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LOWER ESTIMATES OF TRANSITION DENSITIES AND BOUNDS
ON EXPONENTIAL ERGODICITY FOR STOCHASTIC PDE’S

BY B. GOLDYS AND B. MASLOWSKI1

University of New South Wales and Academy of Sciences of Czech Republic

A formula for the transition density of a Markov process defined by an
infinite-dimensional stochastic equation is given in terms of the Ornstein–
Uhlenbeck bridge and a useful lower estimate on the density is provided. As
a consequence, uniform exponential ergodicity and V -ergodicity are proved
for a large class of equations. We also provide computable bounds on the
convergence rates and the spectral gap for the Markov semigroups defined by
the equations. The bounds turn out to be uniform with respect to a large fam-
ily of nonlinear drift coefficients. Examples of finite-dimensional stochastic
equations and semilinear parabolic equations are given.

1. Introduction. The aim of this paper is to study the ergodic properties of
solutions to a semilinear stochastic equation

dXx = (
AXx + F(Xx)

)
dt + √

QdW,
(1.1)

Xx
0 = x ∈ E,

considered in a separable Banach space E, where W is a cylindrical Wiener
process on a Hilbert space H such that E ⊂ H . Under the assumptions listed
below (see Section 2), this equation has a unique Markov solution (Xx

t ) with a
unique invariant measure µ∗.

Ergodic properties of solutions to infinite-dimensional stochastic differential
equations have been extensively studied in recent years. The key problems in this
field are the existence and uniqueness of invariant measure and the rate of con-
vergence of the time t distribution of the process to the invariant measure. In the
case of dimE < ∞ these questions have been studied for a long time and the
ergodic theory of finite-dimensional diffusion processes is relatively well devel-
oped, see, for example, a classical monograph [21]. In this paper we study the
ergodic properties of a class of ordinary and partial stochastic differential equa-
tions that includes stochastic reaction–diffusion equations in bounded domains.
First results on the existence and uniqueness of invariant measures for stochastic
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reaction-diffusion equations were obtained in [12, 26, 42], see also [5], the mono-
graphs [6, 10] and references therein. The rate of convergence to the invariant
measure in infinite dimensions became a subject of interest much later and still is
not well understood. Jacquot and Royer [24] proved exponential ergodicity for a
semilinear parabolic equation with bounded nonlinear drift, Shardlow [39] applied
the theory of Meyn and Tweedie to obtain V -uniform ergodicity for some semi-
linear equations in Hilbert spaces. Hairer in [14] proved, under different sets of
conditions, uniform exponential ergodicity for equations with drifts growing faster
than linearly. Exponential convergence to equilibrium in a norm intermediate be-
tween the total variation metric and the Wasserstein metric has been obtained in
[31] for the stochastic Navier–Stokes equation.

A closely related problem of asymptotic behavior of the Markov semigroup
Ptφ(x) = Eφ(Xx

t ) attracted much attention due to its importance in Mathemati-
cal Physics. In particular, exponential convergence of the semigroup in the spaces
Lp(E,µ∗), p ∈ [1,∞), and related questions of the existence of the spectral gap
and logarithmic Sobolev inequality have been studied by numerous authors, see
[1–3, 7, 8, 11, 18, 22, 43].

The aim of the present paper is to prove V -uniform (exponential) ergodicity
with V (x) = |x|E + 1 and, if the drift grows faster than linearly, uniform exponen-
tial ergodicity, for equation (1.1). Our method allows us to find exact bounds on
convergence (i.e., to give explicit estimates for the rate of exponential convergence
in the total variation norm or V -variation norm). In this respect, our results seem
to be new even for finite-dimensional SDE’s (which is also due to our method to
estimate the transition density that, to the best of our knowledge, has not been
used in finite dimensions so far). If the Markov semigroup (Pt ) is symmetric, we
obtain explicit lower estimates for the spectral gap in L2(E,µ∗). Stronger results
are obtained in the case of a drift growing faster than linearly: for a symmetric
Markov semigroup, we show uniform estimates on the spectral gap in the spaces
Lp(E,µ∗) for all p ∈ [1,∞) and in the nonsymmetric case, our estimates remain
valid for p > 1, in particular, in L2(E,µ∗).

Unlike in the aforementioned papers, in the present paper a lower bound mea-
sure and a suitable small set for a skeleton process are found explicitly in terms of
the lower estimates of transition densities and the constants in an ultimate bound-
edness condition (or, in particular, a suitable Lyapunov function). This enables us
to apply earlier results on computable bounds for Markov chains, which are ex-
pressed in terms of lower bound measures, corresponding small sets and constants
from the Lyapunov–Foster geometric drift condition [33]. The bounds turn out to
be uniform with respect to a large family of drift coefficients, which is important
for proving continuous dependence of invariant measures on parameter (cf. Sec-
tion 8). We also believe that this uniformity is an important tool for studying the
Hamilton–Jacobi–Bellman equation for the ergodic control problem. On the other
hand, the method employed here has its limitations. Our method strongly relies
on the Girsanov theorem and therefore, we need an assumption that F maps the
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whole state space into the range of
√

Q. Therefore, any extension to other types
of equations (like stochastic Burgers or Navier–Stokes equations) would be diffi-
cult. Note, however, that in the two recent authors’ papers [17] and [16] V -uniform
ergodicity and spectral gap type results have been proved for stochastic Burgers,
2D Navier–Stokes and more general reaction–diffusion equations. Nonetheless,
in these papers a different method is used that allows us neither to find explicit
bounds on the convergence constants nor to show the uniformity of convergence
with respect to coefficients.

An important tool for our proofs is a formula for the transition densities that
is derived in this paper. We use this formula to establish suitable lower estimates
on the densities which we believe are of independent interest. They are obtained
by means of the Girsanov theorem and the so called Ornstein–Uhlenbeck bridge
(or pinned Ornstein–Uhlenbeck process). Let us explain the main idea of this ap-
proach.

Let (Zx
t ) be an Ornstein–Uhlenbeck process on a separable Hilbert space H .

By this, we mean that (Zx
t ) is a solution to a linear stochastic evolution equation

dZx
t = AZx

t dt + √
QdWt,

(1.2)
Zx

0 = x ∈ H.

The Ornstein–Uhlenbeck bridge (Ẑ
x,y
t ) associated to the Ornstein–Uhlenbeck

process (Zx
t ) is informally defined by the formula

P(Zx
t ∈ B|Zx

1 = y) = P(Ẑ
x,y
t ∈ B), t < 1,

where x, y ∈ H and B ⊂ H is a Borel set. The importance of various types
of bridge processes for the study of transition densities of finite dimensional
diffusions is well recognised, see, for example, [23]. In infinite-dimensional frame-
work this concept was developed in [41] in order to study the regularity of
transition semigroups of diffusions on Hilbert spaces. In [28] and [29] an Ornstein–
Uhlenbeck bridge is introduced in order to obtain lower estimates on the transition
kernel of some semilinear stochastic evolution equations. The basic idea is as fol-
lows. Using the equivalence of measures corresponding to Xx

t and Zx
t and the

Girsanov formula, we can write the transition density of the process Xx
t in the

form

d(T , x, y) = E
(
�(Zx· )|Zx

T = y
)
,

where � is a measurable functional defined on trajectories of the Ornstein–
Uhlenbeck process. This form of the density is not suitable for the uniform es-
timates that are needed. Therefore, the conditional expectation is transformed into
a usual expectation with respect to the measure of the OU bridge (Ẑ

x,y
t ) considered

for t ∈ [0, T ]:
d(T , x, y) = E�(Ẑx,y· ),
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which enables us to find the uniform lower estimates. Let us note here a technical
difficulty caused by the fact that we can define the OU bridge for y in a certain
Borel subspace of measure one only, but this turns out to be sufficient for our
needs.

Precise formulations and hypothesis are given in the following Section 2. In
Sections 3 and 4 the properties of the OU bridge, which are needed in the sequel,
are established (some auxiliary results are deferred to the Appendix). The formula
for transition densities is found and the lower estimates are given in Section 5.
These results are applied in Section 6 to establish our main results, V -uniform er-
godicity and uniform exponential ergodicity, respectively, and find the computable
bounds on respective constants. In Section 7 the corollaries on the Lp(E,µ∗) ex-
ponential convergence and the spectral gap are stated. Section 8 is devoted to some
extensions and applications (continuous dependence of invariant measures on a
parameter). Examples (finite-dimensional nonlinear stochastic oscillator and sto-
chastic parabolic equations) are presented in Section 9.

2. Assumptions and notation. Let H = (H, | · |) be a real separable Hilbert
space and let E = (E, | · |E) be a separable Banach space densely embedded
into H . In this paper we will study a stochastic semilinear equation

dXt = (
AXt + F(Xt)

)
dt + √

QdWt,
(2.1)

X0 = x ∈ E,

where (Wt) is a standard cylindrical Wiener process on H defined on a stochastic
basis (�,F , (Ft ),P) satisfying the usual conditions, A denotes a linear operator
on H generating a strongly continuous semigroup (St ) on H and F is a nonlinear
mapping E → E. The first assumption assures the existence of an H -valued and
strong Feller solution to the linear version of (2.1), when F = 0; in this case we
consider the linear equation

dZx
t = AZx

t dt + √
QdWt,

(2.2)
Zx

0 = x.

The solution to equation (2.2) is given by formula

Zx
t = Stx +

∫ t

0
St−s

√
QdWs, t ≥ 0.(2.3)

HYPOTHESIS 2.1. The operator Q ≥ 0 is bounded and symmetric. For each
t > 0, a bounded operator,

Qt =
∫ t

0
SsQS∗

s ds,

is of trace class. Moreover,

im(St ) ⊂ im(Q
1/2
t ), t > 0.(2.4)
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If Hypothesis 2.1 holds, then

im(Qt) = H, t > 0.(2.5)

It is well known (cf. [9]) that (2.4) is equivalent to the strong Feller property of the
process (Zx

t ). Moreover, (2.4) yields

im(Q
1/2
t ) = im(Q

1/2
1 ), t > 0.(2.6)

The next hypothesis assures that the Ornstein–Uhlenbeck process Zx defined by
equation (2.3) takes values in the Banach space E and is continuous in E.

HYPOTHESIS 2.2. (a) The part Ã of A in the space E,

Ã = A|dom(Ã), dom(Ã) = {y ∈ dom(A) ∩ E :Ay ∈ E},
generates a C0-semigroup on E, which is again denoted by (St ).

(b) The process Z0 is P-a.s. E-valued and E-continuous.

We further assume the following:

HYPOTHESIS 2.3. ∫ 1

0
‖Q−1/2

t StQ
1/2‖HS dt < ∞,(2.7)

where ‖T ‖HS stands for the Hilbert–Schmidt norm of the operator T .

Assumption (2.7) is not standard. It is needed to obtain a formula for the transi-
tion density (cf. Theorem 5.2). We will show that it is satisfied in many important
cases (cf. Lemma 3.3, Remark 3.4 and Section 9).

In this paper we consider mild pathwise continuous solutions of (2.1).
A process X defined on a filtered probability space (�,F , (Ft ),P) is a solution
to equation (2.1) on an interval [0, T ] if P(X· ∈ C(0, T :E)) = 1 and

Xt = Stx +
∫ t

0
St−rF (Xr) dr +

∫ t

0
St−r

√
QdWr, t ∈ [0, T ],P-a.s.(2.8)

Now we will formulate assumptions involving the nonlinear term F in equa-
tion (2.1).

HYPOTHESIS 2.4. (a) The mapping F :E → E is Lipschitz continuous on
bounded sets of E. For eaxh x ∈ E, there exists a unique mild solution X to equa-
tion (2.1). Moreover, X is a Markov process in E.

(b) im(F ) ⊂ im(Q1/2) and there exists a continuous function G :E → H such
that Q1/2G = F and for some constants K,m > 0,

|G(x)| ≤ K(1 + |x|mE), x ∈ E.(2.9)
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REMARK 2.5. The assumption of local Lipschitz continuity of the mapping
F is not necessary for our main results. It may be replaced by the existence and
uniqueness conditions for equation (2.1) and approximating equations. Similarly,
the mapping G need not be continuous. Only measurability and the polynomial
bound (2.9), are needed but this would make some proofs technically more com-
plicated.

Hypotheses 2.1–2.4 are standing assumptions of the paper and the results will
be enunciated without recalling them again. Obviously, the hypotheses are used se-
lectively (e.g., Hypothesis 2.4 is not needed for results on the Ornstein–Uhlenbeck
bridge).

Denote by B, P and bB, the Borel σ -algebra of E, the space of probability
measures on E and the space of bounded Borel functions on E, respectively. Fur-
thermore,

Ptϕ(x) := Exϕ(Xt), φ ∈ bB, x ∈ E, t ≥ 0,

and

P(t, x,�) := Pt1�(x), x ∈ E,� ∈ B, t ≥ 0.

Let (P ∗
t ) denote the adjoint Markov semigroup, that is,

P ∗
t ν(�) :=

∫
�

P (t, x,�)ν(dx), t ≥ 0, ν ∈ P ,� ∈ B.(2.10)

An invariant measure µ∗ ∈ P is defined as a stationary point of the semi-
group (P ∗

t ), that is, P ∗
t µ∗ = µ∗ for each t ≥ 0. Obviously, P ∗

t ν is interpreted
as the probability distribution of Xt if X0 has the initial distribution is ν.

In our main theorems on V -uniform ergodicity, exponential ergodicity and spec-
tral gap the solution to equation (2.1) is supposed to be ultimately bounded. In
order to illustrate which systems are covered, it may be useful to formulate a
growth condition on the nonlinear term F which will be selectively used in some
statements below (though it is not needed in our general theorems). By 〈·, ·〉E,E∗ ,
we denote the duality between E and E∗ and by ∂| · |E , the subdifferential of
the norm | · |E . Suppose that there exist k1, k2, k3 > 0, and s > 0 such that, for
x ∈ dom(Ã) and x∗ ∈ ∂|x|E , we have

〈Ãx + F(x + y), x∗〉E,E∗ ≤ −k1|x|E + k2|y|sE + k3, y ∈ E.(2.11)

For example, if the mapping F :E → E is Lipschitz continuous on bounded sets
in E and Hypotheses 2.1 and 2.2 are satisfied, then the above condition implies
existence of a unique mild solution to the equation (2.1) [i.e., Hypothesis 2.4(a)].
If, moreover, the moments of the Ornstein–Uhlenbeck process Z0 are bounded
on [0,∞) [condition (6.1) below], then there exists an invariant measure for the
corresponding Markov process.
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3. Some properties of the Ornstein–Uhlenbeck process. We will use the
notation µx

t for the probability distribution of Zx
t and µt if x = 0. Obviously, µx

t

is a Gaussian measure N(Stx,Qt). For simplicity of notation, we set Zs := Z0
s ,

s ≥ 0. It is easy to check that, for s ≤ t

E〈Zs,h〉〈Zt, k〉 = 〈St−sQsh, k〉.(3.1)

LEMMA 3.1. The operator Vt = Q
−1/2
1 S1−tQ

1/2
t is bounded on H and

‖Vt‖ < 1, t ∈ (0,1].(3.2)

Moreover,

lim
t→1

V ∗
t x = lim

t→1
Vtx = x, x ∈ H.(3.3)

PROOF. Estimate (3.2) was proved in [35]. It follows from (3.2) and a simple
identity

Q1 = Q1−t + S1−tQtS
∗
1−t ,

that

Q1−t = Q
1/2
1 (I − VtV

∗
t )Q

1/2
1 .(3.4)

To prove (3.3), we will show first that

lim
t→0

〈Vtx, y〉 = 〈x, y〉, x, y ∈ H.(3.5)

Indeed, for y ∈ im(Q
−1/2
1 ), we have

lim
t→1

〈Vtx, y〉 = lim
t→1

〈S1−tQ
1/2
t x,Q

−1/2
1 y〉 = 〈x, y〉.

For arbitrary y ∈ H , we may find a sequence (yn) ⊂ im(Q
−1/2
1 ), such that yn → y

in H and then (3.2) yields

〈Vtx, y − yn〉 → 0,

uniformly in t ≤ 1, and (3.5) follows. Next, (3.4) yields

〈Q1−t x, x〉 = 〈(I − VtV
∗
t )Q

1/2
1 x,Q

1/2
1 x〉, x ∈ H.

It follows that, for each y ∈ im(Q
1/2
1 ), we have

lim
t→1

(|y|2 − |V ∗
t y|2) = 0,

and since ‖V ∗
t ‖ < 1 for all t , we find that

lim
t→1

|V ∗
t y| = |y|, y ∈ H.
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Now, invoking (3.5), we obtain the first part of (3.3). It is enough to prove the
second part of (3.3) for x such that |x| = 1. In this case (3.5) implies 〈Vtx, x〉 → 1,
and thereby, invoking (3.2),

1 = lim inf
t→1

〈Vtx, x〉 ≤ lim inf
t→1

|Vtx| ≤ lim sup
t→1

|Vtx| ≤ 1.

Therefore, Vtx → 1 as t → 1. Now, taking into account (3.5), we obtain the second
part of (3.3). �

Clearly, V ∗
t = Q

1/2
t S∗

1−tQ
−1/2
1 and the operator

Kt := Q
1/2
t V ∗

t(3.6)

is of Hilbert–Schmidt type on H . Then the operator

H 
 x → Kx(t) := Ktx ∈ L2(0,1;H)

is bounded.
Let µ denote the probability distribution of the process {Zt, t ∈ [0,1]} con-

centrated on L2(0,1;H) and let L :L2(0,1;H) → C(0,1;H) be defined by the
formula

Lu(t) =
∫ t

0
St−sQ

1/2u(s) ds.

The space im(L) endowed with the norm

‖φ‖ = inf{|u| :u ∈ L2(0,1;H),Lu = φ}
may be identified with reproducing kernel Hilbert space of the measure µ, see [9].
For any t ∈ [0,1), we define an unbounded H -valued operator

Btx = Q1/2S∗
1−tQ

−1/2
1 x, x ∈ im(Q

1/2
1 ),

and an unbounded operator

Bx(t) = Btx, t ∈ [0,1),

taking values in C([0,1),H).
The following lemma is crucial for the rest of the paper. Let us recall that the

operator V :H → E, where E is a Banach space, is said to be γ -radonifying if it
transforms any cylindrical Gaussian measure on H into a Radon Gaussian measure
on E.

LEMMA 3.2. (a) For every t ∈ [0,1), the operator Bt with the domain
dom(B) = Q

1/2
1 (H) extends to a Hilbert–Schmidt operator Bt :H → H and∫ 1

0
‖Bt‖HS dt < ∞.(3.7)
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(b) The operator B with the domain dom(B) = Q
1/2
1 (H) extends to a bounded

operator B :H → L2(0,1;H) and

|Bx|L2(0,1;H) = |x|H , x ∈ H.(3.8)

(c) We have K = LB and the operator K :H → C(0,1;E) is γ -radonifying.

PROOF. (a) Note first that ‖Q−1/2
1 Q

1/2
1−t‖ ≤ 1 and by (2.4), the operator

Q
−1/2
1−t S1−t is bounded. Therefore, the operator

(Q
−1/2
1 Q

1/2
1−tQ

−1/2
1−t S1−tQ

1/2)∗ = Q1/2S∗
1−tQ

−1/2
1

is bounded. Moreover, taking (2.7) and (2.6) into account, we obtain, for a certain
C > 0, ∫ 1

0
‖B∗

t ‖HS dt ≤ C

∫ 1

0
‖Q−1/2

t StQ
1/2‖HS dt < ∞

and (3.7) follows.
For any h ∈ H , we have

|Q1/2
1 h|2 =

∫ 1

0
|Q1/2S∗

1−th|2 dt,

and therefore, for h = Q
−1/2
1 x, we obtain

|x|2 =
∫ 1

0
|Bx(t)|2 dt.(3.9)

Using the density of Q
1/2
1 (H) in H , we can extend (3.9) to the whole of H and

(3.8) follows.
(c) For x ∈ Q

1/2
1 (H), we have

Ktx = QtS
∗
1−tQ

−1/2
1 x

=
∫ t

0
St−sQS∗

t−sS
∗
1−tQ

−1/2
1 x ds

(3.10)

=
∫ t

0
St−sQS∗

1−sQ
−1/2
1 x ds

=
∫ t

0
St−sQ

1/2Bx(s) ds = L(Bx)(t),

for all t ∈ [0,1]. By (b), this identity extends to all x ∈ H and we find
that K = LB on H . By Hypothesis 2.2, we have µ(C(0,1;E)) = 1, hence,
L :L2(0,1;H) → C(0,1;E) is γ -radonifying and therefore, K = LB :H →
C(0,1;E) is γ -radonifying as well. �

We have left open the question of effective verification of Hypothesis 2.3. This
is addressed in the following lemma.
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LEMMA 3.3. Assume that either:

(i) dim(H) < ∞ or
(ii) there exist α ∈ (0,1) and β < 1+α

2 such that

∫ 1

0
t−α‖StQ

1/2‖2
HS dt < ∞(3.11)

and

‖Q−1/2
t St‖ ≤ c

tβ
.(3.12)

Then Hypothesis 2.3 is satisfied.

PROOF. The proof of (i) extends a classical controllability result from [38]
and may be found in [25].

Assume that (ii) holds. By Hypothesis 2.1,

Q
−1/2
t StQ

1/2 = (Q
−1/2
t Q

1/2
t/2 )(Q

−1/2
t/2 St/2)St/2Q

1/2,

where ‖Q−1/2
t Q

1/2
t/2 ‖ ≤ 1 and thereby,

‖Q−1/2
t StQ

1/2‖HS ≤ ‖Q−1/2
t/2 St/2‖‖St/2Q

1/2‖HS.

Therefore, for a certain c1 > 0,∫ 1

0
‖Q−1/2

t StQ
1/2‖HS dt

≤
(∫ 1

0
tα‖Q−1/2

t/2 St/2‖2 dt

)1/2(∫ 1

0
t−α‖St/2Q

1/2‖2
HS dt

)1/2

≤ c1

(∫ 1

0

1

t2β−α
dt

)1/2(∫ 1

0
t−α‖StQ

1/2‖2
HS dt

)1/2

,

and (2.7) follows. �

REMARK 3.4. Conditions (3.11) and (3.12) are well known and often used
in the theory of SPDE’s. Condition (3.11) is a standard assumption that implies
the existence of an H -continuous version of the OU process (Zx

t ), while (3.12) is
closely related to the existence and integrability of the gradient of the OU transition
semigroup (cf. [9] for details). Hypothesis 2.3 will be checked in more specific
cases in Section 9.
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4. Ornstein–Uhlenbeck bridge. In Lemma A.2 [applied with H1 = L2(0,1;
H),T = K and C = Q1] an extension of the operator KtQ

−1/2
1 to a measurable

set M ⊂ H,µ1(M) = 1 is defined. We use the notation KtQ
−1/2
1 for this extension

in the present section. Note first that Q
−1/2
1 Z1 is a cylindrical Gaussian random

variable on H and therefore, by Lemma 3.2(b), the process (KtQ
−1/2
1 Z1) is well

defined and has E-continuous modification. Therefore, we can define an E-valued
process

Ẑt = Zt − KtQ
−1/2
1 Z1, t ∈ [0,1), and Ẑ1 = 0,

which has an E-continuous modification for t < 1.

PROPOSITION 4.1. (a) The H -valued Gaussian process (Ẑt ) is independent
of Z1.

(b) The covariance operator Q̂t of Ẑt is given by

Q̂t = Q
1/2
t (I − V ∗

t Vt )Q
1/2
t , t ∈ [0,1).(4.1)

(c) The process (Ẑt ) is continuous in E for t ∈ [0,1].

PROOF. (a) For h, k ∈ im(Q
1/2
1 ), (3.1) yields

E〈Ẑt , h〉〈Z1, k〉 = E〈Zt,h〉〈Z1, k〉 − E〈KtQ
−1/2
1 Z1, h〉〈Z1, k〉

= 〈S1−tQth, k〉 − 〈Q1Q
−1/2
1 K∗

t h, k〉
= 〈S1−tQth, k〉 − 〈S1−tQth, k〉 = 0

and therefore, the process (Ẑt ) and Z1 are independent.

(b) It follows from (a) that

Qt = Q̂t + KtK
∗
t .

Hence, the definition of Kt and Vt yields

Q̂t = Qt − QtS
∗
1−tQ

−1
1 S1−tQt = Q

1/2
t (I − V ∗

t Vt )Q
1/2
t .

(c) Using (3.2), we find easily that

lim
t→0

tr(Q̂t ) = 0.(4.2)

To prove that

lim
t→1

tr(Q̂t ) = 0,(4.3)

we note first that

tr(Q̂t ) = tr
(
(I − V ∗

t Vt )(Qt − Q1)
) + tr

(
(I − V ∗

t Vt )Q1
)
.
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Next, it is easy to see that

0 ≤ lim
t→1

tr
(
(I − V ∗

t Vt )(Q1 − Qt)
) ≤ lim

t→1
tr(Q1 − Qt) = 0.

We have also

tr
(
(I − V ∗

t Vt )Q1
) = tr(Q1) −

∞∑
k=1

|VtQ
1/2
1 ek|2,

and (4.3) follows from (3.3), (3.2) and the dominated convergence. Since the
process (Ẑt ) has E-continuous version by Lemma 3.2(b), it follows that

0 = lim
t→1

Ẑt = Ẑ1.

This fact completes the proof of continuity. �

PROPOSITION 4.2. There exists a Borel subspace M ⊂ H such that
µ1(M) = 1 and for all x ∈ H and y ∈ M, the H -valued Gaussian process

Ẑ
x,y
t = Zx

t − KtQ
−1/2
1 (Zx

1 − y)(4.4)

is well defined for all t ∈ [0,1). Moreover,

Ẑ
x,y
t = Stx − KtQ

−1/2
1 S1x + KtQ

−1/2
1 y + Ẑt , P-a.s.(4.5)

PROOF. By Lemma A.3, we can choose a measurable linear space M such that
KtQ

−1/2
1 is linear on M with µ1(M) = 1 and the mapping (t, y) → KtQ

−1/2
1 y is

measurable. By (2.4) we have S1x ∈ im(Q
1/2
1 ) and therefore, KtQ

−1/2
1 (Zx

1 − y) is
well defined for any y ∈ M. Clearly, Ẑ

x,y
t may be rewritten in the form (4.5). �

The process (Ẑ
x,y
t ) defined in Proposition 4.2 will be called an Ornstein–

Uhlenbeck bridge on H (connecting points x ∈ H and y ∈ M). We will denote
by µ̂x,y the law of the process {Ẑx,y

t : t ∈ [0,1]}.

THEOREM 4.3. There exists a Borel subspace M ⊂ E with µ1(M) = 1, such
that the process (Ẑ

x,y
t ) has E-continuous version for each x ∈ E and y ∈ M.

Moreover, there exists a measurable mapping U :M → R+ and a random vari-
able k, such that

‖Ẑx,y‖C(0,1;E) ≤ k
(
1 + |x|E + U(y)

)
, x ∈ E,y ∈ M,(4.6)

and

E‖Ẑx,y‖n
C(0,1 : E) ≤ L(n)

(
1 + |x|nE + (U(y))n

)
(4.7)

for each n ∈ N, x ∈ E and y ∈ M, where L(n) is a constant depending on n only.
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PROOF. It was already shown in Proposition 4.1 that the process (Ẑt ) has
trajectories in C(0,1;E) and we have

k1 = sup
t≤1

|Ẑt |E < ∞, P-a.s.(4.8)

Since (Ẑt ) is a Gaussian process, we obtain, for any m > 0,

k2(m) = E sup
t≤1

|Ẑt |mE < ∞.(4.9)

The same argument shows that the process t → KtQ
−1/2
1 y has trajectories in

C(0,1;E) for every y ∈ M, where M is given by Proposition 4.2 (possibly,
after excluding a zero µ1-measure set). By the strong Feller property we have
S1x ∈ im(Q

1/2
1 ) ⊂ M, so it follows from Proposition 4.2 that µ̂x,y(C(0,1;E)) = 1

for x ∈ E and y ∈ M. Furthermore, using the notation from Lemma 3.2, we
have KtQ

−1/2
1 S1x = K(Q

−1/2
1 S1x)(t), t ∈ [0,1]. By (2.4), the operator Q

−1/2
1 S1

is bounded and it is easy to see that (3.3) together with (3.6) yields con-
tinuity of the mapping KtQ

−1/2
1 S1 :E → C(0,1;E). Hence, setting U(y) =

‖KQ
−1/2
1 y‖C(0,1;E) and taking into account (4.8) and (4.9), we obtain both

(4.6) and (4.7) for all n > 0. �

The following theorem justifies the intuitive notion of the OU bridge (Ẑ
x,y
t )

given in the Introduction.

THEOREM 4.4. Let � :C(0,1;E) → R be a Borel mapping such that, for
x ∈ E,

E|�(Zx)| < ∞.

Then

E
(
�(Zx)|Zx

1 = y
) = E�(Ẑx,y), µ1-a.e.

PROOF. By Hypothesis 2.2 and Theorem 4.3, the processes (Zx
t ) and (Ẑ

x,y
t )

are concentrated on C(0,1;E) and (KtQ
−1/2
1 (S1x − y)) ∈ E. Moreover, the

processes (Ẑ
x,y
t ) and (KtQ

−1/2
1 Zx

1 ) are independent by Proposition 4.1. There-
fore, using well-known properties of conditional expectations, we obtain

E
(
�(Zx)|Zx

1 = y
) = E

(
�

(
Ẑx,y + KtQ

−1/2
1 (Zx

1 − y)
)|Zx

1 = y
)

= E�(Ẑx,y), µ1-a.e.

for any x ∈ E. �

Let

Yu =
∫ 1

u
S1−sQ

1/2 dWs, u ≤ 1,
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and

Hu = Q
−1/2
1−u S1−uQ

1/2, u < 1.

LEMMA 4.5. For all u ∈ [0,1], we have

Yu = Q1−sQ
−1
1 Z1 − S1−sẐs, P-a.s.,(4.10)

where Q1−sQ
−1
1 is bounded for all s ∈ [0,1].

PROOF. We have

KtQ
−1/2
1 Z1 =

(∫ t

0
St−sQ

1/2H ∗
s ds

)
Q

−1/2
1 Z1

and

S1−tKtQ
−1/2
1 Z1 =

(∫ t

0
S1−sQ

1/2H ∗
s ds

)
Q

−1/2
1 Z1

= (Q1 − Q1−t )Q
−1
1 Z1

= Z1 − Q1−tQ
−1
1 Z1,

and thereby,

Z1 − S1−tKtQ
−1/2
1 Z1 = Q1−tQ

−1
1 Z1.

Therefore, by definition of Ẑt , we obtain

Ys = Z1 − S1−sZs

= Z1 − S1−s(Zs − KsQ
−1/2
1 Z1) − S1−sKsQ

−1/2
1 Z1

= Z1 − S1−sẐs − (Z1 − Q1−sQ
−1
1 Z1)

= Q1−sQ
−1
1 Z1 − S1−sẐs . �

Since the operator-valued function t → Qt is continuous in the weak operator
topology and all the operators Qt are compact for t > 0, there exists a measur-
able choice of eigenvectors {ek(t) :k ≥ 1} and eigenvalues {λk(t) :k ≥ 1}. For each
n ≥ 1 we define a process

αn
u =

n∑
k=1

1√
λk(1 − u)

〈Yu, ek(1 − u)〉H ∗
u ek(1 − u).

LEMMA 4.6. There exists a measurable stochastic process (αu) defined on
[0,1) such that, for each a < 1,

lim
n→∞ E

∫ a

0
|αn

u − αu|2 du = 0(4.11)
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and for each h ∈ H and a < 1, the series

〈αu,h〉 =
∞∑

k=1

1√
λk(1 − u)

〈Yu, ek(1 − u)〉〈ek(1 − u),Huh〉(4.12)

converges in L2(0, a) in mean square. Moreover, if 0 ≤ u ≤ v < 1, then, for all
h, k ∈ H ,

E〈αu,h〉〈αv, k〉 = 〈Huh,Q
−1/2
1−u Q

1/2
1−vHvk〉,(4.13)

where the operator Q
−1/2
1−u Q

1/2
1−v is bounded. Finally,

E

∫ 1

0
|αu|du < ∞.(4.14)

In what follows we will use the notation 〈αu,h〉 = 〈Q−1/2
1−u Yu,Huh〉.

PROOF OF LEMMA 4.6. For u ≤ v ≤ 1,

E〈Yu,h〉〈Yv, k〉 = 〈Q1−vh, k〉, h, k ∈ H.(4.15)

Therefore,

E〈αn
u − αm

u ,h〉2 =
n∑

j=m+1

1

λk(1 − u)
E〈Yu, ek(1 − u)〉2〈ek(1 − u),Huh〉2

(4.16)

=
n∑

j=m+1

〈ek(1 − u),Huh〉2 −→
n,m→∞ 0,

hence, the process

〈αu,h〉 =
∞∑

k=1

1√
λk(1 − u)

〈Yu, ek(1 − u)〉〈ek(1 − u),Huh〉
(4.17)

= 〈Q−1/2
1−u Yu,Huh〉

is well defined and measurable for each h ∈ H and u < 1. Let Pn be an orthogonal
projection on lin{ek(1 − v) :k ≤ n} and Hn

u = PnHu. Then Q
−1/2
1−u Hn

u is bounded

on H and we may define αn
u = (Q

−1/2
1−u Hn

u )∗Yu. By (4.15),

E〈αn
u,h〉〈αn

vk〉 = 〈Q1−vQ
−1/2
1−u Hn

u h,Q
−1/2
1−v Hn

v k〉
= 〈Hn

u h,Q
−1/2
1−u Q

1/2
1−vH

n
v k〉.

By (2.6), the operator Q
−1/2
1−u Q

1/2
1−v is bounded and, therefore,

E〈Q−1/2
1−u Yu,Huh〉〈Q−1/2

1−v Yv,Hvk〉 = lim
n→∞E〈αn

u,h〉〈αn
v , k〉

= 〈Huh,Q
−1/2
1−u Q

1/2
1−vHvk〉.
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It follows from (4.13) that

E〈αu,h〉2 = |Huh|2,
hence,

E|αu|2 = ‖Hu‖2
HS < ∞, u < 1,

and by Hypothesis 2.3,

E

∫ 1

0
|αu|du < ∞.

Then (4.16) and the dominated convergence yield

lim
n,m→∞

∫ a

0
E|αn

u − αm
u |2 du = 0.

As a consequence, we find that (4.11) holds for any a ∈ (0,1). �

LEMMA 4.7. The cylindrical process

ζt = Wt −
∫ t

0
αu du, t ≤ 1,

is a standard cylindrical Wiener process on H independent of Z1.

PROOF. We need to show that, for any h ∈ H , the process

〈ζt , h〉 = 〈Wt,h〉 −
∫ t

0
〈Q−1/2

1−u Yu,Huh〉

is a real-valued Wiener process. Let h, k ∈ H . We will show first that, for r < t < 1,

E〈ζt − ζr , h〉〈ζr , k〉 = 0.(4.18)

We have

E〈ζt − ζr , h〉〈ζr , k〉
= −E〈Wt − Wr,h〉

∫ r

0
〈Q−1/2

1−u Yu,Huk〉du

− E〈Wr, k〉
∫ t

r
〈Q−1/2

1−u Yu,Huh〉du

+ E

(∫ t

r
〈Q−1/2

1−u Yu,Huh〉du

)(∫ r

0
〈Q−1/2

1−u Yu,Hvk〉dv

)
= −I1 − I2 + I3.
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We will consider I1 first. Taking into account that the series (4.17) is mean-square
convergent, for each u ∈ (0,1), we obtain

E〈Wt − Wr,h〉〈Q−1/2
1−u Yu,Huk〉

=
∞∑

n=1

〈en(1 − u),Huk〉√
λn(1 − u)

E
(〈Yu, en(1 − u)〉〈Wt − Wr,h〉).

Next, for u ≤ r ,

E
(〈Yu, en(1 − u)〉〈Wt − Wr,h〉)

= E

∫ 1

u
〈Q1/2S∗

1−sen(1 − u), dWs〉
∫ t

r
〈h,dWs〉

=
∫ t

r
〈S1−sQ

1/2h, en(1 − u)〉ds,

and therefore,

E〈Wt − Wr,h〉〈Q−1/2
1−u Yu,Huk〉

=
∞∑

n=1

〈en(1 − u),Huk〉√
λn(1 − u)

∫ t

r
〈S1−sQ

1/2h, en(1 − u)〉ds

=
∫ t

r

( ∞∑
n=1

〈en(1 − u),Huk〉√
λn(1 − u)

〈S1−sQ
1/2h, en(1 − u)〉ds

)

=
∫ t

r
〈Q−1/2

1−u S1−sQ
1/2h,Huk〉ds

=
∫ t

r
〈Q−1/2

1−u Q
1/2
1−sHsh,Huk〉ds

and

I1 =
∫ r

0

∫ t

r
〈Q−1/2

1−u Q
1/2
1−sHsh,Huk〉ds du,(4.19)

where the operator Q
−1/2
1−u Q

1/2
1−s is bounded. By similar arguments, we find that

I2 = 0 and (4.13) yields

I3 =
∫ r

0

∫ t

r
〈Q−1/2

1−v Q
1/2
1−uHuh,Hvk〉dudv

and in view of (4.19), I1 = I3, and since I2 = 0, (4.18) follows. We will show, that
for h ∈ H and t < 1,

E〈ζt , h〉2 = t |h|2.(4.20)
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We have

E〈ζt , h〉2 = t |h|2 − 2E〈Wt,h〉
∫ t

0
〈Q−1/2

1−u Yu,Huh〉

+ E

(∫ t

0
〈Q−1/2

1−u Yu,Huh〉du

)(∫ t

0
〈Q−1/2

1−v HvYv, k〉dv

)
= t |h|2 − 2J1 + J3.

Proceeding in the same way as in the computation of I1 and I3, we obtain

J1 =
∫ t

0
E〈Wt,h〉〈Q−1/2

1−u Yu,Huh〉du

(4.21)

=
∫ t

0

∫ t

u
〈Q−1/2

1−u Q
1/2
1−sHsh,Huh〉ds du.

Invoking again (4.13), we obtain

J3 =
∫ t

0

∫ t

0
E〈Q−1/2

1−u Yu,Huh〉〈Q−1/2
1−v Yv,Hvh〉dudv

=
∫ t

0

∫ v

0
〈Huh,Q

−1/2
1−u Q

1/2
1−vHvh〉dudv

+
∫ t

0

∫ t

v
〈Q−1/2

1−v Q
1/2
1−uHuh,Hvh〉dudv.

Since t < 1 and the functions under the integrals are continuous, we can change
the order of integration in the first integral and obtain

J3 =
∫ t

0

∫ t

u
〈Huh,Q

−1/2
1−u Q

1/2
1−vHvh〉dv du

+
∫ t

0

∫ t

v
〈Q−1/2

1−v Q
1/2
1−uHuh,Hvh〉dudv.

Hence, J3 = 2J1 and (4.20) follows. Combining (4.18) and (4.20), we find that,
for s, t < 1,

E〈ζs, h〉〈ζt , k〉 = min(s, t)〈h, k〉, h, k ∈ H.

Since

sup
t<1

E|〈ζt , h〉| = |h|2, h ∈ H,

there exists a cylindrical random variable ζ1 such that

lim
t→1

〈ζt , h〉 = 〈ζ1, h〉, h ∈ H,

for all t ≤ 1. Therefore, (ζt ) is a cylindrical Brownian motion for t ∈ [0,1]. It
remains to show that, for any t < 1,

E〈ζt , h〉〈Z1, k〉 = 0, h, k ∈ H.(4.22)
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By definition of ζt , it is enough to show that

E〈Wt,h〉〈Z1, k〉 = E

∫ t

0
〈αu,h〉〈Z1, k〉du.(4.23)

Now, we have

E〈Wt,h〉〈Z1, k〉 =
∫ t

0
〈S1−uQ

1/2h, k〉du.(4.24)

Invoking (4.10) and using the fact that Z1 and (Ẑt ) are independent, we obtain

E

∫ t

0
〈αu,h〉〈Z1, k〉du

=
∫ t

0
E〈Q−1/2

1−u Yu,Huh〉〈Z1, k〉du,∫ t

0
E〈Q−1/2

1−u Q1−uQ
−1
1 Z1,Huh〉〈Z1, k〉du(4.25)

=
∫ t

0
〈Q1/2

1−uHuh, k〉du

=
∫ t

0
〈S1−uQ

1/2h, k〉du.

Comparing (4.24) and (4.25), we obtain (4.23) and the lemma follows. �

REMARK 4.8. Lemma 4.7 allows to define the Ornstein–Uhlenbeck
bridge (Ẑ

x,y
t ) as a unique solution of a certain linear stochastic evolution equa-

tion. As it is not needed in this paper, it is omitted, see [15] for details.

PROPOSITION 4.9. Let

B1(s) = (Q
−1/2
1−s S1−sQ

1/2)∗Q−1/2
1−s S1−s,

B2(s) = (Q
−1/2
1 S1−sQ

1/2)∗Q−1/2
1 S1,

B3(s)y = (Q
−1/2
1 S1−sQ

1/2)∗Q−1/2
1 y, y ∈ im(Q

1/2
1 ), s ∈ (0,1).

Then

E

∫ 1

0
|B1(s)Ẑs |ds < ∞,(4.26) ∫ 1

0
|B2(s)x|2 ds = |Q−1/2

1 S1x|2, x ∈ H.(4.27)

Moreover, there exists a Borel subspace M ⊂ H with µ1(M) = 1 such that B3
extends to a linear mapping B3 :M → L1(0,1;H), that is,∫ 1

0
|B3(s)y|ds < ∞, y ∈ M,(4.28)
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and B3(s)Z1 has the covariance (Q
−1/2
1 S1−sQ

1/2)∗(Q−1/2
1 S1−sQ

1/2) for each
s ∈ [0,1).

PROOF. Condition (4.26) is a reformulation of (4.14) in Lemma 4.6, where it
was also shown that the function t → B1(t)Ẑt is integrable. Invoking the definition
of the operator B and Lemma 3.2, we obtain∫ 1

0
|B2(s)x|2 ds =

∫ 1

0
|BQ

−1/2
1 S1x(s)|2 ds = |Q−1/2

1 S1x|2,(4.29)

and (4.27) follows.
For y ∈ im(Q

1/2
1 ), we have B3(t)y = BQ

−1/2
1 y and for any a < 1,∫ a

0
‖Bt‖2

HS dt < ∞,

and taking (3.7) into account, we may apply Lemma A.3, which yields the desired
result. �

5. Transition density of semilinear stochastic evolution equation. In this
section a formula for transition densities defined by equation (2.1) will be derived
and some useful lower estimates on transition densities will be established.

PROPOSITION 5.1. Assume that equation (2.1) has an invariant measure
µ∗ ∈ P . Then

‖P ∗
t ν − µ∗‖var → 0, t → ∞, ν ∈ P,(5.1)

where ‖ · ‖var denotes the total variation of measures. Furthermore, for each x ∈ E

and T > 0, the measures P(T , x, ·) and µx
T are equivalent and for µT a.e. y,

dP (T , x, ·)
dµx

T

(y)

(5.2)

= E

(
exp

(∫ T

0
〈G(Zx

t ), dWt 〉 − 1

2

∫ T

0
|G(Zx

t )|2 dt

)∣∣∣Zx
T = y

)
.

PROOF. By Hypothesis 2.1, the Ornstein–Uhlenbeck process is strongly
Feller, therefore, its distributions (µx

t ) are equivalent for x ∈ H, t > 0. If (5.2)
holds for each T > 0 and x ∈ E, we have the equivalence P(T , x, ·) ∼ µx

T , hence,
(P (T , x, ·))T >0,x∈E are equivalent, as well and the convergence (5.1) follows from
well-known results (cf. [37, 40]).

It remains to prove (5.2), which follows from the Girsanov theorem (see,
e.g., [9], Theorem 10.4). In order to apply this result, we must verify (taking, for
simplicity, T = 1)

E expρ(Zx) = 1,(5.3)
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where

ρ(Zx) :=
∫ 1

0
〈G(Zx

s ), dWs〉 − 1
2

∫ 1

0
|G(Zx

s )|2 ds.(5.4)

For n ≥ 1, set

Fn(x) =


F(x), if |x|E ≤ n,

F

(
nx

|x|E
)
, if |x|E > n,(5.5)

and let Gn be defined by Fn(x) := Q1/2Gn(x). Obviously the approximating equa-
tions

dXn(t) = (
AXn(t) + Fn(Xn(t))

) + √
QdWt,

(5.6)
Xn(0) = x,

have uniquely defined solutions P-a.s. in C(0,1;E) and denoting by P̃X, P̃Xn and
P̃Zx the distributions in C(0,1;E) of X, Xn and Zx , respectively, we have

lim
n→∞P

(
sup

t∈[0,1]
|Xn(t) − X(t)|E > 0

)
= 0.(5.7)

Hence, ∥∥P̃Xn(·) − P̃X

∥∥
var → 0, m → ∞,(5.8)

thus, (P̃Xn) is a Cauchy sequence in the metric of total variation. Therefore, the
sequence of densities

dP̃Xn

dP̃Zx

= expρn(Z
x),(5.9)

where

ρn(Z
x) :=

∫ 1

0
〈Gn(Z

x
s ), dWs〉 − 1

2

∫ 1

0
|Gn(Z

x
s )|2 ds,(5.10)

is a Cauchy, hence, convergent, sequence in L1(�). As Gn is bounded for each n,
obviously E expρn(Z

x) = 1, so it remains to identify the L1(�)-limit of expρn

with expρ. Clearly, Gn → G pointwise and |Gn(x)| ≤ K(1 + |x|mE), therefore,

E

∣∣∣∣∫ 1

0
〈Gn(Z

x
s ), dWs〉 −

∫ 1

0
〈G(Zx

s ), dWs〉
∣∣∣∣2

= E

∫ 1

0
|Gn(Z

x
s ) − G(Zx

s )|2 ds → 0

by the dominated convergence theorem and Hypothesis 2.2. Similarly, we have∫ 1

0
|Gn(Z

x
s )|2 ds →

∫ 1

0
|G(Zx

s )|2 ds, P-a.s.,
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so we obtain (possibly, for a subsequence) expρn(Z
x) → expρ(Zx) P-a.s., which

completes the proof of (5.2). �

We will now state one of our main results, which provides a formula for the
density dP ∗

t ν

dµt
for a given time t > 0 (we may take t = 1). It follows from the

Fubini theorem that the density has the form

dP ∗
1 ν

dµ1
(y) =

∫
E

dP (1, x, ·)
dµ1

(y)ν(dx)

(5.11)

=
∫
E

dP (1, x, ·)
dµx

1
(y)

dµx
1

dµ1
(y)ν(dx), µ1-a.e.,

provided the product of densities inside the integral on the r.h.s. is (x, y)-measu-
rable. As mentioned in the preceding proof, the Gaussian measures µx

1 and µ1 are
equivalent with the density given by the Cameron–Martin formula

g(x, y) := dµx
1

dµ1
(y)

(5.12)

= exp
(
〈Q−1/2

1 S1x,Q
−1/2
1 y〉 − 1

2
|Q−1/2

1 S1x|2
)
, x ∈ E,

for µ1-almost all y ∈ E.

THEOREM 5.2. For each ν ∈ P , we have

dP ∗
1 ν

dµ1
(y) =

∫
E

h(x, y)g(x, y)ν(dx), µ1-a.e.,(5.13)

where g is defined by the Cameron–Martin formula (5.12), and for x ∈ E and
µ1-almost all y ∈ E,

h(x, y) := E exp
(
ρ(Ẑx,y)

(5.14)

−
∫ 1

0
〈G(Ẑx,y

s ),B1(s)Ẑs + B2(s)x − B3(s)y〉ds

)
,

where B1, B2 and B3 are defined in Proposition 4.9. In particular, for each x ∈ E,
we have

dP (1, x, ·)
dµ1

(y) = h(x, y)g(x, y), µ1-a.e.(5.15)

PROOF. Since both g and h are (x, y)-measurable, taking into account
(5.11) and (5.12), we only have to prove that

dP (1, x, ·)
dµx

1
(y) = h(x, y), x ∈ E,µ1-a.e.(5.16)
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Assume at first that the mapping G is bounded and let tki := i
k

for k ∈ N, i =
0,1, . . . , k, that is, �k = {tk0 , tk1 , . . . , tkk } are equidistant divisions of the interval
[0,1], tk0 = 0, tkk = 1, tki+1 − tki = 1/k (for brevity, the dependence of tki on k will
be suppressed in the notation). Set, for k ≥ 1,

ρk(Zx) :=
k−1∑
i=0

〈
G

(
Zx

ti

)
,Wti+1 − Wti

〉 − 1
2

∫ 1

0
|G(Zx

s )|2 ds.(5.17)

The mapping G is assumed to be bounded, thus,

∫ 1

0
|G(Zx

s )|2 ds +
∫ 1

0

∣∣∣∣∣
k−1∑
i=0

G
(
Zx

ti

)
1[ti ,ti+1](s)

∣∣∣∣∣
2

ds ≤ 2 sup |G|2 < ∞,(5.18)

so the random variables expρk(Zx) are uniformly integrable on �. Clearly,
expρk(Zx) → expρ(Zx) P-a.s. (possibly, for a subsequence), and therefore,

expρ(Zx) = lim
k→∞ expρk(Zx) in L1(�),(5.19)

which in view of (5.2) yields

dP (1, x, ·)
dµx

1
(y) = E

(
expρ(Zx)|Zx

1 = y
) = lim

k→∞E
(
expρk(Zx)|Zx

1 = y
)

(5.20)

for µx
1-almost all y ∈ H . On the other hand, in terms of the cylindrical Wiener

process ζt defined in Lemma 4.7, we have

ρk(Zx) =
k−1∑
i=0

〈
G

(
Zx

ti

)
, ζti+1 − ζti

〉
(5.21)

+
∫ ti+1

ti

〈
G

(
Zx

ti

)
,H ∗

s Q
−1/2
1−s Ys

〉
ds − 1

2

∫ 1

0
|G(Zx

s )|2 ds.

Invoking (4.10), we obtain

−H ∗
s Q

−1/2
1−s Ys = H ∗Q−1/2

1−s S1−sẐs − H ∗
s Q

1/2
1−sQ

−1/2
1 Z1

(5.22)
= B1(s)Ẑs − B3(s)Z1

for s ∈ (0,1) P-a.s. [note that both terms on the r.h.s. of (5.22) are well defined
P-a.s. in L1(0,1,H) by Proposition 4.9]. Therefore, for y ∈ M, where M is the
intersection of the two full measure sets (denoted in both cases by M) from Theo-
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rem 4.3 and Proposition 4.9, respectively, we obtain

E
(
expρk(Zx)|Zx

1 = y
)

= E
(
expρk(Zx)|Z1 = y − S1x

)
= E

(
exp

(
k−1∑
i=0

〈
G

(
Zx

ti

)
, ζti+1 − ζti

〉
−

∫ ti+1

ti

〈
G

(
Zx

ti

)
,B1(s)Ẑs − B3(s)Z1

〉
ds

− 1
2

∫ 1

0
|G(Zx

s )|2 ds

)∣∣∣∣Z1 = y − S1x

)
(5.23)

= E exp

(
k−1∑
i=0

〈
G

(
Ẑ

x,y
ti

)
, ζti+1 − ζti

〉
−

∫ ti+1

ti

〈
G

(
Ẑ

x,y
ti

)
,B1(s)Ẑs − B3(s)(y − S1x)

〉
ds

− 1
2

∫ 1

0
|G(Ẑx,y

s )|2 ds

)
=: E�k(x, y),

since the processes (Ẑt ) and (ξt ) are independent of Z1. By (5.18), the dominated
convergence theorem yields

�k(x, y) → exp
(∫ 1

0
〈G(Ẑx,y

s ), dζs〉 − 1
2

∫ 1

0
|G(Ẑx,y

s )|2 ds

−
∫ 1

0
〈G(Ẑx,y

s ),B1(s)Ẑs + B2(s)x − B3(s)y〉ds

)
(5.24)

=: �(x,y), P-a.s.

(possibly, for a subsequence), since B2(·)x,B3(·)y ∈ L1(0,1,H) for x ∈ H and
y ∈ M. Proposition 4.9 and Gaussianity of the process Ẑ imply

E exp
(
M

∫ 1

0
|B1(s)Ẑs |ds

)
< ∞(5.25)

for each M < ∞, and hence, the sequence (�k(x, y)) is equiintegrable on �. It
follows that

lim
k→∞�k(x, y) = �(x,y) in L1(�)(5.26)

and in virtue of (5.23) and (5.20), we find that, for any x ∈ E,
dP (1, x, ·)

dµx
1

(y) = E�(x,y) = h(x, y), µ1-a.e.(5.27)
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Now we drop the assumption of boundedness of G. Proceeding as above, we ob-
tain, for each N > 0 and x ∈ E,

E
(
1{‖Zx‖C(0,1;E)≤N} expρ(Zx)|Zx

1 = y
)

(5.28)
= E1{‖Ẑx,y‖C(0,1;E)≤N}�(x,y), µ1-a.e.,

because on the set {‖Zx‖C(0,1;E) ≤ N} we have G(Zx) = GN(Zx) [cf. definition
in (5.4)] and GN is bounded. By (5.3) and the dominated convergence theorem,
we get

lim
N→∞ 1{‖Zx‖C(0,1;E)≤N} expρ(Zx) = expρ(Zx) in L1(�),(5.29)

and (possibly, for a subsequence) it follows that

lim
N→∞ E

(
1{‖Zx‖C(0,1;E)≤N} exp(ρ(Zx))|Zx

1 = y
)

(5.30)

= E
(
exp(ρ(Zx))|Zx

1 = y) = dP (1, x, ·)
dµx

1
(y), µ1-a.s.

On the other hand, by the monotone convergence theorem,

lim
N→∞ E1{‖Ẑx,y‖C(0,1;E)≤N}�(x,y) = E�(x,y) = h(x, y)(5.31)

for x ∈ E, y ∈ M, so (5.28), (5.30) and (5.31) yield (5.16) and the proof is com-
pleted. �

By means of the formula (5.15), we may find a useful lower estimate on transi-
tion densities.

THEOREM 5.3. For x ∈ E,

dP (1, x, ·)
dµ1

(y) ≥ c1 exp
(−c2|x|pE − �(y)

)
, µ1-a.e.,(5.32)

where � :M1 → R+ is a measurable mapping, M1 ∈ B(E),µ1(M1) = 1, p =
max(2,2m) and the constants c1, c2 > 0 depend only on A,Q and K,m from
Hypothesis 2.4(b).

PROOF. From (5.15) in virtue of the Jensen inequality, we obtain, for x ∈ E,

dP (1, x, ·)
dµ1

(y)

≥ exp
(

E

(
ρ(Ẑx,y) −

∫ 1

0
〈G(Ẑx,y

s ),B1(s)Ẑs + B2(s)x − B3(s)y〉ds(5.33)

+ 〈x,S∗
1Q−1

1 y〉 − 1

2
|Q−1/2

1 S1x|2
))

,
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for y from a set of µ1-full measure in E. Note that in the proof of Theorem 5.2,
we found a set M,µ1(M) = 1, such that B3(·)y ∈ L1(0,1 :H) and h(x, y) is well

defined for y ∈ M1. Similarly, S∗
1Q

−1/2
1 is a Hilbert–Schmidt operator by (2.4),

hence, S∗
1Q

−1/2
1 Q

−1/2
1 y ∈ H is well defined for y ∈ M2, µ1(M2) = 1 and the

density g(x, y) is given by the formula (5.12) for y ∈ M2. We may take M1 =
M ∩ M2. It follows from Hypothesis 2.4(b) and (4.7) that the stochastic integral
in ρ(Ẑx,y) is a martingale and, hence, for any x ∈ E,

dP (1, x, ·)
dµ1

(y)

≥ exp
(
−1

2

∫ 1

0
E|G(Ẑx,y

s )|2 ds

− E

∫ 1

0
|G(Ẑx,y

s )|(|B1(s)Ẑ
x,y
s | + |B2(s)x| + |B3(s)y|)ds

− |x||S∗
1Q

−1/2
1 Q

−1/2
1 y| − 1

2
|Q−1/2

1 S1x|2
)

≥ exp
(
−K2

(
1 +

∫ 1

0
E|Ẑx,y

s |2m
E ds

)

− E

∫ 1

0
K(1 + |Ẑx,y

s |mE)
(|B1(s)Ẑs | + |B2(s)x| + |B3(s)y|)ds

− c̃|x|E|S∗
1Q−1

1 y| − 1

2
c̃2‖Q−1/2

1 S1‖2 · |x|2E
)
,

x ∈ E,

for µ1-almost all y ∈ M1, where c̃ is the constant from continuous embed-
ding E ↪→ H . Set U1,U2 :M1 → R+, U1(y) := ‖B3(·)y‖L1(0,1:H),U2(y) =
|S∗

1Q−1
1 y|; by (4.7) of Theorem 4.3, we further get

dP (1, x, ·)
dµ1

(y) ≥ exp
(
−K2[

1 + L(2m)
(
1 + |x|2m

E + (U(y))2m)]
− KE

∫ 1

0
|B1(s)Ẑs |ds

− K

∫ 1

0
|B2(s)x|ds − KU1(y)

− KL(m)
(
1 + |x|mE + U(y)m

) ∫ 1

0
|B2(s)x|ds

− KL(m)
(
1 + ‖x‖m + Um(y)

)
U1(y)(5.34)
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− KL(m)E‖Ẑx,y‖m
C(0,1;E)

∫ 1

0
|B1(s)Ẑs |ds

− c̃|x|EU2(y) − 1

2
c̃2‖Q−1/2

1 S1‖2 · |x|2E
)
.

By Lemma 3.2, we have∫ 1

0
|B2(s)x|ds = ‖BQ

−1/2
1 S1x‖L1(0,1:H)

≤ ‖BQ
−1/2
1 S1x‖L2(0,1 : H)(5.35)

= |Q−1/2
1 S1x| ≤ c̃‖Q−1/2

1 S1‖ · |x|E
and it follows from Proposition 4.9 that

E

(∫ 1

0
|B1(s)Ẑs |ds

)q

< ∞,(5.36)

for each q < ∞. Therefore, for each η > 0 small enough, there exist constants
c1(η) > 0 and c3(η) > 0 and a function � = �η :M1 → R+ such that, x ∈ E and
y ∈ M1,

dP (1, x, ·)
dµ1

(y) ≥ exp
(
−c1(η) − (

K2L(2m) + η
)|x|2m

E

− KL(m)‖Q−1/2
1 S1‖ · |x|m+1

E

− c3(η)|x|m+η
E −

(
1

2
c̃2‖Q−1/2

1 S1‖2 + η

)
|x|2E − �(y)

)
,

and the estimate (5.32) follows. �

REMARK 5.4. Under more stringent conditions, we may obtain a lower esti-
mate on the transition density which is more “explicit” in y and has a more sym-
metric form. In addition to the conditions of Theorem 5.2, assume that there exists
a Banach space Ẽ of µ1-full measure, continuously embedded into H such that

S1(Ẽ) ⊂ im(Q1),(5.37) ∫ 1

0
|B3(s)y|ds ≤ a1|y|

Ẽ
, y ∈ Ẽ,(5.38)

and

U(y) = sup
t∈[0,1]

∣∣∣∣∫ t

0
St−sQS∗

1−sQ
−1
1 y ds

∣∣∣∣
E

≤ a2|y|
Ẽ
, y ∈ Ẽ,(5.39)

for some a1, a2 > 0. Then for some constants b1, b2, b3 > 0 (dependent only on
A,Q,K and m) and p = max(2,2m), we have

dP (1, x, ·)
dµ1

(y) ≥ b1 exp{−b2|x|pE − b3|y|p
Ẽ
}, x ∈ E,y ∈ Ẽ a.e.(5.40)
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To see (5.40), we check that, under present conditions (5.37)–(5.39), (5.34) im-
plies, for all for x ∈ E and for µ1-a.e. y ∈ Ẽ,

dP (1, x, ·)
dµ1

(y) ≥ exp
(−C(1 + |x|2m

E + |y|2m

Ẽ
− |x|E + |y|

Ẽ

+ |x|m+1
E + |y|m

Ẽ
|x|E + |x|mE |y|

Ẽ

+ |x|m+η
E + |y|m+η

Ẽ
+ |x|2E + |y|2

Ẽ
)
)
,

for arbitrary small η > 0 and a universal C = C(η) < ∞, and (5.40) follows. It may
be of interest to mention some particular cases when the conditions (5.37)–(5.39)
are satisfied. A trivial example is a finite-dimensional one, H = E = Ẽ = R

d , in
which case we obtain

dP (1, x, ·)
dµ1

(y) ≥ b1 exp(−b2|x|p
Rd − b3|y|p

Rd ), x, y ∈ R
d .(5.41)

Note that in this case the only assumptions in Theorem 5.2, Corollary 5.3 and the
present remark are the well posedness and growth conditions in Hypothesis 2.4
and the strong Feller property of the Ornstein–Uhlenbeck process (2.7).

Suppose that A = A∗ is strictly negative and define Hλ = dom((−A)λ), λ ≥ 0,
with the norm |y|λ = |(−A)λy|, y ∈ dom((−A)λ). Let Q = I ; then A−1 must be
compact and it is easy to check that im(S1) ⊂ im(Q1) = dom(A), therefore, (5.37)
holds with any Ẽ, Ẽ ↪→ H . Furthermore, we have

|Q1/2S1−sQ
−1
1 y| = ‖S1−s(−A)1−λ‖‖(−A)λ−1Q−1

1 (−A)−λ‖ · |y|λ
(5.42)

≤ const

(1 − s)1−λ
‖y‖λ

for y ∈ Hλ since A−1Q−1
1 ∈ L(H), thus, (5.38) holds for Ẽ = Hλ with any λ > 0.

If, in addition, ‖St‖L(H,E) ≤ const · t−σ , t ∈ [0,1], for σ > 0 such that σ < λ, then
(5.39) holds as well since

|St−sS1−sQ
−1
1 y|E ≤ const(t − s)−σ (1 − s)λ−1, 0 < s < t ≤ 1.(5.43)

6. Exponential convergence to invariant measure. The following uniform
ultimate moment boundedness result will be useful in the sequel.

PROPOSITION 6.1. Assume that the growth condition (2.11) holds true and

k(p) := sup
t≥0

E|Zt |pE < ∞, p > 0.(6.1)

Then

Ex |Xt |E ≤ e−k1t |x|E + k2k(s) + k3

k1
+ k(1), t ≥ 0.(6.2)
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Suppose that the following stronger version of (2.11) holds: For each x ∈ dom(Ã),
there exists x∗ ∈ ∂|x|E such that, for some k1, k2, k3 > 0, s > 0, ε > 0, we have

〈Ãx + F(x + y), x∗〉E,E∗ ≤ −k1|x|1+ε
E + k2|y|sE + k3, y ∈ E.(6.3)

Then

sup
x∈E

sup
t≥1

Ex |Xt |E ≤ M̂,(6.4)

where

M̂ = k(1) + max
((

2(k2k(s) + k3)

k1

)1+ε

,

(
1

k1ε
+ 2

)1/ε)
.(6.5)

PROOF. Inequality (6.4) has been proven in [14], Proposition 2.1 (see also a
similar result in [20]). The proof of (6.2) follows the lines of similar proofs based
on Yosida approximation techniques (see, e.g., [9]) and we sketch it only. The
process Yx(t) := Xx

t − Zt satisfies the equation

Yx(t) = Stx +
∫ t

0
St−sF

(
Yx(s) + Zs

)
ds, t ≥ 0,(6.6)

and the sequence of approximating processes Yλ(t) is defined by

Yx
λ (t) = R(λ)Stx +

∫ t

0
R(λ)St−sF

(
Yx(s) + Zs

)
ds, t ≥ 0,(6.7)

where R(λ) := λ(λI − Ã)−1 ∈ L(E) is well defined for λ large enough. It is well
known that

Yx
λ → Yx,

dYλ

dt
− ÃYλ − F(Yλ + Z) = σx

λ → 0, λ → ∞,(6.8)

in C(0, T ;E) (cf. page 201 of [9]). Since by (2.11)

d−

dt
|Yx

λ (t)|E ≤ −k1|Yλ(t)|E + k2|Zx
t |sE + k3 + |σλ(t)|E,(6.9)

we obtain

|Yx(t)|E ≤ e−k1t |x|E +
∫ t

0
e−k1(t−τ)(k2|Zx

τ |sE + k3) dτ,

and thereby,

E|Yx(t)|E ≤ e−k1t |x|E +
∫ t

0
ek1(t−τ)(k2k(s) + k3

)
dτ(6.10)

and (6.2) follows. �
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Our next aim is to establish uniform geometric ergodicity and V -uniform er-
godicity results for V (x) = |x|E + 1 using the lower density estimates and uni-
form moment boundedness shown above. We will also find explicit bounds on the
convergence rates, hence, the constants below will play some role. We assume that

Ex |Xt |E ≤ k0e
−k1t |x|E + ĉ, t ≥ 0,(6.11)

for some k0, k1 > 0 and ĉ ∈ R. Note that, by Proposition 6.1, if (6.1) and the
growth condition (2.11) are both satisfied, then (6.11) holds with k1 given in (2.11),
k0 = 1 and

ĉ = k2k(s) + k3

k1
+ k(1).(6.12)

Now, take R > 4ĉ, r > 4(ĉ + 1
2), and define

t0 = − 1

k1
log

(
R

2rk0
− ĉ

rk0

)
,

(6.13)

T = max
(
t0 + 1,− 1

k1
log

1

4k0

)
, b = ĉ + 1

2

and

δ = 1
2c1e

−c2R
p

∫
Br

e−�(y)µ1(dy),(6.14)

where Br := {y ∈ E, |y|E < r}, and c1, c2,p and � are defined in the same way
as in Theorem 5.3. In the following proposition, existence of a universal small set
satisfying a uniform geometric drift condition is shown.

PROPOSITION 6.2. Assume (6.11). Then the following holds:

(a) We have

inf
x∈Br

P (T , x,�) ≥ δµ̄(�), � ∈ B(E),(6.15)

where

µ̄(�) :=
(∫

Br

e−�(y)µ1(dy)

)−1 ∫
Br∩�

e−�(y)µ1(dy), � ∈ B(E),(6.16)

is a probability measure. In particular, Br is a small set of the Markov chain
(X̃n) := (XnT ), with the lower bound measure δµ̄.

(b) We have

Ex(|XT |E + 1) ≤ 1
2(|x|E + 1) + b1Br (x), x ∈ E,(6.17)

that is, the chain (X̃n) satisfies the one-step Lyapunov–Foster condition of geo-
metric drift toward Br , with the constants 1

2 and b and the Lyapunov function
V (x) = |x|E + 1.
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PROOF. (a) By (6.11), we have, for t ≥ t0, x ∈ E, |x|E ≤ r ,

P(t, x,BR) ≥ 1 − E|Xt |E
R

≥ 1 − 1

R
(k0re

−k1t + ĉ ) ≥ 1

2
(6.18)

and therefore, by Theorem 5.3, for each t ≥ t0, we get

P(t + 1, x,�) =
∫
E

P (1, y,�)P (t, x, dy) ≥
∫
BR

P (1, y,�)P (t, x, dy)

≥
∫
BR

∫
�

dP (1, y, ·)
dµ1

(z)µ1(dz)P (t, x, dy)

(6.19)
≥

∫
BR

∫
�

c1 exp{−c2|y|pE − �(z)}µ1(dz)P (t, x, dy)

≥ c1e
−c2R

p
∫
�

e−�(z)µ1(dz)P (t, x,BR), x ∈ E,� ∈ B(E).

Hence,

inf
x∈Br

P (t + 1, x,�) ≥ c1e
−c2R

p
∫
�

e−�(z)µ1(dz) inf
x∈Br

P (t, x,BR)

≥ 1
2c1e

−c2R
p

∫
�∩Br

e−�(z)µ1(dz)(6.20)

= δµ̄(�), � ∈ B(E)

and (6.15) follows.
To prove part (b), we use again (6.11) to obtain

Ex(|Xt |E + 1) ≤ k0|x|Ee−k1t + ĉ + 1 ≤ 1
4 |x|E + ĉ + 1

≤ 1
2(|x|E + 1) − 1

4 |x|E − 1
2 + ĉ + 1(6.21)

≤ 1
2(|x|E + 1) + (

ĉ + 1
2

)
1Br (x)

for x ∈ E, t ≥ − 1
k1

log 1
4k0

, which completes the proof. �

In the next theorem our main result on uniform geometric V -ergodicity for
V (x) = |x|E + 1 is stated. It is based on the paper by Meyn and Tweedie [33],
where exact bounds for geometric ergodicity of irreducible Markov chains are
found, and Proposition 6.2 above. Following [33], we introduce the constants
v,Mc, γc, λ̂, b̂ and ξ̄ as follows:

v = r + 1, γc = δ−2(4b + δv), λ̂ = 1/2 + γc

1 + γc

< 1,

(6.22)

b̂ = v + γc, ξ̄ = 4 − δ2

δ5 4b2
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and

Mc = 1

(1 − λ̂)2

(
1 − λ̂ + b̂ + b̂ 2 + ξ̄

(
b̂(1 − λ̂ ) + b̂ 2))

> 1.

We will show that the Markov chain (X̃n) has the geometric rate of convergence
to the invariant measure with any constant

ρ ∈
(

1 − 1

Mc

,1
)
.(6.23)

Let bV B denote the Banach space of measurable functions ϕ :E → R such that

‖φ‖V = sup
x∈E

|ϕ(x)|
V (x)

< ∞.

THEOREM 6.3. Assume (6.11). Then there exists an invariant measure
µ∗ ∈ P and for V (x) = |x|E + 1, we have

sup
‖φ‖V ≤1

∣∣∣∣Ptϕ(x) −
∫
E

ϕ dµ∗
∣∣∣∣ ≤ MV (x)e−ωt , t ≥ 0, x ∈ E,(6.24)

where

ω = − 1

T
logρ > 0 and

(6.25)
M = (1 + γc)

ρ

ρ + M−1
c − 1

(ĉ + k0 + 1)e− logρ

and

‖P ∗
t ν − µ∗‖var ≤ M(Lν + 1)e−ωt , t ≥ 0, ν ∈ P ,(6.26)

where Lν = ∫
E |x|Eν(dx). The constants ω and M may be chosen the same for all

nonlinear terms F satisfying Hypothesis 2.4(b) with the same constants K and m

and (6.11) with the same constants k0, k1 and ĉ [or, in particular, satisfying the
growth condition (2.11) with the same k1, k2, k3 and s].

PROOF. The existence of an invariant probability measure in presence of
the lower bound measure [cf. (6.15)] and condition (6.11) are well known (see,
e.g., [28]). It follows from Proposition 6.2 that we may apply Theorem 2.3 of [33]
to the Markov chain (X̃n) = (XnT ) (note that the measure µ̄ is concentrated on
Br , so the conditions imposed in [33] are satisfied), which yields

sup
‖φ‖V ≤1

∣∣∣∣PnT ϕ(x) −
∫

ϕ dµ∗
∣∣∣∣ ≤ CρnV (x) = Ce−nT ωV (x),

(6.27)
x ∈ E,n ∈ N,
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where C = (1 + γc)
ρ

ρ+M−1
c −1

. Using the semigroup property of (Pt ) and (6.11),

we obtain

sup
‖φ‖V ≤1

∣∣∣∣PnT +sϕ(x) −
∫

ϕ dµ∗
∣∣∣∣ ≤ sup

‖φ‖V ≤1

∣∣∣∣Ps

(
PnT ϕ −

∫
ϕ dµ∗

)
(x)

∣∣∣∣
≤ ∣∣Ps

(
Ce−nT ωV (x)

)∣∣ ≤ Ce−nT ω
Ex(|Xs |E + 1)

≤ Ce−nT ω(k0|x|E + ĉ + 1)(6.28)

≤ C(ĉ + k0 + 1)e− logρ(|x|E + 1)e−ω(nT +s),

n ∈ N, x ∈ E, s ∈ [0, T ],
which yields (6.24). Inequality (6.26) is an obvious consequence of (6.24) since

‖P ∗
t ν − µ∗‖var ≤

∫
E

‖P(t, x, ·) − µ∗‖varν(dx)

≤
∫

sup
‖φ‖V ≤1

∣∣∣∣Ptϕ(x) −
∫

ϕ dµ∗
∣∣∣∣ν(dx)(6.29)

≤
∫

M(|x|E + 1)e−ωtν(dx) = M(Lν + 1)e−ωt

for each ν ∈ P , t ≥ 0. The universality of M and ω follows from the fact that
all constants defined in (6.12)–(6.14) and (6.22) (including c1, c2,p and the map-
ping �, cf. Theorem 5.3) are independent of F . �

If the growth of the nonlinear term F is faster than linear, the Markov process
defined by the equation (2.1) may be uniformly ergodic, that is, the constant Lν

in (6.26) may be replaced by another constant independent of the initial measure
ν ∈ P . This has been established earlier in [14] and [20]; however, the lower bound
measures are not found there constructively. In the theorem below explicit bounds
are found and, in particular, uniformity of convergence with respect to coefficients
is proven.

THEOREM 6.4. Assume (6.1) and let the stronger growth condition (6.3) hold
true. Then there exists an invariant measure µ∗ ∈ P and for any ν ∈ P ,

‖P ∗
t ν − µ∗‖var ≤ (1 − δ)−1e−ω̂t‖ν − µ∗‖var, t ≥ 0,(6.30)

where ω̂ = −1
2 log(1 − δ) > 0, δ is defined by (6.14) with R = 2M̂ and r = ∞

and M̂ is given by (6.5). In particular, the constants on the r.h.s. of (6.30) are
uniform with respect to all nonlinear terms F satisfying the growth conditions
(2.9) and (6.3) with the same constants K,m,k1, k2, k3, s and ε.
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PROOF. By Proposition 6.1, we have that

inf
x∈E

P (1, x,BR) ≥ 1 − sup
x∈E

Ex |X1|E
R

≥ 1

2
(6.31)

and similarly, as in (6.19), we get

inf
x∈E

P (2, x,�) ≥ inf
x∈E

∫
E

P (1, y,�)P (1, x, dy)

(6.32)
≥ 1

2c1e
−c2R

p
∫
�

e−�(z)µ1(dz) = δµ̄(�),

where µ̄ is defined by (6.16) with r = ∞. For each ν ∈ P , it follows that P ∗
2 ν ≥ δµ̄

and a simple computation (cf., e.g., [14], Theorem 2.4) yields

‖P ∗
2 µ‖var ≤ (1 − δ)‖µ‖var, µ = ν1 − ν2, ν1, ν2 ∈ P .

By the semigroup property of (P ∗
t ), we have ‖P ∗

2nµ‖var ≤ (1 − σ)n‖µ‖var and for
s ∈ [0,2], it follows that

‖P ∗
2n+sµ‖var ≤ ‖P ∗

s P ∗
2nµ‖var ≤ ‖P ∗

2nµ‖var

≤ e−2nω̂‖µ‖var ≤ (1 − δ)−1e−(2n+s)ω̂‖µ‖var. �

7. Uniform spectral gap property. In this section we consider exponential
ergodicity in spaces Lp(E,µ∗) for p ∈ [1,∞). Note first that, by Theorem 5.2,
the transition kernels P(T , x, ·) are equivalent for T > 0, x ∈ E, they are also
equivalent to the invariant measure µ∗ (if it exists) and we have, for each t > 0,

Ptφ(x) =
∫
E

pt(x, y)φ(y)µ∗(dy), φ ∈ Cb(E),

where the function (x, y) → pt(x, y) is measurable. Let us recall that (Pt ) extends
to a contraction semigroup on Lp(E,µ∗) for all p ∈ [1,∞] and is a C0-semigroup
if p < ∞. Let M(E) ⊂ (Cb(E))∗ denote the space of finite Borel measures on E

with the variation norm. For ν ∈ M(E), we have

〈P ∗
t ν, φ〉 = 〈ν,Ptφ〉 =

∫
E

∫
E

pt(x, y)φ(y)µ∗(dy)ν(dx).(7.1)

LEMMA 7.1. Assume that the equation (2.1) has an invariant measure
µ∗ ∈ P . Then the space Lp(E,µ∗) is invariant for (P ∗

t ) for each p ∈ [1,∞).
Moreover, ‖P ∗

t ‖p→p = 1 and

P ∗
t ψ(y) =

∫
E

pt(x, y)ψ(x)µ∗(dx), ψ ∈ L1(E,µ∗).(7.2)

Finally, (P ∗
t ) is a C0-semigroup on Lp(E,µ∗) for p ∈ [1,∞).
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PROOF. For ψ ∈ L1(E,µ∗), ψ ≥ 0, we define

Gtψ(y) =
∫
E

pt(x, y)ψ(x)µ∗(dx),

and ν = ψµ∗. For φ ≥ 0, the Fubini theorem yields

〈P ∗
t ν, φ〉 =

∫
E

∫
E

pt(x, y)ψ(x)φ(y)µ∗(dx)µ∗(dy) = 〈Gtψ,φ〉 < ∞.

Putting φ = 1, we obtain

‖Gtψ‖1 = 〈P ∗
t (ψµ∗),1〉 = 〈ψµ∗,1〉 = ‖ψ‖1,

and therefore,

‖Gtψ‖1 ≤ ‖ψ‖1, ψ ∈ L1(E,µ∗),ψ ≥ 0.

Clearly, Gtψ = P ∗
t (ψµ∗). All those arguments extend immediately to an arbitrary

ψ ∈ L1(E,µ∗) and therefore, Gt is a contraction on L1(E,µ∗). Other parts follow
easily by a standard density argument. �

Let Lp be the generator of (Pt ) acting in Lp(E,µ∗). We say that Lp has the
spectral gap in Lp(E,µ∗) if there exists δ > 0 such that

σ(Lp) ∩ {λ : Reλ > −δ} = {0}.
The largest δ with this property will be denoted by gap(Lp).

THEOREM 7.2. Assume (6.1) and let the stronger growth condition (6.3) be
satisfied. Then, for each p ∈ (1,∞), we have

gap(Lp) ≥ ω̂

p
(7.3)

and

‖Ptφ − 〈µ∗, φ〉‖p ≤ Cpe−(ω̂/p)t‖φ‖p,(7.4)

where ω̂ > 0 is defined in Theorem 6.4. If, moreover, the semigroup (Pt ) is sym-
metric in L2(E,µ∗), then (7.3) and (7.4) hold for p = 1.

PROOF. By Theorem 6.4, there exist C > 0 such that

‖P ∗
t ν − µ∗‖var ≤ Ce−ω̂t ,(7.5)

for any probability measure ν on E or, equivalently,

‖P ∗
t ν − ν(E)µ∗‖var ≤ C‖ν‖vare

−ω̂t ,(7.6)

for any signed measure ν. If ν = ψµ∗, then (7.6) and Lemma 7.1 imply

‖P ∗
t ψ − 〈ψ,1〉‖1 ≤ C‖ψ‖1e

−ω̂t ,
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hence,

‖P ∗
t − �‖1 ≤ Ce−ω̂t ,(7.7)

where �ψ = 〈ψ,1〉1 and

‖P ∗
t − �‖q→q ≤ 2, q ∈ [1,∞].(7.8)

Take q > 2. Then by (7.7), (7.8) and the Riesz–Thorin theorem, we find that

‖P ∗
t − �‖p→p ≤ Cθe−ω̂θ t21−θ ,(7.9)

where

1

p
= θ

1
+ 1 − θ

q
.

Therefore, taking q → ∞ in (7.9), we obtain

‖P ∗
t − �‖p→p ≤ C2e

−(ω̂/pt).(7.10)

Therefore, (7.4) holds, and since (Pt ) is a C0-semigroup in L2(E,µ∗), Theo-
rem 3.6.2 in [34] (7.10) implies the spectral gap property with gap(Lp) ≥ ω̂

p
for

p ∈ (1,∞). If (Pt ) is symmetric, then the conclusion of the theorem for p = 1
follows immediately from (7.5). �

REMARK 7.3. (1) In Theorem 7.1 and 7.2 the invariant measure µ∗, hence,
the space Lp(E,µ∗), depends on the coefficients of equation (2.1). It is interesting
to note that the lower bound on gap(Lp) and Cp are universal for all systems
satisfying Hypothesis 2.4(b) and (6.3) with the same constants.

(2) By Theorem 7.2, the spectral gap exists for all p ∈ (1,∞). The fact that
this property holds in L1(E,µ∗) is perhaps surprising. Note that it does not need
to hold in general if F = 0. It is known (cf. [13]) that, for a one-dimensional
Ornstein–Uhlenbeck operator LOU

1 considered in L1(E,µ∗), we have

σ(LOU
1 ) = {λ : Reλ ≤ 0}.

If p = 2 and (Pt ) is symmetric, the stronger growth condition (6.3) is not needed.
We may get an estimate on spectral gap in L2(E,µ∗) under the standard ultimate
boundedness assumption, which is stated in Corollary 7.4 below. Note that the
assumption of symmetricity of (Pt ) may not be removed (cf. Example 9.1 below).

COROLLARY 7.4. Let the conditions of Theorem 6.3 be satisfied and assume
that (Pt ) is symmetric on L2 = L2(E,µ∗). Then

‖Ptϕ‖L2 ≤ e−ωt‖ϕ‖L2(7.11)

holds for all t ≥ 0 and ϕ ∈ L2,
∫

ϕ dµ∗ = 0, where ω is defined in (6.25).
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PROOF. Taking arbitrary t > 0, we get, by Theorem 6.3,

sup
‖φ‖V ≤1

∣∣∣∣Ptnϕ(x) −
∫

ϕ dµ∗
∣∣∣∣ ≤ MV (x)ρ̂ n, x ∈ E,(7.12)

where ρ̂ = e−ωt , that is, the skeleton (Yn) := (Xtn) is V -uniformly ergodic with
the rate ρ̂. By [36], Theorem 2.1, it follows that

‖Ptnϕ‖L2 ≤ ρ̂ n‖ϕ‖L2, n ∈ N, ϕ ∈ L2,

∫
ϕ dµ∗ = 0(7.13)

and taking n = 1, we obtain (7.11). �

8. Some extensions.

8.1. Equations nonhomogeneous in time. Some results in the present paper
may be easily generalized to the case when the nonlinear term F = F(t, x) in the
equation (2.1) also depends on time, that is, the equation has the form

dXt = (
AXt + F(t,Xt)

)
dt + √

QdWt, t ≥ s ≥ 0,

Xs = x,

and defines a nonhomogeneous Markov process. For instance, let Ps,t and P ∗
s,t

denote the corresponding two-parameter Markov semigroup and adjoint Markov
semigroup, respectively, 0 ≤ s ≤ t , and set P(s, x, t,�) := Es,x1�(Xt) =
Ps,t1�(x),0 ≤ s ≤ t, x ∈ E,� ∈ B.

THEOREM 8.1. Let Hypotheses 2.1, 2.2, 2.3 and condition (6.1) be satisfied
and let F : R+ × E → E be a jointly measurable mapping such that F(t, ·) is
Lipschitz continuous on bounded sets in E and satisfies Hypothesis 2.4(b) and the
growth condition (6.3) with constants independent of t ∈ R+. Then

‖P ∗
s,t ν1 − P ∗

s,t ν2‖var ≤ (1 − δ)−1e−ω̂(t−s)‖ν1 − ν2‖var, 0 ≤ s ≤ t, ν1, ν2 ∈ P ,

where ω̂ = −1
2 log(1 − δ) and δ, ω̂ depend only on the constants in Hypothe-

sis 2.4(b) and (6.3).

The proof is just a a slight modification of the above results; similarly to Theo-
rems 5.2 and 5.3 and Proposition 6.1, we obtain

inf
s∈R+,x∈E

P (s, x, s + 2,�) ≥ inf
s∈R+,x∈E

∫
E

P (s + 1, y, s + 2,�)P (s, x, s + 1, dy)

≥ 1
2c1e

−c2R
p

∫
�

e−�(z)µ1(dz) = δµ̄(�),

where R = 2M̂ and M̂ is defined in Proposition 6.1. Our statement now follows
just as in the proof of Theorem 6.4.
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8.2. Continuous dependence of invariant measures on parameter. Uniformity
of convergences proven in Theorems 6.3 and 6.4 with respect to nonlinear drifts
in a fairly large class may be useful in some cases, for instance, in ergodic control
theory. Another application (given below) is a continuous dependence of invariant
measures on a parameter. Consider the parameter-dependent equation

dXα
t = (

AXα
t + Fα(Xα

t )
)
dt + √

QdWt,
(8.1)

Xα
0 = x ∈ E,

where α ∈ A ⊂ R
d . Denote by P α(t, x, ·) and µα the transition probability kernel

and the invariant measure, respectively, associated with the equation (8.1).

THEOREM 8.2. Let Hypotheses 2.1–2.4, condition (6.1) and the growth con-
dition (2.11) hold for equation (8.1) with the constants independent of α ∈ A, and
assume

lim
α→α0

Gα(x) = Gα0(x), x ∈ E,(8.2)

where Fα = Q1/2Gα . Then

lim
α→α0

∥∥µα − µα0

∥∥
var = 0.(8.3)

PROOF. First we prove

lim
α→α0

‖P α(t, x, ·) − P α0(t, x, ·)‖var = 0,(8.4)

for each t > 0 and x ∈ E. By (5.2), it suffices to show that expρα → expρα0

in L1(�), where

ρα(Zx) =
∫ t

0
〈Gα(Zx

s ), dWs〉 − 1
2

∫ t

s
|Gα(Zx

s )|2 ds.

By the dominated convergence theorem, we have

lim
α→α0

E

∫ t

0

∣∣Gα(Zx
s ) − Gα0(Z

x
s )

∣∣2 ds = 0,

hence, expρα(Zx) → expρα0(Zx) P-a.s. In order to prove uniform integrability
of (expρα(Zx)), α ∈ A, it is enough to show

sup
α∈A

Eρα(Zx) expρα(Zx) < ∞.(8.5)

Setting Ŵs := Ws − ∫ s
0 Gα(Zx

τ ) dτ , s ∈ [0, t], we obtain, in virtue of the Girsanov
theorem

E

(∫ t

0
〈Gα(Zx

s ), dWs〉 − 1
2

∫ t

0
|Gα(Zx

s )|2 ds

)
expρα(Zx)

= E

(∫ t

0
〈Gα(Zx

s ), dŴs〉 + 1
2

∫ t

0
|Gα(Zx

s )|2 ds

)
expρα(Zx)(8.6)

= E
1
2

∫ t

0
|Gα(Xα

s )|2 ds ≤ K2 + K2
E

∫ t

0
|Xα

s |2m
E ds ≤ N,
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where N < ∞ is a constant independent of α ∈ A, which may be easily seen simi-
larly as in (6.2) (cf. also Proposition 2.1 of [14]). Thus, (expρα(Zx)) are uniformly
integrable, which concludes the proof of (8.4). Now we have∥∥µα − µα0

∥∥
var ≤ ‖P α(t, x, ·) − µα‖var

+ ‖P α0(t, x, ·) − P α0(t, x, ·)‖var(8.7)

+ ‖P α0(t, x, ·) − µα0‖var

and by Theorem 6.3,

lim
t→∞ sup

α∈A
‖P α(t, x, ·) − µα‖var = 0,

which together with (8.4) yields (8.3). �

9. Examples.

EXAMPLE 9.1 (Finite-dimensional equation). In the finite-dimensional case
E = H = R

d , the condition (2.7) is satisfied, even if the covariance matrix Q

is degenerate, which may be shown by generalizing a well-known Seidman’s re-
sult [38] (cf. [25], Theorem 5.25). Obviously, Z ∈ C([0, T ],R

d) for each T > 0,
so the only assumptions that are needed in Theorem 6.3 (V -uniform ergodicity)
and, if Pt = P ∗

t , in Corollary 7.4 (spectral gap), are the strong Feller property for
the linear equation (2.4) (which is true if and only if the matrix Q1 is positive
and is implied by positivity of the matrix Q), Hypothesis 2.4 and the the ultimate
boundedness of solutions to (6.11). In order to apply Theorem 6.4 (uniform er-
godicity) and Theorem 7.2 [spectral gap in Lp(E,µ∗)], we have to assume the
stronger growth condition (6.3).

As a specific example, we consider a nonlinear stochastic oscillator equation

ÿ = f (y, ẏ) + σẇt , y(0) = x1, ẏ(0) = x2,(9.1)

in R
d . We assume that f : Rd × R

d → R
d is a locally Lipschitz function,

x1, x2 ∈ R
d , σ ∈ L(Rd) is a regular matrix, and (wt ) is a standard Wiener process

in R
d . Equation (9.1) may be rewritten in the form (2.1) with Xt = (y(t), ẏ(t)) ∈

R
2d = E = H ,

A =
(

0 I

0 0

)
, F (x) =

(
0

f (x)

)
, x ∈ R

2d,

Q1/2 =
(

0 0
0 (σσ ∗)1/2

)
.

According to the Kalman rank condition (see, e.g., [27]), the matrix Qt is invertible
for each t > 0, so the equation with F = 0 is strongly Feller. Suppose that f has
at most polynomial growth, that is,

|f (x)|Rd ≤ K(1 + |x|m
R2d ), x ∈ R

2d,
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for some K,m < ∞. Then by Theorem 6.3, the solution is V -uniformly ergodic
(Theorem 6.3), provided the ultimate boundedness condition (6.11) holds true. For
example, we may take d = 1, f (x) = −α2x2 − α1x1 for x = (x1, x2) ∈ R

2d , with
some α1, α2 > 0 (a damped linear oscillator). Then (6.11) holds with constants
which may be easily expressed in terms of α1, α2 and σ and V -uniform ergodicity
holds true. Similar results for a more general version of equation (9.1) can be found
in [30].

Note that the semigroup (Pt ) is not symmetric in this case and Corollary 7.4
(on the spectral gap) is not applicable. Indeed, it follows from the results in [7, 8]
that the spectral gap is zero in the present case. This example also shows that the
assumption of symmetry of Pt in Corollary 7.4 may not be removed.

EXAMPLE 9.2 (Stochastic reaction–diffusion equation with the cylindrical
noise). Consider the system

∂u

∂t
= Lu + f (u) + η,

u(0, ξ) = x(ξ),(9.2)

∂u

∂ξ
(t,0) = ∂u

∂ξ
(t,1) = 0, (t, ξ) ∈ R+ × (0,1),

where L is a uniformly elliptic operator

[Lϕ](ξ) =
(

∂

∂ξ
a(ξ)

∂

∂ξ
ϕ

)
(ξ)+b(ξ)

∂

∂ξ
ϕ(ξ)+c(ξ)ϕ(ξ), ξ ∈ (0,1),(9.3)

with a, b, c ∈ C1([0,1]), a(ξ) ≥ a0 > 0, ξ ∈ (0,1), f : R → R is a locally Lip-
schitz mapping, and η = η(t, ξ) is a nondegenerate noise. Let us note that the C1

regularity of the coefficients is made for simplicity only and may be easily relaxed.
The system (9.2) is rewritten in the form (2.1), with the coefficients defined in an
obvious way on the spaces H = L2(0,1), E = C([0,1]),
A = L, Dom(A) =

{
ϕ ∈ H 2(0,1),

∂ϕ

∂ξ
(0) = ∂ϕ

∂ξ
(1) = 0

}
, Q ∈ L(H),

where Q is supposed to be boundedly invertible on H , and F :E → E,F(x(ξ)) =
f (x(ξ)), ξ ∈ (0,1), x ∈ E. It is well known (see, e.g., [9], A5.2) that A generates a
strongly continuous semigroup on H and Hypothesis 2.2 is satisfied. With no loss
of generality (replacing, if necessary, A and F by A−ωI and F +ωI , respectively,
with ω sufficiently large), we may assume that 〈Ãx, x∗〉E,E∗ ≤ 0 for each x ∈
Dom(Ã), x ∈ ∂‖x‖ (recall that Ã denotes the part of A on E), then (6.1) is satisfied
(see, e.g., [14], Example 3.1). It is well known that the corresponding Ornstein–
Uhlenbeck process is strongly Feller and for a certain c > 0,

‖Q−1/2
t St‖ ≤ c√

t
, t ∈ (0,1),
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(cf. [9]), hence, (3.12) holds. Moreover, standard estimates on the Green func-
tion of the problem [4] yield ‖St‖HS ≤ const.t−1/4, which implies (3.11) with
0 < α < 1

2 . Therefore, Hypotheses 2.1 and 2.3 hold and it remains only to specify
the growth conditions on f . We assume that

|f (ξ)| ≤ k(1 + |ξ |m), ξ ∈ R,(9.4)

and

f (ξ + η) sign ξ ≤ −k1|ξ | + k2|η|s + k3, ξ, η ∈ R,(9.5)

for some constants k,m, k1, k2, k3 and s. Now it is easy to check that Hypothe-
sis 2.4 is satisfied and we may apply Theorem 6.3 to get V -uniform ergodicity
with the rate which is specified there. Also, in the case the Markov semigroup Pt

is symmetric in L2(E,µ∗) (e.g., if Q = I ), we may apply Corollary 7.4 to obtain
a lower bound for spectral gap. If the condition (9.5) is strengthened to

f (ξ + η) sign ξ ≤ −k1|ξ |1+ε + k2|η|s + k3, ξ, η ∈ R,(9.6)

where ε > 0, then (6.3) holds as well and we may apply Theorem 6.4 on uniform
exponential ergodicity and Theorem 7.2 on the spectral gap in Lp(E,µ∗),p ∈
[1,∞). For example, if f is a true polynomial, we have obtained the following
result:

COROLLARY 9.3. In Example 9.2, assume that � is a set of polynomials of
the form

f (ξ) = −a2n+1ξ
2n+1 +

2n∑
i=0

aiξ
i,

where ai , i = 1, . . . ,2n, are in a given bounded set in R
2n, a2n+1 ≥ ā, for a given

ā > 0 and n ≥ 0. Then the V -uniform ergodicity (and if n > 0, uniform exponential
ergodicity) holds with constants in (6.24), (6.26) and (6.30) uniform with respect
to f ∈ � . Also, if n > 0, then there is a positive lower bound on the spectral gap
for (Pt ) in Lp(E,µ∗),p ∈ (1,∞), uniform in f ∈ � . Finally, if b = 0 and Q = I ,
then this bound holds also for p = 1.

EXAMPLE 9.4 (The case of Lipschitz drift). Consider (9.2) with the same dif-
ferential operator L and initial and boundary conditions in the case when the noise
may degenerate, for simplicity, suppose that c ≤ c0 < 0. For σ ≥ 0, let Hσ denote
the domain dom((−A)σ ) equipped with the graph norm |y|σ := |(−A)σy|. As
well known, for σ ∈ (0, 1

2), the norm | · |σ is equivalent with the norm of Sobolev–
Slobodetskii space H 2σ (0,1),

|y|2
H 2σ := |y|2

L2(0,1)
+

∫ 1

0

∫ 1

0

|y(ξ) − y(η)|2
(ξ − η)1+2σ

dξ dη, y ∈ Hσ .
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Assume that f : R → R is Lipschitz continuous. It is easy to check that F :
Hσ → Hσ is continuous and satisfies the growth condition (2.11) if, for some
k̄1, k̄2 > 0, we have(

f (ξ) − f (η)
)

sign(ξ − η) ≤ k̄1|ξ − η| + k̄2, ξ, η ∈ R.

Assume that Q = (−A)−2� for some � ≥ 0. Then setting E = Hσ , we obtain

|G(x)| = |Q−1/2F(x)| ≤ ‖Q−1/2‖L(Hσ ,H)|F(x)σ ≤ K̂(1 + |x|σ ), x ∈ Hσ ,

for a suitable K̂ < ∞, provided � ≤ σ . Moreover, the mapping G :Hσ → H is
continuous since F is continuous in E. In view of Remark 2.5, the results of the
paper can be applied to this case. Also, condition (3.11) is satisfied with α < 1

2 ,
as shown in Example 9.2, and Hypothesis 2.2(b) holds true for E = Hσ , pro-
vided

∑
α2σ−2�−1

i < ∞, where (αi) are the eigenvalues of the operator (−A)

(cf. [9]), which is true (taking into account that αi ∼ i2) if � > σ − 1
4 . The remain-

ing condition (2.7) is always satisfied because Q
−1/2
t StQ

1/2 = Q1/2StQ
−1/2
t =√

2(−A)1/2(I − etA)−1/2etA and by the previous Example 9.2, we have that
‖Ht‖HS ≤ const.t−3/4. Summarizing, assume that

σ − 1
4 < � ≤ σ < 1

2

holds, which may be achieved by a suitable choice of σ ∈ (0, 1
2) for � ∈ [0, 1

2).
Then V -uniform ergodicity follows from Theorem 6.3. Moreover, if b = 0, then
the existence of the spectral gap in L2(E,µ∗) with E = Hσ follows from Corol-
lary 7.4. In both cases the estimates on the rate of convergence are specified in
Theorem 6.3 and Corollary 7.4, respectively.

APPENDIX

For the reader’s convenience, we collect here some basic facts about measurable
linear mapping that are used in the paper. Most of them are well known.

Let H be a real separable Hilbert space and let µ = N(0,C) be a centered
Gaussian measure on H with the covariance operator C such that im(C) = H . The
space HC = im(C1/2) endowed with the norm |x|C = |C−1/2x| can be identified
as the reproducing kernel Hilbert space of the measure µ. In the sequel we will
denote by {en :n ≥ 1} the eigenbasis of C and by {cn :n ≥ 1} the corresponding set
of eigenvalues:

Cen = cnen, n ≥ 1.

For any h ∈ H , we define

φn(x) =
n∑

k=1

1√
ck

〈h, ek〉〈x, ek〉, x ∈ H.
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LEMMA A.1. The sequence (φn) converges in L2(H,µ) to a limit φ and∫
H

|φ(x)|2µ(dx) = |h|2.

Moreover, there exists a measurable linear space Mh ⊂ H , such that µ(Mh) = 1,
φ is linear on Mh and

φ(x) = lim
n→∞φn(x), x ∈ Mh.(A.1)

We will use the notation φ(x) = 〈h,C−1/2x〉.

Let H1 be another real separable Hilbert space and let T :H → H1 be a bounded
operator. The Hilbert–Schmidt norm of T will be denoted by ‖T ‖HS. Let

T̃nx =
n∑

k=1

1√
ck

〈x, ek〉T ek, x ∈ H.

LEMMA A.2. Let T :H → H1 be a Hilbert–Schmidt operator. Then the se-
quence (T̃n) converges in L2(H,µ;H1) to a limit T̃ and∫

H
|T̃ (x)|2H1

µ(dx) = ‖T ‖2
HS.

Moreover, there exists a measurable linear space MT ⊂ H , such that µ(MT ) = 1,
T̃ is linear on MT and

T̃ (x) = lim
n→∞ T̃nx, x ∈ MT .(A.2)

We will use the notation T C−1/2x = T̃ (x).

LEMMA A.3. Let K(t, s) :H → H be an operator-valued, strongly measur-
able function, such that, for each a ∈ (0,1),∫ 1

0

∫ 1

0
‖K(t, s)‖HS ds dt +

∫ a

0

∫ a

0
‖K(t, s)‖2

HS ds dt < ∞.(A.3)

Then the mapping (t, s, y) → K(t, s)C−1/2y is measurable, and there exists a
measurable linear space M ⊂ H of full measure, such that, for each y ∈ M,∫ 1

0
|K(t, s)C−1/2y|ds < ∞, t-a.e.

PROOF. Let

Kx = K(t, s)x, x ∈ H.
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By assumption, the operator K :H → L2((0, a) × (0, a);H) is Hilbert–Schmidt
for any a < 1 and thereby, by Lemma A.2, there exists the space Ma of full mea-
sure such that

KC−1/2y =
∞∑

k=1

1√
ck

〈y, ek〉Kek,

where the convergence holds in mean-square and for each y ∈ Ma , in L2((0, a) ×
(0, a);H). Therefore, KC−1/2 is a measurable function of (y, s, t) for s, t ≤ a.
Let an → a be increasing and let M = ⋂∞

n=1 Man . Then KC−1/2y is well defined,
for all s, t < 1 is clearly measurable in (y, s, t). Moreover, for each y ∈ M,

I 2
n (y) =

(∫ an

0

∫ an

0
|K(t, s)C−1/2y|ds dt

)2

[3pt] ≤
∫ an

0

∫ an

0
|K(t, s)C−1/2y|2 ds dt < ∞.

Since the sequence In(y) is nondecreasing to a limit I∞(y) for each y ∈ � and∫
H

I∞(y)µ(dy) ≤
∫ 1

0

∫ 1

0
‖K(t, s)‖HS ds dt < ∞,

the lemma follows. �
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