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In this paper, we are interested in the behavior of the typical Poisson—
Voronoi cell in the plane when the radius of the largest disk centered at
the nucleus and contained in the cell goes to infinity. We prove a law of
large numbers for its number of vertices and the area of the cell outside
the disk. Moreover, for the latter, we establish a central limit theorem as
well as moderate deviation type results. The proofs deeply rely on precise
connections between Poisson-Voronoi tessellations, convex hulls of Poisson
samples and germ—grain models in the unit ball. Besides, we derive analogous
facts for the Crofton cell of a stationary Poisson line process in the plane.

1. Introduction and mainresults. Considerd = {x,; n > 1} a homogeneous
Poisson point process iR?, with the two-dimensional Lebesgue meastisefor
intensity measure. The set of cells

Cx)={yeR%|ly—xll<ly—xl,xe®}, =xecd

(which are almost surely bounded polygons) is the well-kn®eisson—\Voronoi
tessellationof R2. Introduced by Meijering [17] and Gilbert [8] as a model of
crystal aggregates, it provides now models for many natural phenomena such
as image analysis [18], molecular biology [7], thermal conductivity [15] and
telecommunications [1, 2]. An extensive list of the areas in which the tessellation
has been used can be found in [32] and [22].

In order to describe the statistical properties of the tessellation, the notion of
typical cell € in the Palm sense is commonly used [20]. Consider the sfaocé
convex compact sets @2 endowed with the usual Hausdorff metric. Let us fix
an arbitrary Borel seB c R? such that O< V»(B) < +o0. The distribution of the
typical cell € is determined by the identity [20]:

1
Eh(C) = WE)&;@};(C@) —x),

whereh : X —> R runs throughout the space of bounded measurable functions.
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Consider now the cell
CO)={yeR?% |yl <y —x|,x €}

obtained when the origin is added to the point procesdt is well known [20]
that C (0) andC are equal in law. From now on, we will ug&0) as a realization
of the typical cellC.

Let us denote byR,, (resp.Ry) the radius of the largest (resp. smallest)

disk centered at the origin included in (resp. containieé@®) and by D(x, r),
x € R2, r > 0, the closed disk centered atand of radius-. The boundary of
the polygonC(0) then is contained in the annulué = D(0, Ry,) \ D(O, R;,).
In [4], an explicit formula for the joint distribution of the paiR,,, Ry/) and a
characterization of the asymptotic behavior of the tail of the law gfgiven R,,
were obtained. In particular, it was proved thahditioning on the ever,, = r},
r > 0, the thickness of the annulusis a.s.“ of orderr~1/3” whenr goes to infinity

(Result A).

Besides, a recent work by Hug, Reitzner and Schneider [11] has provided a
proof (valid for any dimension) of D. G. Kendall's conjectuthe shape of the
typical Poisson—Voronoi celbiven that the area of the cell goes to infinitgnds
a.s. to a disk(Result B). This last result is stronger than Result A in the sense
that the conditioning only holds on the area and not on the inradius but it is also
weaker because it does not give such precise estimates for the thickness of the
smallest annulus containing the boundaryof

A natural question arising from Result A is: how to estimate precisely the
growth of the number of vertices @ (0) and the decrease of the area@(f0)
outside the indisk when the inradius goes to infinity?

Let us denote bye, (resp.N,) a random variable taking values in the space
of compact convex sets @2 endowed with the Hausdorff metric (resp. Iif)
whose distribution is given by the law 6f(0) [resp. the number of sides 6f(0)]
conditioned by the evenir,, = r}. It is well known [19] that

(IR =r) 2 ®, U{(2r)- Xo},

where®, is a Poisson point process of intensity measlg o-c(x) dx and Xg
is a uniform point on the boundary & = D(0, 1). The cellG, is then equal in
law up to a uniform random rotation to the zero cell (i.e., the cell containing the
origin) of the line process consisting of the bisecting lines of the segments between
zero and the points of the proce®s U {2r - xo}, wherexg is the deterministic
point (1; 0). The processe®, and related random objects can be coupled on a
common probability space in several natural ways; the coupling which we shall
have in mind without further mentioning whenever statirigor a.s. convergence
results below is constructed in (2).

In the present paper we focus our interest on the asymptotic behavigr of
andV»(C, \ D(0, r)) whenr — +o0. Explicit formulae for the distributions of the
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number of sides and the area of the typical Poisson—Voronoi cell have been recently
obtained (see [5, 6]) but it seems difficult to use them to obtain asymptotic results.
Note that for a regular polygon of indisk(0,r) whose vertices are all
located ind D(0, r + r—1/3), the number of sides and the area outside the indisk
are asymptotically equivalent tor/~/2)r%/3 and (2rr/3)r%/3, respectively. The
intuition provided by the results of [4] on the thickness of the annuus
D, Ry) \ D(0, R,,) conditioned on{R,, = r}, as discussed above, suggests
that the conditioned celf, should have the number of its sidaés of the same
asymptotic order?/3.
Our first main result states that this is indeed the case and the growth rate for
N, is exactly of the anticipated ordef/3.

THEOREM1. Whenr — 400, we have

(i) EN, ~air?/3,
(i) im, - oo Ny(a1r?®)~1=1in L1,

wherea; = 47 - 37131 (5/3) ~ 7.86565.
Note that we writex, ~ 8, to indicate that lim_, o o, /8, = 1.

REMARK 1. It should be emphasized that our proof of Theorem 1 relies on
an asymptotic equivalence betwedh and the number of vertices of the convex
hull generated by a homogeneous Poisson point process of intensjtwHich
we establish below.

This equivalence is easily verified to be strong enough to also conclude a
central limit theorem and variance asymptotics of ord&? for N,, should
the corresponding results hold for the convex hulls. Such results are stated in
Groeneboom’s work [10] and were also stated in the previous version of our
paper, yet upon its submission we have learned from several independent sources
that some of the proofs of [10] may contain errors (although we do not know
of what nature). However, we explain more precisely in a remark following the
proof of Theorem 1 how the central limit theorem 8y can be deduced from
Groeneboom’s results.

The second theorem of this paper characterizes the asymptotic behavior of the
areaV>(C, \ D(0, r)) which is proved to be of order’? up to a multiplicative
constant. The obtained results include a central limit theorem and a moderate
deviation principle.

THEOREM 2. Withr — 400, we have
(AL) 1My so0 52 POD) - — 1in L and as. for by :=I'(3)(5)%/3371/3,

7 (4r)—23pr2l3 =

(A2) Var Vo(C, \ D(0, r)) ~ bor?/ for some constarit, > 0,
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V2(CA\AD(O,r)) — EVa(C,\D(O,r)) _D

(A3) Navsenomy o VOD,

(A4) for eachn > 0 we have
I(n) := —limsupr~?2logP(Va(C, \ D(0,r)) = (1+ NEV2(C, \ D(0,r))) >0

r—00

and, moreoverlim,_, o I (1)/n = (4m)Y/3 . by with by as in(AL),

(A5) for arbitrarily large L > 0 and arbitrarily small n > O there exists
Q0 := Q(L, n) such that

P(Va(C, \ DO, r + 0rY3)) = nr23) = 0 (exp(—Lr%/3),

(A6) for eachn > 0 we have

iminf —— log(—logP(V2(C- \ D(0,r)) = (1 - mEV2(C, \ D(0,1)))) >

r—00 |ogr

RTEN

We can likewise obtain limit theorems for the Crofton cell of a stationary
Poisson line process (see in particular [9, 12, 13] about the limit shape of the
Crofton cell with a large area). More precisely, let us consiblea Poisson point
process inR? of intensity measure (in polar coordinatds), (r) dr d6. The line
process associated with’ (which is invariant in law by any translation of the
plane) consists of the set of lines

(N Lx)={yeR% (y—x,x)=0}, xed,

where (-, -) denotes the usual scalar product®f Denoting byH (x) the half-
plane delimited by (x), x € R?, and containing the origin, the Crofton ceth is
given by the equality

Po= () H).

x€P;

We successively define the radi®g, of the largest disk centered at the origin
included in £y, £ a random polygon distributed as the Crofton ceéfy
conditioned by{R,, = r} and N/ the number of vertices of.. In [4], we proved
(see [4], Theorem 10) that when— +o0, the boundary ofP, is included with
“a great probability” in an annulus centered at the origin of thicknéss If the
polygon#, were regular, the numbe¥, and the area outside the indisk would be
respectively of orde¢r/+/2)r1/3 and (2 /3)r*3. Up to multiplicative constants,
we are going to show that these orders are correct for both the number of vertices
and the area outside the indisk.

The following two theorems are the equivalents of Theorems 1 and 2 for the
Crofton cell .

THEOREM 3. Whenr — 400, we have
(i) EN/ ~ajrt/3,



LIMIT THEOREMS FOR POISSON-VORONOI CELLS 1629
(i) 1M s poo N/ (@}r¥3~1=1in L1,

wherea) = 2437 . 37131 (5/3) ~ 4.95505.

THEOREM4. Withr — 400, we have

(A1) 1im,— o0 %{m =1in L' and as. with b1 as in Theoren2,
(A2') Var Va(P, \ D(O,r)) ~ byr /3 for some constarit, > 0,
n V2(PA\DO.r) —EVa(PL\D@O,r)) D
(A3)) Na ooy N0,
(A4’) for eachn > O we have

I(n) := —limsupr~Y3logP(V2(£, \ D(0,r)) > (1+ n)EV2(P, \ D(0,r))) >0

and, moreoverlim, oo T(n)/n = 7/3b1,
(A5") for arbitrarily large L > 0 and arbitrarily small n > 0 there exists
Q := Q(L, n) such that

P(Va(2, \ D(O, r + QrY3)) > nr¥/3) = 0 (exp(—LrY/3)),

(A6') for eachn > 0 we have

liminf 1 log(—logP(V2(£: \ D(O,r)) > (1 — n)EV2(P, \ D(O,r)))) > 1/3.

r—oo logr

The methods for proving Theorems 1 and 2 on the one hand and Theorems
3 and 4 on the other hand are very similar so from now on we will essentially
concentrate on the Poisson—Voronoi typical ¢ell

Instead of taking a limit when the valueof the inradius goes to infinity, we
shall rewrite the numbel, so that the asymptotic results will be obtained as the
intensity of the underlying Poisson point process in the plane goes to infinity. The
areaV> (G, \ D(0, r)) will be dealt with along the same lines.

To this end, let us denote by the Poisson point process B x R_. of intensity
measurelpe(x)1gr, (t) dx dt and byW¥;, r > 0, the Poisson point process &t
defined by

(2) \Iltz{xERZ\]D);EIsft,(x,S)eA}.

Thenr=1@, = h1/,(C) [where hy/,(x) = (1/r) - x, x € R?] is easily seen to
coincide in law with the zero cellj of the line process consisting of the set of
lines L(x), x € Wy,2 U {xo} [see (1) and recall thaiy stands for the deterministic
point (1; 0) as defined above]. In other words, we have

(3) Co= () H&)NH(xo).

xe\l/4r2

In particular, N, coincides with the number of vertices @fy while V2(C, \
D(0, r)) has the same law a§V2(C6 \ D). Therefore, throughout the paper we
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will study the asymptotic behavior @f; rather than directly that af,. Note also

that, as already mentioned above, the relation (2) provides the coupling of the
random objects considered in this paper on a common probability space, which we
have in mind whenever stating a.s.loY-type results.

As already mentioned above, the proofs of Theorems 1 and 2 strongly rely on a
connection, established via inversion of the complex plane, between the problems
of determining the asymptotics @f, and V2(C, \ D(0, r)), and some results on
the asymptotic behavior of convex hulls of high-intensity Poisson point processes
inside the diskD, existing in the literature (see [3, 16, 24, 25, 29, 30]).

An extension of our results to higher dimensions will be given in a future paper.

2. Proofs. In Lemma 1, we first relat&v, to the number of vertices of the
convex hull of a certain Poisson point processhindenoted byY;, ¢ = 4r2.
Moreover, in Lemma 2 we represent the afé#Cj \ D) as a defect measure
of a certain germ—grain model P, generated byy;. Then, Lemmas 3 and 4
provide us with a comparison method betwégand some homogeneous Poisson
point processes so that the classical results on convex hulls due to Rényi and
Sulanke [24] and Massé [16] can be applied, yielding a description of the
asymptotic behavior aV, as stated in Theorem 1. The assertions of Theorem 2 are
then concluded by combining the comparison Lemma 3 with appropriate results
in [3, 28-31].

LEMMA 1. For everyr > 0, N, coincides in law with the numbeV,,> of
vertices of the convex hull generated by the proégssJ{xo}, whereY;,r > 0,isa
Poisson point process inside the didkof intensity measurén polar coordinate®

t- u(dp,do) = (t/p®)10,1)(p) dp db.

PROOF Let us consider the inversiahon R? \ {0} defined by

1
I(x)= = X, x #0.
I is a well-known involutive application which preserves the boundarp pf
transforms the interior ofD into its exterior and conversely. In particular,
I transforms any line or circle into a line or a circle.

An easy calculation shows that the imagelinf the processl;, ¢+ > 0, is an
inhomogeneous but rotation-invariant Poisson point pro&ess D, of intensity
measure(t/r3)1(0,1)(r)dr d6 to be denoted by - . Any line L(x), x € ¥y, is
transformed into a circle having the segmgnt! (x)] as its diameter. Note also
that I (xo) = xo. Let us denote b5 (y) := D(y/2, |ly||/2) a position-dependent
grain and by

Yi=1{]J G

yeY;
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the germ—grain model i associated with the process (see [30]). The
image of the complement of the digk in the Crofton cellCj is then the set
D\ [YU G(xp)]. Consequently, we have that

@) N, =#{y € Y42 U{xo}: 0G(») N 3[Y** U G (xo)] # 2.

Let us notice that the boundary of the grdi{z) associated with a given point
z € Y, intersects the boundary of the union of grait§ U G (xo) if and only if the
convex hulls ofY; U {xo} and of (Y; \ {z}) U {xo} have different support functions.
This yields the equivalence

aG(z)ﬂa[ U G(y):|¢®

yeYU{xo}
<= (zis an extremal point of the convex hull &f U {xo}).

Equality (4) implies then tha¥, is precisely the numbeN, > of points on the
boundary of the convex hull of the proce&sgz U {xo}. O

The lemma below is a direct conclusion of the proof of Lemma 1.

LEMMA 2. With the notation as in the proof of Lemriafor eachr > 0 the
area Vz(Cj \ D) coincides in distribution with the measugD \ [Y"] U G (x0)])
for t = 4r2,

Let us consider for every > 0 andt > 1 the event

(5) Arg ={DO,1—-2%1) ¢ YU G(xp)}.

The following lemma shows that both the vertex process of the convex hull
of ¥; and the defect measurgD \ Y'"!) are concentrated with an overwhelming
probability in a close vicinity of the boundapp.

LEMMA 3. There exists a positive constant> O such that for every
0<a<2/3:

() P40) = O

-+

(i) E(Nila,,) =_ oG
(i) E(u@\YMN1y,) = oG*?).

t—+

_ .1 (1=(3/2)a) .
120y andlim, - oo 14, =0as;

PROOF. (i) Applying the inversion/, we get from the equality (Y U
G(x0)) = [€)"/?1° that for everyw > 0,

6) [DO.1-2%r) ¢ Y UG} =D, @ -2 3¢5},
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The asymptotic result ([4], Theorem 5) on the distribution of the radtys
conditioned by the value of the inradiusR,, can be rewritten as: for every
0<c<8/(3v/2)and 0< o’ <1/3,

(7) P{D(O, r—+ r—o/) ) @r} — O(e—or(l_?’“,)/z)'

r— 400

SinceCy is the scale-1r homothetic image of the ce,, we deduce from (7)
that

(8) PIDO.1+r~ @Dy 5Ch) = 0"

r—>—+00

).

Replacingr by /t/2 in the preceding result and combining the equality of
events (6) with the inequality 4 22%:~% < (1 — 23%+=)~1 for ¢ large enough
anda > 0, we get the first assertion of (i). To obtain the almost sure convergence
put

Ao i ={D0,1-2%[117% ¢ YN U G (x0)}

with [-] standing for the (upper) integer value. Note thatfa N, ¢ € (k — 1, k],
we have

Ao €{D(0,1— 2%k~ ¢ Y% U G(x0)},

with the probabilities of the right-hand side events easily verified to satisfy the
same bound as that fot; , in the first part of (i). Consequently, applying the
Borel-Cantelli lemma, we conclude that |im. 1; =0 The proof of (i) is now

completed by the observation th&t, < Am forallt > 0.
(i) Use the Holder—Schwarz inequality to get

9) E(N:1a,,) < /P(Ar ) ENA.

Thus, in view of the assertion (i) it remains to show that
(10) EN?= 0(?).
By Lemma 1, the assertion (10) is equivalent to

EN,%= 0",

which is proved by elementary arguments in the Appendix.
(iii) The proof goes much along the same lines as that of (ii) above. We use the
Hoélder—Schwarz inequality to get

(11) E(u(D\Y")14,,) < JEL2(D\ Y1) /P(A; o).
We shall show that
(12) Ex?(D\ Y = 0@?
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which, in view of (11) and the assertion (i), is more than enough to establish (iii).
Using Lemma 2, (12) is equivalent to

E[Va(Cr \ D(O, r)]> = 0.
The proof of this last result is postponed to the AppendiX.

REMARK 2. ltis clear that removing the extra deterministic gré@ifxo) does
not affect the validity of the above results. Indeed, recalling (3) and using a similar
argument as for [4], Theorem 5, we obtain a result analogous to (8): for every
O<a<1/3,
—er(1-3)2

P{DO, 1+ r"@*V) 3 (| Hx){ = Ofe

r—400

)-

XG\I/4r2

It remains to adapt the proof of Lemma 3 in order to get from the preceding result
that for every O< o < 2/3,
@302

(13) P(DO,1-2%) g Y] = Ofe

1—>+00 )-
Near the boundary db, the intensity measure of the procésds “not far” from
a multiple of the Lebesgue measure. Let us denot& by homogeneous Poisson
point process i of intensity measurel g 1)(p)pdpdb,t > 0.

In the next lemma, we prove by a coupling method (in the spirit of [30],
Lemma 2) that the trace df; in any annulusD \ D(0,1—¢), 0< ¢ < 1, can
be seen as a superset of the trac& pénd a subset of the trace &f ;4.

LEMMA 4. For everye > 0, there exists a coupling of the point proces3gs
Y, and X, ,q_.ys such that almost surely

X, N[D\DO,1-8)] S Y, N[D\DO,1-8)] S X, /1 ND\ DO 1 e)].

PROOF Consider a Poisson point proceEs on D x R, with intensity
measurelp(y)1g, (r)dydt. It is then easily verified thatX; coincides in
distribution with the set of point§y € D;3s <1, (y,s) € 1} and Xt/(1_8)4
with {y e D;3s < t/(1 — &)* (y,s) € II}. Likewise, Y; coincides in law with
{yeD;3s <t/|yl* (y,s) € IT}. Since every € D\ D(0, 1 — ¢) satisfies

< ! < f
RS Ao
these representations of the point proces§es; andX, ,;_,)s are easily seen to
provide the required coupling..J

PROOF OF THEOREM 1. By Lemma 3(i), (ii), we have thaE(N,1,,,) =
o(t1/3) for every O< « < 2/3. Consequently, it suffices to study the asymptotic
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behavior of the numbeN,, + = 4r2, of vertices of the convex hull of; U {x0}
outside the eventi, ,. We have on the evemt? , that the vertices of the convex
hull of ¥; U {xo} are located in the annuli®\ D(0, 1 — 23*;~).

Let us denote by, (resp.M;) the number of vertices of the convex hull ¥f
(resp.X; U {xo}). Applying Lemma 4 ta= = 23t =%  we obtain on the evemy ,
that any vertex of the convex hull af; U {xo} (resp. X, q_z3,-«)4) €ither is a
vertex of the convex hull ok; U {xg} (resp.Y; U {xg}) or is a point of(Y; \ X;) N
[D\ D(0,1—2%=%)] (resp.(X,q_paas-aya \ Y1) N[D\ D(0, 1 —2%19)]).

Denoting byR, (resp.S;) the number of points ifY; \ X;) N [D\ D(0,1 —
2%1=)] (resp. in(X, j_g8a;-aya \ Y1) N[D\ D(0, 1 —2%;~)]), we then deduce
the following inequalities (on the evedt’ ,):

(14) N, <M, + R,
and
(15) N[ > Ml‘/(l—t“’)“ - S;.

It now comes from the coupling construction of the point processes in the annulus
D\ D(0,1— %) thatR, andS; are Poisson variables of respective means
E(R) =tu(D\ D(0,1—2%17%)) —1Vo(D\ D(0, 1 — 2%%1~%))

t (23044—1[—05 _ 26ott—2a)2
=17

(1_ 23at—ot)2
and
E(S,) = mvz(m) \ D(0,1—2%:7%)) —ru(D\ D(0, 1 — 2%7%))
(23(x+1t—a _ 26at—2a)2
=in (1_23at—a)4

Fora € (1/2,2/3), we get that

(16) R;andS; — O in mean.
t—+00

Consequently, using (14) and (15), it only remains to obtain the law of large
numbers foerf,. To this end, let us now compare the two quantthsanth,

t > 0. Any vertex distinct fromxg of the convex hull ofX; U {xo} is obviously

a vertex of the convex hull oK,. Conversely, let us denote by (resp.q;) the
point of X, located in the upper (resp. lower) half-disk Bfsuch that there is

no point of the point process; above (resp. under) the line through(resp.q¢;)
andxg. If such a point does not exist, we takge= —xg (resp.g: = —xo). Then any
vertex of the convex hull ok, is either a vertex of the convex hull &f; U {xg}

or is discarded when we addg} to the set of points, that is, is a vertex of the
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convex hull of the points of; located in the corner corresponding@ of the
quadrilateral@, with verticesxo, p:, ¢;, 0.
Let us denote by, the number of “discarded” vertices. Then we have

(17) M;-I—l—V;SM;SMz—I—l.

Conditionally to the positions op, andg;, the distribution of the points ok,
inside the quadrilatera, constituted byg, p;, g;, O is the law of a homogeneous
Poisson point process of intensity measugg, (x) dx. Consequently, after making
an affine transformation, the numbgris the number of vertices in the left-lower
corner of the convex hull of a homogeneous Poisson point process of inteirsity
a square.

Using (5.1) in [25] (or equivalently Section 3 in [21]) and Corollary 1 in [16],
we deduce that

lim 3E(V,)2In)"t=1,
t——+00

(18)
lim 3V,2In)™t=1  in probability.
t—+00

It remains to apply (5.2) in [25] and Corollary 2 in [16] in order to get that for
c1 = (3n/2)~ Y3 (5/3)
lim EM,(2n*3c1r13) "1 =1,

t—+00

lim M,27x*3c1tY3~t=1  in probability.

t——+00

(19)

Combining (17) with (18) and (19), we deduce &d-law of large numbers

(a consequence of the convergence in probability combined with the convergence
of the means) forM, when — +oo. Putting these conclusions together with
the inequalities (14) and (15) and the convergence stated in (16), we obtain the
required results of Theorem 1 fo¥;, t = 4r2 (with a1 = 2537%3¢1). Note that

even though some of the cited results were originally established for the binomial
rather than Poisson samples, they admit straightforward modifications for the
Poisson case as well, due to the fact that the asymptotic properilésasis — oo

are only affected by the behavior of the underlying sample in infinitesimally close
neighborhoods of the boundady; see, for example, the Poisson approximation
argument in Section 3, Lemma 3.2 of [10]. The proof is compleie.

REMARK 3. In this remark we discuss a method of obtaining asymptotic
variance estimates and the central limit theorem for the number of vellices
provided Groeneboom’s paper [10] is correct.

Using [10], relations (1.1) and (1.2), we get, with the same notation as in the
proof of Theorem 1, that

(20) lim 27Var(V,)(10Ins)" 1 =1.
t——4+00
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Besides, applying [10], equality (1.3), Theorem 3.4, we obtain that there exists a
positive constant, such that
(21) lim Var(M,)(2n%3c)1=1
t—>400

and
M; — 27431113 p (0. 1)
— .
J2m By 173 ’

Combining (17) with (20), (21) and (22), we deduce a central limit theoremfor
whenr — +o0. As for the law of large numbers, it remains to use the inequalities
(14) and (15) and the convergence (16) to have that

Var N, ~ a%r2/3

(22)

and
N, — EN,

D
N(0, 1),
JVar N, —HNOD

whereay = /25/314/3¢5.

REMARK 4. Reitzner has recently proved an almost sure convergence for
the number of vertices of the convex hull & whent — +o0 [23]. However,
his result is valid for unit-balls of dimensiod > 4 so it cannot be applied
in our context to obtain the almost sure convergence when +oo for the
numberN,. This last property requires some additional work on extreme points
of homogeneous Poisson point processes that will take place in a future paper.

PROOF OFTHEOREMZ2. The proof uses the representatioVefCy \ D), and
hence ofVo(C,\ D(0, r)) 4 r2V2(C6 \ D) in terms of the defect measure of a high-
density germ—grain model if, as stated in Lemma 2. The aréaC, \ D(0, r))

coincides in distribution with 2. (D \ [Y4? U G (x0)]). Since the assertions of
Theorem 2 are to be concluded from general results for high-density germ—grain
models as stated in [28-30], the deterministic gr@ifxp) stands as a nuisance
and the first step of our proof is aimed at getting rid of this grain. To this end, we
denote byp; the (random) radius of the largest diBKO, p;) centered in 0, which

is completely contained iii'’!, and we observe that, by standard geometry,

(23) w(D\ Y1) — w(@\ [Y U G(xo)]) = 0((A - p)¥?).
Moreover, using the result (13) with:=1/2, we get

(24) P(or <1— «/;_1) = O (exp(—ctY/%)), c>0.

Putting (23) and (24) together we conclude that

(25) P(u(D\ Y1) — u(D\ [r'U G(xp)]) > 17¥4) = O (exp(—C1Y%))
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for some positive constar€. Recalling that we set := 42, it is easily seen
that (25) is more than enough to safely replac®\ [Y "1 U G (x0)]) by u(D\ Y1)
when proving the assertions of Theorem 2 below.

To proceed with our proof, we observe that our germ—grain mpeln close
neighborhoods of the boundady “differs only negligibly” from the germ—grain
model X! as considered in Section 3 of [30], defined ¥ :=J, .y, G(x),
whereX; is the homogeneous Poisson point process of intensigstricted taD
(see the notation introduced in the discussion preceding Lemma 4). Indeed, it
follows by Lemma 4 that for arbitrarily smadl> 0, takinge := 1 — (14 §) /4,
we can find a coupling of versions &%, X;(1+s) andY; such that almost surely

U G(y) C U G(y) C U G(y).

yeX,N[D\D(0,1—¢)] ye¥,N[D\D(0,1—¢)] yEX (118 ND\D(0,1—¢)]

Moreover, in view of Lemma 3(iii), applied witkk := 1/2 [see also (24)], for
the purpose of the proof of Theorem 2 we can safely ignore the behavidf!of
insideD(0, 1 — r~1/2).

A further observation in the same spirit is that in close neighborhoods of the
boundarydD, the measurg here differs only negligibly from 2. as considered
in Section 3 of [30], to be denoted here by 2* to avoid confusion and defined
there by Zr u*(dr, d9) = 10,1)(r) dr d6 in polar coordinates.

Itis proved in Section 3 of [30] [see (18) there] that on the event that the convex
hull of X, does contain the origin, the random variablesu2(D \ X1y and
(2 — by,) coincide, withb,, standing for the mean width of the convex hull
generated by;. The probability of0 ¢ conuX,)} decays exponentially within
that there exists a constant- 0 with P(0 ¢ conv(X;)) = O (exp(—ct)), which is
negligible in our setting; see, for example, Theorem 2 in [27] or (3.2) in [14].

This shows that when proving the assertions (A1)-(A6) of our theorem
we can safely replacg(D \ Y1) by (2 — by,),t := 42 and, consequently,
Vo(C,\ D(O,r)) by nré@2 — by,,2) since Vo(C, \ D(0,r)) coincides in law
with r2u(D \ [Y147*1 U G(x0)]) and the effect of adding the extra deterministic
grain G(xp) is negligible as discussed above. It puts us in a position to apply
Theorem 2 in [30] combined with (20) in [30] (see also Theorem 6 in [28]), stating
that limy_ o0 1%/3E(2 — by;) = 2b1 With b1 as in (A1), to conclude that

EVa2(C,\DO.7) _ 4
r—00 2 (4r)~2/3pyr2/3

The strong law of large numbers as stated in Corollary 2 and Corollary 3 in [29]
allow us to conclude the assertion (A1) of our theorem (technically speaking, we
get the convergence of means and the a.s. convergence, but these together yield
immediately the required convergence).

The central limit theorem in (A3) follows now from Theorem 6 in [29]. Since for
compact convexX C R? we have the relation(K) = L(K)/x, with b standing
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for the mean width and. for the perimeter (see page 210 in [26]), we could
alternatively have used the results in Section 5 in [3], which yield also our
assertion (A2) (see also Theorem 5 in [29]).

The assertions (A4) and (A5) are now direct consequences of Theorems 8 and 3
in [30]. The remaining assertion (A6) follows by Theorems 1 and 2 in [31].

Note that even though some of the cited results were originally established for
the binomial rather than Poisson samples, they admit straightforward modifications
for the Poisson case as well, due to the fact that the asymptotic properties of
w(D\ Yy asr — oo are only affected by the behavior of the underlying germ
point process in infinitesimally close neighborhoods of the bound#y see,
for example, the comparison formulae (5), (6) and (9), (10) in [29]. The proof
is complete. [

PROOF OF THEOREMS 3 AND 4. The image of a Poisson point process
of intensity measurel(, ~)(0)dpdb, r > 0, by I o hy/, is a Poisson point
process in the disk of intensity measure (in polar coordinates)v(dp, df) =
(r/pz)l(ovl)(,o) dp d6. Replacing the measugeby v in the preceding arguments,
we easily obtain the results of Theorems 3 and [@.

REMARK 5. In the same way as for the Poisson—Voronoi typical cell, we
could prove a central limit theorem for the numhéf, provided Groeneboom'’s
results [10] are correct, that is,

Var N/ ~ a2r1/3

and
N/ —EN]
T 2 N, D.

APPENDIX

In this appendix, we give some technical results about the varidlesnd
Vo(C, \ D(0, r)) which are useful in the proof of Lemma 3. The proofs here only
use elementary facts on the Poisson—\Voronoi tessellation. In particular we do not
need to use the analogy provided by Lemmas 1 and 2 with the convex hulls of the
point processes inside the unit disk.

FACT 1. There exist positive constanksand 1 such that whem — +oo:

(i) E(HV2C\PON) = 0(eKr%);
(i) E*N) =0k,
(i) in particular, whenr — +o00, we haveE(N,2) = 0(r*) and E[(Va(Cr \
D(0,1)))? = 0(r%.
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ProOFE (i) Let us apply the method provided by Gilbert [8] in order to
estimate the expectatidexp{V2(C, \ D(0,r))}), r > 0.

We first definer,. y as the radius of the ball centered at the origin which has the
same area a8, \ D(0,r), r > 0. ThenR, y satisfies the following inequality for
anys € (0, 1):

(26) E(/ exp(s|x[1?) dx) < E(/ exp(s|x[1?) dx).
D(O,Ryv) C\D(O,r)

Moreover,
(27) E / expism||x||?) d —1E(exp{ V2(C-\ D(0,r))}) — 1
( DOR) pls7r || x]1<) x) = sV2(Cr\ D(0,r)) .

Recalling thatC, is up to a rotation equal in law to the zero cell delimited by the
bisecting lines of the segments between the origin and the points of the process
@, U{2r - xo}, we obtain

E</ exp(s|x||?) dx)
C\D(O,r)

= / P{x € G, \ D(O, r)} exp(sm ||x||%) dx
(28) < / P{®, N D(x, |x]|) = @} exp(s |x[?) dx

4712 oo . 2
< 2me exp((s — Drre)rdr
r
e471r2 . 1 e(s—l)nrz‘
1-5

Combining (26) with (27) and (28), we obtain the point (i) of Fact 1.

(i) We apply the method due to Zuyev [33] to estimate the expectation
E(exp(sN;)),r > 0. LetF (resp.l) be the union of the four open disks of radius 1
centered at the pointst1, 0), (0, £1) so that the origin lies on their boundary
(resp. the set of points of belonging to exactly two of these disks). Besides, we
denote byi, ..., 44 the connected components.bf

As previously seeny, coincides with the number of sides of the Crofton ¢l
delimited by the lined.(x) associated with the points € W,,2 U {xo} (see the
Introduction). Suppose now that there exigts 1 such thatl,,. intersects every
connected component off. In that case, the number of edgesf is at most
equal to the number of points ¢¥,,2 U {xo}) N o F . Consequently, writing[«]
for the event that there exists at least one connected componetvdiich is not
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hit by W,,2, we have that for ang > 1 there exist$, K > 0 such that
E(exp(sN, —s))
< E(exp(s#[W,,2 N F1))

+o00

+ Z E(EXFXS#['{JAVZ N O{n}v])lg[anfl]\g[an])
n=1

< HAE=DVa(F)

+00 400
+43 N PP, Na"F N (@) = k)
n=1k=0

X P(Wy2Na" "1y = @)

< A2 =D Va(F)

(29)

+00 +00 esk

+ 42 Z —{4r2V2[(a”5L“) \ @Dk o4 Va(e"111\D)

!
n=1k=0 k!

< A =DVa(F)

+o0o
+ 4¢3 explar2a® Y (e* — 1)(@% — w) — wl},

n=1

wherev (resp.w) denotes the area & (resp.{1).
When[(ef — 1)(a?v —w) —w] <0 [i.e.,s < —In(l — w/(@?v))] andr > 1,

the series in (30) is convergent and bounded by a constant independent of
Consequently, since is arbitrarily chosen in(1, +oc), we have that for every
s < —In(1—w/v) andr > 1, there exist$, K > 0 such that
(30) E(exp(sN, —s)) < 5eK7?,

(iii) Applying Jensen’s inequality to the convex functiarix) = exp(s/x),
s > 0,x €[1/s2, 4+00) and to the variable ma%/s2, [V2(C, \ D(0, r))]?), we get

(31) exp{s\/E[(Vz(Gr \ D(0, 1)))?]} < E(e?V2CAPO) 4 o
Combining (31) with the point (i), we deduce that wher> +o0o

E[(V2(C, \ D(O,7)))*] = 0.
The same proof holds fd&(N?) as well. [

REMARK 6. For the Crofton cell of a stationary Poisson line process, it is
equally possible to use the same type of arguments to obtain that the second
moments of the number of vertices and of the area of the complement of the indisk
are at most of order? when the inradius goes to infinity.
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