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ON THE ABSOLUTE CONTINUITY OF LÉVY
PROCESSES WITH DRIFT

BY IVAN NOURDIN AND THOMAS SIMON

Université Henri Poincaré and Université d’Évry-Val d’Essonne

We consider the problem of absolute continuity for the one-dimensional
SDE

Xt = x +
∫ t

0
a(Xs) ds + Zt ,

where Z is a real Lévy process without Brownian part and a a function of
class C1 with bounded derivative. Using an elementary stratification method,
we show that if the drift a is monotonous at the initial point x, then Xt is
absolutely continuous for every t > 0 if and only if Z jumps infinitely often.
This means that the drift term has a regularizing effect, since Zt itself may
not have a density. We also prove that when Zt is absolutely continuous,
then the same holds for Xt , in full generality on a and at every fixed time t .
These results are then extended to a larger class of elliptic jump processes,
yielding an optimal criterion on the driving Poisson measure for their absolute
continuity.

1. Introduction and statement of the results. Let Z be a real Lévy process
without Brownian part and jumping measure ν, starting from 0. Without loss of
generality, we may suppose that the sample paths of Z are càdlàg. Consider the
SDE

Xt = x +
∫ t

0
a(Xs) ds + Zt,(1)

where a : R → R is C1 with bounded derivative. Since a is global Lipschitz, it is
well known that there is a unique strong solution to (1). Let λ be the Lebesgue
measure on R. For any real random variable X, we will write X � λ for X is
absolutely continuous with respect to λ. We will say that a real function f is in-
creasing (resp. decreasing) at x ∈ R if there exists ε > 0 such that f (y) < f (z)

[resp. f (y) > f (z)] for every x − ε < y < z < x + ε, and that f is monotonous at
x if it is either increasing or decreasing at x. The main purpose of this paper is to
prove the following:

THEOREM A. Suppose that a is monotonous at x. Then the following equiva-
lences hold:

Xt � λ for every t > 0 ⇐⇒ X1 � λ ⇐⇒ ν is infinite.
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This result is somewhat surprising because of the very weak optimal condition
on the jumping measure ν. Indeed, it has been known since Döblin (see Theo-
rem 27.4 in [19]), that the following equivalence holds:

Zt does not weight points for every t > 0 ⇐⇒ ν is infinite.

On the other hand, it is possible that ν is infinite and Zt is not absolutely contin-
uous for every t > 0, see Theorem 27.19 in [19]. In other words, our result shows
that a large class of drift perturbations may have some regularizing effects on the
distribution of the perturbed Lévy process. It would be interesting to know if these
effects also concern the regularity of the density.

Recall that the problem of absolute continuity for Zt itself is an irritating ques-
tion, for which no necessary and sufficient condition on the jumping measure has
been found as yet. As it had been pointed out by Orey (see Exercise 29.12 in [19]),
a condition such that ∫

|z|≤1
|z|αν(dz) = +∞

for some α ∈]0,2[ is not sufficient because Supp ν may become too sparse around
zero. Up to now, the best criterion seems to be the following:

THEOREM (Kallenberg [11], Sato [18]). Suppose that ν is infinite and let µ be
the finite measure defined by µ(dx) = |x|2(1+|x|2)−1ν(dx). Then Zt is absolutely
continuous for every t > 0 in the following situations:

(a) For some n ≥ 1, the nth convolution power of µ is absolutely continuous.
(b) limε→0 ε−2| log ε|−1µ(−ε, ε) = +∞.

The above condition (b) and the fact that ν is infinite when lim supε→0 ε−2 ×
µ(−ε, ε) = +∞ and finite when limε→0 ε−2| log ε|rµ(−ε, ε) = 0, for some r > 1,
entail that the class of continuous, nonabsolutely continuous infinitely divisible
distributions is actually very thin. However, Rubin and Tucker (see Theorem 27.23
in [19]) had constructed an exotic, atomic Lévy measure such that, for a given
t0 > 0, Zt is continuous singular for t < t0 and absolutely continuous for t > t0.
This construction entails that absolute continuity is a time-dependent distributional
property for Lévy processes, and we refer to the recent survey [22] for much more
on this delicate topic, with connections to the notion of semi-self-decomposability
and different families of algebraic numbers. Our result proves that there is no such
transition phase phenomenon for a large class of drifted Lévy processes, in full
generality on ν.

We stress that the condition on a is quite natural to obtain the equivalence stated
in Theorem A. Suppose, indeed, that a is constant and, say, positive, in an open
neighborhood of x. Suppose that Z has no drift, finite variation and infinitely many
negative small jumps, but that Supp ν is sparse enough in the neighborhood of
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zero for Z1 to be only continuous singular. It is an easy consequence of a support
theorem for jump processes in the finite variation case (see Theorem I in [21]) that,
for every ε > 0, the event

�ε =
{

sup
0≤t≤1

|Xt − x| < ε

}

will have positive probability. Let now A be a Borel set of Lebesgue measure zero
such that P[Z1 ∈ A] = 1 and set Ã = x + a(x) + A. If ε is chosen small enough,
we have

P[X1 ∈ Ã] ≥ P[X1 ∈ Ã,�ε] = P[x + a(x) + Z1 ∈ Ã,�ε] = P[�ε] > 0,

which entails that X1 is not absolutely continuous. For the same reason, Theo-
rem A is not true in full generality when a is locally flat on the left or on the right
at the starting point x—see, however, Remark (a) below.

Equations of type (1) driven by Lévy processes are important for applications
since they include storage processes, generalized OU processes, etc. They are also
relevant in physics, for example, in climate models—see [9] and the references
therein. Having in mind a good criterion of density for jumping SDEs, it is im-
portant to deal with a drift and a driving process which should be as general as
possible. This is done in the next theorem, which yields the optimal level of gen-
erality for Z, and requires no further assumption on the drift a:

THEOREM B. For every t > 0, the following inclusion holds:

Zt � λ 	⇒ Xt � λ.

Notice that this criterion for the absolute continuity of Xt is the best possible
on the driving process Z: when a is constant, the inclusion is obviously an equiv-
alence, and Theorem A depicts a situation where the reverse inclusion may not
hold.

Over the last twenty years, a scattered literature dealing with the absolute con-
tinuity of SDEs with jumps has emerged, using various techniques—see, for ex-
ample, [2, 4, 7, 8, 10, 17] and the older references therein. In the present paper
we propose yet another way to tackle this question, which is mainly influenced by
the “stratification method” due to Davydov, Lifshits and Smorodina [3]. The latter
was introduced to study the absolute continuity of integral functionals of Brownian
motion or more general Lévy processes, and relies roughly on a suitable decom-
position of the underlying probability space into finite-dimensional strata. This
method appears to be particularly well-adapted to our simple equation (1), and
takes here an even more elementary form: we just need to choose one good jump
of Z with respect to which the drift term has a nonvanishing derivative, and then
we use standard independence and distributional properties of Poisson measures.
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In the next section we prove Theorems A and B. In the third and last section of
this paper we generalize these results, without much effort, to the SDE

Xt = x +
∫ t

0
a(Xs) ds +

∫ t

0
σ(Xs) 
 dZs,

where σ is a C1 function with bounded derivative and 
 is the so-called Marcus
integrator (see below for details) under the assumption that σ never vanishes. This
improves on a recent result of Ishikawa and Kunita [10], in the one-dimensional
case.

2. Proofs.

2.1. Proof of Theorem A. As we said before, we first need to introduce a suit-
able decomposition of our underlying probability space. Let F be a closed set not
containing 0 and such that ν(F) �= 0. Set {Tn,n ≥ 1} for the sequence of jumping
times of �Z into F: T0 = 0 and Tn = inf{t > Tn−1/�Zt ∈ F} for every n ≥ 1. Let
F be the σ -algebra generated by {Tn,n ≥ 2}, {�ZTn,n ≥ 1} and the process Z̃

defined by

Z̃t = Zt − ∑
Tn≤t

�ZTn

for every t ≥ 0. Since {Tn,n ≥ 1} is the sequence of jumping times of some
Poisson process independent of {�ZTn,n ≥ 1} and Z̃, it is well known that T1 has
a uniform law on [0, T2] conditionally on F . Hence, setting T = T1 for simplicity,
we can construct Z on the disintegrated probability space (�̄ × [0, T2(ω̄)],F ×
B[0,T2(ω̄)], P̄ × λω̄[0,T2(ω̄)]), where Z̄ is the process defined by

Z̄t = Zt − 1{T ≤t}�ZT ,

(�̄,F , P̄) is the canonical space associated with (�ZT , Z̄), and λω̄[0,T2(ω̄)] is the
normalized Lebesgue measure on [0, T2(ω̄)]. In other words, for every real func-
tional F of Z and every Borelian A, we have the disintegration formula

P[F ∈ A] = P[F(ω̄, T ) ∈ A] = Ē

[
1

T2(ω̄)

∫ T2(ω̄)

0
1{F(ω̄,t)∈A} dt

]
.(2)

We now come back to our equation (1). An important feature is that it can be solved
pathwise, in the following sense: Xt = Yt + Zt for every t ≥ 0, where {Yt , t ≥ 0}
is the solution to the random ODE

Yt = x +
∫ t

0
a(Ys + Zs)ds.(3)

In the following we will work on Y rather than on X. We begin with a fairly
obvious lemma.
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LEMMA 1. Let ρ : R+ → R be a càdlàg function and a : R → R be a C1 func-
tion with bounded derivative. Then the ODE

xt (x) = x +
∫ t

0
a
(
xs(x) + ρs

)
ds

has a unique solution which induces a differentiable flow x �→ xt (x). The derivative
of the flow is given by

ẋt (x) = 1 +
∫ t

0
ȧ
(
xs(x) + ρs

)
ẋs(x) ds = exp

[∫ t

0
ȧ
(
xs(x) + ρs

)
ds

]
.

PROOF. The existence of a unique solution to the ODE is a routine which
follows from Picard’s iteration scheme and Gronwall’s lemma. The exponential
formula for the derivative of the flow is not completely straightforward but, as for
the case ρ ≡ 0, this can be obtained by introducing the ODE

ut (x) = 1 +
∫ t

0
ȧ
(
xs(x) + ρs

)
us(x) ds,

and proving that, for every t > 0 and h ∈ R,

xt (x + h) − xt (x) − hut(x) = o(h)

as h → 0. The latter estimation can be made in approximating the càdlàg sample
paths of ρ by continuous functions. We leave the details to the reader. �

We stress that, by a localization argument, we may (and will) suppose that a

is also bounded in order to prove the absolute continuity of Xt . We will note
M = ‖a‖∞. The following proposition yields a crucial computation, reminiscent
of the Malliavin calculus.

PROPOSITION 2. The map T �→ Y1(ω̄, T ) is everywhere differentiable except
possibly on T = 1, with derivative given by

dY1

dT
= 1{T <1}

(
a(XT −) − a(XT )

)
exp

[∫ 1

T
ȧ(Xs) ds

]

when T �= 1.

PROOF. It is obvious that Y1 does not depend on T as soon as T > 1. Fix now
T ∈]0,1[. For any h > 0 small enough, define the process

Zh
t = Zt + �ZT

(
1{T −h≤t} − 1{T ≤t}

)
and set Yh for the solution to (3), with parameter Zh instead of Z. Notice first that

Y1 − Yh
1 =

(
YT +

∫ 1

T
a(Ys + Zs)ds

)
−

(
Yh

T +
∫ 1

T
a(Y h

s + Zs)ds

)
.(4)
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Besides,

YT − Yh
T =

∫ T

T −h

(
a(Ys + Zs) − a(Ys + Zh

s )
)
ds

+
∫ T

T −h

(
a(Ys + Zh

s ) − a(Y h
s + Zh

s )
)
ds.

By the boundedness of a and the fact that YT −h = Yh
T −h, we see that there ex-

ists M1 > 0 such that |Ys − Yh
s | ≤ M1h for every s ∈ [T − h,T ]. Since ȧ is also

bounded, this entails that

YT − Yh
T =

∫ T

T −h

(
a(Ys + Zs) − a(Ys + Zh

s )
)
ds + O(h2).

Hence,

YT − Yh
T

h
=

(
1

h

∫ T

T −h
a(Xs) ds

)
−

(
1

h

∫ T

T −h
a(Xs + �XT )ds

)
+ O(h)

(5)
−→ a(XT −) − a(XT ) as h ↓ 0,

where the convergence comes from the fact that s → Xs has left-hand limits. It
follows from (4), (5) and Lemma 1 applied to the ODE

YT +t = xt (YT ) = YT +
∫ t

0
a
(
xs(YT ) + ZT +s

)
ds

that

lim
h↓0

(
Y1 − Yh

1

h

)
= (

a(XT −) − a(XT )
)

exp
[∫ 1

T
ȧ(Xs) ds

]
.(6)

Similarly, defining

Zh
t = Zt + �ZT

(
1{T +h≤t} − 1{T ≤t}

)
for h small enough, and setting Yh for the solution to (3) with parameter Zh instead
of Z, we can prove that

lim
h↓0

(
Yh

1 − Y1

h

)
= (

a(XT −) − a(XT )
)

exp
[∫ 1

T
ȧ(Xs) ds

]
.(7)

Putting (6) and (7) together completes the proof in the case T �= 1. Last, we notice
that T �→ Y1(ω̄, T ) has obviously a right derivative at T = 1 which is zero and,
reasoning exactly as above, a left derivative at T = 1 which is (a(XT −) − a(XT ))

and may be non zero. �

PROOF OF THEOREM A. The first inclusion is trivial, and the second is easy:
if ν is finite, then Z does not jump up to time 1 with positive probability, so that if
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d stands for the drift of Z, then X1 has an atom at x1 where {xt , t ≥ 0} solves the
equation

xt = x +
∫ t

0
a(xs) ds + dt.

It remains to show that if ν is infinite, then Xt � λ for every t > 0. Considering
−X if necessary, we may suppose that ν([0,1]) = +∞ and that a is increasing on
]x − ε, x + ε[ for some ε > 0, and we may fix t = 1. Let A be a Borelian set of R

such that λ(A) = 0. We need to prove that, for every δ > 0,

P[X1 ∈ A] < δ.(8)

Fix δ > 0. By the right-continuity of Z, there exists β > 0 such that

P

[
sup
s≤β

|Zs | ≥ ε/6
]

< δ/2.

Set γ = β ∧ (ε/3M) ∧ 1 (recall that M = ‖a‖∞) and {T η
ε (n), n ≥ 1} for the se-

quence of jumping times of �Z into {η ≤ z ≤ ε/6}, with η chosen small enough.
Since ν([0,1]) = +∞, there exists η such that

P[T η
ε (2) ≥ γ ] < δ/2.

We note T = T
η
ε (1), T2 = T

η
ε (2), and Z̄t = Zt − �ZT 1{T ≤t} for every t ≥ 0. Let

F be the σ -algebra generated by �ZT and the process Z̄. Conditionally on F ,
T has uniform law on [0, T2] and with the same notation as above, we can work on
the disintegrated probability space (�̄×[0, T2(ω̄)],F ×B[0,T2(ω̄)], P̄×λ[0,T2(ω̄)]).
Notice that if we set

�̄1
def=

{
sup
s≤γ

|Z̄s | < ε/3, T η
ε (2) < γ

}
⊃

{
sup
s≤γ

|Zs | < ε/6, T η
ε (2) < γ

}
,

then �̄1 ∈ F and P[�̄c
1] < δ. Hence,

P[X1 ∈ A] < δ + E
[
1�̄1

P[X1 ∈ A|F ]].
We will now prove that

P[X1 ∈ A|F ](ω̄) = 0,

for every ω̄ ∈ �̄1, which will yield (8) and complete the proof of the theorem. Fix
ω̄ ∈ �̄1 once and for all. The key-point is that Z1(ω̄, T ) does not depend anymore
on T : indeed, we know that the process Z(ω̄, T ) jumps at least once into {η ≤ z ≤
ε/6} before time 1, and by the Lévy–Itô decomposition, the terminal value Z1 is
independent of the first jumping time T . Hence, we can write

P[X1 ∈ A|F ](ω̄) = P[Y1(ω̄, T ) ∈ A − Z1(ω̄)|F ](ω̄)

= 1

T2(ω̄)

∫ T2(ω̄)

0
1{Y1(ω̄,t)∈A−Z1(ω̄)} dt,
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where the last equality comes from (2). Besides, again since T < T2(ω̄) < 1, it
follows from Proposition 2 that

dY1

dT
(ω̄, T ) = (

a(XT −(ω̄)) − a(XT (ω̄))
)

exp
[∫ 1

T
ȧ
(
Xs(ω̄, T )

)
ds

]
.

Another important point is that, for every T ∈]0, T2(ω̄)[,
|XT (ω̄) − x| ≤ |Z̄T (ω̄)| + |�ZT (ω̄)| + T M < ε/3 + ε/6 + ε/3 < ε

and

|XT −(ω̄) − x| ≤ |Z̄T (ω̄)| + T M < ε/3 + ε/3 < ε.

Hence, since a is increasing on ]x − ε, x + ε[ and XT (ω̄) − XT −(ω̄) = �ZT ≥
η > 0, we get

dY1

dT
(ω̄, T ) < 0

for every T ∈]0, T2(ω̄)[, so that T �→ Y1(ω̄, T ) is a diffeomorphism on ]0, T2(ω̄)[.
But A − Z1(ω̄) has Lebesgue measure zero, and this yields finally

∫ T2(ω̄)

0
1{Y1(ω̄,t)∈A−Z1(ω̄)} dt = 0,

as desired. �

REMARKS. (a) It is easy to see that the proof of Theorem A carries over to
two other particular situations: when a(x) > 0 [resp. a(x) < 0], a is monotonous
on the right (resp. on the left) of x and Z (resp. −Z) is a subordinator. The case
when x is an isolated point of {y/ȧ(y) = 0} could also probably be handled in
the same way, because a.s. Xt visits instantaneously either ]−∞, x[ or ]x,+∞[.
However, thinking of the case where ȧ varies very irregularly around x, it seems
difficult to relax further the local monotonicity condition on a without asking more
from the driving process Z.

(b) When Z1 is continuous singular, Theorem A entails that the laws of the
processes {Zt, t ≥ 0} and {Xt, t ≥ 0} are mutually singular under the monotonicity
assumption on a. When a(x) �= 0 and Z has finite variation, this is also a simple
consequence of the a.s. fact that

lim
t↓0

t−1Xt = a(x) + lim
t↓0

t−1Zt,

which is a consequence of Theorem 43.20 in [19] and a comparison argument.
When a ≡ k �= 0, this mutual singularity is also a consequence of Skorohod’s di-
chotomy theorem—see Theorem 33.1 in [19], or [13] for a recent extension of
the latter result to general transformations on Poisson measures. We got stuck in
proving this mutual singularity under the sole assumptions that x + Zt visits a.s.
{y/a(y) �= 0} and that Z has no Gaussian part.
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2.2. Proof of Theorem B. Without loss of generality, we can suppose t = 1.
Let {Ft , t ≥ 0} be the completed natural filtration of Z. For every c > 0, we de-
fine the closed set Dc = {x ∈ R/|ȧ(x)| ≥ c} and the Ft -stopping time Tc = inf{t ≥
0/Xt ∈ Dc}. Let A have zero Lebesgue measure. Since Tc is measurable with re-
spect to FTc , we can decompose

P[X1 ∈ A] = P[Tc ≥ 1,X1 ∈ A] + P
[
Tc < 1,E

[
X1 ∈ A/FTc

]]
.

By the strong Markov property for X, we have a.s. on {Tc < 1}
E

[
X1 ∈ A/FTc

] = E
[
X̃1−Tc ∈ A/FTc

]
,

where X̃ solves the SDE

X̃t = XTc +
∫ t

0
a(X̃s) ds + Z̃t ,

with Z̃ a copy of Z independent of FTc . Recall that (Tc,XTc) is measurable with re-
spect to FTc and that |ȧ(XTc)| ≥ c > 0 by right-continuity. Hence, since the jump-
ing measure of Z̃ is infinite, we can apply Theorem A and get

E
[
X̃1−Tc ∈ A/FTc

] = 0,

a.s. on {Tc < 1}. In particular, P[X1 ∈ A] = P[Tc ≥ 1,X1 ∈ A] for every c > 0. By
right-continuity, Tc ↓ T0 = inf{t ≥ 0/ȧ(Xt) �= 0} as c ↓ 0, so that finally

P[X1 ∈ A] = P[T0 ≥ 1,X1 ∈ A].
On the event {T0 ≥ 1}, it follows readily from Itô’s formula with jumps that, for
every t ∈ [0,1],

a(Xt) = a(x) + ∑
s≤t

(
a(Xs) − a(Xs−)

)
.(9)

For every η > 0, introduce the events �
η+
a = {∃t ∈]0,1[/a(Xt) − a(Xt−) ≥ η},

�
η−
a = {∃t ∈]0,1[/a(Xt) − a(Xt−) ≤ −η}, and set

�a = ⋃
η>0

(�η+
a ∪ �η−

a ) = lim
η↓0

↑ (�η+
a ∪ �η−

a ).

On �c
a ∩ {T0 ≥ 1}, it follows readily from (9) that a.s. X1 = a(x) + Z1, whence

P[�c
a ∩ {T0 ≥ 1},X1 ∈ A] ≤ P[Z1 ∈ A − a(x)] = 0,

from the assumption on Z. It remains to consider the last situation where ȧ(X) ≡ 0
but the process a(X) jumps in the interval [0,1], and we are now going to show
that, for every δ, η > 0,

P[�η−
a , T0 ≥ 1,X1 ∈ A] + P[�η+

a , T0 ≥ 1,X1 ∈ A] < δ,(10)

which will give P[X1 ∈ A] < δ from what precedes and, hence, conclude the proof
of Theorem B. The argument is very similar to that of Theorem A and we will only
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use the infiniteness of ν. We first consider the event �
η+
a ∩ {T0 ≥ 1} ∩ {X1 ∈ A}.

Fix δ, η > 0. Let Sη denote the first jump of a(X) greater than η and, for every
ε > 0, let {T ε

n , n ≥ 1} be the ordered sequence of jumping times of Z into {|z| ≥ ε}.
Since a is global Lipschitz and �Xt = �Zt for every t ≥ 0, we can take ε > 0
small enough such that Sη ∈ {T ε

n , n ≥ 1} a.s. For every ε > 0, consider now the
event

�ε = {∃n ≥ 2/Sη < T ε
n < 1}.

Since ν is infinite, by density we can choose ε small enough such that

P[�η+
a ∩ �c

ε] < δ/2.(11)

On the other hand,

P[�η+
a ∩ �ε,T0 ≥ 1,X1 ∈ A]

(12)

=
+∞∑
n=1

P[�η+
a , Sη = T ε

n , T ε
n+1 < 1 ≤ T0,X1 ∈ A].

For every n ≥ 1, let Fn be the σ -algebra generated by the process

Zn
t = Zt − 1{T ε

n ≤t}�ZT ε
n

and the random variable �ZT ε
n

. Notice the a.s. inclusion
{
�η+

a , Sη = T ε
n , T ε

n+1 < 1 ≤ T0,X1 ∈ A
}

⊂ {
a
(
XT ε

n

) − a
(
XT ε

n −
) ≥ η,T ε

n+1 < 1 ≤ T0,X1 ∈ A
}

and recall that, conditionally on Fn, T ε
n has a uniform law on [T ε

n−1, T
ε
n+1]. Hence,

using the same notation and arguments as in Theorem A, we have

P[�η+
a , Sη = T ε

n , T ε
n+1 < 1 ≤ T0,X1 ∈ A|Fn](ω̄)

≤ 1{T ε
n+1(ω̄)<1}

(T ε
n+1(ω̄) − T ε

n−1(ω̄))

×
∫ T ε

n+1(ω̄)

T ε
n−1(ω̄)

1{a(Xt (ω̄))−a(Xt−(ω̄))≥η,T0(ω̄,t)≥1,Y1(ω̄,t)∈A−Z1(ω̄)} dt = 0,

where in the second equality we used the fact, proved in Proposition 2, that, under
the integral,

dY1

dt
(ω̄, t) = (

a(Xt−(ω̄)) − a(Xt(ω̄))
)

exp
[∫ 1

t
ȧ
(
Xs(ω̄, t)

)
ds

]

= a(Xt−(ω̄)) − a(Xt(ω̄))

≤ −η
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for every t ∈ [T ε
n−1, T

ε
n+1]. Hence, from (11) and (12), we get

P[�η+
a , T0 ≥ 1,X1 ∈ A] < δ/2.

We can prove P[�η−
a , T0 ≥ 1,X1 ∈ A] < δ/2 similarly, which yields (10) as de-

sired.

REMARK. A quicker proof of Theorem B could be the following: by a the-
orem of Sharpe (see Theorem 3.3 in [20]) we know that when Zt has a density,
then the latter is positive all over the interior of its support which is either R it-
self, or a half-line. Besides, including the drift coefficient of Z in the function a

if necessary, we can suppose that this half-line is R
+ or R

−. Hence, for almost
every z ∈ SuppZ1, it is possible to define P

z
1 the law of the Lévy bridge associated

with Z from 0 to z in time 1. Let µ (resp. ν) now be the absolutely continuous
(resp. singular) part of the law of X1, and let A be a Borel set with null Lebesgue
measure such that ν(A) = ν(R). We have

P[X1 ∈ A] =
∫

R

P
z
1[Y1 ∈ A − z]pZ1(z) dz.

On the one hand, it follows easily from the independence of the increments of Z,
the absolute continuity of Z2 and the fact that SuppZ1 = SuppZ2, that P[Y1 ∈
A − z] = 0 a.s. on z ∈ SuppZ1. On the other hand, we can suppose by standard
approximation that a has compact support, so that t �→ Yt is a global Lipschitz
process. In particular, for some κ > 0, setting Aκt = {x/d(x,A) < κ(1 − t)}, we
see that P[Yt ∈ Aκt − z] decreases to P[Y1 ∈ A − z] as t ↑ 1. By equivalence of P

z
1

and P on σ {Zs, s ≤ t}, we have P
z
1[Yt ∈ Aκt −z] < 1 and by monotonicity, P

z
1[Yt ∈

A − z] < 1. This holding a.s. on z ∈ Supp Z1, we have ν(R) = P[X1 ∈ A] < 1, so
that, in particular, µ �≡ 0. Now since X1 is the solution to a regular SDE defining a
good flow of diffeomorphisms [12], it is hard to believe that ν should not be zero.
However, we could not prove this last fact. In particular, it seems hard to transpose
in this Markovian but non Lévy framework the classical argument of Hartman
and Wintner (see Theorem 27.16 in [19]) for pureness of discretely generated ID
distributions.

3. Extension to some elliptic jump processes. We now wish to extend the
above results to a more general class of SDEs driven by a one-dimensional Lévy
process, the so-called Marcus equations [14]. More precisely, we consider

Xt = x +
∫ t

0
a(Xs) ds +

∫ t

0
σ(Xs) 
 dZs,(13)

where a and σ are C1 with bounded derivative. The stochastic integral is defined
in the following way:∫ t

0
σ(Xs) 
 dZs =

∫ t

0
σ(Xs−) ◦ dZs + ∑

s≤t

ρ(Xs−,�Zs),
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where ◦ is the classical Meyer–Stratonovitch integrator and ρ : R2 → R is a local
Lipschitz function such that, when (y, z) stays in a fixed compact set of R

2,

|ρ(y, z)| ≤ K|z|2(14)

for some constant K , and such that in (13), each time t when Z jumps, Xt is given
by the integral in time 1 of the vector field x �→ σ(x)�Zt , starting from Xt−. With
this definition of 
, it is well known that (13) has a unique strong solution under
the above conditions on a and σ .

A thorough study of Marcus equations driven by general (multidimensional)
càdlàg semimartingales can be found in [12]. Notice that, in the literature, Marcus
equations are sometimes called “canonical” equations; see [10] and the references
therein. These Marcus equations have the major drawback that they only concern a
specific class of integrands. Indeed, classical stochastic calculus allows us to define
SDEs of type (13) where ρ is any function verifying (14). This larger class of jump
functions yields the required level of generality for applications. However, Marcus’
choice of ρ makes it possible to get a first-order change of variable formula, which
simplifies the computations quite considerably. More precisely, we have

f (Xt) = f (x0) +
∫ t

0
f ′(Xs) 
 dXs

(15)

= f (x0) +
∫ t

0
f ′a(Xs) ds +

∫ t

0
f ′σ(Xs) 
 dZs

for smooth real functions f —see Section 4 in [12] for details. Beware that, in (15),
the jumps of f (Xt) are defined in a different manner than those of Xt in (13),
because of the integro-differential term in Itô’s formula with jumps. However, it
follows from Definition 4.1. in [12] that when f ′σ ≡ k a constant function, then

f (Xt) = f (x0) +
∫ t

0
f ′a(Xs) ds + kZt ,

a fact which will be used subsequently. It would be interesting to know if Marcus’
choice of ρ is the only one yielding a formula such as (15).

We will make further on the following uniform ellipticity assumption on the
diffusion coefficient σ :

ASSUMPTION H. The function σ does not vanish.

In order to simplify the presentation, we first consider the case when Z has no
Brownian part. Introducing the function b ≡ a/σ , the following corollary is an
easy consequence of Theorems A and B.

COROLLARY. Assume that Z has no Brownian part and that Assumption H
holds. If b is monotonous in an open neighborhood of x, then we have the following
equivalences:

Xt � λ for every t > 0 ⇐⇒ X1 � λ ⇐⇒ ν is infinite.
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Moreover, for every t > 0, we have the inclusion

Zt � λ 	⇒ Xt � λ.

PROOF. Define

f :x �→
∫ x

0

dt

σ (t)

and set Yt = f (Xt) for every t ≥ 0. Since σ is continuous and never vanishes, f is
a diffeomorphism and it is clear that

Xt � λ ⇐⇒ Yt � λ

for every t > 0. Itô’s formula (15) yields

Yt = f (x) +
∫ t

0
f ′(Xs) 
 dXs

= f (x) +
∫ t

0

(
a

σ

)
(Xs) ds +

∫ t

0

(
σ

σ

)
(Xs) 
 dZs(16)

= f (x) +
∫ t

0
b ◦ f −1(Ys) ds + Zt .

When b is monotonous in an open neighborhood of x, then b ◦ f −1 is monoto-
nous in an open neighborhood of f (x), since f is a diffeomorphism. Hence,
from (16), we just need to apply Theorem A to obtain the equivalences. When
b is not monotonous, Theorem B yields the desired inclusion. �

REMARK. The above corollary shows, for example, that X1 is absolutely con-
tinuous as soon as ν is infinite, Assumption H holds and [a,σ ](x) �= 0, where [·, ·]
stands for the standard Lie bracket. The latter condition may be viewed as a re-
stricted Hörmander condition. Actually, in the multidimensional framework, the
absolute continuity of X1 was recently investigated under various Hörmander con-
ditions [10]—see also [17] for a larger class of Itô equations. However, these pa-
pers (as well as, to our knowledge, all articles on Malliavin’s calculus with jumps)
require additional assumptions on Z which are much stronger than the sole in-
finiteness of ν or the absolute continuity of Z1. On the other hand, our class of
equations is a bit restrictive when compared to the references quoted in the Intro-
duction. When ν itself is absolutely continuous, one can use the simple method of
Fournier and Giet [8] to prove that Xt has a density for every t > 0. Similarly, the
more involved method of Picard [17] applies when ν is singular but has enough
small jumps. Both references deal with more general equations than (13). Our
main motivation to write this paper was to get an optimal criterion on the driving
process, and we do not know as yet what this criterion should be in a more general
(e.g., multidimensional) framework.
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In the following proposition, which is fairly straightforward and independent
of what precedes, we obtain another necessary and sufficient condition for the
absolute continuity of Zt , in the particular situation when a and σ are proportional.

PROPOSITION 3. Assume Assumption H and that a ≡ kσ for some k ∈ R.
Then, for every t > 0,

Xt � λ ⇐⇒ Zt � λ.

PROOF. We can write

Xt = x +
∫ t

0
σ(Xs) 
 dZk

s ,

where Zk stands for the linearly drifted process: Zk
t = Zt + kt for every t ≥ 0. Let

(y, t) �→ ϕ(y, t) be the flow associated to σ : ϕ̇t (y, t) = σ(ϕ(y, t)), ϕ(y,0) = y for
every (y, t) ∈ R

2. Since σ does not vanish, we see that t �→ ϕ(y, t) is a diffeomor-
phism. Besides, it follows immediately from Itô’s formula (15) and the unicity of
solutions to (13) that Xt = ϕ(x,Zk

t ) for every t ≥ 0. We get finally

Xt � λ ⇐⇒ Zk
t � λ ⇐⇒ Zt � λ

for every t > 0. �

REMARK. Thinking of the equation dXt = Xt 
 dZt , whose solution is
Xt = X0 expZt , it is clear that Assumption H is not necessary in the statement
of the above proposition.

To conclude this paper, and for the sake of completeness, we consider the easy
situation when Z has a Brownian part. Notice that here no assumption on ν is
required.

PROPOSITION 4. Assume Assumption H and that Z has a nontrivial Brownian
part. Then Xt � λ for every t > 0.

PROOF. When a ≡ 0, then we can reason exactly as in Proposition 3, since,
by convolution, Zt has obviously a C∞ density. When a �≡ 0, we can first suppose
by an approximation argument that a has compact support. We then use the Doss–
Sussman transformation, which was established in [5] for Marcus equations on R:
for every t > 0, we write

Xt = ϕ(Yt ,Zt),

where ϕ is defined as in the proof of Proposition 3 and Y is the solution to the
random ODE

Yt = x0 +
∫ t

0
b(Ys,Zs) ds,
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with the notation

b(x, y) = a(ϕ(x, y))

ϕ̇x(x, y)
= a

(
ϕ(x, y)

)
exp−

[∫ y

0
σ̇

(
ϕ(a,u)

)
du

]
(17)

for every (x, y) ∈ R
2. We first notice that, for every fixed x ∈ R, Assumption H

entails that t �→ ϕ(x, t) is a bijection onto R. Indeed, without loss of generality, we
can suppose that σ > 0, so that ϕ(x, ·) is increasing and � = limt→+∞ ϕ(x, t) ex-
ists in R∪{+∞}. If � �= +∞, then limt→∞ ϕ′

t (x, t) = σ(�) > 0 and limt→+∞ ϕ(x,

t) = +∞. Similarly, we can show that limt→−∞ ϕ(x, t) = −∞, which yields the
desired bijection property. We will denote by ψ : R2 → R the inverse of ϕ, that is,
for each fixed x ∈ R, ψ(x, t) is the unique solution to ϕ(x,ψ(x, t)) = t . Using the
flow property of ϕ, we get

Xt = ϕ
(
ϕ

(
x,ψ(x,Yt )

)
,Zt

) = ϕ
(
x,Zt + ψ(x,Yt )

)
,

so that, by injectivity, it suffices to prove that Zt + ψ(x,Yt ) itself is absolutely
continuous. Since a has compact support, it is easy to see from (17) and the bijec-
tion property of ϕ that Yt is a bounded random variable for every t > 0, and clearly
ψ(x,Yt ) is also bounded for every t > 0. Fix now A a set of Lebesgue measure 0.
Write P = P

1 ⊗ P
2 where P

1 stands for the Poissonian part of Z and P
2 for its

nontrivial Brownian part, and decompose Z into Z(ω) = Z1(ω1) + Z2(ω2) ac-
cordingly: Z1 is a Lévy process without Brownian part and Z2 a rescaled Brown-
ian motion. Since t �→ ψ(x,Yt )(ω1, .) is bounded continuous for almost every ω1,
we can apply Girsanov’s theorem under the measure P

2 and get

P[Zt + ψ(x,Yt ) ∈ A] = P
1 ⊗ P

2[Z2
t (ω2) + ψ(x,Yt )(ω1,ω2) ∈ A − Z1

t (ω1)]
=

∫
dP

1(ω1)P̃
2
ω1

[Z2
t (ω2) ∈ A − Z1

t (ω1)],

where P̃
2
ω1

is equivalent to P
2 for almost every ω1. Since A − Z1

t (ω1) has zero

Lebesgue measure, we get P̃
2
ω1

[Z2
t (ω2) ∈ A − Z1

t (ω1)] = 0 for almost every ω1,
so that

P[Zt + ψ(x,Yt ) ∈ A] = 0,

as desired. �

FINAL REMARKS. (a) It is well known that Assumption H is far from being
necessary when Z is Brownian motion, according to the classical Bouleau–Hirsch
criterion [1] which says that, in this case, Xt has a density if and only if t > t0,
where t0 is the first (deterministic) entrance-time into {σ(Xs) �= 0}. It is somewhat
tantalizing, but maybe challenging, to try to generalize this criterion to Marcus
equations driven by a general one-dimensional Lévy process. In this direction, let
us mention that Coquio [2] had proved a “density-image property for the energy
measure” in a Poissonian framework.



1050 I. NOURDIN AND T. SIMON

(b) In the companion paper [16], we prove an analogue of Theorem A when
the driving process is a fractional Brownian motion of any Hurst index, and we
also extend Bouleau–Hirsch’s criterion in this framework.

(c) At the beginning of this research, we had first tried to prove Theorem B
and the corresponding corollary in the following way: assuming, without loss of
generality, that a is bounded, let k > 0 be such that a(x) < k − 1 for every x ∈ R.
Introduce the process Yt : t �→ etf (Xt), where

f (x) = exp
(∫ x

0

(
k − a(u)

)−1
du

)

for every x ∈ R. After some easy computations relying on Itô’s formula (15), one
can show that Y verifies the SDE

dYt = b(t, Yt ) 
 dZk
t(18)

for some positive function b, where, as in Proposition 3, we set Zk
t = Zt + kt for

every t ≥ 0. Fix t = 1 for simplicity. Notice that f is a diffeomorphism, so that
Y1 � λ if and only if X1 � λ. Since Zk

1 is obviously absolutely continuous, the
problem is seemingly reduced to the case a ≡ 0, that is, to Proposition 3, save
that b also depends on t . However, this makes a big difference. Indeed, Fabes
and Kenig [6] had constructed a continuous function b : R2 → [1,2] such that Y1
defined by (18) driven by Brownian motion is continuous singular. Notice also,
still in the Brownian case, that Martini [15] had proved that Y1 does not weight
points as soon as b ≥ c > 0.

NOTE ADDED IN PROOF. After this paper had been accepted, we became
aware of recent related results by O. M. Kulik [in Malliavin calculus for Lévy
processes with arbitrary Lévy measures. Teor. i Imovir. Mat. Stat. 72 (2005) 67–
83]. In this paper, the author proves a general absolute continuity result for jumping
SDEs without conditions on the Lévy measure (Theorem 3.1), which proves our
Theorem A when Z has bounded variations.

Acknowledgments. We are indebted to Michel Lifshits for giving us some
decisive insight in proving Theorem A, and to the referee for very careful reading.
Part of this work was done during a visit to the Friedrich-Schiller-Universität in
Jena by the second-named author, who would like to thank Werner Linde for his
kind hospitality.
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