3ε. For that choose x ∈ X such
that (x, y) ∈ �. Since SX,ε is an ε-net in X there exists an i ∈ {1,2, . . . ,Nε} such
that dX(xi, x) < ε. (xi, yi) ∈ � implies therefore that |dX(xi, x) − dY (yi, y)| ≤
dis(�) < 2ε, and hence dY (yi, y) < 3ε.

Furthermore we may decompose X into Nε possibly empty measurable disjoint
subsets of X by letting X1,ε := B(x1, ε), X2,ε := B(x2, ε)\X1,ε , and so on, where
B(x, r) is the open ball {x′ ∈ X : dX(x, x′) < r}. Then f defined by f (x) = yi for
x ∈ Xi,ε is obviously a measurable 3ε-isometry from X to Y . �
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We also need to recall the definition of the Prohorov distance between two prob-
ability measures (see, e.g., [19]). Given two probability measures µ and ν on a
metric space (X,d) with the corresponding collection of closed sets denoted by C,
the Prohorov distance between them is

dP(µ, ν) := inf{ε > 0 :µ(C) ≤ ν(Cε) + ε for all C ∈ C},
where Cε := {x ∈ X : infy∈C d(x, y) < ε}. The Prohorov distance is a metric on
the collection of probability measures on X. The following result shows that if
we push measures forward with a map having a small distortion, then Prohorov
distances cannot increase too much.

LEMMA 2.2. Suppose that (X,dX) and (Y, dY ) are two metric spaces,
f :X → Y is a measurable map with dis(f ) ≤ ε, and µ and ν are two proba-
bility measures on X. Then

dP(f∗µ,f∗ν) ≤ dP(µ, ν) + ε.

PROOF. Suppose that dP(µ, ν) < δ. By definition, µ(C) ≤ ν(Cδ) + δ for all
closed sets C ∈ C. If D is a closed subset of Y , then

f∗µ(D) = µ(f −1(D))

≤ µ(f −1(D))
(2.7)

≤ ν(f −1(D)
δ
) + δ

= ν(f −1(D)δ) + δ.

Now x′ ∈ f −1(D)δ means there is x′′ ∈ X such that dX(x′, x′′) < δ and
f (x′′) ∈ D. By the assumption that dis(f ) ≤ ε, we have dY (f (x′), f (x′′)) < δ+ε,
and hence f (x′) ∈ Dδ+ε . Thus

f −1(D)δ ⊆ f −1(Dδ+ε)(2.8)

and we have

f∗µ(D) ≤ ν(f −1(Dδ+ε)) + δ = f∗ν(Dδ+ε) + δ,(2.9)

so that dP(f∗µ,f∗ν) ≤ δ + ε, as required. �

We are now in a position to define the weighted Gromov–Hausdorff distance be-
tween the two compact, weighted R-trees (X,dX, νX) and (Y, dY , νY ). For ε > 0,
set

Fε
X,Y := {measurable ε-isometries from X to Y }.(2.10)
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Put

�GHwt(X,Y )

:= inf{ε > 0 : exist f ∈ Fε
X,Y , g ∈ Fε

Y,X such that(2.11)

dP(f∗νX, νY ) ≤ ε, dP(νX, g∗νY ) ≤ ε}.
Note that the set on the right-hand side is nonempty because X and Y are compact,
and hence bounded. It will turn out that �GHwt satisfies all the properties of a metric
except the triangle inequality. To rectify this, let

dGHwt(X,Y ) := inf

{
n−1∑
i=1

�GHwt(Zi,Zi+1)
1/4

}
,(2.12)

where the infimum is taken over all finite sequences of compact, weighted R-trees
Z1, . . . ,Zn with Z1 = X and Zn = Y .

LEMMA 2.3. The map dGHwt : Twt × Twt → R+ is a metric on Twt. Moreover,
1
2�GHwt(X,Y )1/4 ≤ dGHwt(X,Y ) ≤ �GHwt(X,Y )1/4

for all X,Y ∈ Twt.

PROOF. It is immediate from (2.11) that the map �GHwt is symmetric.
We next claim that

�GHwt
(
(X,dX, νX), (Y, dY , νY )

)= 0,(2.13)

if and only if (X,dX, νX) and (Y, dY , νY ) are weight-preserving isometric. The
“if” direction is immediate. Note first for the converse that (2.13) implies that for
all ε > 0 there exists an ε-isometry from X to Y , and therefore, by Lemma 7.3.28
in [11], dGH((X,dX), (Y, dY )) < 2ε. Thus dGH((X,dX), (Y, dY )) = 0, and it fol-
lows from Theorem 7.3.30 of [11] that (X,dX) and (Y, dY ) are isometric. Check-
ing the proof of that result, we see that we can construct an isometry f :X → Y

by taking any dense countable set S ⊂ X, any sequence of functions (fn) such
that fn is an εn-isometry with εn → 0 as n → ∞, and letting f be limk fnk

along any subsequence such that the limit exists for all x ∈ S (such a subsequence
exists by the compactness of Y ). Therefore, fix some dense subset S ⊂ X and
suppose without loss of generality that we have an isometry f :X → Y given
by f (x) = limn→∞ fn(x), x ∈ S, where fn ∈ F

εn

X,Y , dP(fn∗νX, νY ) ≤ εn, and
limn→∞ εn = 0. We will be done if we can show that f∗νX = νY . If µX is a discrete
measure with atoms belonging to S, then

dP(f∗νX, νY ) ≤ lim sup
n

[dP(fn∗νX, νY ) + dP(fn∗µX,fn∗νX)

+ dP(f∗µX,fn∗µX) + dP(f∗νX,f∗µX)](2.14)

≤ 2dP(µX, νX),
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where we have used Lemma 2.2 and the fact that limn→∞ dP(f∗µX,fn∗µX) = 0
because of the pointwise convergence of fn to f on S. Because we can choose µX

so that dP(µX, νX) is arbitrarily small, we see that f∗νX = νY , as required.
Now consider three spaces (X,dX, νX), (Y, dY , νY ) and (Z, dZ, νZ) in Twt, and

constants ε, δ > 0, such that �GHwt((X,dX, νX), (Y, dY , νY )) < ε and
�GHwt((Y, dY , νY ), (Z, dZ, νZ)) < δ. Then there exist f ∈ Fε

X,Y and g ∈ Fδ
Y,Z such

that dP(f∗νX, νY ) < ε and dP(g∗νY , νZ) < δ. Note that g ◦ f ∈ Fε+δ
X,Z . Moreover,

by Lemma 2.2

dP
(
(g ◦ f )∗νX, νZ

)≤ dP(g∗νY , νZ) + dP(g∗f∗νX,g∗νY ) < δ + ε + δ.(2.15)

This, and a similar argument with the roles of X and Z interchanged, shows that

�GHwt(X,Z) ≤ 2[�GHwt(X,Y ) + �GHwt(Y,Z)].(2.16)

The second inequality in the statement of the lemma is clear. In order to see the
first inequality, it suffices to show that for any Z1, . . . ,Zn we have

�GHwt(Z1,Zn)
1/4 ≤ 2

n−1∑
i=1

�GHwt(Zi,Zi+1)
1/4.(2.17)

We will establish (2.17) by induction. The inequality certainly holds when n = 2.
Suppose it holds for 2, . . . , n−1. Write S for the value of the sum on the right-hand
side of (2.17). Put

k := max

{
1 ≤ m ≤ n − 1 :

m−1∑
i=1

�GHwt(Zi,Zi+1)
1/4 ≤ S/2

}
.(2.18)

By the inductive hypothesis and the definition of k,

�GHwt(Z1,Zk)
1/4 ≤ 2

k−1∑
i=1

�GHwt(Zi,Zi+1)
1/4 ≤ 2(S/2) = S.(2.19)

Of course,

�GHwt(Zk,Zk+1)
1/4 ≤ S.(2.20)

By the definition of k,
k∑

i=1

�GHwt(Zi,Zi+1)
1/4 > S/2,(2.21)

so that once more by the inductive hypothesis,

�GHwt(Zk+1,Zn)
1/4 ≤ 2

n−1∑
i=k+1

�GHwt(Zi,Zi+1)
1/4

= 2S − 2
k∑

i=1

�GHwt(Zi,Zi+1)
1/4(2.22)

≤ S.
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From (2.19), (2.20), (2.22) and two applications of (2.16) we have

�GHwt(Z1,Zn)
1/4 ≤ {4[�GHwt(Z1,Zk) + �GHwt(Zk,Zk+1)

+ �GHwt(Zk+1,Zn)]}1/4

(2.23)
≤ (4 × 3 × S4)1/4

≤ 2S,

as required.
It is obvious by construction that dGHwt satisfies the triangle inequality. The

other properties of a metric follow from the corresponding properties we have
already established for �GHwt and the bounds in the statement of the lemma which
we have already established. �

The procedure we used to construct the weighted Gromov–Hausdorff metric
dGHwt from the semimetric �GHwt was adapted from a proof in [24] of the cele-
brated result of Alexandroff and Urysohn on the metrizability of uniform spaces.
That proof was, in turn, adapted from earlier work of Frink and Bourbaki. The
choice of the power 1

4 is not particularly special; any sufficiently small power
would have worked.

Theorem 2.5 below says that the metric space (Twt, dGHwt) is complete and
separable and hence is a reasonable space on which to do probability theory. In
order to prove this result, we need a compactness criterion that will be useful in its
own right.

PROPOSITION 2.4. A subset D of (Twt, dGHwt) is relatively compact if and
only if the subset E := {(T , d) : (T , d, ν) ∈ D} in (T, dGH) is relatively compact.

PROOF. The “only if” direction is clear. Assume for the converse that E is
relatively compact. Suppose that ((Tn, dTn, νTn))n∈N is a sequence in D. By as-
sumption, ((Tn, dTn))n∈N has a subsequence converging to some point (T , dT ) of
(T, dGH). For ease of notation, we will renumber and also denote this subsequence
by ((Tn, dTn))n∈N. For brevity, we will also omit specific mention of the metric on
a real tree when it is clear from the context.

By Proposition 7.4.12 in [11], for each ε > 0 there is a finite ε-net T ε in

T and for each n ∈ N a finite ε-net T ε
n := {xε,1

n , . . . , x
ε,#T ε

n
n } in Tn such that

dGH(T ε
n , T ε) → 0 as n → ∞. Moreover, we take #T ε

n = #T ε = Nε , say, for
n sufficiently large, and so, by passing to a further subsequence if necessary,
we may assume that #T ε

n = #T ε = Nε for all n ∈ N. We may then assume that

T ε
n and T ε have been indexed so that limn→∞ dTn(x

ε,i
n , x

ε,j
n ) = dT (xε,i, xε,j ) for

1 ≤ i, j ≤ Nε .
We may begin with the balls of radius ε around each point of T ε

n and decompose
Tn into Nε possibly empty, disjoint, measurable sets {T ε,1

n , . . . , T ε,Nε

n } of radius
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no greater than ε. Define a measurable map f ε
n :Tn → T ε

n by f ε
n (x) = xε,i

n if x ∈
T ε,i

n and let gε
n be the inclusion map from T ε

n to Tn. By construction, f ε
n and gε

n

are measurable ε-isometries. Moreover, dP((gε
n)∗(f ε

n )∗νn, νn) < ε and, of course,
dP((f ε

n )∗νn, (f
ε
n )∗νn) = 0. Thus,

�GHwt
((

T ε
n , (f ε

n )∗νn

)
, (Tn, νn)

)≤ ε.

By similar reasoning, if we define hε
n :T ε

n → T ε by xε,i
n �→ xε,i , then

lim
n→∞�GHwt

((
T ε

n , (f ε
n )∗νn

)
,
(
T ε, (hε

n)∗νn

))= 0.

Since T ε is finite, by passing to a subsequence (and relabeling as before) we have

lim
n→∞dP

(
(hε

n)∗νn, ν
ε)= 0

for some probability measure νε on T ε , and hence

lim
n→∞�GHwt

((
T ε, (hε

n)∗νn

)
, (T ε, νε)

)= 0.

Therefore, by Lemma 2.3,

lim sup
n→∞

dGHwt
(
(Tn, νn),

(
T ε, (hε

n)∗νn

))≤ ε1/4.

Now, since (T , dT ) is compact, the family of measures {νε : ε > 0} is relatively
compact, and so there is a probability measure ν on T such that νε converges to ν in
the Prohorov distance along a subsequence ε ↓ 0 and hence, by arguments similar
to the above, along the same subsequence �GHwt((T ε, νε), (T , ν)) converges to 0.
Again applying Lemma 2.3, we have that dGHwt((T ε, νε), (T , ν)) converges to 0
along this subsequence.

Combining the foregoing, we see that by passing to a suitable subsequence and
relabeling, dGHwt((Tn, νn), (T , ν)) converges to 0, as required. �

THEOREM 2.5. The metric space (Twt, dGHwt) is complete and separable.

PROOF. Separability follows readily from separability of (T, dGH) (see The-
orem 1 in [20]), and the separability with respect to the Prohorov distance of the
probability measures on a fixed complete, separable metric space (see, e.g., [19]),
and Lemma 2.3.

It remains to establish completeness. By a standard argument, it suffices
to show that any Cauchy sequence in Twt has a convergent subsequence. Let
(Tn, dTn, νn)n∈N be a Cauchy sequence in Twt. Then (Tn, dTn)n∈N is a Cauchy
sequence in T by Lemma 2.3. By Theorem 1 in [20] there is a T ∈ T such that
dGH(Tn, T ) → 0, as n → ∞. In particular, the sequence (Tn, dTn)n∈N is relatively
compact in T, and therefore, by Proposition 2.4, (Tn, dTn, νn)n∈N is relatively com-
pact in Twt. Thus (Tn, dTn, νn)n∈N has a convergent subsequence, as required. �
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We conclude this section by giving a necessary and sufficient condition for a
subset of (T, dGH) to be relatively compact, and hence, by Proposition 2.4, a nec-
essary and sufficient condition for a subset of (Twt, dGHwt) to be relatively com-
pact.

Fix (T , d) ∈ T and, as usual, denote the Borel-σ -algebra on T by B(T ). Let

T o = ⋃
a,b∈T

]a, b[(2.24)

be the skeleton of T . Observe that if T ′ ⊂ T is a dense countable set, then
(2.24) holds with T replaced by T ′. In particular, T o ∈ B(T ) and B(T )|T o =
σ({]a, b[;a, b ∈ T ′}), where B(T )|T o := {A ∩ T o;A ∈ B(T )}. Hence there
exists a unique σ -finite measure µT on T , called length measure, such that
µT (T \ T o) = 0 and

µT (]a, b[) = d(a, b) ∀a, b ∈ T .(2.25)

Such a measure may be constructed as the trace onto T o of a one-dimensional
Hausdorff measure on T , and a standard monotone class argument shows that this
is the unique measure with property (2.25).

For ε > 0, T ∈ T and ρ ∈ T write

Rε(T ,ρ) := {x ∈ T :∃y ∈ T , [ρ,y] � x, dT (x, y) ≥ ε} ∪ {ρ}(2.26)

for the ε-trimming relative to the root ρ of the compact R-tree T . Then set

Rε(T ) :=

⋂
ρ∈T

Rε(T ,ρ), diam(T ) > ε,

singleton, diam(T ) ≤ ε,
(2.27)

where by singleton we mean the trivial R-tree consisting of one point. The tree
Rε(T ) is called the ε-trimming of the compact R-tree T .

LEMMA 2.6. A subset E of (T, dGH) is relatively compact if and only if for all
ε > 0,

sup{µT (Rε(T )) :T ∈ E} < ∞.(2.28)

PROOF. The “only if” direction follows from the fact that T �→ µT (Rε(T )) is
continuous, which is essentially Lemma 7.3 of [20].

Conversely, suppose that (2.28) holds. Given T ∈ E, an ε-net for Rε(T ) is a
2ε-net for T . By Lemma 2.7 below, Rε(T ) has an ε-net of cardinality at most
[( ε

2)−1µT (Rε(T ))][( ε
2)−1µT (Rε(T ))+1]. By assumption, the last quantity is uni-

formly bounded in T ∈ E. Thus E is uniformly totally bounded and hence is rela-
tively compact by Theorem 7.4.15 of [11]. �

LEMMA 2.7. Let T ∈ T be such that µT (T ) < ∞. For each ε > 0 there is an
ε-net for T of cardinality at most [( ε

2)−1µT (T )][( ε
2)−1µT (T ) + 1].
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PROOF. Note that an ε
2 -net for Rε/2(T ) will be an ε-net for T . The set

T \ Rε/2(T ) is a collection of disjoint subtrees, one for each leaf of Rε/2(T ), and
each such subtree is of diameter at least ε

2 . Thus the number of leaves of Rε/2(T )

is at most ( ε
2)−1µT (T ). Enumerate the leaves of Rε/2(T ) as x0, x1, . . . , xn.

Each arc [x0, xi], 1 ≤ i ≤ n, of Rε/2(T ) has an ε
2 -net of cardinality at most

( ε
2)−1dT (x0, xi) + 1 ≤ ( ε

2)−1µT (T ) + 1. Therefore, by taking the union of these
nets, Rε/2(T ) has an ε

2 -net of cardinality at most [( ε
2)−1µT (T )][( ε

2)−1µT (T )+1].
�

REMARK 2.8. The bound in Lemma 2.7 is far from optimal. It can be shown
that T has an ε-net with a cardinality that is of order µT (T )/ε. This is clear for
finite trees (i.e., trees with a finite number of branch points), where we can traverse
the tree with a unit speed path and hence think of the tree as an image of the interval
[0,2µT (T )] by a Lipschitz map with Lipschitz constant 1, so that a covering of
the interval [0,2µT (T )] by ε-balls gives a covering of T by ε-balls. This argument
can be extended to arbitrary finite length R-trees, but the details are tedious and so
we have contented ourselves with the above simpler bound.

3. Trees and continuous paths. For the sake of completeness and to estab-
lish some notation we recall some facts about the connection between continuous
excursion paths and trees (see [4, 18, 26] for more on this connection).

Write C(R+) for the space of continuous functions from R+ into R. For
e ∈ C(R+), put ζ(e) := inf{t > 0 : e(t) = 0} and write

U :=
e ∈ C(R+) :

e(0) = 0, ζ(e) < ∞,

e(t) > 0 for 0 < t < ζ(e),

and e(t) = 0 for t ≥ ζ(e)

(3.1)

for the space of positive excursion paths. Set U
 := {e ∈ U : ζ(e) = 
}.
We associate each e ∈ U1 with a compact R-tree as follows. Define an equiva-

lence relation ∼e on [0,1] by letting

u1 ∼e u2 iff e(u1) = inf
u∈[u1∧u2,u1∨u2]

e(u) = e(u2).(3.2)

Consider the following pseudometric on [0,1]:
dTe(u1, u2) := e(u1) − 2 inf

u∈[u1∧u2,u1∨u2]
e(u) + e(u2),(3.3)

which becomes a true metric on the quotient space Te := R+|∼e = [0,1]|∼e .

LEMMA 3.1. For each e ∈ U1 the metric space (Te, dTe) is a compact R-tree.



SUBTREE PRUNE AND REGRAFT 931

PROOF. It is straightforward to check that the quotient map from [0,1] onto
Te is continuous with respect to dTe . Thus (Te, dTe) is path-connected and com-
pact as the continuous image of a metric space with these properties. In particular,
(Te, dTe) is complete.

To complete the proof, it therefore suffices to verify the four point condi-
tion (2.1). However, for u1, u2, u3, u4 ∈ Te we have

max
{
dTe(u1, u3) + dTe(u2, u4), dTe(u1, u4) + dTe(u2, u3)

}
(3.4)

≥ dTe(u1, u2) + dTe(u3, u4),

where strict inequality holds if and only if

min
i �=j

inf
u∈[ui∧uj ,ui∨uj ] e(u)

(3.5)
/∈
{

inf
u∈[u1∧u2,u1∨u2]

e(u), inf
u∈[u3∧u4,u3∨u4]

e(u)

}
. �

REMARK 3.2. Any compact R-tree T is isometric to Te for some e ∈ U1.
To see this, fix a root ρ ∈ T . Recall Rε(T ,ρ), the ε-trimming of T with respect
to ρ defined in (2.26). Let µ̄ be a probability measure on T that is equivalent to
the length measure µT . Because µT is σ -finite, such a probability measure always
exists, but one can construct µ̄ explicitly as follows: set H := maxu∈T d(ρ,u), and
put

µ̄ := 2−1 µT (R(ρ,2−1H) ∩ ·)
µT (R(ρ,2−1H))

+∑
i≥2

2−i µ
T (R(ρ,2−iH) \ R(ρ,2−i+1H) ∩ ·)
µT (R(ρ,2−iH) \ R(ρ,2−i+1H))

.

For all 0 < ε < H there is a continuous path

fε :
[
0,2µT (Rε(T ,ρ)

)]→ Rε(T ,ρ)

such that hε defined by hε(t) := d(ρ,fε(t)) belongs to U2µT (Rε(T ,ρ)) [in par-
ticular, fε(0) = fε(2µT (Rε(T ,ρ))) = ρ], hε is piecewise linear with slopes
±1 and Thε is isometric to Rε(T ,ρ). Moreover, these paths may be chosen consis-
tently so that if ε′ ≤ ε′′, then

fε′′(t) = fε′
(
inf
{
s > 0 : |{0 ≤ r ≤ s :fε′(r) ∈ Rε′′(T ,ρ)}| > t

})
,

where | · | denotes Lebesgue measure. Now define eε ∈ Uµ̄(Rε(T ,ρ)) to be the ab-
solutely continuous path satisfying

deε(t)

dt
= 2

dµT

dµ̄
(fε(t))

dhε(t)

dt
.

It can be shown that eε converges uniformly to some e ∈ U1 as ε ↓ 0 and that Te is
isometric to T .
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FIG. 2. A subtree prune and regraft operation on an excursion path: the excursion starting at time
u in the top picture is excised and inserted at time v, and the resulting gap between the two points
marked # is closed up. The two points marked # (resp. ∗) in the top (resp. bottom) picture correspond
to a single point in the associated R-tree.

From the connection we have recalled between excursion paths and real trees,
it should be clear that the analogue of an SPR move for a real tree arising from an
excursion path is the excision and reinsertion of a subexcursion. Figure 2 illustrates
such an operation.

Each tree coming from a path in U1 has a natural weight on it: for e ∈ U1,
we equip (Te, dTe) with the weight νTe given by the push-forward of Lebesgue
measure on [0,1] by the quotient map.

We finish this section with a remark about the natural length measure on a tree
coming from a path. Given e ∈ U1 and a ≥ 0, let

Ga :=
t ∈ [0,1] :

e(t) = a and, for some ε > 0,

e(u) > a for all u ∈]t, t + ε[,
e(t + ε) = a,

(3.6)
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denote the countable set of starting points of excursions of the function e above
the level a. Then µTe , the length measure on Te, is just the push-forward of the
measure

∫∞
0 da

∑
t∈Ga

δt by the quotient map. Alternatively, write

�e := {(s, a) : s ∈]0,1[, a ∈ [0, e(s)[}(3.7)

for the region between the time axis and the graph of e, and for (s, a) ∈ �e denote
by s(e, s, a) := sup{r < s : e(r) = a} and s̄(e, s, a) := inf{t > s : e(t) = a} the start
and finish of the excursion of e above level a that straddles time s. Then µTe is the
push-forward of the measure

∫
�e

ds ⊗ da 1
s̄(e,s,a)−s(e,s,a)

δs(e,s,a) by the quotient

map. We note that the measure µTe appears in [1].

4. Uniform random weighted compact R-trees: the continuum random
tree. In this section we will recall the definition of Aldous’ continuum random
tree, which can be thought of as a uniformly chosen random weighted compact
R-tree.

Consider the Itô excursion measure for excursions of standard Brownian mo-
tion away from 0. This σ -finite measure is defined subject to a normalization of
Brownian local time at 0, and we take the usual normalization of local times at
each level which makes the local time process an occupation density in the spatial
variable for each fixed value of the time variable. The excursion measure is the
sum of two measures, one which is concentrated on nonnegative excursions and
one which is concentrated on nonpositive excursions. Let N be the part which is
concentrated on nonnegative excursions. Thus, in the notation of Section 3, N is
a σ -finite measure on U , where we equip U with the σ -field U generated by the
coordinate maps.

Define a map v : U → U1 by e �→ e(ζ(e)·)√
ζ(e)

. Then

P(�) := N{v−1(�) ∩ {e ∈ U : ζ(e) ≥ c}}
N{e ∈ U : ζ(e) ≥ c} , � ∈ U|U1,(4.1)

does not depend on c > 0 (see, e.g., Exercise 12.2.13.2 in [27]). The probability
measure P is called the law of normalized nonnegative Brownian excursion. We
have

N{e ∈ U : ζ(e) ∈ dc} = dc

2
√

2πc3
(4.2)

and, defining Sc :U1 → Uc by

Sce := √
ce(·/c),(4.3)

we have ∫
N(de)G(e) =

∫ ∞
0

dc

2
√

2πc3

∫
U1

P(de)G(Sce)(4.4)
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for a nonnegative measurable function G :U → R.
Recall from Section 3 how each e ∈ U1 is associated with a weighted com-

pact R-tree (Te, dTe , νTe). Let P be the probability measure on (Twt, dGHwt)

that is the push-forward of the normalized excursion measure by the map e �→
(T2e, dT2e

, νT2e
), where 2e ∈ U1 is just the excursion path t �→ 2e(t).

The probability measure P is the distribution of an object consisting of Aldous’
continuum random tree along with a natural measure on this tree (see, e.g., [2, 4]).
The continuum random tree arises as the limit of a uniform random tree on n

vertices when n → ∞ and edge lengths are rescaled by a factor of 1/
√

n. The ap-
pearance of 2e rather than e in the definition of P is a consequence of this choice
of scaling. The associated probability measure on each realization of the contin-
uum random tree is the measure that arises in this limiting construction by taking
the uniform probability measure on realizations of the approximating finite trees.
The probability measure P can therefore be viewed informally as the “uniform
distribution” on (Twt, dGHwt).

5. Campbell measure facts. For the purposes of constructing the Markov
process that is of interest to us, we need to understand picking a random weighted
tree (T , dT , νT ) according to the continuum random tree distribution P, picking
a point u according to the length measure µT and another point v according to
the weight νT , and then decomposing T into two subtrees rooted at u—one that
contains v and one that does not (we are being a little imprecise here, because
µT will be an infinite measure, P almost surely).

In order to understand this decomposition, we must understand the correspond-
ing decomposition of excursion paths under normalized excursion measure. Be-
cause subtrees correspond to subexcursions and because of our observation in
Section 3 that for an excursion e the length measure µTe on the corresponding
tree is the push-forward of the measure

∫
�e

ds ⊗ da 1
s̄(e,s,a)−s(e,s,a)

δs(e,s,a) by the
quotient map, we need to understand the decomposition of the excursion e into the
excursion above a that straddles s and the “remaining” excursion when e is chosen
according to the standard Brownian excursion distribution P and (s, a) is chosen
according to the σ -finite measure ds ⊗ da 1

s̄(e,s,a)−s(e,s,a)
on �e—see Figure 3.

Given an excursion e ∈ U and a level a ≥ 0 write:

(a) ζ(e) := inf{t > 0 : e(t) = 0} for the “length” of e,
(b) 
a

t (e) for the local time of e at level a up to time t ,
(c) e↓a for e time-changed by the inverse of t �→ ∫ t

0 ds 1{e(s) ≤ a} (i.e., e↓a is
e with the subexcursions above level a excised and the gaps closed up),

(d) 
a
t (e

↓a) for the local time of e↓a at the level a up to time t ,
(e) U↑a(e) for the set of subexcursion intervals of e above a (i.e., an element

of U↑a(e) is an interval I = [gI , dI ] such that e(gI ) = e(dI ) = a and e(t) > a for
gI < t < dI ),
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FIG. 3. The decomposition of the excursion e (top picture) into the excursion ês,a above level a

that straddles time s (bottom left picture) and the “remaining” excursion ěs,a (bottom right picture).

(f ) N ↑a(e) for the counting measure that puts a unit mass at each point (s′, e′),
where, for some I ∈ U↑a(e), s′ := 
a

gI
(e) is the amount of local time of e at level

a accumulated up to the beginning of the subexcursion I and e′ ∈ U given by

e′(t) =
{

e(gI + t) − a, 0 ≤ t ≤ dI − gI ,

0, t > dI − gI ,
(5.1)

is the corresponding piece of the path e shifted to become an excursion above the
level 0 starting at time 0,

(g) ês,a ∈ U and ěs,a ∈ U , for the subexcursion “above” (s, a) ∈ �e, that is,

ês,a(t) :=
{

e
(
s(e, s, a) + t

)− a, 0 ≤ t ≤ s̄(e, s, a) − s(e, s, a),

0, t > s̄(e, s, a) − s(e, s, a),
(5.2)

respectively “below” (s, a) ∈ �e, that is,

ěs,a(t) :=
{

e(t), 0 ≤ t ≤ s(e, s, a),

e
(
t + s̄(e, s, a) − s(e, s, a)

)
, t > s(e, s, a),

(5.3)

(h) σa
s (e) := inf{t ≥ 0 :
a

t (e) ≥ s} and τa
s (e) := inf{t ≥ 0 :
a

t (e) > s},
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(i) ẽs,a ∈ U for e with the interval ]σa
s (e), τ a

s (e)[ containing an excursion
above level a excised, that is,

ẽs,a(t) :=
{

e(t), 0 ≤ t ≤ σa
s (e),

e
(
t + τa

s (e) − σa
s (e)

)
, t > σa

s (e).
(5.4)

The following path decomposition result under the σ -finite measure N is
preparatory to a decomposition under the probability measure P, Corollary 5.2,
that has a simpler intuitive interpretation.

PROPOSITION 5.1. For nonnegative measurable functions F on R+ and G,H

on U , ∫
N(de)

∫
�e

ds ⊗ da

s̄(e, s, a) − s(e, s, a)
F
(
s(e, s, a)

)
G(ês,a)H(ěs,a)

=
∫

N(de)

∫ ∞
0

da

∫
N ↑a(e)

(
d(s′, e′)

)
F(σa

s′(e))G(e′)H
(
ẽs′,a)

= N[G]N
[
H

∫ ζ

0
dsF (s)

]
.

PROOF. The first equality is just a change in the order of integration and has
already been remarked upon in Section 3.

Standard excursion theory (see, e.g., [8, 27, 28]) says that under N, the random
measure e �→ N ↑a(e) conditional on e �→ e↓a is a Poisson random measure with
intensity measure λ↓a(e) ⊗ N, where λ↓a(e) is Lebesgue measure restricted to the
interval [0, 
a∞(e)] = [0,2
a∞(e↓a)].

Note that ẽs′,a is constructed from e↓a and N ↑a(e) − δ(s′,e′) in the same way
that e is constructed from e↓a and N ↑a(e). Also, σa

s′(ẽs′,a) = σa
s′(e). Therefore, by

the Campbell–Palm formula for Poisson random measures (see, e.g., Section 12.1
of [13]),∫

N(de)

∫ ∞
0

da

∫
N ↑a(e)

(
d(s′, e′)

)
F(σa

s′(e))G(e′)H
(
ẽs′,a)

=
∫

N(de)

∫ ∞
0

da N

[∫
N ↑a(e)

(
d(s′, e′)

)
F(σa

s′(e))G(e′)H
(
ẽs′,a)∣∣∣e↓a

]

=
∫

N(de)

∫ ∞
0

da N[G]N
[{∫ 
a∞(e)

0
ds′F(σa

s′(e))
}
H
∣∣∣e↓a

]
= N[G]

∫ ∞
0

da

∫
N(de)

({∫
d
a

s (e)F (s)

}
H(e)

)
= N[G]

∫
N(de)

({∫ ∞
0

da

∫
d
a

s (e)F (s)

}
H(e)

)

= N[G]N
[
H

∫ ζ

0
dsF (s)

]
. �
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The next result says that if we pick an excursion e according to the standard
excursion distribution P and then pick a point (s, a) ∈ �e according to the σ -finite
length measure corresponding to the length measure µTe on the associated tree Te

(see the end of Section 3), then the following objects are independent:

(a) the length of the excursion above level a that straddles time s,
(b) the excursion obtained by taking the excursion above level a that straddles

time s, turning it (by a shift of axes) into an excursion ês,a above level zero starting
at time zero, and then Brownian rescaling ês,a to produce an excursion of unit
length,

(c) the excursion obtained by taking the excursion ěs,a that comes from excis-
ing ês,a and closing up the gap, and then Brownian rescaling ěs,a to produce an
excursion of unit length,

(d) the starting time s(e, s, a) of the excursion above level a that straddles time
s rescaled by the length of ěs,a to give a time in the interval [0,1].

Moreover, the length in (a) is “distributed” according to the σ -finite measure

1

2
√

2π

dρ√
(1 − ρ)ρ3

, 0 ≤ ρ ≤ 1,(5.5)

the unit length excursions in (b) and (c) are both distributed as standard Brownian
excursions (i.e., according to P) and the time in (d) is uniformly distributed on the
interval [0,1].

Recall from (4.3) that Sc :U1 → Uc is the Brownian rescaling map defined by

Sce := √
ce(·/c).

COROLLARY 5.2. For nonnegative measurable functions F on R+ and K

on U × U ,∫
P(de)

∫
�e

ds ⊗ da

s̄(e, s, a) − s(e, s, a)
F

(
s(e, s, a)

ζ(ěs,a)

)
K(ês,a, ěs,a)

=
{∫ 1

0
duF(u)

}∫
P(de)

∫
�e

ds ⊗ da

s̄(e, s, a) − s(e, s, a)
K(ês,a, ěs,a)

=
{∫ 1

0
duF(u)

}
1

2
√

2π

∫ 1

0

dρ√
(1 − ρ)ρ3

∫
P(de′) ⊗ P(de′′)K(Sρe′,S1−ρe′′).

PROOF. For a nonnegative measurable function L on U × U , it follows
straightforwardly from Proposition 5.1 that∫

N(de)

∫
�e

ds ⊗ da

s̄(e, s, a) − s(e, s, a)
F

(
s(e, s, a)

ζ(ěs,a)

)
L(ês,a, ěs,a)

(5.6)

=
{∫ 1

0
duF(u)

}∫
N(de′) ⊗ N(de′′)L(e′, e′′)ζ(e′′).
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The left-hand side of (5.6) is, by (4.4),∫ ∞
0

dc

2
√

2πc3

∫
P(de)

∫
�Sce

ds ⊗ da

(5.7)

× F(s(Sce, s, a)/ζ(

̂

Sce
s,a))L(Ŝce

s,a
,

̂

Sce
s,a)

s̄(Sce, s, a) − s(Sce, s, a)
.

If we change variables to t = s/c and b = a/
√

c, then the integral for (s, a) over
�Sce becomes an integral for (t, b) over �e. Also,

s
(
Sce, ct,

√
cb
)= sup

{
r < ct :

√
ce

(
r

c

)
<

√
cb

}
= c sup{r < t : e(r) < b}(5.8)

= cs(e, t, b),

and, by similar reasoning,

s̄
(
Sce, ct,

√
cb
)= cs̄(e, t, b)(5.9)

and

ζ
( ̂

Sce
ct,

√
cb)= cζ(ět,b).(5.10)

Thus (5.7) is∫ ∞
0

dc

2
√

2πc3

∫
P(de)

√
c

∫
�e

dt ⊗ db

(5.11)

× F(s(e, t, b)/ζ(ět,b))L(Ŝce
ct,

√
cb

,

̂

Sce
ct,

√
cb)

s̄(e, t, b) − s(e, t, b)
.

Now suppose that L is of the form

L(e′, e′′) = K
(
Rζ(e′)+ζ(e′′)e

′,Rζ(e′)+ζ(e′′)e
′′)M(ζ(e′) + ζ(e′′))√

ζ(e′) + ζ(e′′)
,(5.12)

where, for ease of notation, we put for e ∈ U , and c > 0,

Rce := Sc−1e = 1√
c
e(c·).(5.13)

Then (5.11) becomes∫ ∞
0

dc

2
√

2πc3

∫
P(de)

∫
�e

dt ⊗ db

(5.14)

× F(s(e, t, b)/ζ(ět,b))K(êt,b, ět,b)M(c)

s̄(e, t, b) − s(e, t, b)
.
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Since (5.14) was shown to be equivalent to the left-hand side of (5.6), it follows
from (4.4) that∫

P(de)

∫
�e

dt ⊗ db

s̄(e, t, b) − s(e, t, b)
F

(
s(e, t, b)

ζ(ět,b)

)
K(êt,b, ět,b)

(5.15)

=
∫ 1

0 duF(u)

N[M]
∫

N(de′) ⊗ N(de′′)L(e′, e′′)ζ(e′′),

and the first equality of the statement follows.
We have from identity (5.15) that, for any C > 0,

N{ζ(e) > C}
∫

P(de)

∫
�e

ds ⊗ da

s̄(e, s, a) − s(e, s, a)
K(ês,a, ěs,a)

=
∫

N(de′) ⊗ N(de′′)K
(
Rζ(e′)+ζ(e′′)e

′,Rζ(e′)+ζ(e′′)e
′′)

× 1{ζ(e′) + ζ(e′′) > C}√
ζ(e′) + ζ(e′′)

ζ(e′′)

=
∫ ∞

0

dc′

2
√

2πc′3

∫ ∞
0

dc′′

2
√

2πc′′

×
∫

P(de′) ⊗ P(de′′)K(Rc′+c′′Sc′e′,Rc′+c′′Sc′′e′′)1{c′ + c′′ > C}√
c′ + c′′ .

Make the change of variables ρ = c′
c′+c′′ and ξ = c′ + c′′ (with corresponding

Jacobian factor ξ ) to get∫ ∞
0

dc′

2
√

2πc′3

∫ ∞
0

dc′′

2
√

2πc′′

×
∫

P(de′) ⊗ P(de′′)K(Rc′+c′′Sc′e′,Rc′+c′′Sc′′e′′)1{c′ + c′′ > C}√
c′ + c′′

=
(

1

2
√

2π

)2 ∫ ∞
0

dξ

∫ 1

0

dρ ξ√
ρ3(1 − ρ)ξ4

1{ξ > C}√
ξ

×
∫

P(de′) ⊗ P(de′′)K(Sρe′,S1−ρe′′)

=
(

1

2
√

2π

)2{∫ ∞
C

dξ√
ξ3

}∫ 1

0

dρ√
ρ3(1 − ρ)

×
∫

P(de′) ⊗ P(de′′)K(Sρe′,S1−ρe′′),

and the corollary follows upon recalling (4.2). �
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COROLLARY 5.3. (i) For x > 0,∫
P(de)

∫
�e

ds ⊗ da

s̄(e, s, a) − s(e, s, a)
1
{

max
0≤t≤ζ(ês,a)

ês,a > x

}

= 2
∞∑

n=1

nx exp(−2n2x2).

(ii) For 0 < p ≤ 1,∫
P(de)

∫
�e

ds ⊗ da

s̄(e, s, a) − s(e, s, a)
1{ζ(ês,a) > p} =

√
1 − p

2πp
.

PROOF. (i) Recall first of all from Theorem 5.2.10 in [25] that

P

{
e ∈ U1 : max

0≤t≤1
e(t) > x

}
= 2

∞∑
n=1

(4n2x2 − 1) exp(−2n2x2).(5.16)

By Corollary 5.2 applied to K(e′, e′′) := 1{maxt∈[0,ζ(e′)] e′(t) ≥ x} and F ≡ 1,∫
P(de)

∫
�e

ds ⊗ da

s̄(e, s, a) − s(e, s, a)
1
{

max
0≤t≤ζ(ês,a)

ês,a > x

}

= 1

2
√

2π

∫ 1

0

dρ√
ρ3(1 − ρ)

P

{
max

t∈[0,ρ]
√

ρe(t/ρ) > x

}

= 1

2
√

2π

∫ 1

0

dρ√
ρ3(1 − ρ)

P

{
max

t∈[0,1] e(t) >
x√
ρ

}

= 1

2
√

2π

∫ 1

0

dρ√
ρ3(1 − ρ)

2
∞∑

n=1

(
4n2 x2

ρ
− 1
)

exp
(
−2n2 x2

ρ

)

= 2
∞∑

n=1

nx exp(−2n2x2),

as claimed.
(ii) Corollary 5.2 applied to K(e′, e′′) := 1{ζ(e′) ≥ p} and F ≡ 1 immediately

yields ∫
P(de)

∫
�e

ds ⊗ da

s̄(e, s, a) − s(e, s, a)
1{ζ(ês,a) > p}

= 1

2
√

2π

∫ 1

p

dρ√
ρ3(1 − ρ)

=
√

1 − p

2πp
.

�
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We conclude this section by calculating the expectations of some functionals
with respect to P [the “uniform distribution” on (Twt, dGHwt) as introduced in the
end of Section 4].

For T ∈ Twt, and ρ ∈ T , recall Rc(T ,ρ) from (2.26), and the length measure
µT from (2.25). Given (T , d) ∈ Twt and u, v ∈ T , let

ST,u,v := {w ∈ T :u ∈]v,w[}(5.17)

denote the subtree of T that differs from its closure by the point u, which can be
thought of as its root, and consists of points that are on the “other side” of u from v

(recall ]v,w[ is the open arc in T between v and w).

LEMMA 5.4. (i) For x > 0,

P[µT ⊗ νT {(u, v) ∈ T × T : height(ST,u,v) > x}]
= P

[∫
T

νT (dv)µT (Rx(T , v)
)]

= 2
∞∑

n=1

nx exp(−n2x2/2).

(ii) For 1 < α < ∞,

P
[∫

T
νT (dv)

∫
T

µT (du)(height(ST,u,v))α
]

= 2(α+1)/2α�

(
α + 1

2

)
ζ(α),

where, as usual, ζ(α) :=∑n≥1 n−α .
(iii) For 0 < p ≤ 1,

P[µT ⊗ νT {(u, v) ∈ T × T :νT (ST,u,v) > p}] =
√

2(1 − p)

πp
.

(iv) For 1
2 < β < ∞,

P
[∫

T
νT (dv)

∫
T

µT (du)(νT (ST,u,v))β
]

= 2−1/2 �(β − 1/2)

�(β)
.

PROOF. (i) The first equality is clear from the definition of Rx(T , v) and Fu-
bini’s theorem.

Turning to the equality of the first and last terms, first recall that P is the
push-forward on (Twt, dGHwt) of the normalized excursion measure P by the map
e �→ (T2e, dT2e

, νT2e
), where 2e ∈ U1 is just the excursion path t �→ 2e(t). In par-

ticular, T2e is the quotient of the interval [0,1] by the equivalence relation defined
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by 2e. By the invariance of the standard Brownian excursion under random reroot-
ing (see Section 2.7 of [3]), the point in T2e that corresponds to the equivalence
class of 0 ∈ [0,1] is distributed according to νT2e

when e is chosen according to P.
Moreover, recall from the end of Section 3 that for e ∈ U1, the length measure
µTe is the push-forward of the measure ds ⊗ da 1

s̄(e,s,a)−s(e,s,a)
δs(e,s,a) on the sub-

graph �e by the quotient map defined in (3.2).
It follows that if we pick T according to P and then pick (u, v) ∈ T × T ac-

cording to µT ⊗ νT , then the subtree ST,u,v that arises has the same σ -finite law
as the tree associated with the excursion 2ês,a when e is chosen according to P

and (s, a) is chosen according to the measure ds ⊗ da 1
s̄(e,s,a)−s(e,s,a)

δs(e,s,a) on
the subgraph �e.

Therefore, by part (i) of Corollary 5.3,

P
[∫

T
νT (dv)

∫
T

µT (du)1{height(ST,u,v) > x}
]

= 2
∫

P(de)

∫
�e

ds ⊗ da

s̄(e, s, a) − s(e, s, a)
1
{

max
0≤t≤ζ(ês,a)

ês,a >
x

2

}

= 2
∞∑

n=1

nx exp(−n2x2/2).

Part (ii) is a consequence of part (i) and some straightforward calculus.
Part (iii) follows immediately from part (ii) of Corollary 5.3.
Part (iv) is a consequence of part (iii) and some more straightforward calculus.

�

6. A symmetric jump measure on (Twt, dGHwt). In this section we will con-
struct and study a measure on Twt × Twt that is related to the decomposition dis-
cussed at the beginning of Section 5.

Define a map � from {((T , d), u, v) :T ∈ T, u ∈ T , v ∈ T } into T by setting
�((T , d), u, v) := (T , d(u,v)), letting

d(u,v)(x, y) :=


d(x, y), if x, y ∈ ST,u,v ,

d(x, y), if x, y ∈ T \ ST,u,v ,

d(x,u) + d(v, y), if x ∈ ST,u,v, y ∈ T \ ST,u,v ,

d(y,u) + d(v, x), if y ∈ ST,u,v, x ∈ T \ ST,u,v .

(6.1)

That is, �((T , d), u, v) is just T as a set, but the metric has been changed so
that the subtree ST,u,v with root u is now pruned and regrafted so as to have root v.

If (T , d, ν) ∈ Twt and (u, v) ∈ T × T , then we can think of ν as a weight on
(T , d(u,v)), because the Borel structures induced by d and d(u,v) are the same.
With a slight misuse of notation we will therefore write �((T , d, ν), u, v) for
(T , d(u,v), ν) ∈ Twt. Intuitively, the mass contained in ST,u,v is transported along
with the subtree.
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Define a kernel κ on Twt by

κ
(
(T , dT , νT ),B

) := µT ⊗ νT {(u, v) ∈ T × T :�(T ,u, v) ∈ B}(6.2)

for B ∈ B(Twt). Thus κ((T , dT , νT ), ·) is the jump kernel described informally in
the Introduction.

REMARK 6.1. It is clear that κ((T , dT , νT ), ·) is a Borel measure on Twt for
each (T , dT , νT ) ∈ Twt. In order to show that κ(·,B) is a Borel function on Twt

for each B ∈ B(Twt), so that κ is indeed a kernel, it suffices to observe for each
bounded continuous function F : Twt → R that∫

F
(
�(T ,u, v)

)
µT (du)νT (dv)

= lim
ε↓0

∫
F
(
�(T ,u, v)

)
µRε(T )(du)νT (dv)

and that

(T , dT , νT ) �→
∫

F
(
�(T ,u, v)

)
µRε(T )(du)νT (dv)

is continuous for all ε > 0 (the latter follows from an argument similar to that in
Lemma 7.3 of [20], where it is shown that the (T , dT , νT ) �→ µRε(T )(T ) is contin-
uous). We have only sketched the argument that κ is a kernel, because κ is just a
device for defining the measure J on Twt ×Twt in the next paragraph. It is actually
the measure J that we use to define our Dirichlet form, and the measure J can be
constructed directly as the push-forward of a measure on U1 × U1—see the proof
of Lemma 6.2.

We show in part (i) of Lemma 6.2 below that the kernel κ is reversible with
respect to the probability measure P. More precisely, we show that if we define a
measure J on Twt × Twt by

J (A × B) :=
∫

A
P(dT )κ(T ,B)(6.3)

for A,B ∈ B(Twt), then J is symmetric.

LEMMA 6.2. (i) The measure J is symmetric.
(ii) For each compact subset K ⊂ Twt and open subset U such that K ⊂ U ⊆

Twt,

J (K,Twt \ U) < ∞.
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(iii) The function �GHwt is square-integrable with respect to J , that is,∫
Twt×Twt

J (dT , dS)�2
GHwt(T , S) < ∞.

PROOF. (i) Given e′, e′′ ∈ U1, 0 ≤ u ≤ 1 and 0 < ρ ≤ 1, define e◦(·; e′, e′′,
u, ρ) ∈ U1 by

e◦(t; e′, e′′, u, ρ)

(6.4)

:=


S1−ρe′′(t), 0 ≤ t ≤ (1 − ρ)u,

S1−ρe′′((1 − ρ)u
)+ Sρe′(t − (1 − ρ)u

)
,

(1 − ρ)u ≤ t ≤ (1 − ρ)u + ρ,

S1−ρe′′(t − ρ), (1 − ρ)u + ρ ≤ t ≤ 1.

That is, e◦(·; e′, e′′, u, ρ) is the excursion that arises from Brownian rescaling
e′ and e′′ to have lengths ρ and 1 − ρ, respectively, and then inserting the rescaled
version of e′ into the rescaled version of e′′ at a position that is a fraction u of the
total length of the rescaled version of e′′.

Define a measure J on U1 × U1 by∫
U1×U1

J(de∗, de∗∗)K(e∗, e∗∗)

:=
∫
[0,1]2

du ⊗ dv
1

2
√

2π

∫ 1

0

dρ√
(1 − ρ)ρ3

∫
P(de′) ⊗ P(de′′)(6.5)

× K
(
e◦(·; e′, e′′, u, ρ), e◦(·; e′, e′′, v, ρ)

)
.

Clearly, the measure J is symmetric. It follows from the discussion at the beginning
of the proof of part (i) of Lemma 5.4 and Corollary 5.2 that the measure J is the
push-forward of the symmetric measure 2J by the map

U1 × U1 � (e∗, e∗∗) �→ ((
T2e∗, dT2e∗ , νT2e∗

)
,
(
T2e∗∗, dT2e∗∗ , νT2e∗∗

)) ∈ Twt × Twt,

and hence J is also symmetric.
(ii) The result is trivial if K = ∅, so we assume that K �= ∅. Since Twt \ U and

K are disjoint closed sets and K is compact, we have that

c := inf
T ∈K,S∈U

�GHwt(T , S) > 0.(6.6)

Fix T ∈ K. If (u, v) ∈ T × T is such that �GHwt(T ,�(T ,u, v)) > c, then
diam(T ) > c [so that we can think of Rc(T ), recall (2.27), as a subset of T ].
Moreover, we claim that either:

(a) u ∈ Rc(T , v) [recall (2.26)], or
(b) u /∈ Rc(T , v) and νT (ST,u,v) > c [recall (5.17)].
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Suppose, to the contrary, that u /∈ Rc(T , v) and that νT (ST,u,v) ≤ c. Because
u /∈ Rc(T , v), the map f :T → �(T ,u, v) given by

f (w) :=
{

u, if w ∈ ST,u,v ,

w, otherwise,

is a measurable c-isometry. There is an analogous measurable c-isometry g :�(T ,

u, v) → T . Clearly,

dP

(
f∗νT , ν�(T ,u,v))≤ c

and

dP

(
νT , g∗ν�(T ,u,v))≤ c.

Hence, by definition, �GHwt(T ,�(T ,u, v)) ≤ c.
Thus we have

J (K,Twt \ U)

≤
∫

K
P{dT }κ(T , {S :�GHwt(T , S) > c})

≤
∫

K
P(dT )

∫
T

νT (dv)µT (Rc(T , v)
)

(6.7)

+
∫

K
P(dT )

∫
T

νT (dv)µT {u ∈ T :νT (ST,u,v) > c}
< ∞,

where we have used Lemma 5.4.
(iii) Similar reasoning yields that∫

Twt×Twt
J (dT , dS)�2

GHwt(T , S)

=
∫

Twt
P{dT }

∫ ∞
0

dt 2tκ
(
T , {S :�GHwt(T , S) > t})

≤
∫

Twt
P(dT )

∫ ∞
0

dt 2t

∫
T

νT (dv)µT (Rc(T , v)
)

+
∫

Twt
P(dT )

∫ ∞
0

dt 2t

∫
T

νT (dv)µT {u ∈ T :νT {ST,u,v} > t
}

(6.8)

≤
∫ ∞

0
dt 2t

∫
Twt

P(dT )

∫
T

νT (dv)µT (Rc(T , v)
)

+
∫

Twt
P(dT )

∫
T

νT (dv)

∫
T

µT (du)ν2
T (ST,u,v)

< ∞,

where we have applied Lemma 5.4 once more. �
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7. Dirichlet forms. Consider the bilinear form

E(f, g)

(7.1) :=
∫

Twt×Twt
J (dT , dS)

(
f (S) − f (T )

)(
g(S) − g(T )

)
,

for f,g in the domain

D∗(E) := {f ∈ L2(Twt,P) :f is measurable, and E(f, f ) < ∞}(7.2)

[here as usual, L2(Twt,P) is equipped with the inner product (f, g)P := ∫ P(dx)×
f (x)g(x)]. By the argument in Example 1.2.1 in [22] and Lemma 6.2, (E ,D∗(E))

is well defined, symmetric and Markovian.

LEMMA 7.1. The form (E ,D∗(E)) is closed. That is, if (fn)n∈N is a sequence
in D∗(E) such that

lim
m,n→∞

(
E(fn − fm,fn − fm) + (fn − fm,fn − fm)P

)= 0,

then there exists f ∈ D∗(E) such that

lim
n→∞

(
E(fn − f,fn − f ) + (fn − f,fn − f )P

)= 0.

PROOF. Let (fn)n∈N be a sequence such that limm,n→∞ E(fn − fm,fn −
fm) + (fn − fm,fn − fm)P = 0 [i.e., (fn)n∈N is Cauchy with respect to E(·, ·) +
(·, ·)P]. There exists a subsequence (nk)k∈N and f ∈ L2(Twt,P) such that
limk→∞ fnk

= f , P-a.s., and limk→∞(fnk
− f,fnk

− f )P = 0. By Fatou’s lemma,∫
J (dT , dS)

(
f (S) − f (T )

)2 ≤ lim inf
k→∞ E

(
fnk

, fnk

)
< ∞,(7.3)

and so f ∈ D∗(E). Similarly,

E(fn − f,fn − f )

=
∫

J (dT , dS) lim
k→∞

((
fn − fnk

)
(S) − (fn − fnk

)
(T )
)2(7.4)

≤ lim inf
k→∞ E

(
fn − fnk

, fn − fnk

)→ 0

as n → ∞. Thus (fn)n∈N has a subsequence that converges to f with respect
to E(·, ·) + (·, ·)P, but, by the Cauchy property, this implies that (fn)n∈N itself
converges to f . �

Let L denote the collection of functions f : Twt → R such that

sup
T ∈Twt

|f (T )| < ∞(7.5)
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and

sup
S,T ∈Twt,S �=T

|f (S) − f (T )|
�GHwt(S, T )

< ∞.(7.6)

Note that L consists of continuous functions and contains the constants. It fol-
lows from (2.16) that L is both a vector lattice and an algebra. By Lemma 7.2
below, L ⊆ D∗(E). Therefore, the closure of (E ,L) is a Dirichlet form that we
will denote by (E ,D(E)).

LEMMA 7.2. Suppose that {fn}n∈N is a sequence of functions from Twt into
R such that

sup
n∈N

sup
T ∈Twt

|fn(T )| < ∞,

sup
n∈N

sup
S,T ∈Twt,S �=T

|fn(S) − fn(T )|
�GHwt(S, T )

< ∞

and

lim
n→∞fn = f, P-a.s.,

for some f : Twt → R. Then {fn}n∈N ⊂ D∗(E), f ∈ D∗(E), and

lim
n→∞

(
E(fn − f,fn − f ) + (fn − f,fn − f )P

)= 0.

PROOF. By the definition of the measure J [see (6.3)] and the symmetry of J

[Lemma 6.2(i)], we have that fn(x) − fn(y) → f (x) − f (y) for J -almost every
pair (x, y). The result then follows from part (iii) of Lemma 6.2 and the dominated
convergence theorem. �

Before showing that (E ,D(E)) is the Dirichlet form of a nice Markov process,
we remark that L, and hence D(E), is quite a rich class of functions: we show
in the proof of Theorem 7.3 below that L separates points of Twt and hence if
K is any compact subset of Twt, then, by the Stone–Weierstrass theorem, the set of
restrictions of functions in L to K is uniformly dense in the space of real-valued
continuous functions on K.

The following theorem states that there is a well-defined Markov process with
the dynamics we would expect for a limit of the subtree prune and regraft chains.

THEOREM 7.3. There exists a recurrent P-symmetric Hunt process X =
(Xt ,PT ) on Twt whose Dirichlet form is (E ,D(E)).

PROOF. We will check the conditions of Theorem 7.3.1 in [22] to establish
the existence of X.
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Because Twt is complete and separable (recall Theorem 2.5) there is a sequence
H1 ⊆ H2 ⊆ · · · of compact subsets of Twt such that P(

⋃
k∈N Hk) = 1. Given α,

β > 0, write Lα,β for the subset of L consisting of functions f such that

sup
T ∈Twt

|f (T )| ≤ α(7.7)

and

sup
S,T ∈Twt,S �=T

|f (S) − f (T )|
�GHwt(S, T )

≤ β.(7.8)

By the separability of the continuous real-valued functions on each Hk with respect
to the supremum norm, it follows that for each k ∈ N there is a countable set
Lα,β,k ⊆ Lα,β such that for every f ∈ Lα,β

inf
g∈Lα,β,k

sup
T ∈Hk

|f (T ) − g(T )| = 0.(7.9)

Set Lα,β :=⋃k∈N Lα,β,k . Then for any f ∈ Lα,β there exists a sequence {fn}n∈N

in Lα,β such that limn→∞ fn = f pointwise on
⋃

k∈N Hk , and hence P-almost
surely. By Lemma 7.2, the countable set

⋃
m∈N Lm,m is dense in L, and hence also

dense in D(E), with respect to E(·, ·) + (·, ·)P.
Now fix a countable dense subset S ⊂ Twt. Let M denote the countable set of

functions of the form

T �→ p + q
(
�GHwt(S, T ) ∧ r

)
(7.10)

for some S ∈ S and p,q, r ∈ Q. Note that M ⊆ L, that M separates the points of
Twt and, for any T ∈ Twt, that there is certainly a function f ∈ M with f (T ) �= 0.

Consequently, if C is the algebra generated by the countable set M ∪⋃
m∈N Lm,m, then it is certainly the case that C is dense in D(E) with respect

to E(·, ·) + (·, ·)P, that C separates the points of Twt and, for any T ∈ Twt, that
there is a function f ∈ C with f (T ) �= 0.

All that remains in verifying the conditions of Theorem 7.3.1 in [22] is to check
the tightness condition that there exist compact subsets K1 ⊆ K2 ⊆ · · · of Twt such
that limn→∞ Cap(Twt \ Kn) = 0, where Cap is the capacity associated with the
Dirichlet form—see Remark 7.4 below for a definition. This convergence, how-
ever, is the content of Lemma 7.7 below.

Finally, because constants belong to D(E), it follows from Theorem 1.6.3
in [22] that X is recurrent. �

REMARK 7.4. In the proof of Theorem 7.3 we used the capacity associated
with the Dirichlet form (E ,D(E)). We remind the reader that for an open subset
U ⊆ Twt,

Cap(U) := inf{E(f, f ) + (f, f )P :f ∈ D(E), f (T ) ≥ 1,P-a.e. T ∈ U},
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and for a general subset A ⊆ Twt

Cap(A) := inf{Cap(U) : A ⊆ U is open}.
We refer the reader to Section 2.1 of [22] for details and a proof that Cap is a

Choquet capacity.

The following results were needed in the proof of Theorem 7.3.

LEMMA 7.5. For ε, a, δ > 0, put Vε,a := {T ∈ T :µT (Rε(T )) > a} and, as
usual, Vδ

ε,a := {T ∈ T :dGH(T ,Vε,a) < δ}. Then, for fixed ε > 3δ,⋂
a>0

Vδ
ε,a = ∅.

PROOF. Fix S ∈ T. If S ∈ Vδ
ε,a , then there exists T ∈ Vε,a such that

dGH(S, T ) < δ. Observe that Rε(T ) is not the trivial tree consisting of a single
point because it has total length greater than a. Write {y1, . . . , yn} for the leaves of
Rε(T ). For all i = 1, . . . , n, the connected component of T \ Rε(T )o that contains
yi contains a point zi such that dT (yi, zi) = ε.

Let � be a correspondence between S and T with dis(�) < 2δ. Pick x1, . . . , xn ∈
S such that (xi, zi) ∈ �, and hence |dS(xi, xj ) − dT (zi, zj )| < 2δ for all i, j .

The distance in Rε(T ) from the point yk to the arc [yi, yj ] is

1
2

(
dS(yk, yi) + dS(yk, yj ) − dS(yi, yj )

)
.(7.11)

Thus the distance from yk , 3 ≤ k ≤ n, to the subtree spanned by y1, . . . , yk−1 is∧
1≤i≤j≤k−1

1
2

(
dT (yk, yi) + dT (yk, yj ) − dT (yi, yj )

)
,(7.12)

and hence

µT (Rε(T )) = dT (y1, y2)

(7.13)

+
n∑

k=3

∧
1≤i≤j≤k−1

1
2

(
dT (yk, yi) + dT (yk, yj ) − dT (yi, yj )

)
.

Now the distance in S from the point xk to the arc [xi, xj ] is

1
2

(
dS(xk, xi) + dS(xk, xj ) − dS(xi, xj )

)
≥ 1

2

(
dT (zk, zi) + dT (zk, zj ) − dT (zi, zj ) − 3 × 2δ

)
(7.14)

= 1
2

(
dT (yk, yi) + 2ε + dT (yk, yj ) + 2ε − dT (yi, yj ) − 2ε − 6δ

)
> 0
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by the assumption that ε > 3δ. In particular, x1, . . . , xn are leaves of the subtree
spanned by {x1, . . . , xn}, and Rγ (S) has at least n leaves when 0 < γ < 2ε − 6δ.
Fix such a γ .

Now

µS(Rγ (S))

≥ dS(x1, x2) − 2γ

+
n∑

k=3

∧
1≤i≤j≤k−1

[1
2

(
dS(xk, xi) + dS(xk, xj ) − dS(xi, xj )

)− γ
]

(7.15)

≥ µT (Rε(T )) + (2ε − 2δ − 2γ ) + (n − 2)(ε − 3δ − γ )

≥ a + (2ε − 2δ − 2γ ) + (n − 2)(ε − 3δ − γ ).

Because µS(Rγ (S)) is finite, it is apparent that S cannot belong to Vδ
ε,a when a is

sufficiently large. �

LEMMA 7.6. For ε, a > 0, let Vε,a be as in Lemma 7.5. Set Uε,a := {(T , ν) ∈
Twt :T ∈ Vε,a}. Then, for fixed ε,

lim
a→∞ Cap(Uε,a) = 0.(7.16)

PROOF. Observe that (T , dT , νT ) �→ µRε(T )(T ) is continuous (this is essen-
tially Lemma 7.3 of [20]), and so Uε,a is open.

Choose δ > 0 such that ε > 3δ. Suppressing the dependence on ε and δ, define
ua : Twt → [0,1] by

ua

(
(T , ν)

) := δ−1(δ − dGH(T ,Vε,a)
)
+.(7.17)

Note that ua takes the value 1 on the open set Uε,a , and so Cap(Uε,a) ≤
E(ua, ua) + (ua, ua)P. Also observe that∣∣ua

(
(T ′, ν′)

)− ua

(
(T ′′, ν′′)

)∣∣≤ δ−1dGH(T ′, T ′′)
(7.18)

≤ δ−1�GHwt
(
(T ′, ν′), (T ′′, ν′′)

)
.

It therefore suffices by part (iii) of Lemma 6.2 and the dominated convergence
theorem to show for each pair ((T ′, ν′), (T ′′, ν′′)) ∈ Twt × Twt that ua((T

′, ν′)) −
ua((T

′′, ν′′)) is 0 for a sufficiently large and for each T ∈ Twt that ua((T , ν)) is 0
for a sufficiently large. However, ua((T

′, ν′)) − ua((T
′′, ν′′)) �= 0 implies that ei-

ther T ′ or T ′′ belongs to Vδ
ε,a , while ua((T , ν)) �= 0 implies that T belongs to Vδ

ε,a .
The result then follows from Lemma 7.5. �

LEMMA 7.7. There is a sequence of compact sets K1 ⊆ K2 ⊆ · · · such that
limn→∞ Cap(Twt \ Kn) = 0.
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PROOF. By Lemma 7.6, for n = 1,2, . . . we can choose an so that
Cap(U2−n,an

) ≤ 2−n. Set

Fn := Twt \ U2−n,an
= {(T , ν) ∈ Twt :µT (R2−n(T )) ≤ an}(7.19)

and

Kn := ⋂
m≥n

Fm.(7.20)

By Proposition 2.4 and Lemma 2.6, each set Kn is compact. By construction,

Cap(Twt \ Kn) = Cap

( ⋃
m≥n

U2−m,am

)

≤ ∑
m≥n

Cap
(
U2−m,am

)
(7.21)

≤ ∑
m≥n

2−m = 2−(n−1).
�

8. The trivial tree is essentially polar. From our informal picture of the
process X evolving via rearrangements of the initial tree that preserve the total
branch length, one might expect that if X does not start at the trivial tree T0 con-
sisting of a single point, then X will never hit T0. However, an SPR move can
decrease the diameter of a tree, so it is conceivable that, in passing to the limit,
there is some probability that an infinite sequence of SPR moves will conspire to
collapse the evolving tree down to a single point. Of course, it is hard to imagine
from the approximating dynamics how X could recover from such a catastrophe—
which it would have to since it is reversible with respect to the continuum random
tree distribution.

In this section we will use potential theory for Dirichlet forms to show that
X does not hit T0 from P-almost all starting points; that is, that the set {T0} is
essentially polar.

Let d̄ be the map which sends a weighted R tree (T , d, ν) to the ν-averaged
distance between pairs of points in T . That is,

d̄
(
(T , d, ν)

) := ∫
T

∫
T

ν(dx)ν(dy) d(x, y), (T , d, ν) ∈ Twt.(8.1)

In order to show that T0 is essentially polar, it will suffice to show that the set{
(T , d, ν) ∈ Twt : d̄

(
(T , d, ν)

)= 0
}

(8.2)

is essentially polar.

LEMMA 8.1. The function d̄ belongs to the domain D(E).
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PROOF. If we let d̄n((T , d, ν)) := ∫
T

∫
T ν(dx)ν(dy)[d(x, y) ∧ n], for n ∈ N,

then d̄n ↑ d̄ , P-a.s. By the triangle inequality,

(d̄, d̄)P ≤
∫

P(dT )(diam(T ))2 ≤
∫

P(de)

(
4 sup

t∈[0,1]
e(t)

)2

< ∞,(8.3)

and hence d̄n → d̄ as n → ∞ in L2(Twt,P).
Notice, moreover, that for (T , d, ν) ∈ Twt and u, v ∈ T ,(

d̄
(
(T , d, ν)

)− d̄
(
�
(
(T , d, ν), u, v

)))2
= 2

∫
ST,u,v

∫
T \ST,u,v

ν(dx)ν(dy)
(
d(y,u) − d(y, v)

)2(8.4)

= 2νT (ST,u,v)ν(T \ ST,u,v) d2(u, v).

Hence, applying Corollary 5.2 and the invariance of the standard Brownian excur-
sion under random rerooting (see Section 2.7 of [3]),∫

Twt×Twt
J (dT , dS)

(
d̄(T ) − d̄(S)

)2
= 2

∫
Twt

P(dT )

×
∫
T ×T

νT (dv)µT (du)νT (ST,u,v)νT (T \ ST,u,v) d2
T (u, v)

≤ 2
∫

P(de)2
∫
�e

ds ⊗ da

s̄(e, s, a) − s(e, s, a)
ζ(ês,a)ζ(ěs,a)(2a)2(8.5)

= 8√
2π

∫ 1

0

dρ√
(1 − ρ)ρ3

×
∫

P(de′) ⊗ P(de′′)ρ(1 − ρ)(supS1−ρe′′)2

= 8√
2π

∫ 1

0

dρ√
(1 − ρ)ρ3

ρ(1 − ρ)2
∫

P(de)

(
sup

t∈[0,1]
e(t)

)2

< ∞.

Consequently, by dominated convergence, E(d̄ − d̄n, d̄ − d̄n) → 0 as n → ∞.
It is therefore enough to verify that d̄n ∈ L for all n ∈ N. Obviously,

sup
T ∈Twt

d̄n(T ) ≤ n,(8.6)

and so the boundedness condition (7.5) holds. To show that the “Lipschitz”
property (7.6) holds, fix ε > 0, and let (T , νT ), (S, νS) ∈ Twt be such that
�GHwt((T , νT ), (S, νS)) < ε. Then there exist f ∈ Fε

T,S and g ∈ Fε
S,T such that
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dP(νT , g∗νS) < ε and dP(f∗νT , νS) < ε [recall Fε
T,S from (2.10)]. Hence∣∣d̄n

(
(T , νT )

)− d̄n

(
(S, νS)

)∣∣
≤
∣∣∣∣ ∫

T

∫
T

νT (dx)νT (dy)
(
dT (x, y) ∧ n

)
−
∫
g(S)

∫
g(S)

g∗νS(dx)g∗νS(dy)
(
dT (x, y) ∧ n

)∣∣∣∣(8.7)

+
∣∣∣∣ ∫

g(S)

∫
g(S)

g∗νS(dx)g∗νS(dy)
(
dT (x, y) ∧ n

)
−
∫
S

∫
S
νS(dx′)νS(dy′)

(
dS(x′, y′) ∧ n

)∣∣∣∣.
For the first term on the right-hand side of (8.7) we get∣∣∣∣ ∫

T

∫
T

νT (dx)νT (dy)
(
dT (x, y) ∧ n

)
−
∫
g(S)

∫
g(S)

g∗νS(dx)g∗νS(dy)
(
dT (x, y) ∧ n

)∣∣∣∣
≤
∣∣∣∣ ∫

T

∫
T

νT (dx)νT (dy)
(
dT (x, y) ∧ n

)
(8.8)

−
∫
T

∫
g(S)

νT (dx)g∗νS(dy)
(
dT (x, y) ∧ n

)∣∣∣∣
+
∣∣∣∣ ∫

S(g)

∫
T

g∗νS(dx)νT (dy)
(
dT (x, y) ∧ n

)
−
∫
g(S)

∫
g(S)

g∗νS(dx)g∗νS(dy)
(
dT (x, y) ∧ n

)∣∣∣∣.
By assumption and Theorem 3.1.2 in [19], we can find a probability measure ν

on T × T with marginals νT and g∗νS such that

ν{(x, y) :dT (x, y) ≥ ε} ≤ ε.(8.9)

Hence, for all x ∈ T ,∣∣∣∣ ∫
T

νT (dy)
(
dT (x, y) ∧ n

)− ∫
g(S)

g∗νS(dy)
(
dT (x, y) ∧ n

)∣∣∣∣
≤
∫
T ×g(S)

ν
(
d(y, y′)

)∣∣(dT (x, y) ∧ n
)− (dT (x, y′) ∧ n

)∣∣
(8.10)

≤
∫
T ×g(S)

ν
(
d(y, y′)

)(
dT (y, y′) ∧ n

)
≤ (1 + (diam(T ) ∧ n

)) · ε.
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For the second term in (8.7) we use the fact that g is an ε-isometry, that is,
|(dS(x′, y′)∧n)− (dT (g(x′), g(y′))∧n)| < ε for all x′, x′′ ∈ T . A change of vari-
ables then yields that∣∣∣∣ ∫

g(S)

∫
g(S)

g∗νS(dx)g∗νS(dy)
(
dT (x, y) ∧ n

)
−
∫
S

∫
S
νS(dx′)νS(dy′)

(
dS(x′, y′) ∧ n

)∣∣∣∣
≤ ε +

∣∣∣∣ ∫
g(S)

∫
g(S)

g∗νS(dx)g∗νS(dy)
(
dT (x, y) ∧ n

)
(8.11)

−
∫
S

∫
S
νS(dx′)νS(dy′)

(
dT

(
g(x′), g(y′)

)∧ n
)∣∣∣∣

= ε.

Combining (8.7) through (8.11) yields finally that

sup
(T ,νT ) �=(S,νS)∈Twt

|d̄n((T , νT )) − d̄n((S, νS))|
�GHwt((T , νT ), (S, νS))

≤ 3 + 2n.(8.12)
�

PROPOSITION 8.2. The set {T ∈ Twt : d̄(T ) = 0} is essentially polar. In par-
ticular, the set {T0} consisting of the trivial tree is essentially polar.

PROOF. We need to show that Cap({T ∈ Twt : d̄(T ) = 0}) = 0 (see Theo-
rem 4.2.1 of [22]).

For ε > 0 set

Wε := {T ∈ Twt : d̄(T ) < ε}.(8.13)

By the argument in the proof of Lemma 8.1, the function d̄ is continuous, and so
Wε is open. It suffices to show that Cap(Wε) ↓ 0 as ε ↓ 0.

Put

uε(T ) :=
(

2 − d̄(T )

ε

)
+
, T ∈ Twt.(8.14)

Then u ∈ D(E) by Lemma 8.1 and the fact that the domain of a Dirichlet form
is closed under composition with Lipschitz functions. Because uε(T ) ≥ 1 for
T ∈ Wε , it thus further suffices to show

lim
ε↓0

(
E(uε, uε) + (uε, uε)P

)= 0.(8.15)

By elementary properties of the standard Brownian excursion,

(uε, uε)P ≤ 4P{T : d̄(T ) < 2ε} → 0(8.16)

as ε ↓ 0. Estimating E(uε, uε) will be somewhat more involved.
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Let Ê and Ě be two independent standard Brownian excursions, and let
U and V be two independent random variables that are independent of Ê and Ě

and uniformly distributed on [0,1]. With a slight abuse of notation, we will write
P for the probability measure on the probability space where Ê, Ě, U and V are
defined.

Set

D̂ := 4
∫

0≤s<t≤1
ds ⊗ dt

[
Ês + Êt − 2 inf

s≤w≤t
Êw

]
,

Ĥ := 2
∫
[0,1]

dtÊt ,

Ď := 4
∫

0≤s<t≤1
ds ⊗ dt

[
Ěs + Ět − 2 inf

s≤w≤t
Ěw

]
,(8.17)

ȞU := 2
∫
[0,1]

dt

[
Ět + ĚU − 2 inf

U∧t≤w≤U∨t
Ěw

]
,

ȞV := 2
∫
[0,1]

dt

[
Ět + ĚV − 2 inf

V ∧t≤w≤V ∨t
Ěw

]
.

For 0 ≤ ρ ≤ 1 set

DU(ρ) := (1 − ρ)2
√

1 − ρĎ + ρ2√ρD̂
(8.18)

+ 2(1 − ρ)ρ
√

ρĤ + 2(1 − ρ)ρ
√

1 − ρȞU

and

DV (ρ) := (1 − ρ)2
√

1 − ρĎ + ρ2√ρD̂
(8.19)

+ 2(1 − ρ)ρ
√

ρĤ + 2(1 − ρ)ρ
√

1 − ρȞV .

Then

E(uε, uε)

= 1

2
√

2π
P

[∫ 1

0

dρ√
(1 − ρ)ρ3

(8.20)

×
{(

2 − DU(ρ)

ε

)
+

−
(

2 − DV (ρ)

ε

)
+

}2]
.

Fix 0 < a < 1
2 and write ā = 1 − a for convenience. We can write the right-

hand side of (8.20) as the sum of three terms I (ε, a), II(ε, a) and III(ε, a), that
arise from integrating ρ over the respective ranges

{ρ :DU(ρ) ∨ DV (ρ) ≤ 2ε,0 ≤ ρ ≤ a},(8.21)

{ρ :DU(ρ) ∧ DV (ρ) ≤ 2ε ≤ DU(ρ) ∨ DV (ρ),0 ≤ ρ ≤ a},(8.22)
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and

{ρ :a < ρ ≤ 1}.(8.23)

Consider I (ε, a) first. Note that if DU(ρ) ∨ DV (ρ) ≤ 2ε, then{(
2 − DU(ρ)

ε

)
+

−
(

2 − DV (ρ)

ε

)
+

}2

≤ 22 ρ2

ε2 {ȞU − ȞV }2.(8.24)

Moreover,

{0 ≤ ρ ≤ a :DU(ρ) ∨ DV (ρ) ≤ 2ε}
⊆ {0 ≤ ρ ≤ a : (1 − ρ)5/2Ď + 2(1 − ρ)3/2ρ(ȞU ∨ ȞV ) ≤ 2ε}

(8.25)
⊆ {0 ≤ ρ ≤ a : ā5/2Ď + 2ā3/2ρ(ȞU ∨ ȞV ) ≤ 2ε}

=
{
ρ : 0 ≤ ρ ≤ (2ε − ā5/2Ď)+

2ā3/2(ȞU ∨ ȞV )
∧ a

}
.

Thus I (ε, a) is bounded above by the expectation of the random variable that arises
from integrating 22ρ2{ȞU − ȞV }2/ε2 against the measure 1

2
√

2π

dρ√
(1−ρ)ρ3

over the

interval [0, (2ε − ā5/2Ď)+/(2ā3/2(ȞU ∨ ȞV ))]. Note that∫ x

0

dρ√
ρ3

ρα = 1

α − 1/2
xα−1/2, α >

1

2
.(8.26)

Hence, letting C denote a generic constant with a value that does not depend on ε

or a and may change from line to line,

I (ε, a) ≤ CP

[(
(2ε − ā5/2Ď)+

ȞU ∨ ȞV

)3/2 {ȞU − ȞV }2

ε2

]

≤ C

ε2 P[(2ε − ā5/2Ď)
3/2
+ (ȞU ∨ ȞV )1/2]

≤ C

ε1/2 P[(ȞU + ȞV )1/21{Ď ≤ 2ā−5/2ε}](8.27)

≤ C

ε1/2 P[Ď1/21{Ď ≤ 2ā−5/2ε}]

≤ CP{Ď ≤ 2ā−5/2ε},
where in the second last line we used the fact that

P[ȞU |Ě] = P[ȞV |Ě] = Ď,(8.28)

and Jensen’s inequality for conditional expectations to obtain the inequalities
P[Ȟ 1/2

U |Ě] ≤ Ď1/2 and P[Ȟ 1/2
V |Ě] ≤ Ď1/2. Thus, limε↓0 I (ε, a) = 0 for any value

of a.
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Turning to II(ε, a), first note that D̂ ≤ 4Ĥ and, by the triangle inequality,

Ď ≤ 2(ȞU ∧ ȞV ).(8.29)

Hence, for some constant K that does not depend on ε or a,

|DU(ρ) ∧ DV (ρ) − Ď| ≤ K
(
Ĥρ3/2 + (ȞU ∧ ȞV )ρ

)
(8.30)

and

|DU(ρ) ∨ DV (ρ) − Ď| ≤ K
(
Ĥρ3/2 + (ȞU ∨ ȞV )ρ

)
.(8.31)

Combining (8.31) with an argument similar to that which established (8.25)
gives, for a suitable constant K∗,

{0 ≤ ρ ≤ a :DU(ρ) ∧ DV (ρ) ≤ 2ε ≤ DU(ρ) ∨ DV (ρ)}
= {0 ≤ ρ ≤ a : 2ε ≤ DU(ρ) ∨ DV (ρ)}

∩ {0 ≤ ρ ≤ a :DU(ρ) ∧ DV (ρ) ≤ 2ε}(8.32)

⊆
{
ρ :

(2ε − Ď)+
K∗(Ĥ + ȞU ∨ ȞV )

≤ ρ ≤ a

}

∩
{
ρ : 0 ≤ ρ ≤ (2ε − ā5/2Ď)+

2ā3/2(ȞU ∧ ȞV )
∧ a

}
.

Moreover, by (8.30) and the observation |(2ε − x)+ − (2ε − y)+| ≤ |x − y|, we
have for DU(ρ) ∧ DV (ρ) ≤ 2ε ≤ DU(ρ) ∨ DV (ρ) that{(

2 − DU(ρ)

ε

)
+

−
(

2 − DV (ρ)

ε

)
+

}2

=
{(

2 − DU(ρ) ∧ DV (ρ)

ε

)
+

}2

≤ 2

ε2 {(2ε − Ď)+}2

(8.33)

+ 2

ε2

{(
2ε − DU(ρ) ∧ DV (ρ)

)
+ − (2ε − Ď)+

}2

≤ 2

ε2 {(2ε − Ď)+}2 + 2

ε2 {DU(ρ) ∧ DV (ρ) − Ď}2

≤ C

ε2 [(2ε − Ď)2+ + Ĥ 2ρ3 + (ȞU ∧ ȞV )2ρ2],
for a suitable constant C that does not depend on ε or a. It follows from (8.26) and∫ a

x

dρ√
ρ3

ρβ = 1

1/2 − β
[xβ−1/2 − aβ−1/2], β <

1

2
,(8.34)
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that

II(ε, a) ≤ C′

ε2 P

[
(2ε − Ď)2+

{
(2ε − Ď)+

Ĥ + ȞU ∨ ȞV

}−1/2]

+ C′′

ε2 P

[
Ĥ 2
{

(2ε − ā5/2Ď)+
2ā3/2(ȞU ∧ ȞV )

∧ a

}5/2]
(8.35)

+ C′′′

ε2 P

[
(ȞU ∧ ȞV )2

{
(2ε − ā5/2Ď)+

2ā3/2(ȞU ∧ ȞV )
∧ a

}3/2]
for suitable constants C′, C′′ and C′′′.

Consider the first term in (8.35). Using Jensen’s inequality for conditional ex-
pectations and (8.28) again, this term is bounded above by

1

ε2 P[(2ε − Ď)
3/2
+ {AĎ1/2 + B}] ≤ 1

ε2 P[(2ε − Ď)
3/2
+ {21/2Aε1/2 + B}](8.36)

for suitable constants A,B . Now, by Jensen’s inequality for conditional expecta-
tion yet again, along with the invariance of standard Brownian excursion under
random rerooting (see Section 2.7 of [3]) and the fact that

P{ĚU ∈ dr} = re−r2/2 dr(8.37)

(see Section 3.3 of [3]), we have

P[(2ε − Ď)
3/2
+ ]

= P

[(
P

[
2ε − 2

{
ĚU + ĚV − 2 inf

U∧V ≤t≤U∨V
Ět

}∣∣∣Ě])3/2

+

]

≤ P

[(
2ε − 2

{
ĚU + ĚV − 2 inf

U∧V ≤t≤U∨V
Ět

})3/2

+

]
(8.38)

= P[(2ε − 2ĚU )
3/2
+ ] =

∫ ∞
0

dr re−r2/2(2ε − 2r)
3/2
+

≤
∫ ε

0
dr r(2ε − 2r)3/2 = 23/2ε7/2

∫ 1

0
ds s(1 − s)3/2.

Thus the limit as ε ↓ 0 of the first term in (8.35) is 0 for each a.
For the second term in (8.35), first observe by Jensen’s inequality for conditional

expectation and (8.37) that

P{Ď ≤ r} ≤ P

[(
2 − Ď

r

)
+

]
≤ P

[(
2 − ĚU

r

)
+

]
(8.39)

≤ 2P{ĚU ≤ 2r} ≤ 2
(2r)2

2
= 4r2.
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Combining this observation with (8.29) and integrating by parts gives

P

[{
(2ε − ā5/2Ď)+

2ā3/2(ȞU ∧ ȞV )
∧ a

}5/2]

≤ P

[{
(2ε − ā5/2Ď)+

ā3/2Ď
∧ a

}5/2]

=
∫ 2ε/ā5/2

0
P{Ď ∈ dr}

(
ā−3/2

(
2ε

r
− ā5/2

)
∧ a

)5/2

(8.40)

≤
∫ 2ε/ā5/2

2ε/(aā1/2+ā5/2)
dr 4r2ā−15/4 5

2

(
2ε

r
− ā5/2

)3/2 2ε

r2

= 40ε2ā−15/4
∫ 1/ā5/2

1/(aā1/2+ā5/2)
ds

(
1

s
− ā5/2

)3/2

.

If we denote the rightmost term by L(ε, a), then it is clear that

lim
a↓0

lim
ε↓0

1

ε2 L(ε, a) = 0.(8.41)

From (8.28) and Jensen’s inequality for conditional expectations, the third term
in (8.35) is bounded above by

C

ε2 P[(ȞU ∧ ȞV )1/2(2ε − ā5/2Ď)
3/2
+ ] ≤ C

ε2 P[Ď1/2(2ε − ā5/2Ď)
3/2
+ ]

(8.42)

≤ C

ε3/2 P[(2ε − ā5/2Ď)
3/2
+ ],

and the calculation in (8.38) shows that the rightmost term converges to zero as
ε ↓ 0 for each a.

Putting together the observations we have made on the three terms in (8.35), we
see that

lim
a↓0

lim
ε↓0

II(ε, a) = 0.(8.43)

It follows from the dominated convergence theorem that

lim
ε↓0

III(ε, a) = 0(8.44)

for all a, and this completes the proof. �
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