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A general method for obtaining moment inequalities for functions of
independent random variables is presented. It is a generalization of the
entropy method which has been used to derive concentration inequalities
for such functions [Boucheron, Lugosi and Masgemh. Probab31 (2003)
1583-1614], and is based on a generalized tensorization inequality due to
Latata and OleszkiewiczLecture Notes in Math1745 (2000) 147-168].

The new inequalities prove to be a versatile tool in a wide range of
applications. We illustrate the power of the method by showing how it can
be used to effortlessly re-derive classical inequalities including Rosenthal
and Kahane—Khinchine-type inequalities for sums of independent random
variables, moment inequalities for suprema of empirical processes and
moment inequalities for Rademacher chaos &nstatistics. Some of these
corollaries are apparently new. In particular, we generalize Talagrand’s
exponential inequality for Rademacher chaos of order 2 to any order. We
also discuss applications for other complex functions of independent random
variables, such as suprema of Boolean polynomials which include, as special
cases, subgraph counting problems in random graphs.

1. Introduction. During the last twenty years, the search for upper bounds
for exponential moments of functions of independent random variables, that is,
for concentration inequalities, has been a flourishing area of probability theory.
Recent developments in random combinatorics, statistics and empirical process
theory have prompted the search to moment inequalities dealing with possibly

nonexponentially integrable random variables.
Paraphrasing Talagrand in [41], we may argue that

While Rosenthal-Pinelis inequalities for higher moments of sums of independent
random variables are at the core of classical probabilities, there is a need for
new abstract inequalities for higher moments of more general functions of many
independent random variables.
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The aim of this paper is to provide such general-purpose inequalities. Our
approach is based on a generalization of Ledoux’s entropy method (see [26, 28]).
Ledoux’s method relies on abstract functional inequalities known as logarithmic
Sobolev inequalities and provides a powerful tool for deriving exponential
inequalities for functions of independent random variables; see [6-8, 14, 30, 31,
36] for various applications. To derive moment inequalities for general functions of
independent random variables, we elaborate on the pioneering work of Latata and
Oleszkiewicz [25] and describe so-callgesobolev inequalities which interpolate
between Poincaré’s inequality and logarithmic Sobolev inequalities (see also [4]
and Bobkov’s arguments in [26]).

This paper proposes general-purpose inequalities for polynomial moments of
functions of independent variables. Many of the results parallel those obtained
in [7] for exponential moments, based on the entropy method. In fact, the
exponential inequalities of [7] may be obtained (up to constants) as corollaries
of the results presented here.

Even though the new inequalities are designed to handle very general functions
of independent random variables, they prove to be surprisingly powerful in
bounding moments of well-understood functions such as sums of independent
random variables and suprema of empirical processes. In particular, we show
how to apply the new results to effortlessly re-derive Rosenthal and Kahane—
Khinchine-type inequalities for sums of independent random variables, Pinelis’
moment inequalities for suprema of empirical processes and moment inequalities
for Rademacher chaos. Some of these corollaries are apparently new. Here we
mention Theorem 14 which generalizes Talagrand’s (upper) tail bound [40] for
Rademacher chaos of order 2 to Rademacher chaos of any order. We also provide
some other examples such as suprema of Boolean polynomials which include, as
special cases, subgraph counting problems in random graphs.

The paper is organized as follows. In Section 2, we state the main results
of this paper, Theorems 2-4, as well as a number of corollaries. The proofs of
the main results are given in Sections 4 and 5. In Section 4, abgtr8obolev
inequalities which generalize logarithmic Sobolev inequalities are introduced.
These inequalities are based on a “tensorization property” of certain functionals
called ¢-entropies. The tensorization property is based on a duality formula,
stated in Lemma 1. In Appendix A.1, some further facts are gathered about the
tensorization property af-entropies.

In Section 6, the main theorems are applied to sums of independent random vari-
ables. This leads quite easily to suitable versions of Marcinkiewicz’s, Rosenthal’'s
and Pinelis’ inequalities. In Section 7, Theorems 2 and 3 are applied to suprema
of empirical processes indexed by possibly honbounded functions, leading to a
version of an inequality due to Giné, Latala and Zinn [16] with explicit and rea-
sonable constants. In Section 8, we derive moment inequalities for conditional
Rademacher averages. In Section 9, a new general moment inequality is obtained
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for Rademacher chaos of any order, which generalizes Talagrand’s inequality for
Rademacher chaos of order 2. We also give a simple proof of Bonami’s inequality.
In Section 10, we consider suprema of Boolean polynomials. Such problems
arise, for example, in random graph theory where an important special case is the
number of small subgraphs in a random graph.
Some of the routine proofs are gathered in the Appendix.

2. Main results.

2.1. Notation. We begin by introducing some notation used throughout the
paper. LetX1,..., X, denote independent random variables taking values in
some measurable séf. Denote byX’ the vector of thesa random variables.

Let F: X" — R be some measurable function. We are concerned with moment
inequalities for the random variable

Z=F(X1,...,X,).

ThroughoutE[ Z] denotes expectation &f andE[Z|F ] denotes conditional ex-
pectation with respecttd . X}, ..., X, denote independent copiesXf, ..., X,
and we write

Zl{ =F(X1,...,Xi_1, Xl/-, Xit1, ..., Xn).
Define the random variablds™ andV ~ by

vt = E|:Z(Z - Z;)ipﬂ

i=1
and

n
Vo= E[Z(Z — Zf)z_IX”},
i=1

wherex; = max(x, 0) and x_ = max(—x, 0) denote the positive and negative
parts of a real number. The variablesV ™ and V~ play a central role in [7].
In particular, it is shown in [7] that the moment generating functiorZot EZ
may be bounded in terms of the moment generating functiofstofindV_. The
main results of the present paper relate the momenistoflower-order moments
of these variables.

In the sequel,Z; will denote an arbitrary measurable functidih of X =
X1,...,Xi—1, Xiy1,..., Xy, that is,

Zl = Fl(le ey Xi—17 Xl-i—la ) X}’l)
Finally, define
n
V=Y (Z-2z)%

i=1
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Throughout the paper, the notati$é |, is used for
1Zlly = B[ Z1“DY,

whereg is a positive number.
Next we introduce two constants used frequently in the paper. Let

_

Letx; =1 and for any integeg > 2, define
1 1 q/2\ —1
W=da- (-5
2 q
Then(k,) increases ta asq goes to infinity. Also, define

K= < 0.935

1
e e

2.2. Basic theorems. Recall first one of the first general moment inequalities,
proved by Efron and Stein [15], and further improved by Steele [37]:

PrRoPOSITION] (Efron—Stein inequality).

Var[Z] < %E[Z(Z —~ z;)z}.

i=1

Note that this inequality becomes an equalityiis the sum of its arguments.
Generalizations of the Efron—Stein inequality to higher moments of sums of in-
dependent random variables have been known in the literature as Marcinkiewicz’s
inequalities (see, e.g., [13], page 34). Our purpose is to describe conditions under
which versions of Marcinkiewicz’s inequalities hold for general functigns

In [7], inequalities for exponential moments @f are derived in terms of the
behavior of V™ and V. This is quite convenient when exponential moments
of Z scale nicely withn. In many situations of interest this is not the case, and
bounds on exponential moments of rootsZofather than bounds on exponential
moments ofZ itself are obtained (e.g., the triangle counting problem in [7]). In
such situations, relating the polynomial moment&db V*, vV~ or V may prove
more convenient.

In the simplest settingd/ ™ and Vv~ are bounded by a constant. It was shown
in [7] that in this cas&Z exhibits a sub-Gaussian behavior. Specifically, it is shown
in[7]thatif V* < ¢ almost surely for some positive constanthen for any. > 0,

EeHZ-ELZ]) ekzc'

Our first introductory result implies sub-Gaussian bounds for the polynomial
moments ofZ:
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THEOREM1. If V* < ¢ for some constant > 0, then for all integers; > 2,
I(Z —E[ZD+lqy <V Kqc.

[Recall thatk = 1/(e—+/e) < 0.935.]If furthermoreV ~ < ¢, then for all integers
q=2,

1Zllq <E[Z]+ 2Y4/Kqc.
The main result of this paper is the following inequality.

THEOREM?2. Foranyrealg > 2,

1
I1(Z —E[ZD+llg = \/(l— 5)2quIIIV+IIq/2

<V2q|VFlg2=v2q|VVT|

q
and

1
I(Z —E(Z]_]|, < \/ (1— 5)2xqq||v-||,,/z

<V2qlV - llg2=~2cq|VV],.

REMARK. To better understand our goal, recall Burkholder's inequalities
[9, 10] from martingale theory. Burkholder’s inequalities may be regarded as
extensions of Marcinkiewicz’s inequalities to sums of martingale increments.
They are natural candidates for deriving moment inequalities for a funtien
F(X1,...,X,) of many independent random variables. The approach mimics the
method of bounded differences (see [32, 33]) classically used to derive Bernstein-
or Hoeffding-like inequalities under similar circumstances. The method works
as follows: let¥; denote thes-algebra generated by the sequemKél). Then
the sequencés; = E[Z|¥;] is an F;-adapted martingale (the Doob martingale
associated witt¥). Let (Z) denote the associategdiadratic variation

(Z) =Y (M; — M;_1)?,
i=1

let [Z] denote the associat@dedictable quadratic variation
[Z]1=Y El(M; — M;—1)?|Fi_al,
i=1

and letM be defined as max;<, |Z; — Z;_1|. Burkholder’s inequalities [9, 10]
(see also [12], page 384) imply that fgr> 2,

1Z —EIZ]llg < (@ = DVI{Z)gr2 = (¢ = DIV(D],-
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Note that the dependence gnin this inequality differs from the dependence in
Theorem 2. It is known that for general martingales, Burkholder’s inequality is
essentially unimprovable (see [10], Theorem 3.3). (However, for the special case
of Doob martingale associated with this bound is perhaps improvable.) The
Burkholder—Rosenthal-Pinelis inequality ([34], Theorem 4.1) implies that there
exists a universal consta@tsuch that

1Z —E[Z]llg = C(Vqlll[Z]llq/2 + gl Mllg).

If one has some extra information on the sensitivity fwith respect to its
arguments, such inequalities may be used to develop a strict analogue of the
method of bounded differences (see [33]) for moment inequalities. In principle
such an approach should provide tight results, but finding good bounds on the
moments of the quadratic variation process often proves quite difficult.

The inequalities introduced in this paper have a form similar to those obtained
by resorting to Doob’s martingale representation and Burkholder’s inequality. But,
instead of relying on the quadratic variation process, they rely on a more tractable
quantity. Indeed, in many cas®s” andV ~ are easier to deal with tha& ] or (Z).

Below we present two variants of Theorem 2 which may be more convenient in
some applications.

THEOREM 3. Assumethaf; < Z forall 1 <i <n. Then for any real > 2,

I(Z —EIZD)+llq < VigqllVg2 < ViqllVilg 2

Even though Theorem 2 provides some information concerning the growth of
moments of(Z — E[Z])_, this information may be hard to exploit in concrete
cases. The following result relates the momentg6f— E[Z])— with ||V *]|,
rather than with||V~||,. This requires certain boundedness assumptions on the
increments ofZ.

THEOREM4. If for some positive random variabld,
(Z-Z)+ <M for everyl <i <n,

then for every reay > 2,

I(Z = EL[ZD-llg < VC1q(IV T llgj2 v qIM|?),
whereC; < 4.16.1f, on the other hand
O0<Z-Z; <M foreveryl <i <n,

then

I(Z = E[ZD—llg < VCaq(IVllg/2V g M3,
whereCy < 2.42.
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2.3. Corollaries. Next we derive some general corollaries of the main the-
orems which provide explicit estimates under various typical conditions on the
behavior ofV*t, V- or V.

The first corollary, obtained from Theorem 3, is concerned with function-
als Z satisfying V < Z. Such functionals were at the center of attention in
[6] and [36] where they were called self-bounded functionals. They encompass
sums of bounded nonnegative random variables, suprema of nonnegative empirical
processes, configuration functions in the sense of [39] and conditional Rademacher
averages [7]; see also [14] for other interesting applications.

COROLLARY 1. Assumethad<Z — Z; <1foralli=1,...,n and that for
some constantt > 1,

n
0<>(Z-Z)<AZ.
i=1
Then for all integergy > 1,

-1
(2.1) 1Zllq <E[Z]+ ACIT,
and for every realj > 2, then
A
(22) I(Z ~ BIZ))+ 1, < Vi VAGEIZ] + 5 |

Moreoverfor all integersq > 2,
I(Z —E[Z]D-llg =V CqAE[Z],
whereC < 1.131.

The next corollary provides a simple sub-Gaussian bound for the lower
tail wheneverV~ is bounded by a nondecreasing function of A similar
phenomenon was observed in ([7], Theorem 6).

COROLLARY 2. Assume thaV ~ < g(Z) for some nondecreasing functign
Then for all integerg; > 2,

I(Z —E[Z]D-llg =V KqE[g(Z)].

Finally, the following corollary of Theorem 3 deals with a generalization of
self-bounded functionals that was already considered in [7].

COROLLARY 3. Assumethaf; < Z foralli=1,...,.nandV < WZ for a
random variableW > 0. Then for all realsg > 2 and all9 € (0, 1],

K 1
1Zll, < (1 +6)E[Z] + 5(1+ 5)q||W||q.
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Also,
I(Z = E[ZD+llg = VZ2qIWIGE[Z] + kg W4
If M denotes a positive random variable such that for everyi < n,
0<Z-27 <M,
then we also have
I(Z —ELZ])-llq < VCaq(IM 4 (2ELZ] + 24| W ) v qIIMllﬁ),
whereC, < 2.42is as in Theorerd.

The proofs of Theorems 2—4 and of Corollaries 1-3 are developed in two steps.
First, in Section 4, building on the modifieg-Sobolev inequalities presented
in Section 3, generalized Efron—Stein-type moment inequalities are established.
These modified)-Sobolev/Efron—Stein inequalities play a role similar to the one
played by modified log-Sobolev inequalities in the entropy method in [26—28]
and [30]. Second, in Section 5 these general inequalities are used as main steps
of an inductive proof of the main results. This second step may be regarded as an
analogue of what is called in [28] th¢erbst argumenof the entropy method.

3. Modified ¢-Sobolev inequalities. The purpose of this section is to reveal
some fundamental connections betwegientropies and modified-Sobolev
inequalities. The basic result is the duality formula of Lemma 1 implying
the tensorization inequality which is at the basis of the modigie8obolev
inequalities of Theorems 5 and 6. These theorems immediately imply the
generalized Efron—Stein inequalities of Lemmas 3-5.

3.1. ¢-entropies duality and the tensorization propertyFirst we investigate
so-called “tensorization” inequalities due to Latata and Oleszkiewicz [25] and
Bobkov (see [26]). As of the time of writing this text, Chafai [11] developed a
framework for¢-entropies ang-Sobolev inequalities.

We introduce some notation. LEE denote the convex set of nonnegative and
integrable random variableés For any convex functiop onR., let theg-entropy
functional Hy be defined foiz € L] by

Hy(Z2) = El¢(2)] — ¢ (E[Z)).

Note that here and below we use the extended notion of expectation for a (not
necessarily integrable) random variabtedefined asE[X] = E[X;] — E[X_]
whenever eitheX ;. or X_ is integrable.

The functional H, is said to satisfy theensorization propertyf for every
finite family X1, ..., X, ofindependent random variables and ewgXy, ..., X,)-
measurable nonnegative and integrable random variaple

Hy(Z) < anE[E[¢(Z)|X<">] —¢(E[Z2]XD])].

i=1
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Observe that fom = 2 and settingZ = g (X1, X»), the tensorization property
reduces to the Jensen-type inequality

(3.1) Hqs(fg(x,Xz)dm(X)) Squs(g(x,Xz))dm(x),

where 11 denotes the distribution ak;. Next we show that (3.1) implies the
tensorization property. Indeed IE{ be distributed likeX1, andY> be distributed
like the (n — 1)-tuple X», ..., X,. Let u1 and u> denote the corresponding
distributions. The random variablg is a measurable functiog of the two
independent random variabl&gs andY>. By the Tonelli-Fubini theorem,

2= [ [ ( (g1, y2)) — ( / g(yl,yz)dm(yp)

+¢(fg(yi, ¥2) dMl()’l))
- ¢>< [[ 01y duson sz(yé))) dpa(on) dpa(y2)

( [¢> g1, v2) — ( [ 50152 d,ul(yl))}d,ul(yl)) diz(2)

f(qﬁ(/g(yi,yz)dm(y’l))

- ¢( [[ 0ty dnson duz(yé))) duz(y2)
=fH¢(g(Y1, yz))duz(yz)+H¢<fg(y1, Y2) dul(y1)>

< / Hy(g(Y1, y2)) dpa(y2) + / Hy (vl Y2)) dpus(y).

where the last step follows from the Jensen-type inequality (3.1).
If we turn back to the original notation, we get

Hy(Z) <E[E[¢(2)|XP] - ¢(E[2|XP])]

+ [ Ho(Z0a, X oo X)) dria ).

Proceeding by induction, (3.1) leads to the tensorization property for emery
We see that the tensorization property fj; is equivalent to what we could
call the Jensen propertythat is, (3.1) holds for every1, X»> and g such that
[ g(x, X2)dupi(x) is integrable.

Let @ denote the class of functiogswhich are continuous and convex Bn,
twice differentiable orR” , and such that eithef is affine org” is strictly positive
and J/¢" is concave.
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It is shown in [25] (see also [26]) that there is a tight connection between the
convexity of Hy and the tensorization property. Alspe ® implies the convexity
of Hy; see [25]. However, this does not straightforwardly lead to Jensen’s property
when the distribution in (3.1) is not discrete. (See Appendix A.1 for an account
of the consequences of the convexitygeéntropy.)

The easiest way to establish that for some functiprihe functional Hy
satisfies the Jensen-like property is by following the lines of Ledoux’s proof of
the tensorization property for the “usual” entropy [which corresponds to the case
¢ (x) = xlog(x)] and mimicking the duality argument used in one dimension to
prove the usual Jensen’s inequality, that is, to expfesas a supremum of affine
functions.

Provided thatp € ®, our next purpose is to establish a duality formula for
¢-entropy of the form

Hy(Z) = TSUIOE[M(T)Z + Y2(T)],
eT

for convenient functiongy, andy» on Ry and a suitable class of nonnegative
variables7. Such a formula obviously implies the convexity &f; but also
Jensen’s property and therefore the tensorization property Hgr Indeed,
considering agai& as a function o', = X1 andY> = (X3, ..., ¥,) and assuming
that a duality formula of the above form holds, we have

Hy ( f g(y1,Y2) dm(m))

= sup [Wl(T(yz))/g(yl, y2)dpi(y1) + wz(T(yz))} dpa(y2)

TeT
(by Fubini)
= ;SUIO (f [V1(T (y2))g(y1, y2) + Wz(T(yz))]duz(y2)> dp1(y1)
eT
<[ (;up [V1(T (72)8 (. y2) + ¥2(T (32)] duz(yz)) dpa(y1)
eT

_ f (Hy(g(y1, Y2))) dua(v).

LEMMA 1. Letpe®andZ e ]Lf. If $(Z) is integrable then
Hy(Z)= sup {E[(¢"(T)—¢'(EITD)(Z —T)+¢(T)] - ¢(EIT]}.

Tel] . T#0

REMARK. This duality formula is almost identical to Proposition 4 in [11].
However, the proofs have different flavor. The proof given here is elementary.
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PROOF The case when is affine is trivial: H, equals zero, and so does the
expression defined by the duality formula.

Note that the expression within the brackets on the right-hand side equals
Hy(Z) for T = Z, so the proof of Lemma 1 amounts to checking that

Hy(Z) 2 E[(¢/(T) — ¢"EITD)N(Z = T) + ¢(T)] — ¢ (E[T])

under the assumption thatZ) is integrable and” IL{.
Assume first thatZz and T are bounded and bounded away from 0. For any
A €[0,1], wesetl, =(1—-A)Z+ AT and

FO) =E[(¢"(T) — ¢'EITD)(Z — T)] + Hy(T3).

Our aim is to show thaif is nonincreasing oifi0, 1]. Noticing thatZ — T, =
AMZ — T) and using our boundedness assumptions to differentiate under the
expectation, we have

£/ = —A[E(Z — T)%¢" ()] — (E[Z — T1)?¢" (E[T5.)]
+E[(¢/(T3) — ¢'EITWD)(Z — T)]
+E[¢'(T)(T — 2)] — ¢/ BIT.DEIT — Z],
that is,
') =—A[E(Z — T)%¢"(T3)] — (E[Z — T1)?¢" (BIT.))].
Now, by the Cauchy—Schwarz inequality,

1 2
(E[Z - T)? = (E[(z - TWETT) (m])

< E[#]Euz — T2 (T)].
¢ (T))

Using the concavity of Ap”, Jensen’s inequality implies that

) v
E < ,
¢"(T,) 1~ ¢"(E[T,.)
which leads to
1
E[Z —T)?< ———E[(Z — T)2¢"(T)],
E[Z = T1)* = S BUZ = T)%/(T))]

which is equivalent tgf’ (1) < 0 and thereforef (1) < f(0) = Hy(Z). This means
that for anyT', E[(¢'(T) — ¢"(EITD)(Z — T)]1 + Hy(T) < Hy(Z).

In the general case we consider the sequetfges (Z v 1/n) An and Ty, =
(T v 1/k) A k and our purpose is to take the limit, &s: — oo, in the inequality

Hy(Zy) > E[(¢'(Tk) — ¢'EITiD)(Zn — Ti) + ¢ (Ti)] — ¢ (E[Tk]),
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which we can also write as

(3.2) E[Y(Z,, Tl = —¢'EITDE[Z, — T] — ¢ (E[Tk]) + ¢ (E[Z,]),
wherey (z,1) =¢(z) — ¢ () — (z — 1)¢'(¢). Since we have to show that
(3.3) E[y(Z,T)] = —¢'(E[TDE[Z — T] — ¢ (E[T]) + ¢ (E[Z])

with v > 0, we can always assuni¢ (Z, T)] to be integrable [since otherwise
(3.3) is trivially satisfied]. Taking the limit when and k go to infinity on the
right-hand side of (3.2) is easy, while the treatment of the left-hand side requires
some care. Note that(z, t), as a function of, decreases o(D, z) and increases

on (z, +00). Similarly, as a function of, v (z, t) decreases o0, ) and increases

on (¢, +00). Hence, for every, ¥ (Z,,t) < ¥ (1,t) + ¥ (Z,t), while for everyz,

Yz, Ty) <v(z, ) +¥(z, T). Hence, giverk,

V(Zy, Ti) =¥ (1, Ti) + ¥ (Z, Tp),

asy((z Vv 1/n) An,Ty) — ¥ (z, T) for everyz, we can apply the dominated
convergence theorem to conclude that (Z,,, Ty)] converges t&[vy (Z, T)] as
n goes to infinity. Hence we have the following inequality:

(B.4)  EWW(Z Tol = —¢'EITDEIZ — Ti] — ¢ (E[Tk]) + ¢ (E[Z]).

Now we also have/(Z, Ty) < ¥ (Z, )y (Z, T) and we can apply the dominated
convergence theorem again to ensure ®fat(Z, T;)] converges t&[y (Z, T)]
ask goes to infinity. Taking the limit ak goes to infinity in (3.4) implies that (3.3)
holds for everyT, Z € Lf such thatp (Z) is integrable and[7T] > 0. If Z £0
a.s., (3.3) is achieved fdrf = Z, while if Z =0 a.s., it is achieved fof =1 and
the proof of the lemma is now complete in its full generaliti/]

REMARK. Note that since the supremum in the duality formula of Lemma 1
is achieved foil = Z (or T =1 if Z = 0), the duality formula remains true if the
supremum is restricted to the clags of variablesT” such thaw (T') is integrable.
Hence the following alternative formula also holds:

(3.5) Hy(Z2) = TSUP {E[(#"(T) — ¢'EITDN(Z — T)] + Hp(T)}.

€Jp
REMARK. The duality formula of Lemma 1 takes the following (known) form
for the “usual” entropy [which corresponds¢dgx) = x log(x)]:
Ent(Z) = sup{E[(log(T) — log(E[T1))Z]},
T
where the supremum is extended to the set of nonnegative and integrable random

variablesT with E[T] > 0. Another case of interest is(x) = x?, wherep ¢
(1, 2]. In this case, one has, by (3.5),

Hy(Z) = smTJlo{pIE:[Z(TP—1 — E[TDP™H] = (p — DHH(T)},

where the supremum is extended to the set of nonnegative varialilgs in
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REMARK. For the sake of simplicity we have focused on nonnegative
variables and convex functions on R... This restriction can be avoided and
one may consider the case whefds a convex function oR and define the
¢-entropy of a real-valued integrable random variabley the same formula as
in the nonnegative case. Assuming this time thais differentiable onR and
twice differentiable onR \ {0}, the proof of the duality formula above can be
easily adapted to cover this case provided thgt’Ilcan be extended to a concave
function onR. In particular, if¢ (x) = |x|”, wherep € (1, 2], one gets

Hy(2) =supl pi[ 2( 1 - EEIO] - o - g,
T T E[T]
where the supremum is extendedltp. Note that forp = 2 this formula reduces
to the classical one for the variance

Var(Z) =sug2CouZ, T) — Var(T)},
T

where the supremum is extended to the set of square integrable variables. This
means that the tensorization inequality for thentropy also holds for convex
functions¢ on R under the condition that/®” is the restriction tdR \ {0} of a
concave function oiR.

3.2. From ¢-entropies to¢-Sobolev inequalities. Recall that our aim is to
derive moment inequalities based on the tensorization properpyeasftropy for
an adequate choice of the functipninamely, a properly chosen power function).
As a training example, we show how to derive the Efron—Stein inequality cited
in Proposition 1 and a variant of it from the tensorization inequality of the variance,
that is, thep-entropy whenp is defined on the whole real line agx) = x2. Then

Var(z) < IE|: Xn:E[(z - E[Z|X(i>])2|X(i>]}

i=1
and since conditionally ox ), Z/ is an independent copy &, one has
E[(Z - E[ZIxD))?|xD] = iE[(Z - Z)21x D],

which leads to Proposition 1. A useful variant may be obtained by noticing that
E[Z|X D] is the bestx ") -measurable approximation @fin L, which leads to

(3.6) Var(z) <Y EN(Z — Z)’]
i=1

for any family of square integrable random variablgss such thatZ; is
X®-measurable.

Next we generalize these symmetrization and variational arguments. The
derivation of modifieds-Sobolev inequalities will rely on the following properties
of the elements ofb. The proofs of Proposition 2 and Lemma 2 are given in
Appendix A.1.
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PROPOSITION 2. If ¢ € ®, then both¢’ and x — (¢(x) — ¢(0))/x are
concave functions o0, co).

LEMMA 2. Letg be a continuous and convex function®n. Then denoting
by ¢’ the right derivative o, for everyZ € L1, one has

(3.7) Hy(Z) = LiQBIE[dﬁ(Z) — o) — (Z —uw)¢'w)].
Let Z’ be an independent copy @f Then
Hy(2) < 3E[(Z - Z))(¢'(2) — ¢'(Z))]
=E[(Z-Z)+(¢'(2) - ¢'(Z)].
If, moreovery :x — (¢ (x) — ¢(0))/x is concave o’ , then
Hy(2) < 3E[(Z = Z)(¥(2) = ¥ (2))]
=E[(Z - Z"+(v(2) —y(2)].

(3.8)

(3.9)

Note that by Proposition 2, we can apply (3.9) whenewer ®. In particular,
for our target example whegg(x) = x?, with p € (1, 2], (3.9) improves on (3.8)
within a factorp.

Modified ¢-Sobolev inequalities follow then from the tensorization inequality
for ¢-entropy, the variational formula and the symmetrization inequality. The goal
is to upper bound the-entropy of a conveniently chosen convex functifrof
the variable of interest. The results crucially depend on the monotonicity of the
transformationf .

THEOREMb5. LetXq,..., X, be independent random variables and Zebe
an (Xq,..., X,)-measurable random variable taking its values in an interyal
LetV, VT and(Z;);<, be defined as in Sectidhl.

Letyp € ® and let f be a nondecreasingonnegative and differentiable convex
function ond. Let s denote the functiom — (¢ (x) — ¢(0))/x. Then

Hy(f(2)) <EIVF 2209/ (f(2))]  if o fis convex
On the other handf (Z;);<, satisfyZ; < Z for all i <n, then
Hy(f(2)) < 3BIVF2(Z)¢" (f(2))]  if ¢ o f is convex

PROOF First fixx < y. Assume first thag = ¢’ o f is convex. We first check
that

PfO) —d(f () = (f() = f())d'(f(x))

3.10
(3.10) <3 =22 (fO)).
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Indeed, setting
h(t) =g (f() —o(f () = (f) — f(1)g(®),

we have

W(t)=—g' O(f(y) = f@)).
But for everyr < y, the monotonicity and convexity assumptions pandg yield

0<g'(n<g'(y) and 0<f(y)—fO) < —-0f'G),

hence

—h'(t) = (=0 f' Mg .

Integrating this inequality with respect t@n [x, y] leads to (3.10).
Under the assumption thdto f is convex,

O<fM—f®O=(-xf»
and

0<v(f)—Y(fx)=(—=x)f WMV (fF),
which leads to

(311) (fO) = FE) W) =Y (fx)) < (x — N2 F20Y (FO)).

Now the tensorization inequality combined with the variational inequality (3.7)
from Lemma 2 and (3.10) lead to

Hy(f(2)) = 33 ENZ - Z)*fA(2)¢" (f(Z)]
i=1

and therefore to the second inequality of the theorem.
The firstinequality of the theorem follows in a similar way from inequality (3.9)
and from (3.11). O

The case wherf is nonincreasing is handled by the following theorem.

THEOREM®6. LetXjy,..., X, be independent random variables and Xebe
an (X, ..., X,)-measurable random variable taking its values in some intetval
Let¢ € ® and let f be a nonnegativenonincreasing and differentiable convex
function on{. Lety denote the functiorn — (¢ (x) — ¢(0))/x. For any random
variable Z < mini<;<, Z;,

Hy(f(2)) < 3EIV2(2)¢" (f(Z)]  if ¢ o f is convex
while if ¢ o f is convexwe have
Hy(f(2)) <EIVT f2Z)y'(f(Z))]
and

Hy(f(2)) <E[V™ 220y (F(2))].
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The proof of Theorem 6 parallels the proof of Theorem 5. It is included in
Appendix A.1 for the sake of completeness.

REMARK. As a first illustration, we may derive the modified logarithmic
Sobolev inequalities in [7] using Theorems 5 and 6. Indeed, lejtiay = exp(iz)
and¢ (x) = x log(x) leads to

Hy(f(2)) < A?E[V T exp(r2)],
if A >0, whileif A <0, one has
Hy(f(Z)) < A?E[V~ exp(AZ)].
4. Generalized Efron—-Stein inequalities. The purpose of this section is
to prove the next three lemmas which relate different moment& ab V,
VT andV~. These lemmas are generalizations of the Efron—Stein inequality.

Recall the definitions of(X;), Z, (Z;), (Z’;), V', V~,V and the constants
x andK, given in Section 2.1.

LEMMA 3. Letg > 2 be a real number and let satisfyg/2 <a <g — 1.
Then

B[z~ Biz)) < B[z - Blzpe )" + T glv(z Rz Y,

E[(Z - EIZD%] <E[(Z - EIZD])* + a(q — »E[VT(Z —E[Z])% 7]
and
E[(Z — E[Z)?] <E[(Z — E[Z])*]"* + a(qg — )E[V~(Z — E[Z2])?"?].
PROOF Letg anda be chosen in such away thakly/2 <a <q¢g — 1. Let
¢(x) = x?/*. Applying Theorem 5 withf (z) = (z — E[Z])% leads to the first

two inequalities. Finally, we may apply the third inequality of Theorem 6 with
f(z) = (z — E[Z])* to obtain the third inequality of the lemmal]

The next lemma is a variant of Lemma 3 that may be convenient when dealing
with positive random variables.

LEMMA 4. Letg denote areal numbeg >2andg/2 <« <g — 1. If for all
i=1....n
0<Zz, <7 a.s.,

then

E[VZ172).

E[Z9] < E[Z*]9/% + 61(6172—05)
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ProOF The lemma follows by choosing and« such that 1< ¢/2 < o <
g — 1, takinge (x) = x4/ and applying Theorem 5 withi(z) =z%. O

The third lemma will prove useful when dealing with lower tails.

LEMMA 5. Ifthe incrementsZ — Z; or Z — Z; are bounded by some positive
random variableM, then

E[(Z —E[Z])?!]
(4.1) q(q — )
<E[(Z - EIZ)*]"" + = —

If the incrementsZ — Z! are bounded by some positive random variakiethen

E[(Z - E[Z])?]

E[V(Z — E[Z] — M)?7?].

(4.2) a9/« + q—2
<E[(Z -EIZ)*)"* + a(q —0)E[VT(Z - E[Z] - M)""?].

PROOF.  If the incrementsZ — Z; or Z — Z; are upper bounded by some
positive random variabl@/, then we may also use the alternative bounds for the
lower deviations stated in Theorem 6 to derive both inequalitiés.

To obtain the main results of the paper, the inequalities of the lemmas above
may be used by induction on the order of the moment. The details are worked out
in the next section.

5. Proof of themain theorems. We are now prepared to prove Theorems 1-3
and Corollaries 1 and 3.

To illustrate the method of proof on the simplest possible example, first we
present the proof of Theorem 1. This proof relies on a technical lemma proved in
Appendix A.2. Recall from Section 2.1 thatis defined as A(e — /¢).

LEMMA 6. Forall integersq > 4, the sequence

g—1 q/2< 1<q_2>(q2)/2)
S 1+ (2=

is bounded byl. Alsa, lim,_, o x4, = 1.

PROOF OFTHEOREM 1. To prove the first inequality, assume that < c.
Letm, be defined by

mg = (Z —E[Z]D+l4-

Forg > 3, we obtain from the second inequality of Lemma 3, wita g — 1,

-2
(5.1) mz < mg_l +c(g — l)mZ_z.
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Our aim is to prove that
(5.2) mz < (Kqc)1/? forg > 2.

To this end, we proceed by induction. Fpe 2, note that by the Efron—Stein
inequality,

m3<E[Vt]<c

and therefore (5.2) holds fgr= 2.
Takingg = 3, sincem; < mz < \/c, we derive from (5.1) that
mg < 3c%/2,

This implies that (5.2) also holds fgr= 3.
Consider nowy > 4 and assume that

mj<+vKjc

for every j < g — 1. Then, it follows from (5.1) and two applications of the
induction hypothesis that

_1  K4/? _
my < K422 /g =1(Vg =1)" ™ + ——ct/?(q D (Vg —2)"?

— 2 _ _ (g—2)/2
_ (ch)q/z«q_l)‘“ . q_l(q_2> — )
q Kq q

—1\4/2 1/g—2\42/2
(Kgc) p t% g1

The first part of the theorem then follows from Lemma 6.
To prove the second part, note that if, in additiéf; < ¢, then applying the
first inequality to—Z, we obtain

I(Z —E[Z]D-llg < K/qc.
The statement follows by noting that
E[|1Z - E[Z]|?] =E[(Z - E[ZD%] +E[(Z - E[z)1] < 2(K \/qc)?. O

The proof of Theorems 2 and 3, given together below, is very similar to the
proof of Theorem 1 above.

PROOF OFTHEOREMS 2 AND 3. It suffices to prove the first inequality of
Theorems 2 and 3 since the second inequality of Theorem 2 follows from the first
by replacingZ by —Z.

We intend to prove by induction ok that for all integersk > 1, all g €
(k, k + 1],

I(Z —E[ZD+llg = V/aKqcq
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where eithee, = ||V ||, /2v1 0F ¢y = 2||V |4 /2v1(1 — 1/q).
For k = 1, it follows from Holder’s inequality, the Efron—Stein inequality and
its variant (3.6) that

I(Z —EIZD+llg < V21V 1 < V2,1V ll1vg/2

and

I(Z =EIZD+llq < VIIVIvgr2 < VgV llivg 2

Assume the property holds for all integers smaller than sémel, and let
us considey € (k, k + 1]. Holder’s inequality implies that for every nonnegative
random variable’,

_2 —
E[Y(Z —ELZDT ] < 1Y lg2ll(Z — BIZD) 411972,
hence, using the first and second inequalities of Lemma 3anvithy — 1, we get
I(Z —EIZD+ 1§ < I(Z —EIZD 4111 + 7 I(Z = E[Z])4 82
+llg = +llg—1 2 q +lg -
Defining
xg = I(Z = BIZ]) 4 14 (grqcg) 972,
it suffices to prove that, < 1. With this notation the previous inequality becomes
xqqq/zcg/ng/z < xgiql—l(q _ 1)q/2c3/_21K3£21 + %qu_z/qqq/zcg/zlcg/z—l’
from which we derive, since,_1 < ¢, andk,_1 < kg,
/2 1
q/q—l( 1)q 1-2/4
Xg < x5 1-—- + —x .
q qg—1 q 2Kq q
Assuming, by induction, that, 1 < 1, the previous inequality implies that
1\¢? 1
xg<|(1- —) + x4,
q ( q 2Kq q
Since the function
1\9? 1
/. Zx—)(l——) 4+ —x1?%a
q q 2Kq
is strictly concave ofiR . and positive akt =0, f,(1) =0 and f, (x,) > 0 imply
thatx, <1 as desired. [J

PROOF OFTHEOREM4. We use the notation, = |[(Z—-EZ)_|,. Fora > 0,
the continuous function

1
x> e Y2y ZVE_ g
ax
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decreases from-oco to e~ 1/2 — 1 < 0 on (0, +00). DefineC, as the unique zero
of this function.

SinceC; and Cy are larger than A2, it follows from Hdlder's inequality, the
Efron—Stein inequality and its variant (3.6) that foe [1, 2],

I(Z —EIZD-llg < V21V FII1 < V2,1V l1vg )2

and

I(Z —EIZD-llqg < VIIVI1vg2 < VigllV l1vg/2-

In the rest of the proof the two cases may be dealt with together. The first case,
belonging to the first assumption of Theorem 4, corresponds=tdl, while the
second corresponds &o= 2. Thus, we define

IV F l1vg2 v qliMIg,  whena=1,
C, =
T IViavg2valMIZ,  whena=2.

Forg > 2, either (4.2) or (4.1) witlw = ¢ — 1 implies

(5.3) md <m!_y +qE[V*((Z —EZ)_ +M)T?]
and
(5.4) md <m’_, +LE[v(Zz -Ez)_ + M)

q -1 " 2
We first deal with the case € [2, 3). By the subadditivity ofx — x?~2 for
g €[2, 3], we have
(Z—EZ)_+ M) 2 < M2+ (Zz—E[Z)" 2
Using Hdlder's inequality, we obtain from (5.3) and (5.4) that

md <md ) +qIMIZ2NVF g2+ gV llg2md~?
and

e 9 -
my <mf_y+ ZIMIG2NV g2+ SNV llg/2mg 2.

Using the fact thain,_1 < ,/c,—1 < ./c4, those two latter inequalities imply

2—q/2

g<q2,. 9 7 q2,9. 4
m fcq -+ g Cq +acqmq

-2
q .

Mg

VCaqcq

RN
1= Cacy aCy, 4

Letx, = (

)?; then the preceding inequality translates into
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which in turn implies

1 1-2/
xquca +E(l+xq q)
sinceq > 2 andC, > 1.
The function
1 1 _
8q:x — 2 + 5(14—)6l 20y — x
a a
is strictly concave o and positive at 0. Furthermore,
4+4a
)=——-1<0,
gq(1) 2aC, <

sinceC, > (4+a) /2a. Henceg, can be nonnegative at poinj only if x, <1,
which settles the casge [2, 3].

We now turn to the case > 3. We will prove by induction ork > 2 that for
all g € [k, k + 1), my <,/qCukqcy. By the convexity ofv — x4=2 we have, for
everyf € (0, 1),

(Z-EZ)_+M)"* = +(1-0)——

0 1-6
<9392 1 (1 —9)1T3(Z —E[Z])? 2

(9 (Z-FEZ)_ M )q—z

Using Hélder's inequality, we obtain from (5.3) and (5.4) that
md <ml_y + g0 T3MITAV T g2+ gL —0) "IV T g j2md 2
and

q,- — q _ _
mg <mg_y+ S0~ TEIMIGTAIV g2+ 5 A=)V llg/amf 2

Now assume by induction that, 1 < v/Cy(q — 1)cy—1. Sincec,—1 < ¢4, We
have

mz < Cg/Z(q _ l)q/ZCZ/Z + }q—q+29—q+3qq/263/2 + Eq(l _ 9)—q+3cqmg—2‘
a a

Let x, = C. 9"*m%(qc,)~9/2. Then it suffices to show that, < 1 for all g > 2.
Observe that

1\¢? 1 _
xg < (1 = ;) - ﬁ((9—%‘3(\/@,@) 2y (1)),
a

We choos& minimizing

g(0) =6"1"3(/Caq) T + (1—0)793,
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thatis,0 =1/(/Cy.q + 1). Since for this value of

0 1 1\
=(1+ ,
g(0) ( ﬁca()

the bound onx, becomes

/2 -2 e
Xy < (1— 1)q + ! (1+ ! )q (1+ (ﬂ)(qu—z/q - 1)).
q aCy v Caq 1+Cagq

Hence, using the elementary inequalities

q/2 q—2
(1— E) <e Y2 and <1+ L) < WVCa,
q v Cag

we get

y < e_l/z i el/\/c—a< A/ Caq >(x1_2/q _ 1)
q — q .
aC, \1+ /Cuq

Since the function

1/V/Ca C
s e W2 4 (1+< VCaq ) l—2/q_1>_
Jarx—e aC, 1+ 4/Cuq < ) *

is strictly concave oR, and positive at 0 and’,, is defined in such a way that
f¢(1) =0, f, can be nonnegative af, only if x, < 1, which proves the theorem
by induction. O

PROOF OFCOROLLARY 1. Applying Lemma 4 withx = ¢ — 1 leads to
q _
121§ <1 Z1I§_y + 5BV Z972].
But by assumption, we havé < AZ, and therefore

qA -1
IZIg§ <1ZN3 4+ 7IIZ||Z_1

gA
<1zl [1+7].
=T 221

Since for any nonnegative real numberl + ug < (1 + u)? foru >0,
A q
1ZI1g < 1 2] (1+ 7)
a T 221
or, equivalently,

A
1Zllg =1 Zllg-1+ -
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Thus,|Z|l4 < IZll1 + (A/2)(¢g — 1) by induction, and (2.1) follows.
To prove (2.2), note first that by Theorem 3,

I(Z —EZ)4lly <ViqlVIig2 < ViqAlZlly 2.
Lets be the smallest integer such tha2 < s. Then (2.1) yields
A(s —1) Aq

Zllg2 <E[Z]+ ——— <E[Z]+ —
1Zllq/2 <ElZ]+ ——— <E[Z] +

so that

242
I(Z —E[ZD+ ]l < Vi NqAE[Z] + QT}

qA
< «/E[\/qAIE[ZH 5 }
and inequality (2.2) follows.

In order to prove the last inequality of Corollary 1, we first defifieas the
unigue positive root of the equation

1
-2 = ,-1+1/C_q_q
e + 2Ce
We derive from the upper boun& < AZ and the modified Efron—Stein
inequality (3.6) that
(E|Z —EZ)? <E[(Z —EZ)?] < AEZ.

SinceC > 1, this proves the inequality fgr= 1 andg = 2. Forg > 3, we assume,
by induction, thain; < /CkAE[Z]fork=g—2andk =g —1anduse&/ < AZ
together with (4.1) withw = ¢ — 1. This gives

mg <mi_; +TAE[Z((Z ~EIZ)- +1)*7].

Recall Chebyshev's negative association inequality which asserts thatisf
nondecreasing anglis nonincreasing, then

E[fg] <E[fIE[g].

Since the functiom — ((z — E[Z])— + 1)?~2 decreases, by Chebyshev’s negative
association inequality, the previous inequality implies

md <m?_; + %AE[Z]E[((Z ~EZ)_+1)777.

Thus, this inequality becomes

1

ZAE[Z](l +my_2)77?

q q
m <mq71+
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and therefore our induction assumption yields

1\ (CqAE[Z])7/? 1 271972
q _Z q/2 _ =
mqs(l q) (CqABIZ])/2 4 === [_Cq | q] .

Now we use the fact that sinééis nonnegativen, < EZ. Then we may always
assume thaCgA < EZ, since otherwise the last inequality of Corollary 1 is
implied by this crude upper bound. Combining this inequality wit- 1 leads
to

1 1
- <«
JCqAE[Z] ~— Cq’

so that plugging this in the inequality above and settipng= mZ(CqAEZ)_‘I/Z,

we derive that
N2 1 (1 2\47?
<(1-= — (=4 1-2) .
x“( q> tocleg T q

Now we claim that

-2
1 2\?
(5.5) (—+ /1——) < MHYC,
Cq q

Indeed, (5.5) may be checked numerically §oe 3, while forg > 4, combining

which, sinceC < 8/7, implies (5.5). Hence

A 2, 1o
xq§(1—5> +Ee HC < 7l +%e +1/¢
which, by definition ofC, means thak, < 1, completing the proof of the third
inequality. O
PROOF OF COROLLARY 2. This corollary follows by noting that it/ ~ is

bounded by a nondecreasing functionzfthen by negative association,

E[V~(Z —E[z])! 3]

<E[g(2)(Z - E[2)? 7]

<E[g(Z2)E[(Z — E[2])" 4.
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Thus, writing

mg = |(Z = E[Z]) -4,
we have

md <m_) +El(Z))(q — HmiZ5.

This recursion is identical to the one appearing in the proof of Theorem 1, so the
rest of the proof is identical to that of Theorem 1]

PROOF OFCOROLLARY 3. Letg be anumberg > 2. Letd > 0. Then
I(Z —El[ZD+llqg = vVKkqlWZ]g2 (by Theorem 3)
<VkqlZl4IWllyg (by Holder’s inequality)

< Z21Zll, + =Lyw
— q 29 q

N| D

[for 6 > 0, sincev/ab < (a® + b?)/2 fora, b > 0].

Now Z > 0 implies that|(Z — E[Z])_ |, < E[Z] and we have|Z||, < E[Z] +
I1(Z—-E[Z]D+l4- Hence, for 0< 0 <1,

kq

l +mllWllq

Zlg = 1—49/2E[Z]

1
<1+ 6)E[Z] + %(H 5)||W||q,

concluding the proof of the first statement. To prove the second inequality, note
that

1(Z —E[ZD+lq
<VkqlWZlg/2 (by Theorem 3)
<ViqlWliqllZll4 (by Holder’s inequality)

< \/Kq||W||q(2E[Z] +rql|Wllg) (by the first inequality withp = 1)
<V2qlIWIEIZ] +kqllWllg,

as desired. O
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6. Sumsof random variables. In this section we show how the results stated
in Section 2 imply some classical moment inequalities for sums of independent
random variables such as the Khinchine—Kahane, Marcinkiewicz and Rosenthal
inequalities. In all cases, the proof basically does not require any further work.
Also, we obtain explicit constants which only dependqonThese constants are
not optimal, though in some cases their dependencgisrof the right order. For
more information on these and related inequalities we refer to [13].

The simplest example is the case of Khinchine’s inequality:

THEOREM 7 (Khinchine’s inequality). Let ay,...,a, be nonnegative con-
stants and let X4,..., X,, be independent Rademacher variablg®., with
P{X;,=-1}=P{X;=1}=1/2).1f Z=3""_,a;X;, then for any integeg > 2,

1(2)+llg = 1(2)-llg < vV2Kq | d?
i=1

n
1Zlly < 2Y1V2Kq | > a2,
i=1

and

whereK =1/(e — \/e) < 0.935.

PROOF We may use Theorem 1. Since

ZE [(a: (X — X))21X:] ZZa 1o, x> 0<22a,,

i=1

the result follows. [

Note also that using a symmetrization argument (see, e.g., [13], Lemma 1.2.6),
Khinchine’s inequality above implies Marcinkiewicz’s inequality:Xf, ..., X,
are independent centered random variables, then fog ang,

T
i q/2

The next two results are Rosenthal-type inequalities for sums of independent
nonnegative and centered random variables. The following inequality is very
similar to inequality ¢,) in [16] which follows from an improved Hoffmann—
Jargensen inequality of [24]. Note again that we obtain the result without further
work.

; < 21+l/q /ZKq
q
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THEOREM8. Define
n
Z=) Xi,
i=1

whereX; are independent and nonnegative random variabléen for all integers
g>1landod € (0,1),

I(Z —E[ZD)4]l4 < \/ZKq ‘ max|X;|| E[Z]+ kq ‘ max|X;|| ,
1 q 1 q
I(Z-E[ZD)-llq < [Kq) E[X?]
i
and
K 1
1Zll, < 1+ 6)E[Z] + Eq(1+ 5) max X,

q

PROOF We may use Corollary 3 to get the first and the third inequalities; just
note that

n
V=> X?<wz,
i=1

where
W = max X;.
1<i<n
In order to get the second inequality, just observe that
_ 2
V™ <) EIX]],
i

and apply Theorem 1teZ. O

Next we use the previous result to derive a Rosenthal-type inequality for sums
of centered variables. In spite of the simplicity of the proof, the dependence of
the constants op matches the best known bounds. (See [35] which extends the
theorem below for martingales.)

THEOREM 9. Let X;, i =1,...,n, be independent centered random vari-
ables Define

n
Z=Y"X;, 2=N"E[X?], Y = max | X;|.
; o Z [X7] max | Xi|
Then for any integeg > 2 and6 < (0, 1),

1
I(Z)+llg =ovV2(2+60)q +qr|[1+ g lg-
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PROOE We use Theorem 2. Note that
=Y x2+ Y Ex/4

Thus,
1(Z)+lly < V2qllVTl42  (by Theorem 2),

<y/2q (ZE[X/2>+
N\ i
<./ 2kq ZE[X/2]+(1+9)Z}EX2]+—<1+ >||Y2||q/2

(by Theorem 8)

q/2

= J2q (2+6)ZE[X2 +7(1+ )||Y2||q/2

/ 1
<ov2k2+0)g+ gk 1+5||Y||q. 0

7. Suprema of empirical processes. In this section we apply the results
of Section 2 to derive moment bounds for suprema of empirical processes. In
particular, the main result of this section, Theorem 12, may be regarded as
an analogue of Talagrand’s inequality [40] for moments. Indeed, Talagrand’s
exponential inequality may be easily deduced from Theorem 12 by bounding the
moment generating function by bounding all moments.

As a first illustration, we point out that the proof of Khinchine’s inequality in
the previous section extends, in a straightforward way, to an analogous supremum:

THEOREM 10. Let & c R" be a set of vectors = (t1,...,1,) and let
X1, ..., X, be independent Rademacher variablésZ =sup.+ >" ;% X;, then
for any integerg > 2,

I(Z — BIZ)+ llq < V2Kq'sup Zr
teT

whereK =1/(e — \/e) < 0.935,and

I(Z —E[Z])—]lq <~/2C1q Sup ZerZF 19 supm

teg

where(C; is defined as in Theoreth
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Before stating the main result of the section, we mention the following
consequence of Corollary 3.

THEOREM 11. Let ¥ be a countable class of nonnegative functions defined
on some measurable sé€. Let X1,..., X, denote a collection ofX-valued
independent random variableset Z = sup;. & >*; f(X;) and

M = max sup f(X;).

1<i<n feF

Then for all ¢ > 2andé € (0, 2),

K 1
1Zll, < (L+OEZ] + §q<1+ 5)||M||q.

Next we introduce the relevant quantities for the statement and proof of our
main theorem about moments of centered empirical processes.

Let ¥ denote a countable class of measurable functions $6m R. Let
X1,..., X, denote independeni¥-valued random variables such that for all
feFandi=1,...,n, Ef(X;)=0. Let

Z = sup
feF

> f(XD)
i=1

The fluctuations of an empirical process are known to be characterized by two
quantities that coincide when the process is indexed by a singleton. The strong
variancex? is defined as

EzzE[S}JpZ J&0.0)

while the weak variance? is defined by

%= supIE[Z F2(Xn |.
f i i
A third quantity appearing in the moment and and tail bounds is
M = supl £ (X0l

Before stating the main theorem, we first establish a connection between the weak
and the strong variances of an empirical process:

LEMMA 7.
¥2 < 62 + 32VE[M?]E[Z] + S8E[M?].



MOMENT INEQUALITIES 543

If the functions inF are uniformly bounded, theR may be upper bounded
by a quantity that depends an and E[Z] thanks to the contraction principle
(see [30]). Gine, Latata and Zinn [16] combine the contraction principle with
a Hoffmann-Jgrgensen-type inequality. To follow their reasoning, we need the
following lemma.

LEMMA 8. Leteq,..., ¢, denote independent Rademacher varialles). >
4 and defineg = vVAE[M?2]. Then

E[M?].

1
E i 2 X1 NES T
{5?%;8 S X Lsupy £ x| to:|< A—2//7)2

The proof of this lemma is postponed to Appendix A.3.

PROOF OFLEMMA 7. Letes,..., e, denote independent Rademacher ran-
dom variables, and leg = vAE[M?2]. Then

¥? < E[sup
f

Zf%xl-) - E[fz(Xi)]H + s;JpE{Z fz(X,-)]

|

(by the symmetrization inequalities [29], Lemma 6.3)

|

<o®+2E|sup| Y & fA(X))
fli

<o?+2E|sup| Y & fZ(Xi)Jlsupf |f(Xi)<to

|

} + ZE[sup
;

+ ZE[sup
f

> Eifz(Xi)Jlsupf |f(X0)|>10
i

|

(the contraction principle for Rademacher averages [29], Lemma 6.5

<o’ +4E [sup
f

ZSif(Xi) ZEifZ(Xi)ﬂsupf|f(x,»)|>to
i i

sinceu — u2/(21p) is contracting ori—1o, fo])

2
2 4 4K i (X — = E[M? by L 8
<o+ 4 [s?pgef( )}+(1—2/\/X)2 [M?] (by Lemma 8)
24 8ARIMAZ 1 + ——>—E[M?
<o+ (M| ||1+(1—2/ﬁ)2 [M7]

which, by takingh = 16, completes the proof.[]
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The next theorem offers two upper bounds for the moments of suprema of
centered empirical processes. The first inequality improves inequality (3) of [35].
The second inequality is a version of Proposition 3.1 of [16]. It follows from the
first combined with Lemma 8.

THEOREM 12. Let¥# denote a countable class of measurable functions from
X — R.LetXq,..., X, denote independet¥-valued random variables such that
forall feF andi=1,...,n,Ef(X;)=0.Let

> f(Xi)
i=1

Z = sup
e F

Then for allg > 2,
I(Z = BIZD 41l < V26q(E +0) + 2¢q (101 + sup £ (X0l
L, je
and furthermore
1Zlly <2EZ +20v2q +20cq || M|y +4/kq|IM]||2.
PROOF The proof uses Theorem 2 which states that
I1(Z —E[ZD+llg =V2qlV ™ g2

We may bound/* as follows:

VF < sup ) E[(F(Xn) — F(XD)?I1X]]

foF i=1

< supZ(E[f(Xi)Z] + f(X)?)

fE.?‘- i=1

< supY E[£(X)?]+ supy_ f(Xi)?

feFi=1 feFi=1

Thus, by Minkowski’s inequality and the Cauchy—Schwarz inequality,

VIVTlg2 < J ?upZE[f(X,-)Z] + SUPZ f(X;)?
feFiz1

fe? i=1

sup f(Xi)?
feF ; g

sup sup Y aif(Xi)

feF atllal<1i]

q/2

<o+

:o’—|—

q
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n

<o+XZ+ H( sup Y ai f(X)
feF.alalz<1;

—E[ sup iaif(Xi)D
n

feF,a:llall2<1;—1 q

The last summand may be upper bounded again by Theorem 2. Indeed, the
corresponding’/ ™ is not more than

maxsup f2(X;) + maxsupE[ f2(X;)],
L feF L feF

and thus

sup a; f(X;) —E[ sup Olif(Xi)D
<fe}“,a:||a2§1§ fe?,ai\\ﬂlllzfli;l +lg

< mq(nMuq + maxfsu?pnf(XJHZ).
i €

This completes the proof of the first inequality of the theorem. The second
inequality follows because by nonnegativity &f |(Z — E[Z])_||, < EZ and
therefore || Z|, < EZ + [[(Z — E[Z])+]l; and since by the first inequality,
combined with Lemma 7, we have

I(Z = EIZ1)4 1 < ¥2eq (o +32/EIMIELZ] + VBE[M?] + o)

+2xq(||M||q 4+ sup IIf(Xi)Ilz)
i,feF

< E[Z] + 20v/2kq + 16¢VE[M?] + V16cgE[M?]

+2¢q(IM1, + SUp 1 (X0)l2)

i,feF
(using the inequality/ab < a + b/4).

Using IM|l2 < [M|l; and sup ;e | f(Xi)l2 < [[M]l2, we obtain the desired
result. O '

8. Conditional Rademacher averages. Let ¥ be a countable class of
measurable real-valued functions. The conditional Rademacher average is defined

by
Y f(XD) ]X”],

i

Z:E[ sup

feF
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where theg; are i.i.d. Rademacher random variables. Conditional Rademacher
averages play a distinguished role in probability in Banach spaces and in statistical
learning theory (see, e.g., [1-3, 22, 23]). When the set of functions is bounded,
Z has been shown to satisfy a Bernstein-like inequality [7]. Here we provide
bounds on the growth of moments in the general case.

THEOREM 13. Let Z denote a conditional Rademacher average and let
M =sup ; f(Xi). Then

1(Z —E[ZD+llg = V2qlIM||JE[Z] +KkqlIM]l4
and

I(Z = EIZD-llg < v2C2{VqIMII,E[Z] + 2| M |4}
ProorE Define
> e f(X))

‘Xﬁ}.
J#i

The monotonicity of conditional Rademacher averages with respect to the
sequence of summands is well known, as it was at the core of the early
concentration inequalities used in the theory of probability in Banach spaces
(see [29]). Thus, forall, Z — Z; > 0 and

Y.(Z-Zy<Z.

1

Z; =E| sup
feF

Thus, we have
V<ZM and Z-Z;, <M.
The result now follows by Corollary 3, noticing tha¢ = w. [J

9. Moment inequalities for Rademacher chaos. Throughout this section,
X1, X2, ..., X, denote independent Rademacher random variablesy,Lgtbe
the family of subsets ofl, ..., n} of sized (d < n). Let 7 denote a set of vectors
indexed by{, 4. 7 is assumed to be a compact subseR6f .

In this section we investigate suprema of Rademacher chaos indexgdoby
the form

Z=su% > (HX,)Z‘].

1€T 1€, 4 \iel

For each k< k < d, let W, be defined as
Wi = sup sup

€T a@ . a®eRr: |a®|<1,h<k

Z <n Xj)( Z ( ﬁ O‘i(:))t{il ..... Mw) .

Jednd—k \jJEJ i1,0nik i, JUJedy g Nh=1
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(Note thatW, is just a constant, and does not depend on the value aX{ise)
The main result of this section is the following.

THEOREM 14. Let Z denote the supremum of a Rademacher chaos of order

d and letWy, ..., W, be defined as abové&hen for all realsy < 2,
d—1
I(Z —EIZD4llg < Y (4cq)!PRIW;1 + (&) D12V 2K Y2 Wy
j=1

d
< D (4q)!ZE[W;].
j=1

Before proving the theorem, we show how it can be used to obtain exponential
bounds for the upper tail probabilities. In the special casé-ef2 we recover an
inequality proved by Talagrand [40].

COROLLARY 4. Forall r >0,
log(2) ¢ t )2/1'
P{Z > E[Z]+1t} <2exp — — )
(Z>BIZ]+1) < p( 2 /:\1<2dE[W;]

PROOF By Theorem 14, for any,
E[(Z - E[Z])+]¢
14
- (Z§:1(4xq>f/2E[Wj]>q
< ; .

P{Z = E[Z] +1} <

The right-hand side is at most2ifforall j =1, ...,d, (4/<q)f/2IE[Wj] <t/(2d).
Solving this forg yields the desired tail bound.[J

PROOF OFTHEOREM14. The proofis based on a simple repeated application
of Theorem 2. First note that the cage= 1 follows from Theorem 10. Assume
thatd > 1. By Theorem 2,

I(Z = EIZD 4]y < V2cq|VVF],.
Now straightforward calculation shows that
VVE <V2wm
and therefore

I(Z = E[ZD)+lly < V2cqvV2(E[W1] + (W1 — E[W1l)+]l4)-
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To bound the second term on the right-hand side, we use, once again, Theorem 2.
Denoting the random variabl&* corresponding tow; by V1+, we see that
Vit <2W2, so we get

(W1 — E[W1l)+lly < V2cqv2(E[W2] 4 || (W2 — E[W2])+l,)-

We repeat the same argument. ket 1,...,d — 1, let V,j denote the variabl&
corresponding téV,. Then

Vit <2sup sup

1T o, a® R : la® <1, 1<h<k

SN B i)

i NJelyg—riied \jeJ\{i} 7/ \ig,..., ik {i1,..., irjuJed,q h=1

2
=2Wii1-

Thus, using Theorem 2 for ead#i;, k < d — 1, we obtain the desired inequality.
O

REMARK. Here we consider the special case= 2. Let 7 denote a set of
symmetric matrices with zero diagonal entries. TheBatefines a Rademacher
chaos of order 2 by

Z =2sup

teg

> XiXti jyl-

i#]

Let Y be defined as

Y =sup sup ZX > ajt
teT o H(J{||2<1 =1 Ji

and let B denote the supremum of thie, operator norms of matricese 7.
Theorem 14 implies the following moment bound for 2:

I(Z —E[ZD+ 4 < 4/kqE[Y]+4V2VkKgB.

By Corollary 4, this moment bound implies the following exponential upper tail
bound forZ:

2

t
64 E[Y]? 16[%71(3)

This is equivalent to Theorem 17 in [7] and matches the upper tail bound stated in
Theorem 1.2 in [40]. Note, however, that with the methods of this paper we do not

P{Z>E[Z]+1t} < 2exp<— log(2)
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recover the corresponding lower tail inequality given by Talagrand.

We finish this section by pointing out that a version of Bonami’s inequality [5]
for Rademacher chaos of ordémay also be recovered using Theorem 14.

COROLLARY 5. LetZ be a supremum of Rademacher chaos of ortidrhen

«/4qudJrl — 1||Z||
Jhikgd — 1 z

Note that Bonami's inequality statdl€ ||, < (¢ — 1)%/2||Z||2 so that the bound
obtained by Theorem 14 has an extra factor of the ordei?&t in the constant.
This loss in the constant seems to be an inevitable artifact of the tensorization at
the basis of our arguments. On the other hand, the proof based on Theorem 2 is
remarkably simple.

(9.1) 1Zllg <

SKETCH OF PROOF OFCOROLLARY 5. By Theorem 14, it suffices to check
thatforallj,1<j <d,

E[W,]1<d//?|Z|2.

Letting Wo = Z, the property obviously holds fof = 0. Thus, it is enough to
prove that for any > 1,

E[Wi] < |Will2 < Vd||Wi—_1]l2.

To this end, it suffices to notice that, on the one hand,

I Will3 =1E[sup sup

€T o®, . a®=D: laW|<1,h<k

2. |mf|< HXJ'><HXJ')

J,J €dp da—-1) jeJ jeJ’

k=1 "
(ox (M)
i1

,,,,, i {in,.ig—1jUJed g \h=1

k—1 "
( E <| |sz~h )t{ila-~-,ikl}uj/>:|
i1, ik i, i1}V €l g Nh=1

(the cumbersome but pedestrian proof of this identity is omitted), and on the other
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hand,

IWi_1l3 = E{sup sup

€T a® L ak=D: a® | <l h<k

= (n)(ne)

JJ'edna—k-1 \NJj€JS jeJ’

k-1 "
( » < I1 a; )t{il,...,ikl}uj>
i1

i1,eenip s {ig,nig—1}UJ €l g =1

k—1 "
( Z (l_[aih )t{il ----- ik_l}UJ/):|-
i1nit (i1 nik—1)UT €0y g Nh=1

.....

Noticing that the contraction principle for Rademacher sums (see [29], Theo-
rem 4.4) extends to Rademacher chaos in a straightforward way, and using the
fact that|J N J'| < d, we get the desired result[]

10. Boolean polynomials. The suprema of Rademacher chaos discussed
in the previous section may be considered as special cases of suprema of
U-processes. In this section we consider another family/ qdfrocesses, defined
by bounded-degree polynomials of independghtl}-valued random variables.

An important special case is the thoroughly studied problem of the number of
occurrences of small subgraphs in a random graph.

In this sectionX4, ..., X,, denote independer0, 1}-valued random variables.
Just like in the previous sectiod,, ; denotes the set of subsets of sizeof
{1,...,n} and T denotes a compact set of nonnegative vectors fRSm. Note
that in many applications of interest, for example, in subgraph-counting problems,
T is reduced to a single vector.

The random variabl is defined as

Z=sup »_ (HX,)t[.

)
€S Jed, g \iel

For the casel = 1, moment bounds foZ follow from Theorem 11. Fok = O,
1,...,d —1, let M; be defined as

max sup »_ ( I Xj>t1.

J€Ina—k1eT 1oy "7 rcr \ jens

Note that allM; are again suprema of nonnegative boolean polynomials, but the
degree ofM; isk <d.

Lower tails for Boolean polynomials are by now well understood thanks to the
Janson—Suen inequalities [17, 38]. On the other hand, upper tails for such simple
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polynomials are notoriously more difficult; see [20] for a survey. We obtain the
following general result.

THEOREM15. LetZ and M, be defined as abovEor all realsq > 2,
1(Z —=E[Z]D+ll4

d!
d—= !

d
<2} i(xq)f/z (df—!j),x/E[Z]E[Md i1+ (kq)!
j=1 '

E[Mg_j]}.

PrRoOOF The proof is based on a repeated application of Corollary 3, very
much in the spirit of the proof of Theorem 14. For each{1, ..., n}, define

Zi=sup t;(ﬂX,-).
1€T Jeg, 4ti¢l  \jel

The nonnegativity assumption for the vectarss 7 implies that Z; < Z.
Moreover,

Z—Zi<Mi
and
Y (Z-2Z)<dZ.
i

Thus,V <dM;_1Z. Hence, by Corollary 3,
1(Z — BIZ)+llq < V2qd | Ma_1[{E[Z] + kdq||My1q.

We may repeat the same reasoning to elghk =d — 1, ..., 1, to obtain

Kk
Il = 2{Bi + L 1ag i, |
By induction onk, we get

k=d—1
d—1)!
My 1|, <2 a-1- (@ = D!
[Mg-1llg < { EO (kq) i

which completes the proof..J

E[Mk]],

REMARK. Just like in the case of Rademacher chaos, we may easily derive an
exponential upper tail bound. By a similar argument to Corollary 4, we get

P{Z > E[Z] + 1}

log 2 ¢ 2/j ‘ 1/j
ool %\ (aavermmn) () )
- dx 4d/E[Z]E[M] 4dIE[M ;]

1<j<d
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REMARK. If d =1, Theorem 15 provides Bernstein-like bounds, and is, in a
sense, optimal. For higher order, naive applications of Theorem 15 may not lead
to optimal results. Moment growth may actually depend on the special structure
of 7. Consider the prototypical triangle counting problem (see [18] for a general
introduction to the subgraph counting problem).

Inthe g (n, p) model, arandom graph efvertices is generated in the following
way: for each paifu, v} of vertices, an edge is inserted betweeand v with
probability p. Edge insertions are independent. L&t , denote the Bernoulli
random variable that is equal to 1 if and only if there is an edge betweslv.
Three verticest, v and w form a triangle if X, , = Xy.» = Xw; = 1. In the
triangle counting problem, we are interested in the number of triangles

Z= Z Xu,vxv,wxu,w-

{u,v,wied, 3

Note that for this particular problem,

Mi= sup > XuwXow.

{M,U}eln,2w1w¢{u,v}

My is thus the maximum of?) (correlated) binomial random variables with
parametera — 2 andp?. Applying Corollary 1 (withA = 2), we get forg > 1,

[Millg <n A E[M1]+qg —1).
Simple computations reveal that
E[M1] < 2(logn + npz).
Applying Corollary 3 toZ, we finally get
I(Z —EIZD) 4 ]lg < VEcgE[MIIE[Z]

+q(VBCE[Z] + 3¢ (n A (EIM1] + 3(q — 1)),

which represents an improvement over what we would get from Theorem 15,
and provides exponential bounds with the same flavor as those announced in [7].
However, the above inequality is still not optimal. In the following discussion we
focus on upper bounds @&{Z > 2E[Z]} whenp > logn/n. The inequality above,

takingg = L’zlzgfj org = LVMZ |, implies that for sufficiently large,

3144

Recent work by Kim and Vu [21] show that better, and in a sense optimal, upper
bounds can be obtained with some more work; see also [19] for related recent
results. Kim and Vu use two ingredients in their analysis. In a first step, they tailor
Bernstein’s inequality for adequately stopped martingales to the triangle counting

4nzp3 E[Z]
P{Z > 2E[Z]} < exp( log=—— Vvlog2 12/% )
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problem. This is not enough since it provides bounds comparable to the above
inequality. In the martingale setting, this apparent methodological weakness is
due to the fact that the quadratic variation proc&ss associated withZ may
suffer from giant jumps [larger tha® (n?p?)] with a probability that is larger
than exg—© (n?p?)). In the setting advocated here, huge jumps in the quadratic
variation process are reflected in huge valuesMar [In fact, the probability that

M3 > np is larger than the probability that a single binomial random variable with
parameters andp? is larger thamp which is larger than exp-® (np)).] In order

to get the right upper bound, Kim and Vu suggest a partitioning device. An edge
(u, v) is said to be good if it belongs to less tham triangles. A triangle is good

if its three edges are good. L&¥ and Z” denote the number of good and bad
triangles. In order to bound the probability thats larger than E[Z], it suffices

to bound the probability thaZ? > 3/2E[Z] and thatZ? > E[Z]/2. Convenient
moment bounds foZé can be obtained easily using the main theorems of this
paper. Indeed$ /np satisfies the conditions of Corollary 1 with= 3. Hence,

1(Z8 —E[Z8]) 4 ], < vk [JSqan[zg] + %]

This moment bound implies that

g5 3 } <_ i‘@)

IP’{Z > 2IE[Z] <exp| —log 3142 )

We refer the reader to ([21], Section 4.2) for a proof thgz? > E[Z]/2} is upper
bounded by exg-0 (n2p?)).

The message of this remark is that (infamous) upper tail bounds concerning
multilinear Boolean polynomials that can be obtained using Bernstein inequalities
for stopped martingales can be recovered using the moment inequalities stated in
the present paper. However, to obtain optimal bounds, subtle ad hoc reasoning still
cannot be avoided.

APPENDIX

A.l. Modified ¢-Sobolev inequalities. Recall the notation used in Section 3.
As pointed out in [25], provided that” is strictly positive, the condition /"
concave is necessary for the tensorization property to hold. Here we point out
the stronger property that the concavity o%! is a necessary condition for the
¢-entropy Hy to be convex on the sét! (€2, 4, P) of bounded and nonnegative
random variables.

PROPOSITIONA.1. Let¢ be a strictly convex function di,. which is twice
differentiable orR* . Let (<2, », P) be a rich enough probability space in the sense
that P mapsA onto [0, 1]. If Hy is convex orLjo(Q, A, P), theng” (x) > 0 for
everyx > 0and1/¢"” is concave oiR*, .
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PROOFR Let# € [0,1] andx,x’, y,y’ be positive real numbers. Under the
assumption on the probability space we can define a pair of random variables
(X,Y) to be(x, y) with probabilityd and(x’, y") with probability (1 — 8). Then
the convexity ofH, means that

Hy(AX + (L —A)Y) < AHyp(X) + (L — 1) Hyp(Y)
for everyi € (0, 1). Defining, for every(u, v) e R} x R%,
Fi(u,v) = —=¢(hu + (1= 2)v) + 1 u) + (1 = 1) (v),
the inequality is equivalent to
EO@ )+ A-0)('y)) <0F.(x, )+ 1 -0)F.x',y).

Hence,F} is convex orR’ x R% . This implies, in particular, that the determinant
of the Hessian matrix of, is nonnegative at each poiit, y). Thus, setting
XK=+ A—-1)y,

(9" (x) — 28" (x)1[P" (y) — (A1 = W)P" (x)] = A (1 — )»)[cb”(m)]z,
which means that

(A.1) 9" ()" (y) = 19" (19" (x2) + (1= 1" (x)¢" (x2).

If ¢”(x) = 0 for some pointc, we see that eithes” (y) = 0 for everyy, which is
impossible becausgis assumed to be strictly convex, or there exists spragch
that¢”(y) > 0 and thenp” is identically equal to 0 on the nonempty open interval
with endpointsx andy, which also leads to a contradiction with the assumption
thatg is strictly convex. Hence” is strictly positive at each point & and (A.1)
leads to

1 A 1-2

Z + b
¢"Ox+@A=2y) ~ d"(x)  ¢"(y)
which means that/k” is concave. [

PrROOF OFPROPOSITION2. Without loss of generality we may assume that
¢ (0) =0. If ¢ is strictly convex,

1
" (1= M)u + Ax)
1 _ )\‘ )\’ 1 4
= o) + ) (by concavity of ¥¢")
> ¢,,)E ) (by positivity of ¢”, i.e., strict convexity ofp).
X

In any case, the concavity of/@” implies that for everyi € (0,1) and every
positivex andu,

2" (A= Mu+ rx) <¢"(x),
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which implies that for every positive
1" (t 4+ 1x) < ¢" (x).

Letting A tend to 1, we derive from the above inequality thédtis nonincreasing,
that is,¢’ is concave. Setting’ (x) = ¢ (x)/x, one has

By (x) = x%¢" (x) — 2x¢' (x) + 29 (x) = £ (x).

The convexity of¢ and its continuity at O imply that¢’(x) tends to 0 as goes
to 0. Also, the concavity op’ implies that

X% (x) < 2x(¢' (x) — ¢'(x/2)),

so x%¢”(x) tends to 0 asx — 0 and thereforef (x) — 0 asx — 0. Denoting
(abusively) byp® the right derivative ofy” (which is well defined since/p” is
concave) and by’ the right derivative off, we havef’(x) = x%¢® (x). Then
f'(x) is nonpositive becausg’ is nonincreasing. Thug; is nonincreasing. Since
f tends to 0 at 0, this means thais a nonpositive function and the same property
holds for the function/”, which completes the proof of the concavityyof [

PROOF OFLEMMA 2. Without loss of generality we assume tiggD) = 0.
The convexity ofp implies that for every positive,

—¢([E[Z]) < —¢p(u) — (E[Z] —u)¢' (u),
and therefore
Hy(Z) <E[¢(Z) — p(u) — (Z —w)¢' ()]

Since the latter inequality becomes an equality whes m, the variational
formula (3.7) is proven. Sincg’ is an independent copy ¢f, we derive from
(3.7) that

Hy(Z) <E[$p(Z) — ¢(Z') = (Z - Z))¢'(Z))]
< -E[(Z - Z)¢'(Z")]
and by symmetry
2Hy(2) < —E[(Z' = 2)¢"(Z)] - EI(Z — Z"¢'(Z)],
which leads to (3.8). To prove (3.9), we simply note that
%E[(Z - ZN(W(2) =¥ (Z")] — Hy(Z) = —E[Z]E[Y (2)] + ¢ (E[Z]).

But the concavity ofy implies thatE[vy(Z2)] < ¢ (E[Z]) = ¢ (E[Z])/E[Z] and
we derive from the preceding identity that (3.9) holdE]
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PROOF OF THEOREM 6. Fix first y < x < y. Under the assumption that
g =¢' o f is convex,

P(fO) —d(f() = (fF) = F(0)) (f(x))
<30 =02 2G$" (f ).
Indeed, denoting by the function

h(t) =¢(f(») —o(f) — (fF() — f(1)g(®),

(A.2)

we have
Wty =—g O(f ) — f@).
But for everyr < y, the monotonicity and convexity assumptions pandg yield
0<—-g'=-¢'( and O=—(f(M~-fO)=-G-0f (.
hence
—H(®) < -Df' e G).

Integrating this inequality with respect toon [x, y] leads to (A.2). Under the
assumption thaj o f is convex, we notice that

0<—(fOM = f) == =01
and
0<—(Y(fON =¥ (f(x)) <=0 =0 f DY (fFG),
which implies
(A3) () = FE)W ) =¥ (f X)) < (x =N f2WP (f ).
The tensorization inequality combined with (3.7) and (A.2) leads to
Hy(f(2)) < %iE[(z ~ZD2 D" (f (D))

and therefore to the first inequality of Theorem 6, while we derive from the
tensorization inequality (3.9) and (A.3) that

Hy(f(2)) <Y EUZ = ZD3 2DV (F (D)),

i=1

which means that the second inequality of Theorem 6 indeed holds.
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In order to prove the third inequality, we simply defifféx) = f(—x) and
Z =—Z. Then f is nondecreasing and convex and we can use the first inequality
of Theorem 5 to boundi, (f(2)) = H¢(f(Z)) which gives

Hy(f(2)) <Y EUZ — ZDA fP2)v' (f(Z2))]

i=1
< S"ENZ - Z))2 f22)y' (f(2))],
i=1

completing the proof of the result]

A.2. Proof of Lemma6. By Stirling’s formula,

k k
k! = (—) VaneZ’B",
e

wheregy, is positive and decreases to Okas> oo. Using the above formula with
k=g—2,k=qg—1andk =q leads to

A\ 1/4 28 1/4
Xy < eﬂq—ﬁq—1—1/2<q_1> R (M) _
B q K q(q—2)

By the monotonicity of Stirling’s correction, we hayg < g,_1 < B,—2, and the
preceding inequality becomes

X <e_1/2<—q_1>1/4+ 13_1( q—l )1/4.
- q K \(g—2q

Our aim is to prove that, < 1. Let

a, = 71/2(q 1)1/46171/4’
_ e—l(q _ 1)1/2(q _ 2)—1/4q—1/4
1 l—aq, '

Then
1
xXg <ag+ Euq(l —ay)

and sincat, — K asq — oo, in order to show that, < 1, it is enough to prove
thatu, < u,1 for everyg > 4. Letd =1/q. Thenu, < u,41 iS equivalent to
g2(0) > 0, where

g =1-20)Y41-e V21— )V 4 V21— 0)¥*

A4
(A4) —(1-0)Y21-02)Y4
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Now, r — t~2((1 — 1)¥/2 — (1 — 2r)1/4) is easily seen to be increasing (h 1/2)

(just notice that its power series expansion has nonnegative coefficients), so since
6 < 1/4, settingy = 16(./3/4 — 2~ 1/4), one hag1 — 20)Y4 > (1 - 6)Y/2 — 162,
Plugging this inequality in (A.4) yields

g0) > 1-HY2(1- 1-6HYH —po?(1-e V21 -0)Y4
and therefore, using again thtak 1/4,
80) = () (1- A -0HY) —yo*(1—e VAT,
Finally, note that 1- (1 — 62)%/4 > 9#2/4 which implies
9_2g(9) > 211(%)1/2 _ y(l . 6—1/2(%)1/4)

and since one can check numerically that the right-hand side of this inequality is
positive (more precisely, it is larger tharD@1), we derive that the sequenge)
is increasing and is therefore smaller than its liiiand the result follows.

A.3. Proof of Lemma8. The statement follows from a version of Hoffmann—
Jgrgensen’s inequality. In particular, we use inequality (1.2.5s) on page 10 in [13]
with p =1 andr = 0. Then we obtain

E[MZ]l/Z 2
< .
~\1- (@P[supy; | X; & f2(Xi)| > 10])/2
The right-hand side may be bounded further by observing that, by Markov’s
inequality,

E[sup
;

> e fA(Xi) Lsup, 17 (x>0
i

P[s?p Y e fA (X sup, 17 (X0 >10| > 0} = [Sfu_plf(xi)l > to}
2
B _1
-2 A
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