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ON DYNAMICAL GAUSSIAN RANDOM WALKS
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Motivated by the recent work of Benjamini, Häggström, Peres and
Steif [Ann. Probab. 34 (2003) 1–34] on dynamical random walks, we do
the following: (i) Prove that, after a suitable normalization, the dynamical
Gaussian walk converges weakly to the Ornstein–Uhlenbeck process in
classical Wiener space; (ii) derive sharp tail-asymptotics for the probabilities
of large deviations of the said dynamical walk; and (iii) characterize (by
way of an integral test) the minimal envelope(s) for the growth-rate of the
dynamical Gaussian walk. This development also implies the tail capacity-
estimates of Mountford for large deviations in classical Wiener space.

The results of this paper give a partial affirmative answer to the problem,
raised in Benjamini, Häggström, Peres and Steif [Ann. Probab. 34 (2003)
1–34, Question 4], of whether there are precise connections between the OU
process in classical Wiener space and dynamical random walks.

1. Introduction and main results. Let {ωj }∞j=1 denote a sequence of i.i.d.
random variables, and to eachωj we associate a rate-one Poisson process with
jump times 0< τj (1) < τj (2) < · · · . (All of the said processes are assumed to
be independent from one another.) Now at every jump-time of thej th Poisson
process, we replace the existingω-value by an independent copy. In symbols, let
{ωk

j }∞j,k=1 be a double-array of i.i.d. copies of theωj ’s—all independent of the
Poisson clocks and define the processX := {Xj(t); t ≥ 0}∞j=1 as follows: For all
j ≥ 1,

Xj(0) := ωj ,

Xj (t) := ωk
j ∀ t ∈ [

τj (k), τj (k + 1)
)
.

(1.1)

We remark that, as a process indexed byt , t �→ (X1(t),X2(t), . . . ) is a
stationary Markov process inRN whose invariant measure is the product measure
µ∞, whereµ denotes the law ofω1.

Recently, Benjamini, Häggström, Peres and Steif (2003) have introduced
dynamical random walks as the partial-sum processes that are associated to
the Markov processX. In other words, the dynamical walk associated to the
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distribution µ is defined as the two-parameter processS := {Sn(t)}n≥1,t≥0 that
is defined by

Sn(t) := X1(t) + · · · + Xn(t) ∀n ≥ 1, t ≥ 0.(1.2)

From now on, we specialize our dynamical walks by assuming that the incremental
distributionµ is standard normal, that is, for allx ∈ R,

µ([x,∞)) = 1− �(x) := �̄(x) :=
∫ ∞
x

e−z2/2
√

2π
dz.(1.3)

Our forthcoming analysis depends on this simplification in a critical way.
Now consider the following rescaled dynamical Gaussian walkUn:

Un
t (s) := S�ns	(t)√

n
∀ s, t ∈ [0,1].(1.4)

Our first contribution is the following large-sample result on dynamical Gaussian
walks.

THEOREM 1.1. As n tends to infinity, the random field Un converges
weakly in D([0,1]2) to the continuous centered Gaussian random field U whose
covariance is

E{Ut(s)Ut ′(s
′)} = e−|t−t ′| min(s, s′) ∀ s, s′, t, t ′ ∈ [0,1].(1.5)

(For information onD([0,1]2), consult Section 4.)
Before proceeding further, we make two tangential remarks.

REMARK 1.2. The limiting random fieldU has the following interpretation:

Ut(s) := e−tB(s, e2t ) ∀ s, t ∈ [0,1],(1.6)

whereB is the two-parameter Brownian sheet. Standard arguments then show
that U := {Ut }t≥0 is an infinite-dimensional stationary diffusion on the classical
Wiener spaceC([0,1]), and the invariant measure ofU is, in fact, the Wiener
measure onC([0,1]). The processU is the so-calledOrnstein–Uhlenbeck
(OU) process in classical Wiener space. Theorem 1.1, in conjunction with this
observation, gives a partial affirmative answer to Benjamini, Häggström, Peres and
Steif [(2003), Question 4], where it is asked whether there are precise potential-
theoretic connections between the dynamical (here, Gaussian) walks and the OU
process inC([0,1]).

REMARK 1.3. Theorem 1.1 can be viewed as a construction of the OU process
in C([0,1]). This is an interesting process in and of itself, and arises independently
in diverse areas in stochastic analysis. For three samples, see Kuelbs (1973),
Malliavin (1979) and Walsh (1986). The elegant relation (1.6) to the Brownian
sheet was noted by David Williams; see Meyer [(1982), Appendix].
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Our next result elaborates further on the connection between the dynamical
Gaussian walk and the processU.

THEOREM 1.4. Choose and fix a sequence {zj }∞j=1 that satisfies

inf
n

zn ≥ 1, lim
n→∞ zn = +∞ and lim

n→∞

√
logn

n
zn = 0.(1.7)

Then, as n → ∞,

1+ o(1)

9
z2
n�̄(zn) ≤ P

{
sup

t∈[0,1]
Sn(t) ≥ zn

√
n

}
≤ (

2+ o(1)
)
z2
n�̄(zn).(1.8)

The following reformulation of a theorem of Mountford (1992) provides the
analogue for the standard OU processU := {Ut(1); t ≥ 0}: There exists a constant
K1.9 > 1 such that

K−1
1.9z2�̄(z) ≤ P

{
sup

t∈[0,1]
Ut(1) ≥ z

}
≤ K1.9z

2�̄(z) ∀ z ≥ 1.(1.9)

For a refinement, see Pickands (1967) and also Qualls and Watanabe (1971).
The apparent similarity between Theorem 1.4 and (1.9) is based on more than

mere analogy. Indeed, Theorems 1.1 and 1.4 together imply (1.9) as a corollary.
This can be readily checked; see the last line of Section 4.1.

As a third sample from our present work, we show a pathwise implication of
Theorem 1.4. This is the dynamical analogue of the celebrated “integral test” of
Erdős (1942). Define the mapJ(H), for all nonnegative measurable functionsH ,
by

J(H) :=
∫ ∞

1

H 4(t)�̄(H(t))

t
dt.(1.10)

THEOREM 1.5. Suppose that H is a nonnegative nondecreasing function.
Then:

(i) If J(H) < +∞, then with probability one,

sup
t∈[0,1]

Sn(t) < H(n)
√

n for all but a finite number of n’s.(1.11)

(ii) Conversely, if J(H) = +∞, then with probability one, there exists a t ∈
[0,1], such that

Sn(t) ≥ H(n)
√

n for an infinite number of n’s.(1.12)

REMARK 1.6. Owing to (1.17) below, we have

J(H) < +∞ ⇐⇒
∫ ∞

1
H 3(t)e−(1/2)H2(t) dt

t
< +∞.(1.13)
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We recall that the Erd̋os integral test asserts thatSn(0) > H(n)
√

n for infinitely
many n (a.s.) if and only if

∫ ∞
1 H(t)e−(1/2)H2(t)t−1 dt = +∞. Combining the

preceding remark with Theorem 1.5 immediately leads us to the following result
whose elementary proof is omitted.

COROLLARY 1.7. Given τ ∈ [0,1],

lim sup
n→∞

[Sn(τ )]2 − 2n ln lnn

n ln ln lnn
= 3 a.s.(1.14)

On the other hand, there exists a (random) T ∈ [0,1], such that

lim sup
n→∞

[Sn(T )]2 − 2n ln lnn

n ln ln lnn
= 5 a.s.(1.15)

REMARK 1.8. In the terminology of Benjamini, Häggström, Peres and Steif
(2003), our Theorem 1.5 has the consequence that the Erdős characterization of
the upper class of a Gaussian random walk is “dynamically sensitive.” This is in
contrast to the fact that the LIL itself is “dynamically stable.” In plain terms, the
latter means that, with probability one,

lim sup
n→∞

Sn(t)√
2n ln lnn

= 1 ∀ t ∈ [0,1].(1.16)

See Benjamini, Häggström, Peres and Steif [(2003), Theorem 1.2].

The organization of this paper is as follows: In Section 2 we state and prove
a theorem on the Poisson clocks that, informally speaking, asserts that with
overwhelming probability the typical clock is at mean-field all the time, and
this happens simultaneously “over a variety of scales.” This material may be of
independent technical interest to the reader.

In Section 3 we make a few computations with Gaussian random variables.
These calculations are simple consequences of classical regression analysis of
mathematical statistics, but since we need the exact forms of the ensuing estimates,
we include some of the details.

After a brief discussion of the spaceD([0,1]2), Theorem 1.1 is then proved in
Section 4. Our proof relies heavily on the general machinery of Bickel and Wichura
(1971).

Theorem 1.4 is more difficult to prove; its proof is split across Sections 5,
6 and 7. The key idea here is that estimates, similar to those in Theorem 1.4, hold
in the quenched setting, where the implied conditioning is made with respect to
the clocks.

Finally, we derive Theorem 1.5 in Section 8. Our proof combines Theorem 1.4,
a localization trick, and the combinatorial method of Erdős (1942).
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Throughout, we frequently use the elementary facts that, for ally > 0,

�̄(y) ≤ e−y2/2 and �̄(z) = 1+ o(1)

z
√

2π
e−z2/2 (z → ∞).(1.17)

We have used Bachmann’s “little-o/big-O” notation to simplify the exposition.

2. Regularity of the clocks. Consider the random field{Nn
s→t : 0 ≤ s ≤ t,

n ≥ 1} that is defined as follows: Givens ≤ t andn ≥ 1,Nn
s→t denotes the Poisson-

based number of changes made from times to time t ; that is,

Nn
s→t :=

n∑
j=1

1{Xj (t) �=Xj (s)}.(2.1)

It is clear thatNn
s→t is a sum ofn i.i.d. {0,1}-valued random variables. Because

we know also thatP{X1(s) = X1(t)} = e−|t−s|, we can deduce from the strong
law for such binomials that forn large,Nn

s→t � n(1 − e−|t−s|). The following is
an estimate that ensures that, in the mentioned approximation, a good amount of
uniformity in s andt is preserved.

THEOREM 2.1. If {�j }∞j=1 is a sequence in [0,1] such that limn→∞ �n = 0,
then for all n ≥ 1 and α ∈ (0,1),

P
{

sup
0≤s≤t≤1 : t−s≥�n

∣∣∣∣ Nn
s→t

ENn
s→t

− 1
∣∣∣∣ ≥ α

}
≤ 512

α2�2
n

exp
(
−3α3n�n

2304

)
,(2.2)

where sup∅ := 0.

This, and the Borel–Cantelli lemma, together imply the following result that we
shall need later on. In rough terms, it states that as long as the “window size” is
not too small, then the Poisson clocks are at mean-field.

COROLLARY 2.2. If �n → 0 in [0,1] satisfies limn→∞ n(logn)−1�n = +∞,
then with probability one,

lim
n→∞ sup

0≤s≤t≤1 : t−s≥�n

∣∣∣∣ Nn
s→t

ENn
s→t

− 1
∣∣∣∣ = 0.(2.3)

It is not hard to convince oneself that the preceding fails if the “window size”
�n decays too rapidly.

PROOF OFTHEOREM 2.1. Throughout this proof,α ∈ (0,1) is held fixed.
We first try to explain the significance of the conditiont − s ≥ �n by obtaining

a simple lower bound onENn
s→t in this case.
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Observe the following simple bound:

x

2
≤ 1− e−x ≤ x ∀x ∈ [0,1].(2.4)

This shows that

inf
0≤s≤t≤1 : t−s≥�n

ENn
s→t ≥ n�n

2
.(2.5)

Next we recall an elementary large deviations bound for Binomials. According
to Bernstein’s inequality [cf. Bennett (1962); also see the elegant inequalities of
Hoeffding (1963)], if{Bj }∞j=1 are i.i.d. Bernoulli random variables withP{B1 =
1} := p, then

P{|B1 + · · · + Bn − np| ≥ nλ} ≤ 2exp
(
− nλ2

2p + (2/3)λ

)
.(2.6)

Apply this with Bj := 1{Xj (s) �=Xj (t)}, for arbitrarys ≤ t andλ := α[1 − e−(t−s)],
to deduce that, for allα ∈ (0,1) andn ≥ 1,

P{|Nn
s→t − ENn

s→t | ≥ αENn
s→t } ≤ 2exp

(
−α2n[1− e−(t−s)]

2+ (2/3)α

)

≤ 2exp
(
−3α2n[1− e−(t−s)]

8

)
.

(2.7)

From (2.4) we can deduce that, for allα ∈ (0,1) andn ≥ 1,

sup
0≤s≤t≤1 : |s−t |≥�n

P{|Nn
s→t − ENn

s→t | ≥ αENn
s→t } ≤ 2exp

(
−3α2n�n

16

)
.(2.8)

Next, we choose and fix integersk1 < k2 < · · · → ∞ as follows:

kn :=
⌊
1+ 8

α�n

⌋
so that

α�n

9
≤ k−1

n ≤ α�n

8
.(2.9)

Based on these, we define

�n :=
{

j

kn

: 0≤ j ≤ kn

}
.(2.10)

Then it follows immediately from (2.8) and (2.9) that

P
{

sup
0≤s≤t≤1 : s,t∈�n

∣∣∣∣ Nn
s→t

ENn
s→t

− 1
∣∣∣∣ ≥ α

}
≤ 2(kn + 1)2 exp

(
−3α3n�n

144

)
.(2.11)

Given any pointu ∈ [0,1], define

un := max{r ∈ [0, u] : r ∈ �n},
un := min{r ∈ [u,1] : r ∈ �n}.

(2.12)
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These are the closest points tou in �n from below and above, respectively. We
note, in passing, that 0≤ un − un ≤ k−1

n . Moreover, thanks to (2.9), whenever
0 ≤ s ≤ t ≤ 1 satisfyt − s ≥ �n, it follows thatsn < t n with room to spare. We
will use this fact without further mention. Moreover, for such a pair(s, t),

Nn
sn→t n

≤ Nn
s→t ≤ Nn

s n→tn
.(2.13)

This follows from the fact that withP-probability one, once one of theXj(u)’s is
updated, then from that point on it will never be replaced back to its original state.
(This is so because the chances are zero that two independent normal variates are
equal to one another.) The preceding display motivates the following bound: For
all 0 ≤ s ≤ t ≤ 1,

E
{∣∣Nn

s n→tn
− Nn

sn→t n

∣∣} = ne−( t n−sn)[1− e−( tn−t n)−( sn−s n)]
≤ 2n

kn

,
(2.14)

where the last inequality follows from (2.4). Owing to (2.5) and (2.9), we have the
crucial estimate

sup
0≤s≤t≤1 : t−s≥�n

E
{∣∣Nn

s n→tn
− Nn

sn→t n

∣∣} ≤ α

2
inf

0≤u≤v≤1 : v−u≥�n

ENn
u→v.(2.15)

This and (2.13) together imply the following bound uniformly for all 0≤ s ≤ t ≤ 1
that satisfyt − s ≥ �n:

|Ñn
s→t | ≤

α

2
inf

0≤u≤v≤1 : v−u≥�n

ENn
u→v + max

(∣∣Ñn
sn→t n

∣∣, ∣∣Ñn
s n→tn

∣∣),(2.16)

whereZ̃ := Z − EZ for any integrable random variableZ. Therefore,

P{ ∃ t − s ≥ �n : |Ñn
s→t | ≥ αENn

s→t }
≤ P

{
∃ t − s ≥ �n : max

(∣∣Ñn
sn→tn

∣∣, ∣∣Ñn
sn→tn

∣∣) ≥ α

2
ENn

s→t

}
.

(2.17)

Another application of (2.15) yields

P{ ∃ t − s ≥ �n : |Ñn
s→t | ≥ αENn

s→t }
≤ P

{
∃ t − s ≥ �n :

∣∣Ñn
sn→t n

∣∣ ≥ α

2

(
1− α

2

)
ENn

sn→t n

}
+ P

{
∃ t − s ≥ �n :

∣∣Ñn
s n→tn

∣∣ ≥ α

2

(
1− α

2

)
ENn

s n→tn

}
≤ 2P

{
max

0≤u≤v≤1 : u,v∈�n

∣∣∣∣ Nn
u→v

ENn
u→v

− 1
∣∣∣∣ ≥ α

4

}

≤ 2(kn + 1)2 exp
(
−3α3n�n

2304

)
,

(2.18)

owing to (2.11). Becausekn + 1 ≤ 16(α�n)
−1, this proves the theorem.�
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3. A little regression analysis. Define Fn
t to be the augmented right-

continuousσ -algebra generated by the variables{Sn(v) :v ≤ t} andN, where the
latter is theσ -algebra generated by all of the Poisson clocks. For convenience,
we write P

N
{· · ·} and E

N
{· · ·} in place ofP{· · · |N} and E{· · · |N}, respectively.

We refer toP
N

as a random “quenched” measure, andE
N

is its corresponding
expectation operator. We will also write Var

N
for the corresponding conditional

variance.

LEMMA 3.1. If 0 ≤ u ≤ v, then the following hold P-almost surely: For all
x ∈ R,

E
N

{Sn(v)|Sn(u) = x} =
(

1− Nn
u→v

n

)
x,

Var
N

(
Sn(v)|Sn(u) = x

) = Nn
u→v

[
2− Nn

u→v

n

]
.

(3.1)

PROOF. From timeu to time v, Nn
u→v-many of the increments are changed;

the remaining(n−Nn
u→v) increments are left unchanged. Therefore, we can write

Sn(u) = V1 + V2,

Sn(v) = V1 + V3,
(3.2)

where it follows that: (i)V1, V2 andV3 are independent; (ii) the distribution ofV1 is
the same as that ofSn−Nn

u→v
(0); and (iii) V2 andV3 are identically distributed and

their common distribution is that ofSNn
u→v

(0). The result follows from standard
calculations from classical regression analysis.�

This immediately yields the following.

LEMMA 3.2. For all x, y ≥ 0, all times 0≤ u ≤ v and all integers n ≥ 1,

P
N

{Sn(v) ≥ y|Fn
u} = P

N
{Sn(v) ≥ y|Sn(u)}

= �̄

(
y − (1− 1

n
Nn

u→v)Sn(u)√
Nn

u→v(2− 1
n
Nn

u→v)

)
, P-a.s.

(3.3)

We will also have need for the following whose elementary proof we omit.

LEMMA 3.3. For all z ≥ 1 and ε > 0, we have �̄(z + εz) ≤ e−z2ε�̄(z).

Next is a “converse” inequality. Unlike the latter lemma, however, this one
merits a brief derivation.



1460 D. KHOSHNEVISAN, D. A. LEVIN AND P. J. MÉNDEZ-HERNÁNDEZ

LEMMA 3.4. If γ > 0, then

�̄

(
z − γ

z

)
≤ (1+ e2γ )�̄(z) ∀ z ≥ √

γ .(3.4)

PROOF. We make a direct computation:

�̄

(
z − γ

z

)
= 1√

2π

∫ ∞
z

exp
{
−1

2

(
y − γ

z

)2}
dy

≤ 1√
2π

∫ 2z

z
e−(1/2)y2

eγy/z dy + �̄

(
2z − γ

z

)
≤ e2γ �̄(z) + �̄

(
2z − γ

z

)
.

(3.5)

On the other hand, ifz ≥ γ /z, then 2z − γ /z ≥ z, and so�̄(2z − γ z−1) ≤ �̄(z).
This completes the proof.�

4. Weak convergence.

4.1. The space D([0,1]2). Let us first recall some facts about the Skorohod
spaceD([0,1]2) which was introduced and studied in Neuhaus (1971), Straf
(1972) and Bickel and Wichura (1971). Bass and Pyke (1987) provide a theory
of weak convergence inD(A) which subsumes that inD([0,1]2).

In a nutshell,D([0,1]2) is the collection of all bounded functionsf : [0,

1]2 → R such thatf is càdlàg with respect to the partial order≺, where

(s, t) ≺ (s′, t ′) ⇐⇒ s ≤ s′ and t ≤ t ′.(4.1)

Of course,f is càdlàg with respect to≺ if and only if: (i) As (s, t) ↓ (u, v) (with
respect to≺), f (s, t) → f (u, v); and (ii) if (s, t) ↑ (u, v), then f ((u, v)−) :=
lim f (s, t) exists.

Once it is endowed with a Skorohod-type metric, the spaceD([0,1]2) becomes
a complete separable metric space [Bickel and Wichura (1971), page 1662].

If X,X1,X2, . . . are random elements ofD([0,1]2), then Xn is said to
converge weakly toX (written Xn ⇒ X) if for all bounded continuous functions
φ :D([0,1]2) → R, limn→∞ E[φ(Xn)] = E[φ(X)]. Since the identity map from
C([0,1]2) onto itself is a topological embedding ofC([0,1]2) in D([0,1]2), if φ

is a continuous functional onC([0,1]2), then it is also a continuous functional on
D([0,1]2).

An important example of such a continuous functional is

φ(x) := sup
t∈[0,1]

x(t) ∀x ∈ D([0,1]2).(4.2)

This example should provide ample details for deriving Mountford’s theorem (1.9)
from Theorems 1.1 and 1.4 of the present article.
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4.2. Proof of Theorem 1.1. The proof, as is usual in weak convergence,
involves two parts. First, we prove the convergence of all finite-dimensional
distributions. This portion is done in the quenched setting, for then all processes
involved are Gaussian and we need to compute a covariance or two only. The more
interesting portion is the second part and amounts to proving tightness. Here we
use, in a crucial way, a theorem of Bickel and Wichura (1971).

PROOF OFTHEOREM 1.1 (Finite-dimensional distributions). Given any four
(fixed) values ofs, t, s′, t ′ ∈ [0,1],

E
N

{Un
t (s)Un

t ′ (s
′)} = 1

n
E

N

{
S�ns	(t)S�ns′	(t ′)

}
= 1

n
E

N

{
S�ns	∧�ns′	(t)S�ns	∧�ns′	(t ′)

}
.

(4.3)

Thanks to Lemma 3.1,P-almost surely,

E
N

{Un
t (s)Un

t ′ (s
′)} = 1

n

(
1− N

�ns	∧�ns′	
(t∧t ′)→(t∨t ′)

�ns	 ∧ �ns′	
)
(�ns	 ∧ �ns′	).(4.4)

On the other hand, by the strong law of large numbers, asn → ∞,

N
�ns	∧�ns′	
(t∧t ′)→(t∨t ′)

�ns	 ∧ �ns′	 = (
1+ o(1)

)EN
�ns	∧�ns′	
(t∧t ′)→(t∨t ′)

�ns	 ∧ �ns′	
→ 1− e−|t ′−t | a.s. [P].

(4.5)

Therefore,P-almost surely, limn→∞ E
N

{Un
t (s)Un

t ′ (s
′)} = E{Ut(s)Ut ′(s′)}. This

readily implies thatP-almost surely, the finite-dimensional distributions ofUn

converge weakly[P
N

] to those ofU . By the dominated convergence theorem,
this implies the weak convergence, underP, of the finite-dimensional distributions
of Un to those ofU . �

In order to prove tightness, we appeal to a refinement to the Bickel–Wichura
Theorem 3; see Bickel and Wichura [(1971), page 1665]. To do so, we need to first
recall some of the notation of Bickel and Wichura (1971).

A block is a two-dimensional half-open rectangle whose sides are parallel to
the axes; that is,I is a block if and only if it has the form(r, s] × (t, u] ⊆
(0,1]2. Two blocks I and I ′ are neighboring if either: (i) I = (r, s] × (t, u]
and I ′ = (r ′, s′] × (t, u] (horizontal neighboring); or (ii)I = (r, s] × (t, u] and
I ′ = (r, s] × (t ′, u′] (vertical neighboring).

Given any two-parameter stochastic processY := {Y(s, t); s, t ∈ [0,1]}, and any
block I := (r, s] × (t, u], theincrement of Y over I [written asY(I )] is defined as

Y(I ) := Y(s, u) − Y(s, t) − Y(r, u) + Y(r, t).(4.6)

We are ready to recall the following important result of Bickel and Wichura
(1971). We have stated it in a way that best suits our later needs.
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LEMMA 4.1 (Refinement to Bickel and Wichura [(1971), Theorem 3]).Let
us denote by {Yn}n≥1 a sequence of random fields in D([0,1]2) such that for all
n ≥ 1,Yn(s, t) = 0 if st = 0.Suppose that there exist constants K4.1 > 1,θ1, θ2, γ1,

γ2 > 0 such that they are all independent of n, and whenever I := (r, s] × (t, u]
and J := (r ′, s′]× (t ′, u′] are neighboring blocks, and if r, s, r ′, s′ ∈ n−1Z∩[0,1],
then

E{|Yn(I )|θ1|Yn(J )|θ2} ≤ K4.1|I |γ1|J |γ2,(4.7)

where |I | and |J | denote, respectively, the planar Lebesgue measures of I and J .
If, in addition, γ1 + γ2 > 1, then {Yn}n≥1 is a tight sequence.

This is the motivation behind our next lemma which is the second, and final,
step in the proof of Theorem 1.1.

LEMMA 4.2. The process Yn(s, t) := Un
t (s) satisfies (4.7) with the values

K4.1 := 10, θ1 = θ2 = 2 and γ1 = γ2 = 1. In particular, {Un}n≥1 is a tight
sequence in D([0,1]2).

PROOF. We begin by proving that (4.7), indeed, holds with the stated
constants. This is a laborious, but otherwise uninspiring, computation which
we include for the sake of completeness. This computation is divided into two
successive steps, one for each possible configuration of the neighboring blocks
I andJ .

STEP 1 (Horizontal neighboring). By stationarity, it suffices to consider only
the caseI := (0, r]× (0, t] andJ := (r, s]× (0, t], wherer, s ∈ n−1Z. In this case,

Yn(I ) = Snr(t) − Snr(0)√
n

,

Yn(J ) = Sns(t) − Sns(0) − Snr(t) + Snr(0)√
n

,

(4.8)

which implies the independence of the two (underP
N

and/orP), sincek �→ Sk is
a random walk onD([0,1]). Now, with P-probability one,

E
N

{|Yn(I )|2} = 2nr − 2E
N

{Snr(t)Snr(0)}
n

= 2Nnr
0→t

n
.(4.9)

See Lemma 3.1. Therefore,E{|Yn(I )|2} = 2r[1 − e−t ] ≤ 2rt = 2|I |. By this and
the stationarity of the increments of the infinite-dimensional random walkk �→ Sk ,
E{|Yn(J )|2} ≤ 2|J |. In summary, in this first case of Step 1, we have shown that
E{|Yn(I )Yn(J )|2} ≤ 4|I | × |J |, which is certainly less than 10|I | × |J |.
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STEP 2 (Vertical neighboring). By stationarity, we need to consider only the
case whereI = (0, s]× (0, t] andJ = (0, s]× (t, u], wheres ∈ n−1Z. In this case,

Yn(I ) = Sns(t) − Sns(0)√
n

and Yn(J ) = Sns(u) − Sns(t)√
n

.(4.10)

These are not independent random variables, and, consequently, the calculations
are slightly lengthier in this case.

Using the Markov property and Lemma 3.1, weP-almost surely have the
following:

E
N

{|Yn(J )|2|Fn
t }

= Var
N

(
Sns(u)√

n

∣∣∣Sns(t)

)
+

[
E

N

{
Sns(u) − Sns(t)√

n

∣∣∣Sns(t)

}]2

= Nns
t→u

n

(
2− Nns

t→u

ns

)
+

(
Nns

t→u

ns

)2 [Sns(t)]2
n

≤ Nns
t→u

n

[
2+ [Sn(t)]2

ns

]
.

(4.11)

In particular,P-almost surely,

E
N

{|Yn(I )|2|Yn(J )|2}
= E

N

{|Yn(I )|2E
N
{|Yn(J )|2|FN

t }}
≤ Nns

t→u

n
E

N

{
|Yn(I )|2

[
2+ [Sns(t)]2

ns

]}

= Nns
t→u

n

[
4Nns

0→t

n
+ E

N

{
|Yn(I )|2 [Sns(t)]2

ns

}]
.

(4.12)

See (4.9) for the last line. Applying the Cauchy–Bunyakovsky–Schwarz inequality,
we obtain

E
N

{
|Yn(I )|2 [Sns(t)]2

ns

}
≤

√
E

N
|Yn(I )|4 × E

N

{ [Sns(t)]4
n2s2

}
=

√
3E

N
|Yn(I )|4,

(4.13)

since wheneverG is a centered Gaussian variate,EG4 = 3(EG2)2. By applying
this identity once more in conjunction with (4.9), we have

3E
N

|Yn(I )|4 ≤ 9[E
N

|Yn(I )|2]2 = 36
[
Nns

0→t

n

]2

.(4.14)

Plugging (4.14) into (4.13) yields the followingP-almost sure inequality:

E
N

{
|Yn(I )|2 [Sns(t)]2

ns

}
≤ 6

Nns
0→t

n
.(4.15)
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We can plug this into (4.12) to deduce thatP-a.s.,

E
N

{|Yn(I )|2|Yn(J )|2} ≤ 10
Nns

t→u

n

Nns
0→t

n
.(4.16)

On the other hand,Nns
t→u andNns

0→t are independent. Therefore,

E{|Yn(I )|2|Yn(J )|2} ≤ 10E
[
Nns

t→u

n

]
E

[
Nns

0→t

n

]
= 10s2[1− e−(u−t)][1− e−t ]
≤ 10su × s(u − t)

= 10|I | × |J |.

(4.17)

We have verified (4.7) withK4.7 = 10, θ1 = θ2 = 2, γ1 = γ2 = 1. Now if it
were the case thatYn(s, t) = 0 wheneverst = 0, we would be done. However, this
is not so. To get around this small difficulty, note that what we have shown thus
far reveals that the random fields(s, t) �→ Yn(s, t) − n1/2Sns(0) (n = 1,2, . . . )
are tight. On the other hand, by Donsker’s invariance principle, the processes
s �→ n−1/2Sns(0) (n = 1,2, . . . ) are tight, and the lemma follows from this and
the triangle inequality. �

5. A quenched upper bound. Without further ado, next is the main result of
this section. Note that it gives quenched tail estimates for supt∈[r,r+1] Sn(t) since
the latter has the same distribution as supt∈[0,1] Sn(t).

THEOREM 5.1. Suppose {zj }∞j=1 is a nonrandom sequence that satisfies
property (1.7). Then with P-probability one, for all ε > 0, there exists an integer
n0 ≥ 1 such that for all n ≥ n0,

P
N

{
sup

t∈[0,1]
Sn(t) ≥ zn

√
n

}
≤ (2+ ε)z2

n�̄(zn).(5.1)

In the remainder of this section we prove Theorem 5.1. Throughout, we choose
and fix a sequencezn that satisfies (1.7). Based on thesezn’s, we define the
“window size,”

�n := 1

16z2
n

∀n ≥ 1.(5.2)

According to (1.7), the sequence{�j }∞j=1 satisfies the conditions of Theorem 2.1.
Next, define, for alln ≥ 1,

Jn :=
∫ 1

0
1{Sn(v)≥zn

√
n } dv.(5.3)
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Thanks to Lemma 3.2, for anyu ≥ 0, n ≥ 1,

E
N

{Jn|Fn
u} ≥

∫ 1

u
�̄

(
zn

√
n − (1− (1/n)Nn

u→v)Sn(u)√
Nn

u→v(2− (1/n)Nn
u→v)

)
dv.(5.4)

Now consider the following “good” events, wheren ≥ 1 is an integer, andα ∈
(0,1) is an arbitrarily small parameter:

An,α :=
{

sup
0≤s≤t≤1 : t−s≥�n

∣∣∣∣ Nn
s→t

ENn
s→t

− 1
∣∣∣∣ ≤ α

}
,

Bn(u) := {
Sn(u) ≥ zn

√
n

}
.

(5.5)

Next is a key technical estimate.

LEMMA 5.2. Choose and fix integers n,m ≥ 1, u ∈ [0,1− 1
m

] and α ∈ (0,1).
Then, P-a.s.,

E
N

{Jn|Fn
u} ≥ 1

(1+ α)z2
n

∫ z2
n/m

0
�̄

(√
t
)
dt · 1An,α∩Bn(u).(5.6)

PROOF. Thanks to (5.4), for anyu ≥ 0,

E
N

{Jn|Fn
u} ≥

∫ 1

u
�̄

(
zn

√
n − (1− (1/n)Nn

u→v)Sn(u)√
Nn

u→v(2− (1/n)Nn
u→v)

)
dv · 1An,α∩Bn(u).(5.7)

We will estimate the terms insidē�. OnBn(u), we have

zn

√
n − (1− (1/n)Nn

u→v)Sn(u)√
Nn

u→v(2− (1/n)Nn
u→v)

≤ zn

√
n − (1− (1/n)Nn

u→v)zn

√
n√

Nn
u→v

= zn

√
Nn

u→v

n
.

(5.8)

On the other hand, onAn,α ,

Nn
u→v ≤ (1+ α)n

(
1− e−|v−u|) ≤ (1+ α)(v − u)n.(5.9)

Consequently, onAn,α ∩ Bn(u), the preceding two displays combine to yield the
following:

zn

√
n − (1− (1/n)Nn

u→v)Sn(u)√
Nn

u→v(2− (1/n)Nn
u→v)

≤ zn

√
(1+ α)(v − u).(5.10)

Because�̄ is decreasing, the above can be plugged into (5.7) to yield

E
N

{Jn|Fn
u} ≥

∫ 1

u
�̄

(
zn

√
(1+ α)(v − u)

)
dv · 1An,α∩Bn(u)

= 1

(1+ α)z2
n

∫ (1−u)(1+α)z2
n

0
�̄

(√
t
)
dt · 1An,α∩Bn(u).

(5.11)
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The result follows readily from this.�

PROOF OFTHEOREM 5.1. Clearly, the following holdsP-a.s. onAn,α :

P
N

{
∃u ∈

[
0,1− 1

m

]
:Sn(u) ≥ zn

√
n

}
= P

N

{
sup

u∈[0,1−(1/m)]∩Q

1An,α∩Bn(u) = 1
}
.

(5.12)

Therefore, we can appeal to Lemma 5.2 to deduce thatP-almost surely,

1Aα,n × P
N

{
∃u ∈

[
0,1− 1

m

]
:Sn(u) ≥ zn

√
n

}

≤ P
N

{
sup

u∈[0,1−(1/m)]∩Q

E
N

{Jn|Fn
u} ≥ 1

(1+ α)z2
n

∫ z2
n/m

0
�̄

(√
t
)
dt

}

≤ (1+ α)z2
n∫ z2

n/m

0 �̄(
√

t ) dt
E

N
{Jn} = (1+ α)z2

n∫ z2
n/m

0 �̄(
√

t ) dt
�̄(zn).

(5.13)

The final line uses Doob’s inequality (underP
N

) and the stationarity ofSn(u).
According to Corollary 2.2, withP

N
-probability one, for all but finitely-many of

then’s, 1Aα,n = 1. To finish, we note that∫ ∞
0

�̄
(√

t
)
dt = 1

2.(5.14)

Theorem 5.1 follows after lettingm → ∞ andα → 0. �

6. A quenched lower bound.

THEOREM 6.1. Suppose {zj }∞j=1 is a sequence of real numbers that satis-
fies (1.7).Then, there exists a random variable n1 such that, P-almost surely, the
following holds:

P
N

{
sup

t∈[0,1]
Sn(t) ≥ zn

√
n

}
≥ 1

9z2
n�̄(zn) ∀n ≥ n1.(6.1)

We begin by proving Theorem 6.1.

LEMMA 6.2. There is some α0 > 0 so that for any fixed α < α0, there exists a
random variable n2 such that with P-probability one, the following holds: For all
n ≥ n2,

P
N

{
Sn(u) ≥ zn

√
n,Sn(v) ≥ zn

√
n

}
≤ 2exp

(
−z2

n(1− α)(v − u)

4

)
�̄(zn),

(6.2)

for all 0≤ u ≤ v ≤ 1 such that v − u ≥ �n, where �n is defined in (5.2).
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PROOF. In the course of our proof of Theorem 5.1 we observed that, for any
α ∈ (0,1), 1An,α = 1 for all but a finite number ofn’s. Thus, it suffices to derive the
inequality of this lemma on the setAn,α . Recall that the latter event was defined
in (5.5).

By Lemma 3.2,

P
N

{
Sn(v) ≥ zn

√
n,Sn(u) ≥ zn

√
n

}
=

∫ ∞
zn

�̄

(
zn

√
n − x

√
n(1− (1/n)Nn

u→v)√
Nn

u→v[2− (1/n)Nn
u→v]

)
�(dx).

(6.3)

A computation shows that ifx ≥ zn, then the function

zn − x(1− u)√
u(2− u)

(6.4)

is increasing foru ∈ [0,1]. On the other hand, onAn,α , we have

Nn
u→v ≥ n(1− α)

(
1− e−(v−u)) ≥ n1

2(1− α)(v − u);(6.5)

see (2.4). Therefore,

P
N

{
Sn(v) ≥ zn

√
n,Sn(u) ≥ zn

√
n

}
≤

∫ ∞
zn

�̄

(
zn − x(1− (1/2)(1− α)(v − u))√

(1/2)(1− α)(v − u)[2− (1/2)(1− α)(v − u)]
)

�(dx)

=
∫ ∞
zn

�̄

(
(1/2)x(1− α)(v − u) − (x − zn)√

(1/2)(1− α)(v − u)

)
�(dx)

:= I1 + I2,

(6.6)

where I1 := ∫ (1+η)zn
zn

�̄(· · ·)�(dx), I2 := ∫ ∞
zn(1+η) �̄(· · ·)�(dx), and

η := γ

2
(1− α)(v − u).(6.7)

γ ∈ (0,1) is a parameter to be determined. For the estimation of I1, we note that
if x ∈ [zn, zn(1+ η)], then1

2x
√

n(1− α)(v − u) − (x − zn)
√

n ≥ zn
1
2(1− α)(v −

u)(1− γ ), and we obtain the following:

I1 ≤
∫ ∞
zn

�̄

(
zn(1− γ )

√
1

2
(1− α)(v − u)

)
�(dx)

≤ exp
(
−z2

n(1− γ )2(1− α)(v − u)

4

)
�̄(zn),

(6.8)

where the last line follows from (1.17). The integral I2 is also easily estimated:
Since�̄(t) ≤ 1, we have

I2 ≤ �̄
(
zn(1+ η)

) ≤ exp(−ηz2
n)�̄(zn) ≤ e−ηz2

n�̄(zn).(6.9)
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We have appealed to Lemma 3.3 in the penultimate inequality. Now replaceη by
its value defined in (6.7) in order to obtain

I2 ≤ exp
(
−z2

n

γ

2
(1− α)(v − u)

)
�̄(zn).(6.10)

Takingγ to be the solution ofγ = (1−γ )2

2 in [0,1], we have that

I1 + I2 ≤ 2exp
(−(

2− √
3

)
(1− α)(v − u)

)
�̄(zn),(6.11)

the result follows from the fact that(2− √
3) ≤ 1

4. �

PROOF OFTHEOREM 6.1. We recall (5.3) and appeal to Lemma 6.2 to see
thatP-a.s., for alln ≥ n3,

E
N

{J 2
n } = 2

∫ 1

0

∫ 1

u
P

N

{
Sn(v) ≥ zn

√
n,Sn(u) ≥ zn

√
n

}
dv du

≤ 2�̄(zn)

∫ 1−�n

0

∫ 1

u+�n

exp
(
−z2

n(1− α)(v − u)

4

)
dv du

+ 2�n�̄(zn)

≤ z−2
n �̄(zn)

[
8

(1− α)
+ 2

16

]
.

(6.12)

We have used the definition (5.2) of�n in the last line. Let us chooseα small
enough so that 8/(1− α) + 1/8 < 9. Then, we obtain

E
N

{J 2
n } ≤ 9z−2

n �̄(zn) a.s. onAα,n.(6.13)

Thus, by the Paley–Zygmund inequality, almost surely onAα,n,

P
N

{Jn > 0} ≥ (E
N

Jn)
2

E
N

J 2
n

≥ 1

9
z2
n�̄(zn).(6.14)

The theorem follows readily from this and the obvious fact that{Jn(zn) > 0} ⊆
{∃u ≤ 1 :Sn(u) ≥ zn

√
n }. �

7. Proof of Theorem 1.4. We start by proving the simpler lower bound. Fix
α ∈ (0,1), let Wn denote theP

N
-probability that supt∈[0,1] Sn(t) ≥ zn

√
n, and

definefn := z2
n�̄(zn). (We will use this notation throughout the proof.) Then,

according to (6.14), 9Wn ≥ fn, P-almost surely onAα,n. Theorem 2.1 implies
thatP(AC

α,n) → 1, asn → ∞. In particular, asn → ∞, P{9Wn ≥ fn} = 1+ o(1).
This, and Chebyshev’s inequality, together imply that 9EWn ≥ (1+o(1))fn, which
is the desired lower bound in scrambled form. We now prove the corresponding
probability upper bound of Theorem 1.4.
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Let �n denote the total number of replacements to the incremental processes
{Xk(·)}nk=1 during the time-interval[0,1]. That is,

�n := ∑
s∈(0,1]

��n(s) where��n(s) :=
n∑

k=1

1{Xk(s)−Xk(s−) �=0}.(7.1)

Because�n is a Poisson random variable with meann, E{et�n} = exp(−n + etn)

for all t > 0. This readily yields the following well-known Chernoff-type bound:
For allx > 0,

P{�n ≥ x} ≤ inf
t>0

exp(−n + etn − tx) = exp
{
−n − x ln

(
x

en

)}
.(7.2)

Consequently, by (1.7),

P(GC
n ) ≤ e−n = o(fn) whereGn := {�n ≤ 3n}, ∀n ≥ 1.(7.3)

A significant feature of the eventGn is that,P-almost surely,

1GnWn ≤ 3nP
{
Sn(0) ≥ zn

√
n

} = 3n�̄(zn).(7.4)

(Indeed, ifGn holds, thenWn is the chance that the maximum of, at most, 3n

dependent Gaussian random walks exceedszn

√
n.) Thus, we can write the almost

sure [P] bound,

1AC
α,n

Wn ≤ 1GC
n

+ 3n�̄(zn)1AC
α,n

.(7.5)

Combined with (5.13) and (6.2) (for suitable smallα), this yields

Wn ≤ (
2+ o(1)

)
fn + 1GC

n
+ 3n�̄(zn)1AC

α,n
.(7.6)

In this formula,o(1) denotes a nonrandom term that goes to zero asn tends to
infinity. We take expectations and appeal to Theorem 2.1 with�n := (16z2

n)
−1

[cf. (5.2)], as well as (7.3), to deduce the following:

E{Wn} ≤ (
2+ o(1)

)
fn + 8192

α2 nz2
nfn exp

(
− 3α3n

36864z2
n

)
.(7.7)

Condition (1.7) guarantees that the right-hand side is asymptotically equal to
(2+ o(1))fn, asn → ∞. This proves the theorem.

8. Proof of Theorem 1.5. Throughout, log(x) := logx := ln(e ∨ x), and
consider theErdős sequence:

en := e(n) :=
⌊
exp

(
n

log(n)

)⌋
∀n ≥ 1.(8.1)
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Note that the sequence{ej }∞j=1 satisfies the followinggap property:

en+1 − en = en

log(n)

(
1+ o(1)

)
= en

log log(en)

(
1+ o(1)

)
, (n → ∞).

(8.2)

[This was noted in Erd̋os (1942), equation (0.11).] Furthermore, we can combine
the truncation argument of Erdős [(1942), equations (1.2) and (3.4)] with our
equation (1.16) to deduce the following: Without loss of generality,√

log log(t) ≤ H(t) ≤ 2
√

log log(t) ∀ t ≥ 1.(8.3)

The following is a standard consequence.

LEMMA 8.1. If H is a nonnegative nondecreasing measurable function that
satisfies (8.3),then

J(H) < +∞ ⇐⇒ ∑
n

H 2(en)�̄(H(en)) < +∞,(8.4)

where J(H) is defined in (1.10).

We are ready to prove (the easier) part (i) of Theorem 1.5.

PROOF OFTHEOREM 1.5 (First half ). In the first portion of our proof, we
assume thatJ(H) < +∞, and recall that, without loss of generality, (8.3) is
assumed to hold.

It is easy to see that{Xj }∞j=1 are i.i.d. elements ofD([0,1])—the space of
càdlàg real paths on[0,1]—which implies thatn �→ Sn is a symmetric random
walk on D([0,1]). In particular, an infinite-dimensional reflection argument
implies that, for alln ≥ 1 andλ > 0,

P
{

max
1≤k≤n

sup
t∈[0,1]

Sk(t) ≥ λ

}
≤ 2P

{
sup

t∈[0,1]
Sn(t) ≥ λ

}
.(8.5)

See Khoshnevisan [(2003), Lemma 3.5] for the details of this argument. Conse-
quently, asn → ∞,

P
{

max
1≤k≤e(n+1)

sup
t∈[0,1]

Sk(t) ≥ H(en)
√

en

}

≤ 2P
{

sup
t∈[0,1]

Se(n+1)(t) ≥ H(en)
√

en

}

≤ 2P
{

sup
t∈[0,1]

Se(n+1)(t) ≥ H(en)
√

en+1

[
1− 2+ o(1)

H(en)

]}
.

(8.6)
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We have appealed to (8.2) in the last line. At this point, (8.3) and Theorem 1.4
together imply that, asn → ∞,

P
{

max
1≤k≤e(n+1)

sup
t∈[0,1]

Sk(t) ≥ H(en)
√

en

}

≤ [
4+ o(1)

]
H 2(en)�̄

(
H(en)

[
1− 2+ o(1)

H(en)

])
≤ (

e44+ o(1)
)
H 2(en)�̄(H(en));

(8.7)

the last line follows from Lemma 3.4. Lemma 8.1 and the finiteness assumption
on J(H) together yield the summability of the left-most probability in the
preceding display. By the Borel–Cantelli lemma, almost surely for all but a finite
number ofn’s,

max
1≤k≤e(n+1)

sup
t∈[0,1]

Sk(t) < H(en)
√

en.(8.8)

Now anym can be sandwiched betweenen anden+1 for somen := n(m). Hence,
a.s. for all but a finite number ofm’s,

sup
t∈[0,1]

Sm(t) ≤ max
1≤k≤e(n+1)

sup
t∈[0,1]

Sk(t) < H(en)
√

en ≤ H(m)
√

m.(8.9)

This completes our proof of part (i).�

The remainder of this section is concerned with proving the more difficult
second part of Theorem 1.5. We will continue to use the Erdős sequence{ej }∞j=1 as
defined in (8.1). We will also assume—still without loss of generality—that (8.3)
holds, although nowJ(H) = +∞.

We introduce the following notation in order to simplify the exposition:

S∗
n := sup

t∈[0,1]
Se(n)(t),

Hn := H(en),

In :=
(
Hn

√
en,

(
Hn + 14

Hn

)√
en

]
,

Ln :=
n∑

j=1

1{S∗
j ∈Ij },

f (z) := z2�̄(z) ∀ z > 0.

(8.10)

Here is a little localization lemma that states thatIn and[Hn
√

en,+∞] have,
more or less, the same dynamical-walk-measure.
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LEMMA 8.2. As n → ∞,(
10−2 + o(1)

) ≤ P{S∗
n ∈ In}

P{S∗
n ≥ Hn

√
en} ≤ 1.(8.11)

PROOF. Because 9−1 ≥ 0.1, Theorem 1.4 implies that asn → ∞,

P{S∗
n ∈ In} ≥ (

0.1+ o(1)
)
f (Hn) − (

2+ o(1)
)
H 2

n �̄

(
Hn + 14

Hn

)
≥ (

0.1+ o(1)
)
f (Hn) − (

2+ o(1)
)
e−14f (Hn).

(8.12)

(The second line holds because of Lemma 3.3.) Since 0.1 − 2e−14 ≤ 0.09, the
lemma follows Theorem 1.4 and a few lines of arithmetic.�

Since we are assuming thatJ(H) = +∞, Lemmas 8.1 and 8.2 together imply
that asn → ∞, ELn → +∞. We intend to show that

lim sup
n→∞

E{L2
n}

(ELn)2 < +∞.(8.13)

If so, then the Chebyshev inequality shows that lim supn→∞ Ln/ELn > 0 with
positive probability. This implies that, with positive probability,L∞ = +∞, so
that the following would then conclude the proof.

LEMMA 8.3. If ρ := P{L∞ = +∞} > 0, then ρ = 1, and part (ii) of
Theorem 1.5holds.

PROOF. We have already observed thatn �→ Sn is a random walk inD([0,1]).
Therefore, by the Hewitt–Savage 0–1 law,L∞ = +∞, a.s.

Now consider for all integersn ≥ 1,

Wn :=
{
t ≥ 0 : inf

s∈(t−ε,t+ε)
Se(n)(s) > Hn

√
en for someε > 0

}
.(8.14)

This is a random open set, and by the regularity of the paths ofSn for all n,

{L∞ = +∞} ⊆
∞⋂

n=1

∞⋃
m=n

{Wm ∩ [0,1] �= ∅}.(8.15)

More generally still, for any 0≤ a < b,

{L∞(a, b) = +∞} ⊆
∞⋂

n=1

∞⋃
m=n

{Wm ∩ [a, b] �= ∅},(8.16)

whereLn(a, b) := ∑n
j=1 1{supt∈[a,b] Se(j)(t)∈Ij }. But by the stationarity of theR∞-

valued processt �→ S•(t), L∞(a, b) has the same distribution asL∞(0, b−a), and
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this means that, with probability one,L∞(a, b) = +∞ for all rational 0≤ a < b.
Therefore, according to (8.16),

P

( ∞⋂
n=1

∞⋃
m=n

{Wm ∩ [a, b] �= ∅}
)

= 1.(8.17)

This development shows that, for anyn, Wn := ⋃
m≥n Wm is a random open

set that is a.s. everywhere dense. Thanks to the Baire category theorem,W :=⋂
n Wn ∩ [0,1] is [a.s.] uncountable. The proof follows because assertion (ii) of

Theorem 1.5 holds for anyt ∈ W . �

We now begin working toward our proof of (8.13). We write

E{L2
n} = ELn + 2

n−1∑
i=1

n∑
j=i+1

Pi,j ,(8.18)

where

Pi,j = P{S∗
i ∈ Ii , S

∗
j ∈ Ij } ∀ i > j ≥ 1.(8.19)

In estimatingPi,j , our first observation is the following.

LEMMA 8.4. There exists a finite and positive universal constant K8.4 such
that, for all j > i ≥ 1,

Pi,j ≤ K8.4P{S∗
i ∈ Ii}Qi,j ,(8.20)

where

Qi,j := f

(
Hj

√
ej

ej − ei

− Hi

√
ei

ej − ei

− 14

Hi

√
ei

ej − ei

)
.(8.21)

PROOF. Recall thatn �→ Sn is a random walk onD([0,1]). Therefore,

Pi,j ≤ P{S∗
i ∈ Ij }

× P
{

sup
t∈[0,1]

(
Sej

(t) − Sei
(t)

) ≥ Hj
√

ej − √
ei

[
Hi + 14

Hi

]}

= P{S∗
i ∈ Ii}P

{
sup

t∈[0,1]
Sej−ei

(t) ≥ Hj
√

ej − √
ei

[
Hi + 14

Hi

]}
.

(8.22)

Therefore, Theorem 1.4 will do the rest, once we check that uniformly, for all
j > i,

Hj
√

ej√
ej − ei

= o

(√
ej − ei

log(ej − ei )

)
(i → ∞).(8.23)
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Equivalently, we wish to prove that uniformly, for allj > i,

Hj
√

ej = o

(
ej − ei√

log(ej − ei)

)
(i → ∞).(8.24)

By (8.3), the left-hand side is bounded above as follows:

Hj
√

ej ≤ (
2+ o(1)

)√
ej log logej = O

(√
ej logj

)
, (j → ∞).(8.25)

On the other hand,

ej − ei√
log(ej − ei )

≥ ej − ei√
logej

= (ej − ei)

√
logj

j
.(8.26)

In light of (8.25) and (8.26), (8.23) and, hence, the lemma is proved once we verify
that asi → ∞,

√
jej = o(ej − ei ) uniformly for all j > i. But this follows from

the gap condition of the sequencee1,e2, . . . . Indeed, (8.2) implies that uniformly,
for all j > i,

ej − ei ≥ ej − ej−1 = (
1+ o(1)

) ej

logj
(i → ∞).(8.27)

So it suffices to check that, asj → ∞,
√

jej = o(ej / logj), which is a trivial
matter. �

Motivated by the ideas of Erdős (1942), we consider the size ofQi,j on three
different scales, whereQi,j is defined in (8.21). The mentioned scales are based
on the size of the “correlation gap,”(j − i). Our next three lemmas reflect this
viewpoint.

LEMMA 8.5. There exists a finite and positive universal constant K8.5 such
that, for all integers i and j > i + [logi]10,

Qi,j ≤ K8.5P{S∗
j ∈ Ij }.(8.28)

PROOF. We will require the following consequence of (8.2): Uniformly for all
integersj > i,

ej − ei =
j−1∑
l=i

(el+1 − el) ≥ (j − i)ei

logi

(
1+ o(1)

)
(i → ∞).(8.29)

Now we proceed with the proof.
Sinceej /(ej − ei) ≥ 1, (8.21) implies that

Qi,j ≤ f

(
Hj −

√
ei

ej − ei

[
Hi + 14

Hi

])
.(8.30)
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We intend to prove that uniformly, for every integerj ≥ i + [logi]10,√
ei

ej − ei

[
Hi + 14

Hi

]
= O(H−1

j ) (i → ∞).(8.31)

Given this for the time being, we finish the proof as follows: Note that the
preceding display and (3.4) together prove that uniformly, for every integer
j ≥ i + [logi]10, Qi,j = O(f (Hj )) as i → ∞. According to Theorem 1.4, for
this range of(i, j), Qi,j = O(P{S∗

j ≥ Hj
√

ej }). Thanks to Lemma 8.2, this is
O(P{S∗

j ∈ Ij }). The result follows easily from this, therefore, it is enough to
derive (8.31).

Because of (8.3), equation (8.31) is equivalent to the following: Uniformly for
every integerj ≥ i + [logi]10,

ei (logi)(logj)

ej − ei

= O(1) (i → ∞).(8.32)

But thanks to (8.29), uniformly for all integersj > i + [logi]10, the left-hand side
is, at most,

(1+ o(1))
[logi]2 log(i + [logi]10)

[logi]10 = o(1) (i → ∞).(8.33)

This completes our proof.�

LEMMA 8.6. Uniformly for all integers j ∈ [i + logi, i + [logi]10],
Qi,j ≤ i−(1/4)+o(1) (i → ∞).(8.34)

PROOF. Wheneverj > i, we haveHj ≥ Hi . Thus, the (eventual) monotonic-
ity of f implies that, asi → ∞, the following holds uniformly for allj > i:

Qi,j ≤ f

(
Hi

[√
ej

ej − ei

−
√

ei

ej − ei

− 14

H 2
i

√
ei

ej − ei

])

= f

(
Hi

[ √
ej − ei√

ej + √
ei

− 14

H 2
i

√
ei

ej − ei

])

≤ f

(
Hi

[ √
ej − ei√

ej + √
ei

− 14+ o(1)

H 2
i

√
ei logj

ej

])
.

(8.35)

[The last line relies on (8.27).] According to (8.3), and after appealing to the trivial
inequality thatej ≥ ei , we arrive at the following: Asi → ∞, then uniformly for
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all integersj ∈ [i + logi, i + [logi]10],

Qi,j ≤ f

(
1+ o(1)

2

√
logi

[√
ej − ei

ej

− O

(√
logj

logi

)])

≤ f

(
1+ o(1)

2

[√
logi

√
ej − ei

ej

− O(1)

])

≤ exp
{
−1+ o(1)

4

[
ej − ei

ej

]
logi

}
.

(8.36)

[The last line holds because of the first inequality in (1.17).] On the other hand,
uniformly for all j ≥ i + logi,

ej

ei

= exp
(

j

logj
− i

logi

)
≥ exp

(
i + logi

log(i + logi)
− i

logi

)
≥ 2+ o(1) (i → ∞).

(8.37)

Consequently,ej − ei ≥ (1 + o(1))ej . This and (8.36) together yield the lemma.
�

LEMMA 8.7. Uniformly for all integers j ∈ (i, i + logi],

Qi,j ≤ exp
{
−1+ o(1)

4e
(j − i)

}
(i → ∞).(8.38)

PROOF. Equation (8.29) tells us that uniformly for all integersj > i, and
as i → ∞, ej − ei ≥ (1 + o(1))ei (j − i)/ logi. On the other hand, forj ∈
(i, i + logi],

ej

ei

= exp
(

j

logj
− i

logi

)
≤ exp

(
j − i

logi

)
≤ e.(8.39)

The preceding two displays together yield that uniformly, for all integersj ∈
(i, i + logi], e−1

j (ej − ei) ≥ (1 + o(1))(j − i)/(e logi) (i → ∞). The lemma
follows from this and (8.36). �

We are ready to commence with the following.
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PROOF OF THEOREM 1.5. Recall thatELn → ∞, and our goal is to
verify (8.13). According to Lemma 8.4, given any two positive integersn > k,

E{(Ln − Lk)
2} = E{Ln − Lk} + 2

n−1∑
i=k

n∑
j=i+1

Pi,j

≤ ELn + 2K8.4

n−1∑
i=k

n∑
j=i+1

P{S∗
i ∈ Ii}Qi,j .

(8.40)

We split the double-sum according to whetherj > i + [logi]10, j ∈ (i + logi, i +
[logi]10] or j ∈ (i, i + logi] and, respectively, apply Lemmas 8.5, 8.6 and 8.7 to
deduce the existence of an integerν ≥ 1 such that, for alln > ν,

E{(Ln − Lν)
2}

≤ ELn + 2K8.4K8.5
∑∑
ν≤i≤n

n≥j>i+[logi]10

P{S∗
i ∈ Ii}P{S∗

j ∈ Ij }

+ 2K8.4
∑∑
ν≤i≤n

j∈(i+logi,i+[logi]10]

i−1/8P{S∗
i ∈ Ii}

+ 2K8.4
∑∑
ν≤i≤n

j∈(i,i+logi]

e−(j−i)/12P{S∗
i ∈ Ii}.

(8.41)

SinceELn → ∞, the above is, at most, 2K8.4K8.5(1 + o(1))(ELn)
2 asn → ∞.

This proves our claim (8.13).�
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