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CLASSICAL AND FREE INFINITELY DIVISIBLE DISTRIBUTIONS
AND RANDOM MATRICES

BY FLORENT BENAYCH-GEORGES
Ecole Normale Supérieure

We construct a random matrix model for the bijectdrbetween clas-
sical and free infinitely divisible distributions: for evedy> 1, we associate

in a quite natural way to eachinfinitely divisible distributionu a distribu-
tion P} on the space of x d Hermitian matrices such th&f; « P = P4™"

The spectral distribution of a random matrix with distributﬂdj‘l convergesin
probability tow (1) whend tends tot-co. It gives, among other things, a new
proof of the almost sure convergence of the spectral distribution of a matrix
of the GUE and a projection model for the Marchenko—Pastur distribution. In
an analogous way, for every> 1, we associate to eaghinfinitely divisible
distribution , a distribution]Lg on the space of complex (non-Hermitian)

d x d random matrices. Ift is symmetric, the symmetrization of the spec-
tral distribution of| M|, whenM, is ]Lg-distributed, converges in probability

to W(w).

Introduction. Free convolutiondE, defined in Bercovici and Voiculescu
(1993), is a binary operation on the set of probability measures on the real line,
arising from free probability theoryu(H v is the distribution ofX + ¥ when
X,Y are free and have distributions, v). It is associative, commutative and
continuous with respect to the weak convergence. A probability measareR
is said to befH-infinitely divisible if for everyn > 1, there exists a probability
measureu, onR such thawP" equals tou.

It is shown in Bercovici, Pata and Biane (1999) that there exists an homeomor-
phismW from the set of-infinitely divisible distributions to the set @f-infinitely
divisible distributions which associates to every classical (resp. free) limit theorem
a free (resp. classical) analogue. Indeed, for ewenyfinitely divisible distribu-
tion w, for every sequenceu,) of probability measures, for every sequeritg
of integers tending to infinity, the sequen«zﬁ" tends tou if and only if the se-
quenceuf',ak" tends tow (u).

The proofs in Bercovici, Pata and Biane (1999) rely on integral transformations
and complex analysis. We will, in this article, construct a matricial model for
the H-infinitely divisible distributions, and present in a more palpable way the
bijection V.
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FREE INFINITELY DIVISIBLE DISTRIBUTIONS 1135

Let u be an=x-infinitely divisible distribution. Let(u,) be a sequence of
probability measures an¢k,) a sequence of integers which tends to infinity
such that the sequenqejﬁk” tends weakly tou. Let, ford > 1 andn > 1,

Q" (resp. KY") be the distribution ofU diag(X, 1, ..., X»a)U* [resp. of
Udiag( Xy 1, ..., Xn.q)V], whereU, V are independent unitary Haar distributed
random matrices independent of the i.i.d. random varialles, ..., X, 4 with
distributiont,,. We will prove, in Section 3 (resp. Section 7.1), that the sequence
((Q4"y*ny [resp. (K4™)*m)] converges weakly to a probability measup§
(resp.]Lg). The main results of this article are the following ones: the spectral
distribution of a random matrix with distributiof’; converges in probability

to ¥ () whend tends to infinity, and so does the symmetrization of the spectral
distribution of |[M;| when M, is distributed according tch. So we have
constructed matrix models which go frominfinitely divisible distributions to
H-infinitely divisible distributions when the dimension goes from one to infinity.
What is more, for alk-infinitely divisible distributionsy, v and alld, P4 =

P4« P) andL™ = 1! L} This property (and the fact that all formulas depend
analytically ond, so could be extended to nonintegBropens the perspective

of a continuum between the classical convolutioand the free convolutiofd

for infinitely divisible mesures [M. Anshelevich has already constructed such
a continuum in Anshelevich (2001), but the model we present here does not
interpolate his construction]. T. Cabanal-Duvillard, in Cabanal-Duvillard (2004),
has studied at the same time as the author the distribuEipnand has proved the
same result, but with different methods (processes, measure concentration, integral
transforms).

At last, in the case wherg is the standard normal distributiod; (1) is the
semi-circle distribution with center zero and radius two, and the distrib@fon
is closely related to the one of the GUE, so that the convergence of the spectral
distribution of a matrix with distributiot?’; implies Wigner's result. Likewise, the
distribution]Lf; is the one of a matrix with independent Gaussian entries, and we
have a new proof of the convergence of the spectral distribution of the Wishart
matrix with parameter 1 to the Marchenko—Pastur distribution.

In the same way, in the case wheres the classical Poisson distribution, this
result allows us to see the Marchenko—Pastur distribution as the limit spectral
distribution of a sum of independent rank-one projections.

The text is organized as follows. In Section 1 we recall a few results about
infinitely divisible distributions and about their classical and free cumulants. In
Section 2 we explain the choice of the model (i.e., of the distributijnand L}).

In Section 3 we construct the distributioﬂiéj. Finally, the convergence in
probability of the spectral distribution of a random matrix with distribut®h

to W (u) is proved in two steps. In the first one, we show the convergence when the
Lévy measure has compact support, and in the second one (in Section 6), we extend
this result using approximation and compound Poisson distributions. The first step



1136 F. BENAYCH-GEORGES

is achieved with the moment method, and is divided into two steps: convergence
of the mean of every moment in Section 4, almost sure convergence in Section 5.
The distributiond!; are constructed in Section 7.1, the convergence in probability

of the symmetrization of the spectral distribution|sf;|, whenM, is distributed
according tdLg‘, is also divided in two steps.

1. Preliminary results about infinitely divisible distributions.

1.1. Definitions and the bijectio. The results of this section concerning

classical probabilities are in Gnedenko and Kolmogorov (1954) and in Petrov
(1995); the results concerning free probabilities are in Bercovici and Voiculescu
(1993) and in Bercovici, Pata and Biane (1999), except the continuity of the

inverse of the bijectio, which is shown in Barndorff-Nielsen and Thorbjgrnsen
(2002). A probability measurg on R is said to bex-infinitely divisible (resp.
H-infinitely divisible) if for everyn > 1, there exists a probability measung
on R such that" (resp.u") equalsi, which is equivalent to the existence of
a sequenceéu,) of probability measures, of a sequerigg) of integers tending to
infinity, such tha’w* 4 (resp.uf',ak") tends weakly tqu.

We can characterize-infinitely divisible distributions (resg8-infinitely divis-

ible distributions) with their Fourier transform (resp. their Voiculescu transform).

A probability measure: onR is x-infinitely divisible (resp&-infinitely divisible)
if and only if there exists a real and a positive finite measure on R such that
its Fourier transformu (resp. its Voiculescu transforgy,) has the form

ﬁ(t):exp{in— [e”“—l— it 1 ]dG( )}
uelR u

1+ u?
t).

(1) =—§ for u=0
In this case, the paity, G) is unique, and we denoje= v}’ (resp Vaa )

1+1¢z
resp sou(z)=y+f
teR T —

REMARK. There exists other parametrization&ehfinitely divisible distri-
butions: for example, denoting’ = y, 6% = G({0}), L(A) = fA 1*”2 dG (u) for
all Borel setA of R\ {0}, one hasf €R\{0 q@Au 2ydL(u) < oo, and i(r) =

) 2,2 ,
expliy’t — 45— + Juer (o (€™ — 11”2) dL(u)).

We now give the definition o, referred to in the Introduction.

THEOREM 1.1 (Bercovici—Pata’s bijection).We endow the set of positive
finite measures ofR with the weak topologythe subsetg «-infinitely divisible
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distributiong and{H-infinitely divisible distribution} are also endowed with the
weak topology

1.

The maps
R x { positive finite measurgs> {x-infinitely divisible distributionk
(7, G) > v ¢
and
R x { positive finite measurés> {x-infinitely divisible distributionk
y,G)—~ vé’c
are homeomorphisms and we have
vgk/-l—y’,G—i-G’ — 70 UI/,G/’

y+v.G+G' _ .G y'.G’
v =vgy Hvg .

. Let us define the may, from the set ok-infinitely divisible distributions to

the set offB-infinitely divisible distributionswhich mapsfor all (y, G), the

measure]’ @ to the measure,“. Then

(a) ¥ is an homeomorphism called Bercovici—Pathijection

(b) for all wu, v -infinitely divisible distributionsW (u % v) = W () B ¥ (v),

(c) Dirac measures are invariant under : W (8,) = §,,

(d) W(N(m, r?)) is the semi-circle distribution with mean and variance-2,
which isw,, 2 (x) dx, with

ﬁ(‘h‘z - ()C - m)2)1/21|x7m|§2ra

(e) W, restricted to the Cauchy typis the identity for all a > 0, ¥(C,) = Cg,
whereC, = %ag‘Tdfcz

(f) for all sequenceu,) of probability measures oR, for all sequencek,,)
of integers tending to infinifythe sequencecﬁk” converges weakly to a
x-infinitely divisible distributionu if and only if M?k” converges weakly

to W(w).

W, 2r (x)=

REMARK 1.2. In the text, the positive finite measuteis called the Lévy

measure ob!" andv’; . We will use the two following properties:

1.

If the Lévy measure of &@-infinitely divisible distributionv has compact

support, then so does[see Hiai and Petz (2000)].
v,.G v,.G

. vy is symmetric if and only ifvy"” is symmetric, if and only ifG is

symmetric ands = 0.
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1.2. Classical compound Poisson distributioregproximation ofx-infinitely
divisible distributions by «-infinitely divisible distributions with compactly
supported Lévy measures.

DerFINITION 1.3. LetA be a nonnegative reah be a probability measure
onR. Then the sequence of probability measure®on

)\‘ )\‘ *n
((1——>50+—P> L on=1
n n

converges weakly to a distribution noteg’ ,.» With Fourier transform

%, (1) = exp(A(p(1) — 1)),

wherep is the Fourier transform gf.

REMARK 1.4. 7%, is VY with

2

G=i—dpu) A/
= A—F u), =
e y==|

eR 1+ u? dp ().

We introduce now the compactly supported approximations of the positive finite
measures.

DEFINITION 1.5. Let, forG positive finite measure oR, r > 0, G%, G, be
the positive finite measures @defined by

GAA)=GAN[-1,1]),  G(A)=G(A\[~1,1])

for all Borel setA of R.
We definer; > 0, the probability measurg onR, anda; € R with

14 u? 11+u?
At Z/ — dG (u), Pr="—""—"—">5— dG;(u),
ueR\[—t,1] U AU

ar = —/ (1/u) dG (u).
ueR\[—1,t]

We will use the following approximation:

0
v,G _  y+a,G; *
2 Vt>0 v =y KT, 5

L, H \ppi
because one observes thgt , = v with

u2 u
mdpl‘(u)=Gl5 (x=)\tt‘/u —dpt(u)=—at.

H=A
! erR 1+ u?
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1.3. Partitions, moments and cumulants of infinitely divisible distributions.
For every probability measure, we will denote, when it is defined, by, (1)
the nth moment ofu, which is [ x" du(x). In this case, we will denote bg, (1)
[resp. R, (n)] its nth classical (resp. free) cumulant. Recall that [see Section 4 of
Speicher (1994) or Section 2.5 of Hiai and Petz (2000)]

3) mew) =Y. []eviw .

rwePartk) Ver
———
denoted by¢, (1)

(4) mew) =Y. ] &viw .

meNCk) Vern
N —

denoted byR, (1)

where Pattk) denotes the set of the partitions {f, ..., k} and NGk) denotes
the set of noncrossing partitions pf] = {1, ..., k} (a noncrossing partitiorof
a finite totally ordered sef is a partitionz of I such that there does not exist
x <y <z <tel with x andz belonging to the same class andnd: belonging
to another class).

We will need the following proposition [part of which was proved in Barndorff-
Nielsen and Thorbjgrnsen (2004), but the proof we give here is shorter]:

THEOREM 1.6. Let u be ax-infinitely divisible distribution with compactly
supported Lévy measyraend let for n integer u, be a probability measure such
that 1" = . Then for eactk > 1, the sequencen x my(i,)), tends tod; (u),
which is equal taR; (¥ (w)).

PROOFE By (3), one has

nxm)=n Yy [l Cuin= 3 n"Mew = +o.

rwePartk) Ver QV\(V,U«)/” wePartk)

Let us denotey, = uP". By part 2.(f) of Theorem 1.1, the sequengg) con-
verges weakly tol (). By Holder and Minkowski inequalities in tracial noncom-
mutative W*-probability spaces, every moment gf is bounded uniformly im,
so the cumulants of, tend to the cumulants oF (). But by (4),

nxmeu)=n 3 [ &)= 3> n" &),

N —
7eNC(k) Ver Rviom)/n 1 eNC(k)

which tends to

> ST R (W () = Ri (W ().
7eNC(k) O
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2. Free convolution and random matrices, choice of the models. For v
probability measure ofR, denote byv, the symmetrization ob, which is the
probability measure defined by B) = %(v(B) + v(—B)) for all Borel setB.

For M Hermitian matrix, we will denote by, its spectral distribution, that is,
the uniform distribution on its spectrum (with multiplicity).

For M complex (possibly non-Hermitian) matrix, denote fays; the sym-
metrization of the spectral measure |0f|, where|M| = «/ M*M is the unique
Hermitian nonnegative matrix such that can be writtenM = U|M|, with U
unitary.

If M is a random matrixu ;s is a random probability mesure on the real line.
For (M), sequence of random matrices, we will use the notion of convergence in
probability for the sequenagtys,) of random probability measures.

The rest of this section may be skipped by the reader who wants to go straight to
the result. We will only explain the choice of the models, that is, is of the family’s
P4 andLL!; of distributions.

Let us now explain in detail the choice of the family of the distributi@ij‘s
the distributions of the random Hermitian matrices. We would not go into as much
detail for the distributionig, which we construct in a similar way.

The following theorem is proved in Voiculescu (1991) and in Pastur and
Vasilchuk (2000) under more restrictive hypothesis, which can easily be removed
using functional calculus.

THEOREM 2.1. Letn be a positive integerLet u1, ..., u, be probability
Hermi‘tian random matricesNe suppose ’t”h’at for all=1, ..., n, the distribution
of Mg(,‘) is invariant under the unitary group action and .« converges in

d .
probability, whend — oo, to ;. Then the spectral distribution of7_; Mc(il)
converges in probabilitywhend — oo, to w1 H--- B w,,.

Let us consider a sequendgt,) of probability measures ofiR and a
sequencgk,) of integers tending tetoo such thatuﬁk” converges weakly to
a probability measurg onR. Let, forn e N, d € N*, (M;{;)ls,-skn be a family of
independent copies of a random Hermitiaix d matrix M, ,, whose distribution
is unitarily invariant. For every: € N, we suppose thaf,, converges in
probability, whernd — oo, to u,,.

Then we know that, for every € N, the spectral distribution o[jf”zl MC(,’;)n

converges in probability, whesh— oo, to 2%, |
_ L_et us suppose that, on the other hand, for_ eveayN*, Zf’;l ML(,’L converges
in distribution, whem — oo, to a random matrix/,;.

We know, by Theorem 1.1, tha[u,iﬂk" converges, whem — oo, to the
imageW () of u by Bercovici—Pata'’s bijection.
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A natural question is the following: does the spectral distributionMf
converge in probability, whe# — co, to W (u)?
In other words, is the limit, whed — oo, of the spectral distribution of the

limit, whenn — oo, of Y1, M} ). equal to the limit, whem — oo, of the limit,

whend — oo, of the spectral distribution o\, M 2

The answer of this question is affirmative in our mod&{,[, = U x
diagX,.1,.... Xn.a)U*, U unitary Haar-distributed, independent of the i.i.d.
random variables,, 1, ..., X, 4 with distribution ,,]. It can be summarized in
the following diagram:

(€3] (kn) "7 2
Mypt-+tMgy ——— Py
| |
d goes tooo d goes tooo
= \
spectral law n—oo  gpectral law
B ky -
Un W(w)

The choice of this model is supported by the three following remarks:

1 1ndx

* Wn2 a2’ the expectation of the spectral distribution of

1. Ford,n>1,ifu, =
Z;‘lzl Mc(il,L is % 1_?_22 . .

2. For any fixedd > 1, Zf”zl Mé,’fn converges in distribution, when— oo, to a
distributionP’; which depends only op = lim,,_, « ik,

3. For every pair(u, v) of x-infinitely divisible distributions, similarly to the
relation

W xv) =W BY (@),
we have, for everyl > 1,
P« Py =P
This property (and the fact that all formulas depend analytically 80 could
be extended to nonintegél) opens the perspective of a continuum between

the classical convolutios and the free convolutiof for infinitely divisible
measures.

Let us now explain how to construct the distributioh§. The following

theorem is easily obtained combining the results of Haagerup and Larsen (2000)

and Hiai and Petz (2000), and using functional calculus.

THEOREM 2.2. Letn be a positive integelLet u1, ..., u, be probability

.....

with evernyf) having a distribution invariant under the left and right actions
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of the unitary group We suppose thafor everyi = 1,...,n, the distribution
of Ma(li)is invariant under the left and right unitary groUp actions and that
the symmetrizationllMg)| of the spectral distribution O‘Mg(,i” converges in
probability to ;.

Then the symmetrization of the spectral distribution of

>
i=1

converges in probabilitywhend tends to infinityto wq B - - - B w,.

Let us then consider, fopr symmetric %-infinitely divisible distribution,
a sequencegu,) of symmetric distributions and a sequen@g) of integers
which tends to infinity such thaqu" converges weakly tqu. Let d be a

,,,,, . is a family of independent copies
of Udiag(X1,..., X))V, whereU, V, X1, ..., X4 are independent/ andV are
unitary Haar-distributed, andf4, ..., X, are distributed according t@,, then it
appears that

IR

l
ZMd,n
i=1

converges in distribution to a distributidisj, which depends only op.
We will show that if M, is distributed according th!;, thenji | converges in
probability tow ().

3. Thedistributions }P’Z. E denotes expectation. For any distributiBrand
any functionf on a set of matrice&p(f (M)) denotes f (M) dP(M). Tr denotes
the trace.

THEOREM 3.1. Let u be anx-infinitely divisible distributionLet (1,,) be a
sequence of probability measures Bnand (k) a sequence of integers tending
to +oo such that the sequenw*k" converges weakly ta. Let, for 4 > 1 and
n>1, @Z” be the distribution o/ diag(X,.1, ..., X».4)U*, whereU is a Haar-
distributed unitary random matrjxndependent of thg,, -distributed ii.d. random
variablesX, 1,..., Xn.q4-

Then the sequend@‘@d")*kﬂ) of probability measures on the spacedk d
Hermitian matrices converges weakly to a distributigh

Moreovey Fourier transform of the distributioriP’ﬁj on the space ofl x d
Hermitian matrices with the scalar produ¢t/, N) — TrMN is given by this
formula for every Hermitian matrix4,

(5) Epr (exp(i TrAM)) = exp(E(d x ¥, ((u, Au)))),

where
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e v, is the Lévy exponent ¢f, that is the unique continuous functiofi from R
into C such thatf (0) = 0 and the Fourier transform of is expo f,

e (-,-) is the usual Hermitian product @¢,

o u=(u1,...,ug) is a uniformly distributed random vector on the unit sphere
of C4.

It appears clearly that, fop,v s-infinitely divisible distributions, P! x
Py =P,

PrROOF We will show the pointwise convergence of the Fourier transform
of the distribution(@fj”)*"" on the space ofl x d Hermitian matrices. LetA
be ad x d Hermitian matrix with spectruna € R¢. Let F, (resp.F) be the
Fourier transform oft®? (resp.u®9). Then, whem tends to infinity, (F, — 1)
converges (uniformly on every compact seld) to the Lévy exponent of @4
(i.e., towffd, wherey,, is the Lévy exponent gft).

We have

I iyt (XX TTAM)) = (En (€XpXi TrAM))).
RecallQ/" is invariant under the unitary action, so
E qion vt (€XPXE TTAM)) = (Eqn (exp(i Tr(diag(a) M)))).

Q)" is the distribution ofUdiag( X, 1, ..., X, ¢)U*, whereU is a Haar distrib-
uted unitary matrix, independent of the,-distributed i.i.d. random variables
Xn1,.o-s Xna. SO

E(an)*kn (exp(i TrAM))

= (E(exp(i Tr(diaga)U diag(Xp 1. .. ., Xn.a)U*))))™

— (E(exp(z’ kélakxn,nukﬂz)))kn
(e(((Fer) )

which can be written

(ol (((Ser),)-9)

(recall[d]=1{1,...,d)}).
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But &, (F,, — 1) converges uniformly on every compact setjtavhenn — oo,
so we have

d
E qinyskn (EXP(E TTAM)) e eXp(E (Vf (( > ailuig |2> )))
o} leld]

It implies that(@ﬁ”)*"” converges in distribution to a probability measiig
and that the Fourier transform @fj evaluated on @ x d Hermitian matrixA
with spectrunu € R?, is given by

d
Eps (€xp(i TrAM)) = exp(E (w (( > ak|uk,,|2> )))
¢ k=1 le[d]

Buty =y 29, so
(6) Epr (exp(i TrAM)) = exp(E(d x v, ((Z, a)))),

where (-, -) is the usual scalar product &4 and Z = ([u1|?, ..., |ug|?), with
u = (u1, ...,uq) auniformly distributed random vector on the unit spher&éf
Recall that the distribution of: is invariant under the unitary action, so

E(d x ¥, ((Z,a))) =Ed x ¥ ((u, Au))). U

REMARK 3.2 (The Poisson case). One can already idenfify when
w = P (%) is the classical Poisson distribution with parameteidenotedsr;; ,
in Section 1.2). It is easy, using Fourier transform, to see that, in this ]Bgis'e,
the distribution of
X (dn)
Y watkyuak)*,
k=1
where(uy(k))i>1 is an independent family of uniformly distributed random vec-
tors on the unit sphere @<, independent of theP (d1)-random variableX (d1).

Explicit computation of the Fourier transform @fj—the Gaussian caseln
this section we give the distribution, the moments and the Fourier transform of
the random variable&Z appearing in (6) of the Fourier transform Bf;. In the
following, we will only need the moments d&f.

PROPOSITION 3.3. Let u be a random vector of the unit sphere Gf
with uniform distribution Then the distribution o = (Ju1|2, ..., |ug|?) on the
standardd-symplexe is the uniform distributipthat is, for every bounded Borel
function f,

E(f(u1l? ..., [ual?)

1 lexg 1-y 472y d-1
:(d—l)!/ / / flxt . oxa—1,1=) x| dr.
x1=0Jx2=0 xq4-1=0 im1
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To prove it, writex as a renormalized Gaussian standard vectaEbrand do
an appropriate change of variables.
We deduce, by induction a#, the following:

PROPOSITION3.4. Ford >1,for o € N¢, denotings = ) ; o,

RG] (d - 1!
E 201 gy 0120 :d_1!M< s
(lual lual ™) = ( )(s+d—1)!_(s)(s+d—l)!
REMARK 3.5. Whenu = N(0,1), that is, ¥, (t) = —é, Proposition 3.4
allows us to compute the Fourier transform. It appears then that, when
1

oy T
has distributionP;, M; has the distribution ofv, + ﬁX.ld, where N, €

GUE(, 73;) [GUE(, 0?) is the Euclidean space of Hermitiahx d matrices
endowed with the standard Gaussian distribution with variarff¢@nd X is a real
standard Gaussian random variable independent;of

Proposition 3.3 allows us also to compute, by inductiondyorthe Fourier
transform of the random variable.

PROPOSITION3.6. Letd > 2 be an integer and let € R? be such that they
are pairwise distinctThen
d iaj

E(expli (a, Z))) = —(d — D! Y ¢

o=, 7, a (@K —aj)

This proposition, together with the formula
Epr (exp(i TrAM))

iuTr(A) } 1+ u?

:exp{iy Tr(A) +d — TR

[E(Mzm) ~1 dG(u)},

ueR

—E—“Zz"”z) for u=0
gives us the explicit computation of the Fourier transforrPff

4. Convergence of the kth moment of the mean spectral distribution tothe
kth moment of W (u) when the L évy measure has compact support.

4.1. Statement of the resuftreliminaries for the proof.

ProOPOSITION4.1. Let u be anx-infinitely divisible distribution with com-
pactly supported Lévy measu(ia the sense of the definition given at RemhiX).
Then we have

VkeN, EPZG TrM") —mp(¥ () = 0(3).
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Notation and preliminaries. Let, forn € N*, u, be a probability measure dh
such thaj." = . Let us consider, fo#f > 1 andrn > 1, (Mf,’})ls,-sn i.i.d. random
matrices with distributio®/,". Then we know by Theorem 3.1 that, fér> 1, the

sum of theM,f,’) 's(i=1,...,n)converges in distribution tB’“‘ whenn — co. We
know, by Theorem 1.6, that for dlle N*, the sequencemk(u,,) is bounded, and

SO
1 (l)

Let us then fix € N*.

4.2. Computation ofIEHDZ(%TrM") and proof of Proposition4.1. Let us

define, ford,n > 1,
on=s{j((Sm2) )

ad,n=§Tr< ( )3 HM(f(r))>)

fempkr=1

We have

We will transform this sum by summing on the partitions.

We denote by Bij/) the set of permutations of a setConsider a partitionr
of [n] (we have definefh] = {1, ..., n}) andk € [n]. We denote byr (k) the index
of the class ok, after having ordered the classes according to the order of their
first element [e.gx (1) = 1;7(2) = 1if 1 ~ 2 andr (2) = 2 if 1 % 2]. We denote,
for I, n nonnegative integers, b@/n the number of one-to-one maps fréimto [n],
thatisp(n —1)---(n —1+1).

The following lemma will be used quite often in the text.

LEMMA 4.2. Considerk, n € N*. Considerg : [n]* — C such that
Ve, Yo eBij(nl) ¢ o f)=¢(f)
Then
Yo o= 3 AT((r@).....7(K)).

felnlk mePartk)

By this lemma, we have

agn = —TrIE( > AT M‘”“”)

wePartk) r=1
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:—TrE( 3 A'”']‘[M}[’“”)Jr TrE( 3 A'”'l_[M(”(r))>
n

weNC(k) r=1 weParik) r=1

7 ¢NC(k)

denoted by, ,

denoted bywg ,,

LEMMA 4.3. Letn be a partition of a totally ordered finite sét Then the
following assertions are equivalent
(i) 7 is noncrossing
(ii) there exists a clas¥ of = which is an intervaland = \ {V} is a non-
crossing partition off \ V.

Using several times Lemma 4.3 and integrating successively with respect to the
different independent random variables, we have

1
Ud,n:gTr( > AnﬂlanI(Mn)‘Id>

weNC(k) Vern

A|77|

= Y ) [T7mpviun).

neNC(k)\,—-/Ven
"=
By Theorem 1.6, for every > 1, one has
Nim 5 m (pn) = K (W ().
So for everyd,
S ven =37 [T &yi(W ) = me(¥ ().
7eNC(k) Ven

To treat the termw, 5, let us expand the trace:

wd,n - Z Z AnlE( 1_[ Mé(inn(r)))JrsJ.H»l)

nePar(k) jeld r=1
TENCK) jip1:=j1

1 k
_ | 7| (n(r))
=4 Z Anﬂ| Z Ag E(H (M f(r),f(r+1)>’
wePartk) tePartk) r=1
¢NC(k)

where for each € Partk), (k +1) = 7(1).
Using the fact that(ij’L)lS,-Sn are independent copies of a matrix with
distributionQ’;", we deduce

1
U)d’n = E Z Al{f' Z Ald.[l 1_[ Ean ( 1_[ M'[(r)’f(r+1)>
weParik) rePartk) Vern rev
¢NC(k)
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1
=2 2 Al Y AIJIHE( > 1—[(Mr(r),l,ﬁr(rﬂ),lrXn,lr))’

weParik) teParik) Vern le[d]V reV
7 ¢NC(k)

where U € U, is Haar-distributed and independent X, 1,..., X,.4). SO,
applying Lemma 4.2,

1
wn=g X AT Y A
weParik) teParik)
7 ¢NC(k)

X l_[ E( Z A‘dal 1_[ (“f(”)»a(r)ﬁf(r-‘rl),a(r)Xn,a(r)))

Ver oePar(V) reVv
integrating with respect to ths,, ;’s,
1
o=t X A7 Y APl ¥ af

wePartk) tePartk) Ver oePar(V)
7 ¢NC(k)

X E( H (Mr(r),a(r)ﬁr(r+1),a(r))> l_[ m iy (tn)

reVv vED

denoted by 1.«

7|
An 7|
Z niml Z Ad
rePar(k) — — tePartk)
7 ENC(k) "=

x 1—[ Z Alalﬂﬂo‘d,r,a l_[ nmlvl(Mn) )

veo
Ver OGPar(V) ”_)OCB_"LU‘ n—oo

— €y (1)
by Theorem 16

Ul

whenn — oo, for everynr ¢ NC(k), for everyV € &, the only remainingr e
Par(V)is{V}.
So one has

1
Eps (3 Tr Mk) — m (W (1))

1
== > > Al'Tl Aiclw(M)E( I1 Mr(r>ﬁr<r+1)>,

meParik) tePartk) Vern rev
T ¢NC(k)

whereu = (us, ..., ug) is a uniformly distributed random vector of the unit sphere
of C.
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Using the invariance of the distribution @funder the action of diagonal unitary
matrices, one sees that for alll > 0,i € [d]¥,j € [d], if

k [
E( 1—[ Mir 1_[ ﬁ]r) # 0’
r=1 r=1

thenk =/ and there exists a permutatigrof [k] such that for alk, i, = js ().
So the preceding formula can be written

1
Ep (3 Tr Mk) — my(¥(n)

1 T T —
== > ¥ ajld"] QVUUE( I1 Mr(r)ur<r+1>>,

mePartk) teacqmr) Ver rev

T ¢NC(k)
where for any finite totally ordered sét(in which the following element of any
elementx < max/ is denoted by + 1 and max + 1= minI), for any partitionr
of I, acqm) is defined to be the set af-acceptableartitions, which is the set of
partitionst of 7 such that

VVern,ApeBij(V),VreV t(r)=1(¢(r) +1).

LEMMA 4.4, Let] be a finite totally ordered setr, t be partitions off such
that

e 7 has a crossindji.e., = is not noncrossing
e 7 is-acceptable

Then we have

(7) ||+ |z| < |1].

PROOF We prove the lemma by induction on the cardinality/ofwhich is
not less than four becausehas a crossing).

e If the cardinality of I is four, then we can suppose= [4]. We have
m ={{1, 3}, {2, 4}} and the inequality (7) is easy to verify because there are only
threer -acceptable partitions:

{[41}, {{1,2},{3, 43}, {{1.4},{2, 3}}.

e Suppose the inequality (7) proved when the cardinalityl a6 p, and
consider! with cardinalityp + 1, andr, t partitions of/ such thatr has a crossing
andr is w-acceptable.

e If 7 andt have no singleton class, then their cardinalities are not greater
than|I|/2 and (7) is verified.
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o If 7 has a singleton claga}, thent(a) = t(a + 1). This implies that if
one removes the elememtin I, the clasga} in 7 and the element of its class
in z, thent staysr-acceptable (and, clearly, keeps a crossing). So, by induction
hypothesis, we hav@r| — 1) + |t| < |I| — 1.

e If T has a singleton clag®}, denote byV the class ob in 7 and by¢
the permutation oV such that for alk- € V, 7(r) = t(¢ (r) + 1). We must have
¢(b)+1=>b,sob—-1 ~ b. Remove the elementin I, the clasgb} in T and the
element» of V. Then, clearlys keeps a crossing. Defirgto be the permutation
of the “new” V by

sy o), if ¢(r) #b,
¢(’")—{b—1, if ¢(r) = b.

Then for allr in the “new” V, r and¢(r) are in the same class of the “new”
It implies thatt staysmw-acceptable. So, by the induction hypothesis, we have
7+ (el =D <[-1. O

Now recall Proposition 3.4: fax € N¢, denotings = Y_; o,

My _ @ D!
(s+d-D!'7 "7 (s+d-D!

Butform, t € Par(k), with t w-acceptable, foralV € r, there exista € N9 such
that)"; o; = |V| and

E( 1_[ ut(r)ﬁr(r+l)) = E(|Ml|20ll . |ud|20{d).

reVv
So, by Proposition 3.4 we have

E(ug |- Jug| ) = (d - 1)!

1
‘Epg (5 Tr Mk) - mk(‘lj(ﬂ))‘

<2 X X AjdMiGwl [TavyY o (-2

ﬂGPal’(k) Teacqm) Ver (l V| +d— 1)‘
7 &NC(k)
Let C be real such that
d—1)!
Vd=>1, Vs elk] (s!)s¥ <Cd~*.
(s+d—1)!

We then have

1
‘EPZ (E Ter> - mk(‘y(u))‘

1
= Z Z dlr|d|”||€n(u)|c|ﬂ‘d_k.

wePartk) teacdr)
7 ¢NC(k)

A
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But according to (7), for allt ¢ NC(k) and for allt € acar), we havet|+ || —
k <0, so Proposition 4.1 is shown.

5. Convergence in probability of the spectral distribution to ¥ () when
the L évy measur e has compact support.

5.1. Statement of the result and preliminaries to the proof.

PROPOSITIONS.1. Let u be anx-infinitely divisible distribution with com-
pactly supported Lévy measuia the sense of the definition given at Remhik).
Then the spectral distribution of a random matrix with distribut®h converges
in probability to W () asd tends to infinity

Notation and preliminaries. We keep the notation and the objects introduced
in Section 4.1. We consider a sequen@é;) of random matrices defined on
the same probability space such that for&llM,; has distributionIP’L’j, and we
will prove the almost sure weak convergence of the spectral distributige,of
to W(w). It implies Proposition 5.1. Sinc& () is determined by its moments,
the weak convergence of any sequence of distributions(io) is implied by the
convergence of all moments to thosedof).

Let us fixk > 1. We will show that almost surely,
1 k d—o0
3Ter — mp(¥(w)).
Var denotes the variance.
Recall that by Borel-Cantelli’'s lemma, a seque(i¢e ;< of square-integrable
real random variables converges almost surely to alréa}_;(E(Y,;) — 2 and
Y4 Var(Yy) are finite.

But we know thaﬂEpg(lerM") — m(¥ () = 0(3). So it suffices to show
that

1 k
ZVar]pu (— TrM ) < 00.
a\d
d
We will show that Vaﬁg(% Tr M¥) = O(4;) using the formula

k
1 1 n .
(8) Varp: (E Ter) :nli_>mOOVar<g Tr((ZM%) ))
i=1

denoted byV, ,
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5.2. Computation oT\/arpg(% Tr M*) and proof of Propositios.1.  We have

1_ (& 1 2
v,,,d:E( 5 _Tr<nM;{,y»)_n< 1 M;,gjy»))
felnl% d r=1 d r=k+1
1k )\
r
—(E( > ETrl_[Md’n )) .
felnl¥ r=1
Let us apply Lemma 4.2:

1 k 1 2k
Veie Y A;lE«EnnM;@y»)(gn I Mg;y»))

wePari2k) r=1 r=k+1
1_ K~ 1_ K&
- xS Je(G e )
d N d ,n
w1, mpePartk) r=1 r=1

We split the sum into two parts: in the first one we sum over the partitiof&df
which can be split into two partitions; andw» respectivly of{1, ..., k} and of
{k+1,...,2k}, in the second one we sum over other partitiong2éf,

Vod = Z [Alnﬂ1|+|ﬂ2| _ A,lfllAlel]

w1, mpePartk)
1 & on o Lo B g G2t
xE|=Tr [ MY Bl =T [ | M2

1 )1 A —
+ ) AL”'E[fr(]‘[Md’fn STl T M)
r=1

wePari2k) r=k+1
Ji<k<ji%j
Let us expand the trace:
1
+
Vad =35 S (Almitinel _ gl gl

w1, mpePartk)

k k
(
X E( Z H(Ma(z'itr%(r)))jr’errl)E( Z H(M[(zﬂrf r)))jr,j,+1>

jeldlF r=1 jeldk r=1
Jk+1:=11 Jk+1:=]1
1
il || (r (1) o (k)
+ d2 Z A”l Z E[(Md,n )jlij (Md,l’l )jksjl
mePar(2k) jeld]
Ji<k<j,i%j

(7w (2k))

((k+1))
X(Mdsn )jk+1,jk+2'”( d.n )jstfk+1]'
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We apply Lemma 4.2 once more:

1
Vid == Z (Almilimel _ glml gLl Z AldfllAldle
w1, mpePartk) 11, 72€Partk)
£ (1.(r)) £ (2(r))
1\r o (r
X E[ [1(M7, )r1<r>,r1(r+1>}E{ [T )12<r),f2(r+1)}
r=1 r=1

1 el B /0 )
+ 3 YoooArm Y Ay E{H(anr ey teaD) |0

mePar(2k) tePar(2k) r=1

Ji<k<j,i’j
where for any partitiorr of [k], t(k + 1) denotesr (1), and for any partition
of [2k], 1<r <2k + 1, we define

T(r), if s¢{k+1, 2k+ 1},
f(r)_{r(l), ifr=k+1,
T(k+ 1), if r =2k +1.

Since(Mg’L)ls,-Sn are independent copies of a matrix with distribut'[@tj“, we
have
1

Vod = — Z (Allﬂ1|+|ﬂz| _ AlnﬂllAlnnz\) Z Alifl\Aldfz\
w1, mpePartk) 11, 2€Par(k)
x H EQZ” |: l_[ Mfl(r)’fl(“rl)] l_[ EQZ” |: H Mfz(r),rz(r+l)}
Vem revV Vemns reVv
1 7l
5 2 Al 2 Al [ B | [T Moy zovn
mePar(2k) tePari2k) Ven reV
Ji<k<j,i~j
1
+ ITal 4172l
== Z (A}|17Tl| 2| _ AlnﬂllAlnﬂz\) Z Alnlglm
w1, mpePartk) 11, 2€Par(k)
< ] E[ > I ur1(r>,zrﬁr1<r+1>,zrXn,zr}
Vem le[d]V reV

X l_[ E|: Z 1_[MTZ(V),II'ETZ(V'Fl)’lranlrj|

Vems le[d]V reV

1
+ ﬁ Z Al{” Z A|T| 1_[ E|: Z l_[ Ut (r),l, uf(H_l)[ X lri|,

wePart2k) tePar2k) Vern le[d]V reV
Ji<k<j,iZj
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whereU is a unitary Haar-distributed random matrix, independen®of, ...,
Xn.q)- S0, after application of Lemma 4.2,

Vod=— Z (AL’”'H’T?' — A\nnllAlnnzl) Z AldfllAldrzl

m1,mpePartk) 11, T2€Par(k)

x I1 E( > Aldal]_[ur1<r),o<r>ﬁr1<r+1>,a<r)Xn,am)

Vem oePar(V) reVv

x I1 E( > A'f'l_[urz(r>,a<r>ﬁrz(r+1>,a<r)Xn,am)

Vens oePar(V) reVv

1 It]
I VI
wePart2k) tePar(2k)

Ji<k<j,i~j

X 1_[ E( Z Alial H “T(r),a(r)ﬁf(r+1),a(r)Xn,ff(r))v

Vern oePar(V) rev
integrating with respect to ths,, ;’s,

+|m2l |71l 4 |72l
Almiltimel - qlml 41 "
_ 1l 4 l72l
Via = — Z AEZIEEE Z Ag Ay

w1, mpePartk) 11, 72€Partk)

x [T > n1_|"|A|d”|E[ I Mfl(r),o‘(r)ﬂfl(r+l),o’(r):| [ 17 x mu (i)

Ve oePar(V) rev veo

X 1_[ Z n1—|<7|A|dU|E|: 1_[ ufz(,),(y(r)ﬁfz(,+1)vg(,):| 1_[ n x m|U|(an)

VempoePar(V) rev veo

1 A,lfl 7] 1-|o| 4lo]
t3 Yo o 2 ACTL X nthlag

rePar2k) " rePar(2k) Ver oePar(V)

Ji<k<j,i%j

X E|: l_[ Mr(r),a(r)ﬁf(r—i-l),a(r)] 1_[ nx mlvl(//«n)-

reVv veEo
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Let n tend to infinity:

|1 l+|m2l |71l 4 |2l
v J= i Z An _Al’l An Z A|T1|A|T2|
nd =3 PEARER d ~d
1,mpePar(k) 11, T2€Par(k)
n—o0
—0
1-|o| 4lol
< [T X oAy
VeryoePar(V) n—wo o]
— 8

X E|: l_[ I/lfl(r),(f(r)ﬁrl(r+1),a(r):| l_[ n X m|v|(un)
—_—

reVv veo 00
— €y (W)

by Theorem 16

I T wela

VempoePar(V) niioélfl

X IE|: l_[ ufz(r),a(r)ﬁfz(r+1),g(r):| l_[ n x m|v|(Mn)
—_—

rev veo
— &y (1)
by Theorem 16
1 Al 7l 1-lo| 4ol
n T —lo o
IESD S SIS B SR
rwePar(2k) — — tePart2k) Vern aePar(V)ni;oa|g|
1

Ji<k<j,itj" =51

X E|: H ”T(r),a(r)ﬁf(r+l),0(r):| 1_[ n X my|(in)
— —

reV veo 00
— €y ()

by Theorem 16

whenn tends to infinity, for every partitiomr (or w1 or 7p), for everyV €, the
only restingo € Par(V) is {V}. So one has

1 k
Varp: (3 TrmM )

1
=z > Al Ai¢|V|(M)E( [1 ur(rﬂf(m))»

mePar(2k) tePar(2k) Ver rev

Ji<k<j,i%j

whereu = (u1, ..., uy) is a uniformly distributed random vector of the unit sphere
of C¢.
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But recall that by invariance of the distributionmofinder the action of diagonal
unitary matrices, for alk, > 0,i € [d]¥,j € [d]', if

k l
E(l_[u,-r Hb_ljr) 750,
r=1 =1

thenk =/ and there exists a permutatigrof [k] such that for alk, i, = js().
So the preceding formula can be written

1 k
Varpg (3 TrM )
1 —
== 2 > Agd™ ] ¢|V|(M)E< [1 ur(r>uf<r+1>)»
mePar(2k) teadm(m) Ver rev
Ji<k<j,i%j

where adnir) is defined in the following way (splitting the sig] in two disjoint
sets[k], [2k]\ [k]): for any pair(Z, J) of disjoint finite totally ordered sets, for any
partitionz of 7 U J, adnm(rr) is defined to be the set af-admissiblepartitions,
which is the set of partitions of 7 U J such that

VVenr, 3¢ €Bij(V),VreV t(r)=t(p(r)+1),
where for anyx € I (resp.x € J), x + 1 denotes the element followingin 7
(resp.J).

LEMMA 5.2. Let (1, J) be a pair of disjoint finite totally ordered sets, t
partitions of I U J such that

e there exists € I, j € J, withi ~ j,
e 7 ism-admissible

Then we have
()] ||+ 1Tl < ]+ |J].

This inequality can be proved by induction, the proof is analaguous to the one
of (7).
Recall (Proposition 3.4) that fer € N, using the notatios = }_; «;,

My (o) @
(s+d-D!'~ "7 (s+d-D!

But for everyr, t € Par(2k), with t 7-admissible, for every e r, there exists
o € N such thafy; o; = |V | and

(10)  E(ug|®- - |ug|?) = (d — 1)!

E( I1 um)ﬁmm) =E(jug|* - - ug|?).

reVv
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So, by (10), we have
1
Varp: (— TrM")
a\d

d-1!

1
2 (VI+d—D!

< > Aldm [T eviwqvin!
mePar(2k) Ver
Ji<k<j,i%j
readm(r)
ConsiderC < oo such that

(d—-1)! _
Vd>1,V 2k N ———— < (Cd’.
> 1, Vs e[2k] (S)(s—l—d—l)!_

We have

1 _
Val< = > d"dme (wcmla

wePar(2k)

Ji<k<ji%j

teadm()

But according to (9), for every € Par{2k) such that there exisis< k < j with
i~ j and for everyr-admissibler € Par(2k), we havet| + |7| — 2k <0, so

1 X 1
VarPZ (3 ™M ) = 0(;)

and Proposition 5.1 is proved.

5.3. Applications to GUE and sums of independent projectiodshis section
is not necessary for the rest of the text.

Proposition 5.1 contains the almost sure convergence of the spectral distribution
of the matrices oGUE(d, d—-lu) to the semi-circle distribution, whe@UE(d, ¢ 2)
is the Euclidean space dfx d Hermitian matrices with the scalar product-Tx -),
endowed with the standard Gaussian distribution with variarfce

Indeed, let(Ny) en+ be a sequence of random matrices such that for every
the distribution ofN, is the one of a matrix of th6&GUE(d, d—}rl) [we do not do
any hypothesis about the joint distribution(@,),<n+]. Let X be a real Gaussian
standard random variable, independent/é§) cn+. We have seen to Remark 3.5
that ford e N*, M, := Ny + \/%H - 1; has distributioriP’fiv(O’l). We have proved

that 1p, converges almost surely to the centered semicircle distribution with
variance 1. Squy,, which is equal t&5__x_ * uy,, converges almost surely to

the centered semicircle distribution withdJériance 1.

Another consequence of Proposition 5.1 is the following one. Recall that for
all » > 0, the Marchenko—Pastur distribution with indexs the image, by the
Bercovici—Pata bijection, of the classical Poisson distribuiqin) with indexA.
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PROPOSITIONS.3. Let forall d > 1, (uy(k))r>1 be an independent family of
uniformly distributed random vectors on the unit spher€6f Then for allx > 0,
the spectral distribution of

d/

> uakyug(k)*

k=1
converges in probability to the Marchenko—Pastur distribution with intdexhen
d, d’ tend to infinity and the rati@’/d tends tox.

The proof of this result, which uses tools introduced in the following section, is
in the Appendix.

6. Convergence in probability of the spectral distribution M; to ¥(u)
without condition on the L évy measure.

6.1. Convergence in probability of a sequence of random distributions to a
deterministic distribution. We will denote, forz € C, by iz and3z its real and
imaginary parts. Let us define, forprobability measure oR,

fv:C+={zeC;Sz>O}—>C,

/ dv(u)
Vg .
ueR U — 2

Then £, is a holomorphic function o€*, | £, (z)| < % and the map

{probability measures oR}? — R*,

(1, 12) > SUR{| f11(2) — fup(2)

is a distance which defines the weak topology.
So, for (M;)s>1 sequence of Hermitian random matrices angbrobability
measure ofR, we have equivalence between:

; Sz > 1}

(i) the spectral distribution gft5;, converges in probability tp,
(i) foreverye >0,

1 oo
STHR(M) = (z)' > e) )

P( sup

Jz>1
where, forM Hermitian matrix and € C\ R, R, (M) = (M —z)~ L.
6.2. Statement of the theorem and scheme of the proof.
THEOREM6.1. Letu be anx-infinitely divisible distributionLet, for d > 1,

M, be a random matrix with distributioR’;.
Then the spectral distribution »s, of M, converges in probability ta (u).
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Scheme of the proof:

1. Notation, approximation a¥Z, by M},.
2. Upper bound, for > 0, of P(rg(N}) > da) uniformly ind > 1.
3. Conclusion.

6.3. Proof of Theoren®.1.

6.3.1. Notation approximation of¥f, by M. Lety, G be such that = v}’ “

Recall [equation (2)] that far > 0, denoting:

1. By G? andG, the positive finite measures @
G2(A) = G(AN[-t,1]), Gi(A) =G(A\[—1,1])

for all Borel setA of R.
2. Thea, the number- [, g\ (. idG(u).
3. By ., nu, the measures, ™% v*_””G’,
we have the following:

(i) n ==y, soforeveryl, My has the distribution o8}, + N, whereM,
andN/, are independent random matrices with respective distribulifhandP!;,
(i) vy is the weak limit, whem — oo, of

)\‘ *n
(2= 2)s0+20)
n
11+ u?

1+ u?
At Z/ > dG(u), Pr =
ueR\[—t,1] A

u t M

with

dG; (u).

So for alld > 1, the distributionP)/ of N/ is the weak limit of the distribution
of Y% 4 N;:S), where, for everyr > 1, (Nfl’ﬁf))liiin are independent copies of
Udiag(Xp 1, ..., Xn.q)U* with:

(@) (Xn.1,-..,Xnq) iid. random variables with distribution

A by
(1— —)80 + 2,
n n

(b) U unitary Haar-distributed random matrix, independent ©f, 1,
Xn,d)-
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6.3.2. Upper boundfor a > 0, of P(rg(N))) > da) uniformly ind > 1. We
denote by rgM) the rank of a matrix\/.

Leta be a positive real.

Rank is a lower semi-continuous function, so

E(rg(N))) < nli_)m()@[E(rg( > N;:S')))

i=1

< lm E ( > rg(N;:;i))>

i=1
- 0
T t,(i
= Jim, 3B (g(N;7)
1=
= nILmOOnE(rgU diag X, 1,..., Xn.a)U")

d
= lim n I_Z; P(Xy1 #0)
= lim nd P(X,1# 0)

. At

= lim nd—

n—oo n
== d)\'l‘

So we have
E(rg(N))) < d,.
We deduce, with the Chebyshev inequality, that, for everyO,

1 A
(12) P(rg(N}) > da) < %E(rg(Nf,)) <.

6.3.3. Conclusion. Let e, n be positive reals. Let us show that there exists an
integerdp such that, for every integet > do,

1
p Tr(R.(Ma)) — fu (@)

P( sup > 8) <n.

Jz>1
Choice ofr > 0. Whenr tends to+oo, the realq, tends to 0 and the positive

0
finite measures? converges weakly t6. So, by Theorem 1.1;,£+””G’ converges

weakly t0vé’3’G. In other wordsW (u,) converges weakly t& (). So there exists
Ty > 0 such that, for alt > Ty,

(12) SUp| fuun (@) — fuw (@] < %

Jz>1
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Whent tends to+oo, the reali; tends to 0, so there exists > 0 such that, for
everyt > Ty,

(13) <

Letr = max(Ty, 1»).
For everyd > 1, we have

1
P( (\SUFl) E Tr(i)%Z(Md)) — f\p(ﬂ)(z) > 8)
1
= P(fuq E Tr(D‘{Z(Mé + Né)) — f\y(u)(z) > 8)
and
1 t t
5 TH R + ND) — Fuio @)

(14) < 2Tr(i)ﬁiz(Mf1 + N)) — mZ(M;))‘

1
+ ‘ETr(mZ(Mftl)) — oy @+ | foun) @ — fow @)

Let us deal with thdirst termof the sum (14):

We know that for every complex x d matrix M, |%TrM| < % rg(M), where
| M| is the operator norm aoff associated to the canonical Hermitian normn
and||R, (M} + Nj) — R (M) || < IR (M) + ND| + IR (M)l < % <2

Moreover, for all pairM, N of Hermitian matrices, for alt € C\ R, R, (M +
N) — R(M) = =R, (M + N)NR(M). So rgR, (M} + N — R, (M) <
rg(N}).

So

(15) TR MY + N — R (D) | < TN

but foralld > 1,

1 2
7 Tr(R (Mg + Np) — %Z(Mf;))‘ > %) < P(‘E rg(N’)

P( sup

Jz>1

9
> _
-3

/ de
_ P(| fg(N')| > E)

A

62
il by (11)
I

by (13).

N
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By inequality (12), thethird termof the sum (14) is< 5 as soon a§z > 1.
Let us now deal with theecond ternof the sum (14). The Lévy measure of
(in the sense of the definition given at Remark 1.2), Which;?s is compactly
supported. By Proposition 5.1 and by the other results of Section 6.1, there exists
an integewdy such that, for every > d,
> i) <
-3 2

Then for alld > dp, replacing the terms of the sum (14) by the upper bounds we
just gave, we have

1 t
S THORMD) = Fagun @)

P( sup

Jz>1

1
p( sup|= Tr(9%. (Ma)) — fuo (z)‘ > s) <ITy0 o
sz>1ld 2 2
So, we have
. 1
lim P( sup|= Tr(R:(My)) — fuw ()| > s) =0,
d— 00 Sz>1 d

and Theorem 6.1 is proved.
7. Study of the non-Her mitian model.

7.1. The distributionsIL,Z. This section is the analogue, for non-Hermitian
matrices, of Section 3. The distributiohg‘ are defined by the following theorem,
the proof of which is analoguous to the one of Theorem 3.1 using the polar
decomposition of non-Hermitian matrices and the bi-unitarily invariance of the
distributionskK".

THEOREM 7.1. Let u be anx-infinitely divisible distribution Let () be
a sequence of probability measures Bnand (k,,) be a sequence of integers
tending to+oo such that the sequenq:é,kk” converges weakly ta. Let ford > 1
andn > 1, K/" be the distribution o/ Diag(X, 1, ..., X».4)V, whereU, V are
independent unitary Haar-distributefi x d random matricesindependent of the
un-distributed ii.d. random variablesX,, 1, ..., X, 4.

Then the sequenqug”)*"") of probability measures on the spacedk d
complex matrices converges weakly to a distribufign

Moreoverthe Fourier transform oL, on the Euclidean space of comptéx d
matrices endowed with the scalar prodyat, N) — R(Tr M*N) is given by the
following formula for all complexd x d matrix A,

(16) Ep i (expif(Tr A*X))) = exp(E(d x ¥, (R ({u, Av))))),
where

e Y, is the Lévy exponent of,
e (-,-) is the canonical Hermitian product @<,
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o u=(ug,...,ug), v=_(~vy,...,vy) are independent random vectormiformly
distributed on the unit sphere 6.
REMARK 7.2. 1. NoticeL; xL) =L™.

2. Whenu = N(O, 1), ]L“ is the distribution of a matri{M; ;] with (%M, ;,
SM; j)1<i,j<a N (O, 2d) -distributed i.i.d. random variables.

3. The same construction can be done with rectangular bi-unitarily invariant
random matrices. It leads, when the dimensions of the matrices tend to
infinity in a certain ratio, to probability measures which are infinitely divisible
with respect to a certain convolution. The studying of this convolution has
led the author to construct a new noncommutative probability theory, called
the rectangular free probability theory, which allows us to understand the
asymptotic behavior of rectangular random matrices, as free probability theory
describes the asymptotic behavior of square random matrices. It might give rise

to a publication.

7.2. Convergence of théth moment to thé&th moment of¥(«) when the

Lévy measure is compactly supportedhe purpose of this section is to show
the following result:

PROPOSITION7.3. Let u be a symmetric-infinitely divisible distribution
with compactly supported Lévy measurben for all integerk,

- 1
Ep(mi(fim)) — mi(W(w) = O (2>
PROOF  First, for every complex x d matrix M, for all integerk, my (fi|pm)

is null if k£ is odd and is equal té Tr(MM*)/? if k is even. Asu is symmetric,
W (u) is symmetric. So it suffices to show that, for akk N*,

1 1
Eyps (Zz Tr(MM*)k) — moy (W () =0 (5)

Let, for n € N*, u, be the probability measure such thaj” = . Consider,
ford > 1 andn > 1, (Md )1<i<n I..d. random matrices with dlstrlbutloK
Then we know by Theorem 7.1, that, for evaty> 1, the sum of theMé’j,l’

(i=1,...,n) converges in distribution thg whenn goes toco.
We know, by Theorem 1.6, that, for dlle N*, the sequencé: x my (i,)), IS
bounded, and so that, for &l d € N*,

a7 E(mzko:um))=nILmOOE(§Tr(<iM§iL)(iM&iL*))k)-

i=1 i=1
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Let us fixk € N*. We are going to use (17).
Let, ford,n > 1,

ban = E(g Tr((z Mf[}) (Z Mfﬂj‘)) )
i=1 i=1

1 k _
bd,n:fr(E< > [[mY® 1>>M;g;<2r>>*)).

fell,...,n)2r=1

We have

Let us transform this sum using partitions (Lemma 4.2). Moreover, from now on,
we do not write anymore the indekin M(%

1
bin =5 Tr<E( S Al gD @)y M;,”(Zk”*)).

wePari2k)
But
EMI* MY - M) = E(MPMD* - M) = 0=mori1(un) la,
2/+1 alterned factors 2/+1 alterned factors
EMM*MP - MP) = E(MP MOP* - MP*) = mai () L.
2! alterned factors 2! alterned factors

So, forzr € NC(2k), using many times Lemma 4.3 and integrating successively
with respect to the different independent random variables, we obtain

1
-~ THE(M T @) @ @Yy — 0.

n
Proceeding then like in Section 4.2, we show easily that

Eps (max (f1p11)) — mar (W ()

1 _ _
= - Z Aldﬂdlﬂlﬁn(u) ]_[ E( ]_[ U (r)Vr(r+1) ]_[ uz(r+1)vr(r)>,
w,TePar(2k) Vern rev rev
7 ¢NC(2k) r odd r even
with 7(2k + 1) = t(1) and wheret = (u1, ..., ug), v = (v1, ..., vg) are indepen-

dent uniformly distributed random vectors of the unit sphere&c6f But as we
have already seen, by invariance of the distribution ohder the action of unitary
diagonal matrices, for every pdit, t) of partitions of{2k], if

l_[ E( l_[ Uz (r)Vr(r+1) l_[ ﬁf(r+1)ﬁr(r))

Ven reVv rev
r odd r even
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is nonzero, then for every class of r, there existsp, permutation ofV, which
maps odd numbers to even numbers and vice versa, such that/ier gl) T (r) =

(¢ (r) + 1). It implies thatzt is w-acceptable. Using inequality | + || < 2k
[equation (7)], the inequality on the moments of a uniform random vector on the
sphere ofc? (Proposition 3.4), we deduce, as in Section 4.2, that

1 1
o Z Aljﬂdlnlqn(ﬂ) 1_[ E( 1_[ Ut (r)Vr(r+1) l_[ ﬁr(r+1)6r(r)> = 0(5)
w,tePar(2k) Vern rev rev
7 ¢NC(2k) r odd r even
So
~ 1
VkeN E]LZ(mk(/’”MO) —mp (W () = O(E) 0

7.3. Convergence in probability t@ () when the Lévy measure has compact
support. The purpose of this section is to show the following result:

PROPOSITION7.4. Let u be a symmetric-infinitely divisible distribution
with compactly supported Lévy measiimre the sense of the definition given at
Remarkl.2).Let, for eachd, M; be a random matrix with distributiohg.

Then the symmetrization of the spectral distributiondf;| converges weakly
to W (u) whend goes to infinity

Proor We will show inequalities that would imply almost sure convergence
of the symmetrization of the spectral distribution|®f,;| to W (u) if the matrices
M, (d > 1) were defined on the same probability space. So let us suppose that
the matrices are defined on the same probability space. We keep the notation and
objects introduced in Section 7.2. Sing€u) is symmetric and determined by its
moments, the convergence of a sequence of symmetric distributiobigutp is
implied by the convergence of all the moments of even order to tho$« of.

Let us fixk > 1. We will show that almost surely,

1 d
5 Tr(M M) =S moy (W (w)).

But we know that

By (G T ) = maw = 0 5).

So it suffices to show that

Var, (ETr(MM*)")—o(—)
Li\d —\a2)
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We will do it using the formula

k
1 ; 1 - i - )%
Var]Lg (E Tr(MM*)k) = nILmoo Var(z Tr(( Z ML(,’)n) (Z MCS’L >) )
i=1 i=1

Proceeding like in Section 5.2, we obtain

1 * k
Var ETr(Mde)
1 _ _
=7 Z Aldrld‘ﬂ(’ln(u) ]_[ E( ]_[ Ur(r) Vi (r41) ]_[ Ur(r)uf(r—i-l))a
,TePar(4k) Vern reVv reVv
3i<ok<jiZj r odd reven
whereu = (uy,...,ug),v = (v1,...,vy) are uniformly distributed independent

random vectors of the unit sphere®f.
But for all couple(r, 7) of partitions of[4k], if

I1 E( [T #eoviesn [] 5r(r>ﬁf<r+1>)

Vern reVv rev
r odd r even

is nonzero, then for all clasg of =, there exists a permutatiah of V, which
maps even numbers to odd numbers and vice versa, such that forca¥,
1(r) = 1(¢(r) + 1), which implies thatr is 7-admissible. Using the inequality
|T| + || < 4k [equation (9)] and the inequality on the moments of a uniform
random vector on the sphere ©f (Proposition 3.4), we deduce, as in Section 5,
that Vag i (5 TrMM*)*) = 0(55). O

REMARK 7.5. Inthe case whene = N (0, 1), we have a new proof of a well-
known result: the spectral distribution of a Wishdrk d matrix with d degrees
of freedom converges almost surely, wheends to infinity, to the distribution
of X2 whenX is a centered semi-circular random variable with variance 1, which
is [see Speicher (1999)] the Marchenko—Pastur distribution with parameter 1.

7.4. Convergence in probability g, to W () in the general case.
THEOREM 7.6. Let u be a symmetrie-infinitely divisible distribution Let,
ford > 1, M, be a random matrix with distributiohfl‘.

Then the symmetrizatiqi s, of the spectral distribution of},;| converges in
probability to W (u).

The proof is quite similar to the one of Theorem 6.1.
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PROOF OFTHEOREM7.6.

Notation approximation of¥/; by M. Let G be the symmetric positive finite
measure oiR such thafu = vSvG . Recall [equation (2)] that, far> 0, if:

1. G% andG, are the positive finite measures
GXA)=GAN[-1.1]).  G/(A)=G(A\[-t.1])

for all Bo[)el setA of R.

0,G
2. uy=vy " andy = vS’G’,

then we have:

() n=mus*vy, soforalld > 1, My has the same distribution as), + N/,
where M, and N}, are independent random matrices with respective distribu-
tionsL)’ etL),

(i) v is the weak limit, whem — oo, of

)\-[ )\-[ *n
(=5 5m)
n n

1+ u? 11+4u?
= S AG@W).  p= e dG ().
ueR\[—t,f] U AU

for

So for alld > 1, the distribution]L;’ of NG’, is the weak limit of the distribution
of Z;’:lN,f,”fj), where for alln > 1, (Nt’i:ﬁf))lg,-gn are independent copies of
Udiag(Xp 1, ..., Xn.q)V with:

(@) (Xn1, ..., Xnq) i.i.d. random variables with distributionl — )8o +

M
n P>

(b) U,V unitary Haar-distributed random matrices, independent of
(Xn,l’---,Xn,d)-

In the same way as in Section 6.3.2, we show that, far &llO,
A
(18) P(rg(N!) > da) < =~.
a

Let us denote, fop probability measure ofR, ,02 the distribution ofX2 when X
is a random variable with distributign.

Considere, n > 0.

Let us show that there exists an integgrsuch that, for ali > dp,

>8)§n.

1
—Tr(R(MjMy)) — fq/(M)Z(Z)

P( sup

Jz>1
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Choice ofr > 0. When¢ tends to+oo, the measur@:}ﬁJ converges weakly

0
to G. So, by Theorem 1.Jv,§f’ converges weakly to%G. In other words W (4;)
converges weakly t& (u). SoW (u;)? converges weakly t& (u)2. Hence, there
existsT; > 0 such that, for alt > 71,

~

Jz>1

(19) 5Up|fq:(ut)2(2) - f\p(u)Z(Z)| < %

Whent tends to+-oo, the real); tends to 0, so there exisIs > 0 such that, for all
t > Ty,

(20) A < —.

Letr = max(Ty, T>).
For alld > 1, we have

1
P( §ue = Tr(R,(MIMa)) — fyu2(@)] > s)
1
= p( §u|c1> STr(R (MY + NFYML + ND)) — fow (@) > g).

Hence,

1
5 THIRAOH + NG + M) = Fog @

1
5bTmm«My+N?XM5+NQW—%AM?M@ﬂ

l I£3 t
+ ’g Tr(R (Mg My)) — fu(u)2(2)

+ | fou)2(@) = foqe@)].

But for all pair (M, N) of Hermitian matrices, for alt € C\ R, R, (M + N) —
R.(M) = —R.(M + N)NR.(M).
So denotingA, = M * N, + NJ* (M), + N, we have

1
bW%M¢+me+wm—mwm

@Y = | THOR(ME + N+ N AR (M M)

1
+ ‘E Tr(R (M5 MY)) — Jw(u2@)

| fwu2(@ — fu2@)-

The conclusion is similar to the one of Section 6.3.31
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APPENDIX

We prove Proposition 5.3. DenoEi/zlud(k)ud(k)* = Ng.4. As explained in
Section 6.1, it is equivalent to prove that, for every 0,

1 d,d —
P( sup p Tr(R:(Na.a)) — fueoy @) > 8> %0
Jz>1 d' Jd=~).

By Proposition 5.1 (£ (A)) is the limit of the spectral distribution of a random
matrix with distribution Pf(k). But, as noticed in Remark 3.2?,’5(” is the

distribution of

X(d2)
Mg:= )" uguqk)*,
k=1

where X (d)) is a P (dA)-random variable, independent of the sequefggk)).
So it suffices to prove, that for evegy> 0,

1 d,d'— oo
sup|—=Tr(R,(N; o) — R, (M, — 0.
P<%ZZF1)d (R:(Nga) — R ( d))‘>8) e

But it was noticed in Section 6.3.3, equation (15), that
1 2
‘2 Tr(R.(Ng,a) — 2)‘iz(Mal))‘ < 7 r9(Ng,ar — Ma),

which is not greater tha§|X(dk) — d'|, which converges in probability to zero,
by the weak law of large numbers.
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