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ON THE TRANSIENCE OF PROCESSES DEFINED ON
GALTON–WATSON TREES

BY ANDREA COLLEVECCHIO1

University G. D’Annunzio

We introduce a simple technique for proving the transience of certain
processes defined on the random tree G generated by a supercritical branch-
ing process. We prove the transience for once-reinforced random walks on G,
that is, a generalization of a result of Durrett, Kesten and Limic [Probab.
Theory Related Fields 122 (2002) 567–592]. Moreover, we give a new proof
for the transience of a family of biased random walks defined on G. Other
proofs of this fact can be found in [Ann. Probab. 16 (1988) 1229–1241] and
[Ann. Probab. 18 (1990) 931–958] as part of more general results. A similar
technique is applied to a vertex-reinforced jump process. A by-product of our
result is that this process is transient on the 3-ary tree. Davis and Volkov
[Probab. Theory Related Fields 128 (2004) 42–62] proved that a vertex-
reinforced jump process defined on the b-ary tree is transient if b ≥ 4 and
recurrent if b = 1. The case b = 2 is still open.

1. Introduction. Consider a random tree G generated by a supercritical
branching process, where the number of offspring for each individual are i.i.d.
random variables with mean m, where 1 < m < ∞. Some authors refer to G as the
genealogical tree associated to the branching process. The root of this random tree
is designated by ρ. Let X := {Xk, k ≥ 0}, with X0 = ρ, be a process which takes
as values the vertices of G and jumps only to nearest neighbors, that is, vertices
one edge away from the occupied one. The process is said to be transient if, with
positive probability, it does not return to its starting point. If X visits each vertex
only finitely many times a.s. we say that it drifts to infinity. A process that is not
transient is said to be recurrent, and if the time of the first return to the starting
point has finite expectation, it is said to be positive recurrent. Our goal is to find
a simple method that can be used to prove the transience of certain processes. We
analyze some examples. The first one, given in Section 2, involves biased random
walks. Other proofs of the result that we present were given by Pemantle, in [16],
and by Lyons, in [11]. Theorem 2 of [16], and Theorem 4.3 of [11] are more gen-
eral and stronger results than Theorem 1 of this paper, and this is discussed at the
end of Section 2.
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In Section 3 we prove the transience of once-reinforced random walks defined
on G. It is a generalization of a result due to Durrett, Kesten and Limic (see [10]),
who proved that once-reinforced random walks defined on the binary tree drift
to infinity. Notice that these cases were studied by different authors with totally
different methods. The aim of this paper is to present a simple unifying approach.
It relies on the construction of a supercritical branching process.

In Section 4 a similar method is used to prove that a vertex-reinforced jump
process (VRJP) defined on G, with m > 1/0.36, is transient. A b-ary tree, denoted
by T (b), is an infinite rooted tree where each vertex has b + 1 neighbors, with the
exception of the root, which is connected to b vertices. Davis and Volkov, in [8],
proved that VRJP defined on T (b) drifts to infinity if b ≥ 4, and visits each vertex
infinitely many times if b = 1. Our result, combined with a zero–one law, implies
that this process drifts to infinity on T (3). The case b = 2 is still open.

DEFINITION 1. For any pair of vertices ν,µ ∈ G, denote by |ν − µ| the
number of edges on the unique self-avoiding path connecting ν to µ, and let
|ν| := |ν − ρ|. If |ν − µ| = 1, then ν and µ are (nearest) neighbors, and this is
denoted by ν ∼ µ. The set of vertices ν with |ν| = n is called level n. If ν �= ρ,
the parent of ν, designated by par(ν), is defined to be the neighbor of ν at level
|ν|− 1. The vertex ν is a child of par(ν). A vertex µ is said to be a descendant of ν

if the latter lies on the unique self-avoiding path connecting µ to ρ. In this case,
the vertex ν is said to be an ancestor of µ. Define

Tν := inf{k ≥ 0 :Xk = ν},
Hν := inf{k > Tν :Xk = par(ν)},

τ := inf{j ≥ 1 : Xj = ρ}.
2. Biased random walk. Fix λ > 0. Define the biased random walk X on G

as follows. Suppose it starts from ρ, that is, X0 = ρ. For any rooted tree �, given
that {G = �}, we have that X is a Markov process on �. Given that {Xj = ν �= ρ},
if ν has s children, s ≥ 0, then

P
(
Xj+1 = par(ν)

) = λ/(λ + s),

and the probability that Xj+1 equals any particular child of ν is equal to 1/(λ+ s).
Suppose that {Xj = ρ} and the root has s children, if s ≥ 1, then the probabil-
ity that Xj+1 equals any particular child of ρ is equal to 1/s, and if s = 0, then
Xj+1 = ρ. Before we study the behavior of this process, we recall a classical re-
sult in probability: the ruin problem. Consider a random walk defined on the non-
negative integers. If the process is at j ≥ 1, at the next stage it jumps either to j +1,
with probability p, where 0 < p < 1, or to j − 1, with probability q = 1 − p. The
walk starts from 1 and is absorbed at 0. The probability that this process hits n + 1
before it hits 0 is equal to(

(q/p) − 1
)
/
(
(q/p)n+1 − 1

)
, if p �= q,(1)
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and 1/(n + 1) if p = q = 1/2.

REMARK. Throughout this paper, we always assume that G is supercritical,
that is, 1 < m < ∞.

THEOREM 1. The biased random walk X defined on G is as follows:

(i) transient if 0 < λ < m, and
(ii) positive recurrent if λ > m.

PROOF. (i) For simplicity, we assume that λ �= 1, leaving to the reader the
easy task to modify the proof to the case λ = 1. We assume that τ < ∞ a.s., that
is, X returns to the root a.s. This would imply that Hν < ∞, a.s., for each vertex ν

that is visited by the process. In fact, on {Tν < ∞}, the process |Xk − par(ν)|, with
Tν ≤ k ≤ Hν , is distributed like |Xk|, with 1 ≤ k ≤ τ .

Choose n such that

mn(λ − 1)/(λn+1 − 1) > 1.(2)

If we prove that the process visits, with positive probability, an infinite number
of vertices before time τ , then we would have that P(τ = ∞) > 0, which gives
a contradiction. For any vertex ν at level (k−1)n, k ≥ 2, which satisfies {Tν < ∞},
define xν to be the number of vertices at level kn which are descendants of ν and
are visited during the interval [Tν,Hν]. Notice that xν , with |ν| = (k − 1)n and
{Tν < ∞}, are i.i.d. We introduce the following color scheme. A vertex at level
n is white iff it is visited before time τ . A vertex µ at level kn, k ≥ 2, is white iff
we have the following:

• its ancestor at level (k − 1)n, say, ν, is white, and
• µ is visited before time Hν .

All the other vertices are uncolored, and only vertices that are at a level kn, k ≥ 1,
can be colored. The white vertices are visited before time τ . The number of white
vertices evolves like a branching process where each individual has a number of
offspring distributed like xν , with Tν < ∞. We have to prove that this branching
process is supercritical, that is, E[xν |Tν < ∞] > 1. Suppose there exists a pair of
vertices µ,ν, such that µ is a descendant of ν, with |µ| = kn, |ν| = (k − 1)n and
Tν < ∞. Due to our assumption of recurrence, finding the probability that µ is
visited during the time interval [Tν,Hν] is equivalent to solving the ruin problem,
with p = 1/(1 + λ), on the shortest path connecting par(ν) to µ. Hence, in virtue
of (1), we have that this probability equals (λ − 1)/(λn+1 − 1). As |ν| = (k − 1)n,
the expected number of descendants of ν at level kn is mn. Hence,

E[xν |Tν < ∞] = mn(λ − 1)/(λn+1 − 1) > 1.

(ii) For any vertex ν, with |ν| = n, we have

P(Tν < τ) ≤ (λ − 1)/(λn − 1).
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To see this, notice that, in order to have {Tν < τ }, X1 must be an ancestor of ν, and
Xk , k ≥ 1, must hit ν and this has to happen before it hits ρ. Hence, the expected
number of vertices at level n, which are visited by the process before time τ , is at
most mn(λ − 1)/(λn − 1). Therefore,

E[τ ] = 1 + E[number of vertices visited before time τ ]

≤ 1 +
∞∑

n=1

mn(λ − 1)/(λn − 1) < ∞,

where the series is finite because λ > m > 1. �

In the case m = λ, the walk is recurrent (see [12], Remark 6, page 132), but not
positive recurrent. To prove this last statement, let Z be the number of children
of ρ, and choose j such that P(Z = j) > 0. Suppose {Z = j}. The probability to
hit any given vertex ν at level n is equal to the probability that the first jump is
toward an ancestor of ν, that is, 1/j , times the probability that the process hits ν

before it goes back to ρ. As the expected number of vertices at level n is jmn−1,
and λ = m > 1, we have

E[τ ]/P(Z = j) ≥ E[τ |Z = j ] = 1 + (1/j)

∞∑
n=1

(
jmn−1(m − 1)/(mn − 1)

) = ∞.

In [11] Lyons proved a stronger result than Theorem 1. Lyons used the notion of
branching number, which measures the average number of children per vertex, and
proved that a biased random walk defined on a tree drifts to infinity (is recurrent) if
λ < (>) the branching number of that tree. Moreover, Lyons proved that, given that
the random tree G is infinite, its branching number is a.s. equal to m. In [12] Lyons
and Pemantle obtained sharp results of this kind for random walks in a random en-
vironment, combining and improving the results obtained in [11] and [16]. In [13]
Lyons, Pemantle and Peres studied the speed of biased random walk defined on G.

3. Once-reinforced random walk. Let E be a graph with the property that
each vertex is the endpoint of a finite number of edges. Fix δ > 0 and define a
discrete time process X, called once-reinforced random walk, as follows. It takes
as values the vertices of E . Initially all the edges are given weight 1, and X0 = ρ.
When an edge is traversed for the first time, that is, the process jumped from one
of its endpoints to the other for the first time, the weight of the edge becomes δ and
is never changed again. The process jumps to nearest neighbors with probabilities
proportional to the weights of the connecting edges. More formally, for any pair of
neighbors ν and µ, let G0(ν,µ) := ∅, and for k ≥ 1, let

Gk(ν,µ) := {
Xj ∈ {ν,µ} and Xj+1 ∈ {ν,µ} for some 0 ≤ j ≤ k − 1

}
.
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Define zk(ν,µ) := δIGk(ν,µ) +1−IGk(ν,µ), where I stands for the indicator func-
tion. Given {Xj, with 1 ≤ j ≤ k}, we have that

P(Xk+1 = µ|Xk = ν) = zk(ν,µ)
/ ∑

η:η∼ν

zk(ν, η).

For example, if we consider once-reinforced random walk defined on the nonneg-
ative integers, with X0 = 0, we have X1 = 1, and

P(X2 = 2,X3 = 1,X4 = 2) = (
1/(1 + δ)

)(
δ/(1 + δ)

)(
δ/(δ + δ)

)
.

LEMMA 1. Consider once-reinforced random walk on the nonnegative inte-
gers, which starts from 0. The probability that, after the first jump, it hits level
n + 1 before it hits 0 is equal to

n∏
j=1

(
j/(j + δ)

)
.(3)

PROOF. Suppose that, after the first jump, the process hits level j before it
hits 0 again. It is enough to prove that the probability that the process hits level
j + 1, before it hits 0, is equal to j/(j + δ). To see this, notice that either the walk
hits j + 1 right away, with probability 1/(1+ δ), or it jumps to j − 1. If it jumps to
j − 1, from the solution of the ruin problem for the simple fair random walk, we
have that the probability that the process goes back to j before it hits 0 is equal to
(j − 1)/j . By repeating this argument and summing the series, we get our result.

�

Fix n such that

mn
n∏

j=1

(
j/(j + δ)

)
> 1.

THEOREM 2. The once-reinforced random walk X defined on the random tree
G is transient.

PROOF. As in the proof of Theorem 1, part (i), we suppose that τ < ∞ a.s.,
that is, X returns to the root a.s. This assumption implies that Hν < ∞, a.s., for
each vertex ν that is visited by the process. For any vertex ν, with |ν| = (k −
1)n, k ≥ 2, and {Tν < ∞}, let xν be the number of vertices at level kn which are
descendants of ν and are visited during the interval [Tν,Hν]. As before, to get our
result, it is enough to show that E[xν |Tν < ∞] > 1. By reasoning as in the proof
of Theorem 1, part (i), and by Lemma 1, we have that

E[xν |Tν < ∞] = mn
n∏

j=1

(
j/(j +δ)

)
> 1. �
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Recall that T (2) is the binary tree. By Theorem 2, once-reinforced random walk
on T (2) is transient. This fact, combined with Lemma 1 of [10], implies that the
process drifts to infinity. This result was first obtained by Durrett, Kesten and
Limic [10] by using different methods.

Very little is known about the behavior of once-reinforced random walks on
graphs with cycles. In particular, it is not known whether once-reinforced random
walks are transient or recurrent on the d-dimensional lattice, where d ≥ 2. This
question was raised by B. Davis.

The class of reinforced random walks (RRWs) is composed by stochastic
processes with strong memory, and includes a once-reinforced random walk. These
processes jump between nearest neighbor vertices of a graph, and prefer visiting
often visited vertices over seldom visited ones. The theory of RRWs is full of open
problems. For more about this topic the reader is referred to [2, 3, 5, 6, 14–20].
Applications of this theory can be found in [9, 12] and [13].

4. Vertex-reinforced jump process. Recall that E is a graph with the prop-
erty that each vertex is the endpoint of a finite number of edges. The following, to-
gether with its starting point, defines a right continuous process X := {Xs, s ≥ 0}.
This process, which was conceived by W. Werner, takes as values the vertices of E ,
and jumps only to nearest neighbors. Given Xs,0 ≤ s ≤ t , and {Xt = x}, the con-
ditional probability that, in the interval (t, t + dt), the process jumps to the nearest
neighbor y of x is L(y, t)dt , where

L(y, t) := 1 +
∫ t

0
I {Xs=y} ds.

For example, consider VRJP on the integers, which starts at 0. It waits an expo-
nential amount of time at 0, say, η0, then it jumps, independently of η0, to either
−1 or 1, with probability 1/2. Suppose it jumps to 1. Given the past, it waits
there an exponential amount of time, say, η1, with parameter 2 + η0, then it jumps,
independently of η1, toward either 0 or 1. The probability that it jumps to 0 is
(1 + η0)/(2 + η0).

From now on, X := {Xt, t ≥ 0} is used to denote VRJP defined on the random
tree G, with 1/0.36 < m < ∞. The aim of this section is to prove that, with pos-
itive probability, X does not return to the root, that is, is transient. As before, our
proof relies on the construction of a supercritical branching process related to X.
Davis and Volkov, in [8], proved transience for VRJP defined on T (b), b ≥ 4, by
constructing a simple random walk with positive drift, that at any time bounds
from below the distance of the process from the root. Davis and Volkov, in [8],
also proved a zero–one law for VRJP on T (b), that is:

(a) either this process visits each vertex infinitely often a.s., or
(b) it visits each of them only finitely often a.s.
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This result implies that if VRJP on T (b) is transient, then it drifts to infinity. Re-
call that Tν = inf{t ≥ 0 :Xt = ν}. The following construction is due to Davis and
Volkov (which was [8]). For each ordered pair of neighbors (u, v), assign a se-
quence hi(u, v), i ≥ 1, of independent exponentials with mean 1. Let ξ1 = Tu. The
first jump after ξ1 is at time b1 := ξ1 + minv h1(u, v)(L(v, ξ1))

−1, where the mini-
mum is taken over the set of neighbors of u. The jump is toward the neighbor v for
which that minimum is attained. Suppose that we have defined {ξj , bj }1≤j≤i−1,
and let

ξi := inf{t > bi−1 :Xt = u}
and

jv − 1 = ju,v − 1 := number of times X jumped from u to v by time ξi .

The first jump after ξi happens at time bi := ξi + minv hjv (u, v)(L(v, ξi))
−1, and

the jump is toward the neighbor v for which that minimum is attained.

THEOREM 3. X is transient.

PROOF. Recall that, for any vertex ν �= ρ, Hν = inf{t > Tν :Xt = par(ν)}. As-
sume that X returns a.s. to the root. As before, this implies that Hν < ∞, for each
vertex ν that is visited by the process. We introduce the following color scheme.
The only vertex at level 1 that is green is the first one to be visited by X. A vertex µ,
with |µ| ≥ 2, is green iff it is visited before time Hpar(µ) and its parent is green.
It is enough to show that, with positive probability, there is an infinite number of
green vertices. Fix a vertex ν �= ρ, and let Mν be the largest subtree of G rooted
at ν. Notice that Mν is random. Let C be any event in

F := σ
(
hi(η0, η1) : i ≥ 1, with η0 ∼ η1 and both η0 and η1 /∈ Mν

)
,

that is, the σ -algebra that contains the information about Xt observed outside Mν .
Given C∩{ν is green}, the distribution of h1(par(ν), ν) is stochastically dominated
by an exponential(1). To see this, first notice that h1(par(ν), ν) is independent of C.
Let D := {par(ν) is green} ∈ F . There exists a random variable Y , independent of
h1(par(ν), ν), such that

{ν is green} = {
h1

(
par(ν), ν

)
< Y

} ∩ D.

At this point, it is enough to realize that

P
(
h1

(
par(ν), ν

) ≥ x|{h1
(
par(ν), ν

)
< Y

} ∩ C ∩ D
) ≤ P

(
h1

(
par(ν), ν

) ≥ x
)
.

Hence, for a vertex µ that is a child of ν, we have

P[µ is green|{ν is green} ∩ C] ≥ E
[
1/

(
2 + h1

(
par(ν), ν

))]

=
∫ ∞

0
exp{−z}/(2 + z) dz.
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On {Tν < ∞}, define yν to be the number of children of ν which are visited during
the interval [Tν,Hν]. We have that

E[yν |{ν is green} ∩ C] ≥ m

∫ ∞
0

exp{−z}/(2 + z) dz

(4)
= m(0.36 . . .) > 1.

If we let Sn be the number of green vertices at level n + 1, we deduce from (4)
that Sn, n ≥ 1, is stochastically larger than a supercritical branching process, where
each individual has a number of offspring with mean m(0.36 . . .) > 1. Hence, with
positive probability, there exists an infinite cluster of green vertices. �

A corollary of Theorem 3 is that VRJP on the T (3) is transient, hence, it drifts
to infinity. This result can be easily extended to the case of VRJP defined on a tree
where all but finitely many vertices have at least four neighbors. Davis and Volkov
[7] studied VRJP on the integers. Results about the behavior of this process defined
on T (b) can be found in [8] and [1].

REMARK. Russell Lyons pointed out to me a paper of Dai [4] which was
published while this paper was in print and contains a completely different proof
of Theorem 2.
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