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A general method for obtaining moment inequalities for functions of
independent random variables is presented. It is a generalization of the
entropy method which has been used to derive concentration inequalities
for such functions [Boucheron, Lugosi and MassartAnn. Probab.31 (2003)
1583–1614], and is based on a generalized tensorization inequality due to
Latała and Oleszkiewicz [Lecture Notes in Math.1745 (2000) 147–168].
The new inequalities prove to be a versatile tool in a wide range of
applications. We illustrate the power of the method by showing how it can
be used to effortlessly re-derive classical inequalities including Rosenthal
and Kahane–Khinchine-type inequalities for sums of independent random
variables, moment inequalities for suprema of empirical processes and
moment inequalities for Rademacher chaos andU -statistics. Some of these
corollaries are apparently new. In particular, we generalize Talagrand’s
exponential inequality for Rademacher chaos of order 2 to any order. We
also discuss applications for other complex functions of independent random
variables, such as suprema of Boolean polynomials which include, as special
cases, subgraph counting problems in random graphs.

1. Introduction. During the last twenty years, the search for upper bounds
for exponential moments of functions of independent random variables, that is,
for concentration inequalities, has been a flourishing area of probability theory.
Recent developments in random combinatorics, statistics and empirical process
theory have prompted the search to moment inequalities dealing with possibly
nonexponentially integrable random variables.

Paraphrasing Talagrand in [41], we may argue that

While Rosenthal–Pinelis inequalities for higher moments of sums of independent
random variables are at the core of classical probabilities, there is a need for
new abstract inequalities for higher moments of more general functions of many
independent random variables.
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The aim of this paper is to provide such general-purpose inequalities. Our
approach is based on a generalization of Ledoux’s entropy method (see [26, 28]).
Ledoux’s method relies on abstract functional inequalities known as logarithmic
Sobolev inequalities and provides a powerful tool for deriving exponential
inequalities for functions of independent random variables; see [6–8, 14, 30, 31,
36] for various applications. To derive moment inequalities for general functions of
independent random variables, we elaborate on the pioneering work of Latała and
Oleszkiewicz [25] and describe so-calledφ-Sobolev inequalities which interpolate
between Poincaré’s inequality and logarithmic Sobolev inequalities (see also [4]
and Bobkov’s arguments in [26]).

This paper proposes general-purpose inequalities for polynomial moments of
functions of independent variables. Many of the results parallel those obtained
in [7] for exponential moments, based on the entropy method. In fact, the
exponential inequalities of [7] may be obtained (up to constants) as corollaries
of the results presented here.

Even though the new inequalities are designed to handle very general functions
of independent random variables, they prove to be surprisingly powerful in
bounding moments of well-understood functions such as sums of independent
random variables and suprema of empirical processes. In particular, we show
how to apply the new results to effortlessly re-derive Rosenthal and Kahane–
Khinchine-type inequalities for sums of independent random variables, Pinelis’
moment inequalities for suprema of empirical processes and moment inequalities
for Rademacher chaos. Some of these corollaries are apparently new. Here we
mention Theorem 14 which generalizes Talagrand’s (upper) tail bound [40] for
Rademacher chaos of order 2 to Rademacher chaos of any order. We also provide
some other examples such as suprema of Boolean polynomials which include, as
special cases, subgraph counting problems in random graphs.

The paper is organized as follows. In Section 2, we state the main results
of this paper, Theorems 2–4, as well as a number of corollaries. The proofs of
the main results are given in Sections 4 and 5. In Section 4, abstractφ-Sobolev
inequalities which generalize logarithmic Sobolev inequalities are introduced.
These inequalities are based on a “tensorization property” of certain functionals
called φ-entropies. The tensorization property is based on a duality formula,
stated in Lemma 1. In Appendix A.1, some further facts are gathered about the
tensorization property ofφ-entropies.

In Section 6, the main theorems are applied to sums of independent random vari-
ables. This leads quite easily to suitable versions of Marcinkiewicz’s, Rosenthal’s
and Pinelis’ inequalities. In Section 7, Theorems 2 and 3 are applied to suprema
of empirical processes indexed by possibly nonbounded functions, leading to a
version of an inequality due to Giné, Latała and Zinn [16] with explicit and rea-
sonable constants. In Section 8, we derive moment inequalities for conditional
Rademacher averages. In Section 9, a new general moment inequality is obtained



516 BOUCHERON, BOUSQUET, LUGOSI AND MASSART

for Rademacher chaos of any order, which generalizes Talagrand’s inequality for
Rademacher chaos of order 2. We also give a simple proof of Bonami’s inequality.

In Section 10, we consider suprema of Boolean polynomials. Such problems
arise, for example, in random graph theory where an important special case is the
number of small subgraphs in a random graph.

Some of the routine proofs are gathered in the Appendix.

2. Main results.

2.1. Notation. We begin by introducing some notation used throughout the
paper. LetX1, . . . ,Xn denote independent random variables taking values in
some measurable setX. Denote byXn

1 the vector of thesen random variables.
Let F :Xn → R be some measurable function. We are concerned with moment
inequalities for the random variable

Z = F(X1, . . . ,Xn).

Throughout,E[Z] denotes expectation ofZ andE[Z|F ] denotes conditional ex-
pectation with respect toF . X′

1, . . . ,X
′
n denote independent copies ofX1, . . . ,Xn,

and we write

Z′
i = F(X1, . . . ,Xi−1,X

′
i ,Xi+1, . . . ,Xn).

Define the random variablesV + andV − by

V + = E

[
n∑

i=1

(Z − Z′
i)

2+|Xn
1

]
and

V − = E

[
n∑

i=1

(Z − Z′
i )

2−|Xn
1

]
,

wherex+ = max(x,0) and x− = max(−x,0) denote the positive and negative
parts of a real numberx. The variablesV + and V − play a central role in [7].
In particular, it is shown in [7] that the moment generating function ofZ − EZ

may be bounded in terms of the moment generating functions ofV + andV−. The
main results of the present paper relate the moments ofZ to lower-order moments
of these variables.

In the sequel,Zi will denote an arbitrary measurable functionFi of X(i) =
X1, . . . ,Xi−1,Xi+1, . . . ,Xn, that is,

Zi = Fi(X1, . . . ,Xi−1,Xi+1, . . . ,Xn).

Finally, define

V =
n∑

i=1

(Z − Zi)
2.
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Throughout the paper, the notation‖Z‖q is used for

‖Z‖q = (E[|Z|q])1/q,

whereq is a positive number.
Next we introduce two constants used frequently in the paper. Let

κ =
√

e

2(
√

e − 1)
< 1.271.

Let κ1 = 1 and for any integerq ≥ 2, define

κq = 1

2

(
1−

(
1− 1

q

)q/2)−1

.

Then(κq) increases toκ asq goes to infinity. Also, define

K = 1

e − √
e

< 0.935.

2.2. Basic theorems. Recall first one of the first general moment inequalities,
proved by Efron and Stein [15], and further improved by Steele [37]:

PROPOSITION1 (Efron–Stein inequality).

Var[Z] ≤ 1
2E

[
n∑

i=1

(Z − Z′
i )

2

]
.

Note that this inequality becomes an equality ifF is the sum of its arguments.
Generalizations of the Efron–Stein inequality to higher moments of sums of in-
dependent random variables have been known in the literature as Marcinkiewicz’s
inequalities (see, e.g., [13], page 34). Our purpose is to describe conditions under
which versions of Marcinkiewicz’s inequalities hold for general functionsF .

In [7], inequalities for exponential moments ofZ are derived in terms of the
behavior ofV + and V −. This is quite convenient when exponential moments
of Z scale nicely withn. In many situations of interest this is not the case, and
bounds on exponential moments of roots ofZ rather than bounds on exponential
moments ofZ itself are obtained (e.g., the triangle counting problem in [7]). In
such situations, relating the polynomial moments ofZ to V +, V − or V may prove
more convenient.

In the simplest settings,V + andV − are bounded by a constant. It was shown
in [7] that in this caseZ exhibits a sub-Gaussian behavior. Specifically, it is shown
in [7] that if V + ≤ c almost surely for some positive constantc, then for anyλ > 0,

Eeλ(Z−E[Z]) ≤ eλ2c.

Our first introductory result implies sub-Gaussian bounds for the polynomial
moments ofZ:
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THEOREM 1. If V + ≤ c for some constantc ≥ 0, then for all integersq ≥ 2,

‖(Z − E[Z])+‖q ≤ √
Kqc.

[Recall thatK = 1/(e−√
e ) < 0.935.]If furthermoreV − ≤ c, then for all integers

q ≥ 2,

‖Z‖q ≤ E[Z] + 21/q
√

Kqc.

The main result of this paper is the following inequality.

THEOREM 2. For any realq ≥ 2,

‖(Z − E[Z])+‖q ≤
√(

1− 1

q

)
2κqq‖V +‖q/2

≤ √
2κq‖V +‖q/2 = √

2κq
∥∥√V +∥∥

q

and

‖(Z − E[Z])−‖q ≤
√(

1− 1

q

)
2κqq‖V −‖q/2

≤ √
2κq‖V −‖q/2 = √

2κq
∥∥√V −∥∥

q.

REMARK. To better understand our goal, recall Burkholder’s inequalities
[9, 10] from martingale theory. Burkholder’s inequalities may be regarded as
extensions of Marcinkiewicz’s inequalities to sums of martingale increments.
They are natural candidates for deriving moment inequalities for a functionZ =
F(X1, . . . ,Xn) of many independent random variables. The approach mimics the
method of bounded differences (see [32, 33]) classically used to derive Bernstein-
or Hoeffding-like inequalities under similar circumstances. The method works
as follows: letFi denote theσ -algebra generated by the sequence(Xi

1). Then
the sequenceMi = E[Z|Fi] is an Fi -adapted martingale (the Doob martingale
associated withZ). Let 〈Z〉 denote the associatedquadratic variation

〈Z〉 =
n∑

i=1

(Mi − Mi−1)
2,

let [Z] denote the associatedpredictable quadratic variation

[Z] =
n∑

i=1

E[(Mi − Mi−1)
2|Fi−1],

and letM be defined as max1≤i≤n |Zi − Zi−1|. Burkholder’s inequalities [9, 10]
(see also [12], page 384) imply that forq ≥ 2,

‖Z − E[Z]‖q ≤ (q − 1)
√‖〈Z〉‖q/2 = (q − 1)

∥∥√〈Z〉∥∥q.
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Note that the dependence onq in this inequality differs from the dependence in
Theorem 2. It is known that for general martingales, Burkholder’s inequality is
essentially unimprovable (see [10], Theorem 3.3). (However, for the special case
of Doob martingale associated withZ this bound is perhaps improvable.) The
Burkholder–Rosenthal–Pinelis inequality ([34], Theorem 4.1) implies that there
exists a universal constantC such that

‖Z − E[Z]‖q ≤ C
(√

q‖[Z]‖q/2 + q‖M‖q

)
.

If one has some extra information on the sensitivity ofZ with respect to its
arguments, such inequalities may be used to develop a strict analogue of the
method of bounded differences (see [33]) for moment inequalities. In principle
such an approach should provide tight results, but finding good bounds on the
moments of the quadratic variation process often proves quite difficult.

The inequalities introduced in this paper have a form similar to those obtained
by resorting to Doob’s martingale representation and Burkholder’s inequality. But,
instead of relying on the quadratic variation process, they rely on a more tractable
quantity. Indeed, in many casesV + andV − are easier to deal with than[Z] or 〈Z〉.

Below we present two variants of Theorem 2 which may be more convenient in
some applications.

THEOREM 3. Assume thatZi ≤ Z for all 1 ≤ i ≤ n. Then for any realq ≥ 2,

‖(Z − E[Z])+‖q ≤ √
κqq‖V ‖q/2 ≤ √

κq‖V ‖q/2.

Even though Theorem 2 provides some information concerning the growth of
moments of(Z − E[Z])−, this information may be hard to exploit in concrete
cases. The following result relates the moments of(Z − E[Z])− with ‖V +‖q

rather than with‖V −‖q . This requires certain boundedness assumptions on the
increments ofZ.

THEOREM 4. If for some positive random variableM ,

(Z − Z′
i )+ ≤ M for every1 ≤ i ≤ n,

then for every realq ≥ 2,

‖(Z − E[Z])−‖q ≤
√

C1q(‖V +‖q/2 ∨ q‖M‖2
q),

whereC1 < 4.16. If, on the other hand,

0≤ Z − Zi ≤ M for every1≤ i ≤ n,

then

‖(Z − E[Z])−‖q ≤
√

C2q(‖V ‖q/2 ∨ q‖M‖2
q),

whereC2 < 2.42.
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2.3. Corollaries. Next we derive some general corollaries of the main the-
orems which provide explicit estimates under various typical conditions on the
behavior ofV +, V − or V .

The first corollary, obtained from Theorem 3, is concerned with function-
als Z satisfying V ≤ Z. Such functionals were at the center of attention in
[6] and [36] where they were called self-bounded functionals. They encompass
sums of bounded nonnegative random variables, suprema of nonnegative empirical
processes, configuration functions in the sense of [39] and conditional Rademacher
averages [7]; see also [14] for other interesting applications.

COROLLARY 1. Assume that0≤ Z − Zi ≤ 1 for all i = 1, . . . , n and that for
some constantA ≥ 1,

0≤
n∑

i=1

(Z − Zi) ≤ AZ.

Then for all integersq ≥ 1,

‖Z‖q ≤ E[Z] + A
q − 1

2
,(2.1)

and for every realq ≥ 2, then

‖(Z − E[Z])+‖q ≤ √
κ

[√
AqE[Z] + Aq

2

]
.(2.2)

Moreover, for all integersq ≥ 2,

‖(Z − E[Z])−‖q ≤ √
CqAE[Z],

whereC < 1.131.

The next corollary provides a simple sub-Gaussian bound for the lower
tail wheneverV − is bounded by a nondecreasing function ofZ. A similar
phenomenon was observed in ([7], Theorem 6).

COROLLARY 2. Assume thatV − ≤ g(Z) for some nondecreasing functiong.
Then for all integersq ≥ 2,

‖(Z − E[Z])−‖q ≤ √
KqE[g(Z)].

Finally, the following corollary of Theorem 3 deals with a generalization of
self-bounded functionals that was already considered in [7].

COROLLARY 3. Assume thatZi ≤ Z for all i = 1, . . . , n andV ≤ WZ for a
random variableW ≥ 0. Then for all realsq ≥ 2 and all θ ∈ (0,1],

‖Z‖q ≤ (1+ θ)E[Z] + κ

2

(
1+ 1

θ

)
q‖W‖q .
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Also,

‖(Z − E[Z])+‖q ≤ √
2κq‖W‖qE[Z] + κq‖W‖q.

If M denotes a positive random variable such that for every1≤ i ≤ n,

0≤ Z − Zi ≤ M,

then we also have

‖(Z − E[Z])−‖q ≤
√

C2q
(‖M‖q(2E[Z] + 2q‖W‖q) ∨ q‖M‖2

q

)
,

whereC2 < 2.42 is as in Theorem4.

The proofs of Theorems 2–4 and of Corollaries 1–3 are developed in two steps.
First, in Section 4, building on the modifiedφ-Sobolev inequalities presented
in Section 3, generalized Efron–Stein-type moment inequalities are established.
These modifiedφ-Sobolev/Efron–Stein inequalities play a role similar to the one
played by modified log-Sobolev inequalities in the entropy method in [26–28]
and [30]. Second, in Section 5 these general inequalities are used as main steps
of an inductive proof of the main results. This second step may be regarded as an
analogue of what is called in [28] theHerbst argumentof the entropy method.

3. Modified φ-Sobolev inequalities. The purpose of this section is to reveal
some fundamental connections betweenφ-entropies and modifiedφ-Sobolev
inequalities. The basic result is the duality formula of Lemma 1 implying
the tensorization inequality which is at the basis of the modifiedφ-Sobolev
inequalities of Theorems 5 and 6. These theorems immediately imply the
generalized Efron–Stein inequalities of Lemmas 3–5.

3.1. φ-entropies, duality and the tensorization property.First we investigate
so-called “tensorization” inequalities due to Latała and Oleszkiewicz [25] and
Bobkov (see [26]). As of the time of writing this text, Chafaï [11] developed a
framework forφ-entropies andφ-Sobolev inequalities.

We introduce some notation. LetL
+
1 denote the convex set of nonnegative and

integrable random variablesZ. For any convex functionφ onR+, let theφ-entropy
functionalHφ be defined forZ ∈ L

+
1 by

Hφ(Z) = E[φ(Z)] − φ(E[Z]).
Note that here and below we use the extended notion of expectation for a (not
necessarily integrable) random variableX defined asE[X] = E[X+] − E[X−]
whenever eitherX+ or X− is integrable.

The functionalHφ is said to satisfy thetensorization propertyif for every
finite family X1, . . . ,Xn of independent random variables and every(X1, . . . ,Xn)-
measurable nonnegative and integrable random variableZ,

Hφ(Z) ≤
n∑

i=1

E
[
E
[
φ(Z)|X(i)]− φ

(
E
[
Z|X(i)])].
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Observe that forn = 2 and settingZ = g (X1,X2), the tensorization property
reduces to the Jensen-type inequality

Hφ

(∫
g(x,X2) dµ1(x)

)
≤
∫

Hφ

(
g(x,X2)

)
dµ1(x),(3.1)

whereµ1 denotes the distribution ofX1. Next we show that (3.1) implies the
tensorization property. Indeed letY1 be distributed likeX1, andY2 be distributed
like the (n − 1)-tuple X2, . . . ,Xn. Let µ1 and µ2 denote the corresponding
distributions. The random variableZ is a measurable functiong of the two
independent random variablesY1 andY2. By the Tonelli–Fubini theorem,

Hφ(Z) =
∫ ∫ (

φ
(
g(y1, y2)

)− φ

(∫
g(y′

1, y2) dµ1(y
′
1)

)
+ φ

(∫
g(y′

1, y2) dµ1(y1)

)
− φ

(∫ ∫
g(y′

1, y
′
2) dµ1(y

′
1) dµ2(y

′
2)

))
dµ1(y1) dµ2(y2)

=
∫ (∫ [

φ
(
g(y1, y2)

)− φ

(∫
g(y′

1, y2) dµ1(y
′
1)

)]
dµ1(y1)

)
dµ2(y2)

+
∫ (

φ

(∫
g(y′

1, y2) dµ1(y
′
1)

)
− φ

(∫ ∫
g(y′

1, y
′
2) dµ1(y

′
1) dµ2(y

′
2)

))
dµ2(y2)

=
∫

Hφ

(
g(Y1, y2)

)
dµ2(y2) + Hφ

(∫
g(y′

1, Y2) dµ1(y
′
1)

)
≤

∫
Hφ

(
g(Y1, y2)

)
dµ2(y2) +

∫
Hφ

(
g(y′

1, Y2)
)
dµ1(y

′
1),

where the last step follows from the Jensen-type inequality (3.1).
If we turn back to the original notation, we get

Hφ(Z) ≤ E
[
E
[
φ(Z)|X(1)]− φ

(
E
[
Z|X(1)])]

+
∫ [

Hφ

(
Z(x1,X2, . . . ,Xn)

)]
dµ1(x1).

Proceeding by induction, (3.1) leads to the tensorization property for everyn.
We see that the tensorization property forHφ is equivalent to what we could
call the Jensen property, that is, (3.1) holds for everyµ1, X2 and g such that∫

g(x,X2) dµ1(x) is integrable.
Let � denote the class of functionsφ which are continuous and convex onR+,

twice differentiable onR∗+, and such that eitherφ is affine orφ′′ is strictly positive
and 1/φ′′ is concave.
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It is shown in [25] (see also [26]) that there is a tight connection between the
convexity ofHφ and the tensorization property. Also,φ ∈ � implies the convexity
of Hφ ; see [25]. However, this does not straightforwardly lead to Jensen’s property
when the distributionµ1 in (3.1) is not discrete. (See Appendix A.1 for an account
of the consequences of the convexity ofφ-entropy.)

The easiest way to establish that for some functionφ the functionalHφ

satisfies the Jensen-like property is by following the lines of Ledoux’s proof of
the tensorization property for the “usual” entropy [which corresponds to the case
φ(x) = x log(x)] and mimicking the duality argument used in one dimension to
prove the usual Jensen’s inequality, that is, to expressHφ as a supremum of affine
functions.

Provided thatφ ∈ �, our next purpose is to establish a duality formula for
φ-entropy of the form

Hφ(Z) = sup
T ∈T

E[ψ1(T )Z + ψ2(T )],

for convenient functionsψ1 and ψ2 on R+ and a suitable class of nonnegative
variablesT . Such a formula obviously implies the convexity ofHφ but also
Jensen’s property and therefore the tensorization property forHφ . Indeed,
considering againZ as a function ofY1 = X1 andY2 = (X1, . . . , Yn) and assuming
that a duality formula of the above form holds, we have

Hφ

(∫
g(y1, Y2) dµ1(y1)

)
= sup

T ∈T

∫ [
ψ1

(
T (y2)

) ∫
g(y1, y2) dµ1(y1) + ψ2

(
T (y2)

)]
dµ2(y2)

(by Fubini)

= sup
T ∈T

∫ (∫ [
ψ1

(
T (y2)

)
g(y1, y2) + ψ2

(
T (y2)

)]
dµ2(y2)

)
dµ1(y1)

≤
∫ (

sup
T ∈T

∫ [
ψ1

(
T (y2)

)
g(y1, y2) + ψ2

(
T (y2)

)]
dµ2(y2)

)
dµ1(y1)

=
∫ (

Hφ

(
g(y1, Y2)

))
dµ1(y1).

LEMMA 1. Letφ ∈ � andZ ∈ L
+
1 . If φ(Z) is integrable, then

Hφ(Z) = sup
T ∈L

+
1 ,T �=0

{
E
[(

φ′(T ) − φ′(E[T ]))(Z − T ) + φ(T )
]− φ(E[T ])}.

REMARK. This duality formula is almost identical to Proposition 4 in [11].
However, the proofs have different flavor. The proof given here is elementary.
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PROOF. The case whenφ is affine is trivial:Hφ equals zero, and so does the
expression defined by the duality formula.

Note that the expression within the brackets on the right-hand side equals
Hφ(Z) for T = Z, so the proof of Lemma 1 amounts to checking that

Hφ(Z) ≥ E
[(

φ′(T ) − φ′(E[T ]))(Z − T ) + φ(T )
]− φ(E[T ])

under the assumption thatφ(Z) is integrable andT ∈ L
+
1 .

Assume first thatZ and T are bounded and bounded away from 0. For any
λ ∈ [0,1], we setTλ = (1− λ)Z + λT and

f (λ) = E
[(

φ′(Tλ) − φ′(E[Tλ]))(Z − Tλ)
]+ Hφ(Tλ).

Our aim is to show thatf is nonincreasing on[0,1]. Noticing thatZ − Tλ =
λ(Z − T ) and using our boundedness assumptions to differentiate under the
expectation, we have

f ′(λ) = −λ
[
E[(Z − T )2φ′′(Tλ)] − (E[Z − T ])2φ′′(E[Tλ])]

+ E
[(

φ′(Tλ) − φ′(E[Tλ]))(Z − T )
]

+ E[φ′(Tλ)(T − Z)] − φ′(E[Tλ])E[T − Z],
that is,

f ′(λ) = −λ
[
E[(Z − T )2φ′′(Tλ)] − (E[Z − T ])2φ′′(E[Tλ])].

Now, by the Cauchy–Schwarz inequality,

(E[Z − T ])2 =
(

E

[
(Z − T )

√
φ′′(Tλ)

1

φ′′(Tλ)

])2

≤ E

[
1

φ′′(Tλ)

]
E[(Z − T )2φ′′(Tλ)].

Using the concavity of 1/φ′′, Jensen’s inequality implies that

E

[
1

φ′′(Tλ)

]
≤ 1

φ′′(E[Tλ]) ,

which leads to

(E[Z − T ])2 ≤ 1

φ′′(E[Tλ])E[(Z − T )2φ′′(Tλ)],

which is equivalent tof ′(λ) ≤ 0 and thereforef (1) ≤ f (0) = Hφ(Z). This means
that for anyT , E[(φ′(T ) − φ′(E[T ]))(Z − T )] + Hφ(T ) ≤ Hφ(Z).

In the general case we consider the sequencesZn = (Z ∨ 1/n) ∧ n andTk =
(T ∨ 1/k) ∧ k and our purpose is to take the limit, ask,n → ∞, in the inequality

Hφ(Zn) ≥ E
[(

φ′(Tk) − φ′(E[Tk]))(Zn − Tk) + φ(Tk)
]− φ(E[Tk]),
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which we can also write as

E[ψ(Zn,Tk)] ≥ −φ′(E[Tk])E[Zn − Tk] − φ(E[Tk]) + φ(E[Zn]),(3.2)

whereψ(z, t) = φ(z) − φ(t) − (z − t)φ′(t). Since we have to show that

E[ψ(Z,T )] ≥ −φ′(E[T ])E[Z − T ] − φ(E[T ]) + φ(E[Z])(3.3)

with ψ ≥ 0, we can always assume[ψ(Z,T )] to be integrable [since otherwise
(3.3) is trivially satisfied]. Taking the limit whenn and k go to infinity on the
right-hand side of (3.2) is easy, while the treatment of the left-hand side requires
some care. Note thatψ(z, t), as a function oft , decreases on(0, z) and increases
on (z,+∞). Similarly, as a function ofz, ψ(z, t) decreases on(0, t) and increases
on (t,+∞). Hence, for everyt , ψ(Zn, t) ≤ ψ(1, t) + ψ(Z, t), while for everyz,
ψ(z,Tk) ≤ ψ(z,1) + ψ(z,T ). Hence, givenk,

ψ(Zn,Tk) ≤ ψ(1, Tk) + ψ(Z,Tk),

as ψ((z ∨ 1/n) ∧ n,Tk) → ψ(z,Tk) for every z, we can apply the dominated
convergence theorem to conclude thatE[ψ(Zn,Tk)] converges toE[ψ(Z,Tk)] as
n goes to infinity. Hence we have the following inequality:

E[ψ(Z,Tk)] ≥ −φ′(E[Tk])E[Z − Tk] − φ(E[Tk]) + φ(E[Z]).(3.4)

Now we also haveψ(Z,Tk) ≤ ψ(Z,1)ψ(Z,T ) and we can apply the dominated
convergence theorem again to ensure thatE[ψ(Z,Tk)] converges toE[ψ(Z,T )]
ask goes to infinity. Taking the limit ask goes to infinity in (3.4) implies that (3.3)
holds for everyT ,Z ∈ L

+
1 such thatφ(Z) is integrable andE[T ] > 0. If Z �= 0

a.s., (3.3) is achieved forT = Z, while if Z = 0 a.s., it is achieved forT = 1 and
the proof of the lemma is now complete in its full generality.�

REMARK. Note that since the supremum in the duality formula of Lemma 1
is achieved forT = Z (or T = 1 if Z = 0), the duality formula remains true if the
supremum is restricted to the classTφ of variablesT such thatφ(T ) is integrable.
Hence the following alternative formula also holds:

Hφ(Z) = sup
T ∈Tφ

{
E
[(

φ′(T ) − φ′(E[T ]))(Z − T )
]+ Hφ(T )

}
.(3.5)

REMARK. The duality formula of Lemma 1 takes the following (known) form
for the “usual” entropy [which corresponds toφ(x) = x log(x)]:

Ent(Z) = sup
T

{
E
[(

log(T ) − log(E[T ]))Z]}
,

where the supremum is extended to the set of nonnegative and integrable random
variablesT with E[T ] > 0. Another case of interest isφ(x) = xp, wherep ∈
(1,2]. In this case, one has, by (3.5),

Hφ(Z) = sup
T

{
pE

[
Z
(
T p−1 − (E[T ])p−1)]− (p − 1)Hφ(T )

}
,

where the supremum is extended to the set of nonnegative variables inLp.
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REMARK. For the sake of simplicity we have focused on nonnegative
variables and convex functionsφ on R+. This restriction can be avoided and
one may consider the case whereφ is a convex function onR and define the
φ-entropy of a real-valued integrable random variableZ by the same formula as
in the nonnegative case. Assuming this time thatφ is differentiable onR and
twice differentiable onR \ {0}, the proof of the duality formula above can be
easily adapted to cover this case provided that 1/φ′′ can be extended to a concave
function onR. In particular, ifφ(x) = |x|p, wherep ∈ (1,2], one gets

Hφ(Z) = sup
T

{
pE

[
Z

( |T |p
T

− |E[T ]|
E[T ]

p)]
− (p − 1)Hφ(T )

}
,

where the supremum is extended toLp. Note that forp = 2 this formula reduces
to the classical one for the variance

Var(Z) = sup
T

{2Cov(Z,T ) − Var(T )},
where the supremum is extended to the set of square integrable variables. This
means that the tensorization inequality for theφ-entropy also holds for convex
functionsφ on R under the condition that 1/φ′′ is the restriction toR \ {0} of a
concave function onR.

3.2. From φ-entropies toφ-Sobolev inequalities.Recall that our aim is to
derive moment inequalities based on the tensorization property ofφ-entropy for
an adequate choice of the functionφ (namely, a properly chosen power function).

As a training example, we show how to derive the Efron–Stein inequality cited
in Proposition 1 and a variant of it from the tensorization inequality of the variance,
that is, theφ-entropy whenφ is defined on the whole real line asφ(x) = x2. Then

Var(Z) ≤ E

[
n∑

i=1

E
[(

Z − E
[
Z|X(i)])2|X(i)]]

and since conditionally onX(i), Z′
i is an independent copy ofZ, one has

E
[(

Z − E
[
Z|X(i)])2|X(i)] = 1

2E
[
(Z − Z′

i )
2|X(i)],

which leads to Proposition 1. A useful variant may be obtained by noticing that
E[Z|X(i)] is the bestX(i)-measurable approximation ofZ in L2 which leads to

Var(Z) ≤
n∑

i=1

E[(Z − Zi)
2](3.6)

for any family of square integrable random variablesZi ’s such thatZi is
X(i)-measurable.

Next we generalize these symmetrization and variational arguments. The
derivation of modifiedφ-Sobolev inequalities will rely on the following properties
of the elements of�. The proofs of Proposition 2 and Lemma 2 are given in
Appendix A.1.
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PROPOSITION 2. If φ ∈ �, then bothφ′ and x → (φ(x) − φ(0))/x are
concave functions on(0,∞).

LEMMA 2. Letφ be a continuous and convex function onR+. Then, denoting
byφ′ the right derivative ofφ, for everyZ ∈ L

+
1 , one has

Hφ(Z) = inf
u≥0

E[φ(Z) − φ(u) − (Z − u)φ′(u)].(3.7)

LetZ′ be an independent copy ofZ. Then

Hφ(Z) ≤ 1
2E

[
(Z − Z′)

(
φ′(Z) − φ′(Z′)

)]
(3.8) = E

[
(Z − Z′)+

(
φ′(Z) − φ′(Z′)

)]
.

If, moreover, ψ :x → (φ(x) − φ(0))/x is concave onR∗+, then

Hφ(Z) ≤ 1
2E

[
(Z − Z′)

(
ψ(Z) − ψ(Z′)

)]
(3.9) = E

[
(Z − Z′)+

(
ψ(Z) − ψ(Z′)

)]
.

Note that by Proposition 2, we can apply (3.9) wheneverφ ∈ �. In particular,
for our target example whereφ(x) = xp, with p ∈ (1,2], (3.9) improves on (3.8)
within a factorp.

Modified φ-Sobolev inequalities follow then from the tensorization inequality
for φ-entropy, the variational formula and the symmetrization inequality. The goal
is to upper bound theφ-entropy of a conveniently chosen convex functionf of
the variable of interestZ. The results crucially depend on the monotonicity of the
transformationf .

THEOREM 5. Let X1, . . . ,Xn be independent random variables and letZ be
an (X1, . . . ,Xn)-measurable random variable taking its values in an intervalI.
LetV , V + and(Zi)i≤n be defined as in Section2.1.

Letφ ∈ � and letf be a nondecreasing, nonnegative and differentiable convex
function onI. Letψ denote the functionx → (φ(x) − φ(0))/x. Then

Hφ(f (Z)) ≤ E[V +f ′2(Z)ψ ′(f (Z))] if ψ ◦ f is convex.

On the other hand, if (Zi)i≤n satisfyZi ≤ Z for all i ≤ n, then

Hφ(f (Z)) ≤ 1
2E[Vf ′2(Z)φ′′(f (Z))] if φ′ ◦ f is convex.

PROOF. First fix x < y. Assume first thatg = φ′ ◦ f is convex. We first check
that

φ(f (y)) − φ(f (x)) − (
f (y) − f (x)

)
φ′(f (x))

(3.10) ≤ 1
2(y − x)2f ′2(y)φ′′(f (y)).
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Indeed, setting

h(t) = φ(f (y)) − φ(f (t)) − (
f (y) − f (t)

)
g(t),

we have

h′(t) = −g′(t)
(
f (y) − f (t)

)
.

But for everyt ≤ y, the monotonicity and convexity assumptions onf andg yield

0≤ g′(t) ≤ g′(y) and 0≤ f (y) − f (t) ≤ (y − t)f ′(y),

hence

−h′(t) ≤ (y − t)f ′(y)g′(y).

Integrating this inequality with respect tot on [x, y] leads to (3.10).
Under the assumption thatψ ◦ f is convex,

0≤ f (y) − f (x) ≤ (y − x)f ′(y)

and

0≤ ψ(f (y)) − ψ(f (x)) ≤ (y − x)f ′(y)ψ ′(f (y)),

which leads to(
f (y) − f (x)

)(
ψ(f (y)) − ψ(f (x))

) ≤ (x − y)2f ′2(y)ψ ′(f (y)).(3.11)

Now the tensorization inequality combined with the variational inequality (3.7)
from Lemma 2 and (3.10) lead to

Hφ(f (Z)) ≤ 1
2

n∑
i=1

E[(Z − Zi)
2f ′2(Z)φ′′(f (Z))]

and therefore to the second inequality of the theorem.
The first inequality of the theorem follows in a similar way from inequality (3.9)

and from (3.11). �

The case whenf is nonincreasing is handled by the following theorem.

THEOREM 6. Let X1, . . . ,Xn be independent random variables and letZ be
an (X1, . . . ,Xn)-measurable random variable taking its values in some intervalI.
Let φ ∈ � and letf be a nonnegative, nonincreasing and differentiable convex
function onI. Let ψ denote the functionx → (φ(x) − φ(0))/x. For any random
variableZ̃ ≤ min1≤i≤n Zi ,

Hφ(f (Z)) ≤ 1
2E[Vf ′2(Z̃)φ′′(f (Z̃))] if φ′ ◦ f is convex,

while if ψ ◦ f is convex, we have

Hφ(f (Z)) ≤ E[V +f ′2(Z̃)ψ ′(f (Z̃))]
and

Hφ(f (Z)) ≤ E[V −f ′2(Z)ψ ′(f (Z))].
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The proof of Theorem 6 parallels the proof of Theorem 5. It is included in
Appendix A.1 for the sake of completeness.

REMARK. As a first illustration, we may derive the modified logarithmic
Sobolev inequalities in [7] using Theorems 5 and 6. Indeed, lettingf (z) = exp(λz)

andφ(x) = x log(x) leads to

Hφ(f (Z)) ≤ λ2
E[V + exp(λZ)],

if λ ≥ 0, while if λ ≤ 0, one has

Hφ(f (Z)) ≤ λ2
E[V − exp(λZ)].

4. Generalized Efron–Stein inequalities. The purpose of this section is
to prove the next three lemmas which relate different moments ofZ to V ,
V + andV −. These lemmas are generalizations of the Efron–Stein inequality.

Recall the definitions of(Xi),Z, (Zi), (Z
′
i ), V

+,V −,V and the constants
κ andK , given in Section 2.1.

LEMMA 3. Let q ≥ 2 be a real number and letα satisfyq/2 ≤ α ≤ q − 1.

Then

E
[
(Z − E[Z])q+

] ≤ E
[
(Z − E[Z])α+

]q/α + q(q − α)

2
E
[
V (Z − E[Z])q−2

+
]
,

E
[
(Z − E[Z])q+

] ≤ E
[
(Z − E[Z])α+

]q/α + α(q − α)E
[
V +(Z − E[Z])q−2

+
]

and

E
[
(Z − E[Z])q−

] ≤ E
[
(Z − E[Z])α−

]q/α + α(q − α)E
[
V −(Z − E[Z])q−2

−
]
.

PROOF. Let q andα be chosen in such a way that 1≤ q/2 ≤ α ≤ q − 1. Let
φ(x) = xq/α. Applying Theorem 5 withf (z) = (z − E[Z])α+ leads to the first
two inequalities. Finally, we may apply the third inequality of Theorem 6 with
f (z) = (z − E[Z])α− to obtain the third inequality of the lemma.�

The next lemma is a variant of Lemma 3 that may be convenient when dealing
with positive random variables.

LEMMA 4. Letq denote a real number, q ≥ 2 andq/2 ≤ α ≤ q − 1. If for all
i = 1, . . . , n

0≤ Zi ≤ Z a.s.,

then

E[Zq] ≤ E[Zα]q/α + q(q − α)

2
E[V Zq−2].
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PROOF. The lemma follows by choosingq andα such that 1≤ q/2 ≤ α ≤
q − 1, takingφ(x) = xq/α and applying Theorem 5 withf (z) = zα . �

The third lemma will prove useful when dealing with lower tails.

LEMMA 5. If the incrementsZ − Zi or Z − Z′
i are bounded by some positive

random variableM , then

E
[
(Z − E[Z])q−

]
(4.1)

≤ E
[
(Z − E[Z])α−

]q/α + q(q − α)

2
E
[
V (Z − E[Z] − M)

q−2
−

]
.

If the incrementsZ − Z′
i are bounded by some positive random variableM , then

E
[
(Z − E[Z])q−

]
(4.2)

≤ E
[
(Z − E[Z])α−

]q/α + α(q − α)E
[
V +(Z − E[Z] − M)

q−2
−

]
.

PROOF. If the incrementsZ − Zi or Z − Z′
i are upper bounded by some

positive random variableM , then we may also use the alternative bounds for the
lower deviations stated in Theorem 6 to derive both inequalities.�

To obtain the main results of the paper, the inequalities of the lemmas above
may be used by induction on the order of the moment. The details are worked out
in the next section.

5. Proof of the main theorems. We are now prepared to prove Theorems 1–3
and Corollaries 1 and 3.

To illustrate the method of proof on the simplest possible example, first we
present the proof of Theorem 1. This proof relies on a technical lemma proved in
Appendix A.2. Recall from Section 2.1 thatK is defined as 1/(e − √

e ).

LEMMA 6. For all integersq ≥ 4, the sequence

q �→ xq =
(

q − 1

q

)q/2(
1+ 1

K

(
q − 2

q − 1

)(q−2)/2)
is bounded by1. Also, limq→∞ xq = 1.

PROOF OFTHEOREM 1. To prove the first inequality, assume thatV + ≤ c.
Let mq be defined by

mq = ‖(Z − E[Z])+‖q .

Forq ≥ 3, we obtain from the second inequality of Lemma 3, withα = q − 1,

mq
q ≤ m

q
q−1 + c(q − 1)m

q−2
q−2.(5.1)



MOMENT INEQUALITIES 531

Our aim is to prove that

mq
q ≤ (Kqc)q/2 for q ≥ 2.(5.2)

To this end, we proceed by induction. Forq = 2, note that by the Efron–Stein
inequality,

m2
2 ≤ E[V +] ≤ c

and therefore (5.2) holds forq = 2.

Takingq = 3, sincem1 ≤ m2 ≤ √
c, we derive from (5.1) that

m3
3 ≤ 3c3/2.

This implies that (5.2) also holds forq = 3.
Consider nowq ≥ 4 and assume that

mj ≤ √
Kjc

for every j ≤ q − 1. Then, it follows from (5.1) and two applications of the
induction hypothesis that

mq
q ≤ Kq/2cq/2

√
q − 1

(√
q − 1

)q−1 + Kq/2

K
cq/2(q − 1)

(√
q − 2

)q−2

= (Kqc)q/2
((

q − 1

q

)q/2

+ q − 1

Kq

(
q − 2

q

)(q−2)/2)

= (Kqc)q/2
(

q − 1

q

)q/2(
1+ 1

K

(
q − 2

q − 1

)(q−2)/2)
.

The first part of the theorem then follows from Lemma 6.
To prove the second part, note that if, in addition,V − ≤ c, then applying the

first inequality to−Z, we obtain

‖(Z − E[Z])−‖q ≤ K
√

qc .

The statement follows by noting that

E
[|Z − E[Z]|q] = E

[
(Z − E[Z])q+

]+ E
[
(Z − E[Z])q−

] ≤ 2
(
K

√
qc

)q
. �

The proof of Theorems 2 and 3, given together below, is very similar to the
proof of Theorem 1 above.

PROOF OF THEOREMS 2 AND 3. It suffices to prove the first inequality of
Theorems 2 and 3 since the second inequality of Theorem 2 follows from the first
by replacingZ by −Z.

We intend to prove by induction onk that for all integersk ≥ 1, all q ∈
(k, k + 1],

‖(Z − E[Z])+‖q ≤ √
qκqcq,
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where eithercq = ‖V ‖q/2∨1 or cq = 2‖V +‖q/2∨1(1− 1/q).
For k = 1, it follows from Hölder’s inequality, the Efron–Stein inequality and

its variant (3.6) that

‖(Z − E[Z])+‖q ≤ √
2‖V +‖1 ≤ √

2κq‖V +‖1∨q/2

and

‖(Z − E[Z])+‖q ≤ √‖V ‖1∨q/2 ≤ √
κq‖V ‖1∨q/2.

Assume the property holds for all integers smaller than somek > 1, and let
us considerq ∈ (k, k + 1]. Hölder’s inequality implies that for every nonnegative
random variableY ,

E
[
Y(Z − E[Z])q−2

+
] ≤ ‖Y‖q/2‖(Z − E[Z])+‖q−2

q ,

hence, using the first and second inequalities of Lemma 3 withα = q − 1, we get

‖(Z − E[Z])+‖q
q ≤ ‖(Z − E[Z])+‖q

q−1 + q

2
cq‖(Z − E[Z])+‖q−2

q .

Defining

xq = ‖(Z − E[Z])+‖q
q(qκqcq)−q/2,

it suffices to prove thatxq ≤ 1. With this notation the previous inequality becomes

xqqq/2cq/2
q κq/2

q ≤ x
q/q−1
q−1 (q − 1)q/2c

q/2
q−1κ

q/2
q−1 + 1

2x1−2/q
q qq/2cq/2

q κq/2−1
q ,

from which we derive, sincecq−1 ≤ cq andκq−1 ≤ κq ,

xq ≤ x
q/q−1
q−1

(
1− 1

q

)q/2

+ 1

2κq

x1−2/q
q .

Assuming, by induction, thatxq−1 ≤ 1, the previous inequality implies that

xq ≤
(

1− 1

q

)q/2

+ 1

2κq

x1−2/q
q .

Since the function

fq :x →
(

1− 1

q

)q/2

+ 1

2κq

x1−2/q − x

is strictly concave onR+ and positive atx = 0, fq(1) = 0 andfq(xq) ≥ 0 imply
thatxq ≤ 1 as desired. �

PROOF OFTHEOREM4. We use the notationmq = ‖(Z−EZ)−‖q . Fora > 0,
the continuous function

x → e−1/2 + 1

ax
e1/

√
x − 1
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decreases from+∞ to e−1/2 − 1 < 0 on (0,+∞). DefineCa as the unique zero
of this function.

SinceC1 andC2 are larger than 1/2, it follows from Hölder’s inequality, the
Efron–Stein inequality and its variant (3.6) that forq ∈ [1,2],

‖(Z − E[Z])−‖q ≤ √
2‖V +‖1 ≤ √

2κq‖V +‖1∨q/2

and

‖(Z − E[Z])−‖q ≤ √‖V ‖1∨q/2 ≤ √
κq‖V ‖1∨q/2.

In the rest of the proof the two cases may be dealt with together. The first case,
belonging to the first assumption of Theorem 4, corresponds toa = 1, while the
second corresponds toa = 2. Thus, we define

cq =
{‖V +‖1∨q/2 ∨ q‖M‖2

q, whena = 1,

‖V ‖1∨q/2 ∨ q‖M‖2
q, whena = 2.

Forq ≥ 2, either (4.2) or (4.1) withα = q − 1 implies

mq
q ≤ m

q
q−1 + qE

[
V +((Z − EZ)− + M

)q−2](5.3)

and

mq
q ≤ m

q
q−1 + q

2
E
[
V
(
(Z − EZ)− + M

)q−2]
.(5.4)

We first deal with the caseq ∈ [2,3). By the subadditivity ofx → xq−2 for
q ∈ [2,3], we have(

(Z − EZ)− + M
)q−2 ≤ Mq−2 + (Z − E[Z])q−2

− .

Using Hölder’s inequality, we obtain from (5.3) and (5.4) that

mq
q ≤ m

q
q−1 + q‖M‖q−2

q ‖V +‖q/2 + q‖V +‖q/2m
q−2
q

and

mq
q ≤ m

q
q−1 + q

2
‖M‖q−2

q ‖V ‖q/2 + q

2
‖V ‖q/2m

q−2
q .

Using the fact thatmq−1 ≤ √
cq−1 ≤ √

cq, those two latter inequalities imply

mq
q ≤ cq/2

q + q2−q/2

a
cq/2
q + q

a
cqmq−2

q .

Let xq = (
mq√
Caqcq

)q ; then the preceding inequality translates into

xq ≤
(

1

Cacq

)q/2

+ 1

aCa

((√
Caq

)−q+2 + x1−2/q
q

)
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which in turn implies

xq ≤ 1

2Ca

+ 1

aCa

(1+ x1−2/q
q )

sinceq ≥ 2 andCa ≥ 1.

The function

gq :x → 1

2Ca

+ 1

aCa

(1+ x1−2/q) − x

is strictly concave onR+ and positive at 0. Furthermore,

gq(1) = 4+ a

2aCa

− 1< 0,

sinceCa > (4+ a) /2a. Hencegq can be nonnegative at pointxq only if xq ≤ 1,
which settles the caseq ∈ [2,3].

We now turn to the caseq ≥ 3. We will prove by induction onk ≥ 2 that for
all q ∈ [k, k + 1), mq ≤ √

qCaκqcq. By the convexity ofx → xq−2 we have, for
everyθ ∈ (0,1),

(
(Z − EZ)− + M

)q−2 =
(
θ
(Z − EZ)−

θ
+ (1− θ)

M

1− θ

)q−2

≤ θ−q+3Mq−2 + (1− θ)−q+3(Z − E[Z])q−2
− .

Using Hölder’s inequality, we obtain from (5.3) and (5.4) that

mq
q ≤ m

q
q−1 + qθ−q+3‖M‖q−2

q ‖V +‖q/2 + q(1− θ)−q+3‖V +‖q/2m
q−2
q

and

mq
q ≤ m

q
q−1 + q

2
θ−q+3‖M‖q−2

q ‖V ‖q/2 + q

2
(1− θ)−q+3‖V ‖q/2m

q−2
q .

Now assume by induction thatmq−1 ≤ √
Ca(q − 1)cq−1. Sincecq−1 ≤ cq , we

have

mq
q ≤ Cq/2

a (q − 1)q/2cq/2
q + 1

a
q−q+2θ−q+3qq/2cq/2

q + 1

a
q(1− θ)−q+3cqm

q−2
q .

Let xq = C
−q/2
a m

q
q(qcq)−q/2. Then it suffices to show thatxq ≤ 1 for all q > 2.

Observe that

xq ≤
(

1− 1

q

)q/2

+ 1

aCa

(
θ−q+3(√Caq

)−q+2 + (1− θ)−q+3x1−2/q
q

)
.

We chooseθ minimizing

g(θ) = θ−q+3(√Caq
)−q+2 + (1− θ)−q+3,
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that is,θ = 1/(
√

Caq + 1). Since for this value ofθ

g(θ) =
(

1+ 1√
Caq

)q−2

,

the bound onxq becomes

xq ≤
(

1− 1

q

)q/2

+ 1

aCa

(
1+ 1√

Caq

)q−2(
1+

( √
Caq

1+ √
Caq

)
(x1−2/q

q − 1)

)
.

Hence, using the elementary inequalities(
1− 1

q

)q/2

≤ e−1/2 and
(

1+ 1√
Caq

)q−2

≤ e1/
√

Ca ,

we get

xq ≤ e−1/2 + e1/
√

Ca

aCa

( √
Caq

1+ √
Caq

)
(x1−2/q

q − 1).

Since the function

fq :x → e−1/2 + e1/
√

Ca

aCa

(
1+

( √
Caq

1+ √
Caq

)
(x1−2/q − 1)

)
− x

is strictly concave onR+ and positive at 0 andCa is defined in such a way that
fq(1) = 0, fq can be nonnegative atxq only if xq ≤ 1, which proves the theorem
by induction. �

PROOF OFCOROLLARY 1. Applying Lemma 4 withα = q − 1 leads to

‖Z‖q
q ≤ ‖Z‖q

q−1 + q

2
E[V Zq−2].

But by assumption, we haveV ≤ AZ, and therefore

‖Z‖q
q ≤ ‖Z‖q

q−1 + qA

2
‖Z‖q−1

q−1

≤ ‖Z‖q
q−1

[
1+ qA

2‖Z‖q−1

]
.

Since for any nonnegative real numberu, 1+ uq ≤ (1+ u)q for u ≥ 0,

‖Z‖q
q ≤ ‖Z‖q

q−1

(
1+ A

2‖Z‖q−1

)q

or, equivalently,

‖Z‖q ≤ ‖Z‖q−1 + A

2
.
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Thus,‖Z‖q ≤ ‖Z‖1 + (A/2)(q − 1) by induction, and (2.1) follows.
To prove (2.2), note first that by Theorem 3,

‖(Z − EZ)+‖q ≤ √
κq‖V ‖q/2 ≤ √

κqA‖Z‖q/2.

Let s be the smallest integer such thatq/2≤ s. Then (2.1) yields

‖Z‖q/2 ≤ E[Z] + A(s − 1)

2
≤ E[Z] + Aq

4

so that

‖(Z − E[Z])+‖q ≤ √
κ

[√
qAE[Z] + q2A2

4

]

≤ √
κ

[√
qAE[Z] + qA

2

]
and inequality (2.2) follows.

In order to prove the last inequality of Corollary 1, we first defineC as the
unique positive root of the equation

e−1/2 + 1

2C
e−1+1/C − 1 = 0.

We derive from the upper boundV ≤ AZ and the modified Efron–Stein
inequality (3.6) that

(E|Z − EZ|)2 ≤ E[(Z − EZ)2] ≤ AEZ.

SinceC > 1, this proves the inequality forq = 1 andq = 2. Forq ≥ 3, we assume,
by induction, thatmk ≤ √

CkAE[Z] for k = q − 2 andk = q − 1 and useV ≤ AZ

together with (4.1) withα = q − 1. This gives

mq
q ≤ m

q
q−1 + q

2
AE

[
Z
(
(Z − E[Z])− + 1

)q−2]
.

Recall Chebyshev’s negative association inequality which asserts that iff is
nondecreasing andg is nonincreasing, then

E[fg] ≤ E[f ]E[g].
Since the functionz → ((z − E[Z])− + 1)q−2 decreases, by Chebyshev’s negative
association inequality, the previous inequality implies

mq
q ≤ m

q
q−1 + q

2
AE[Z]E[((Z − EZ)− + 1

)q−2]
.

Thus, this inequality becomes

mq
q ≤ m

q
q−1 + q

2
AE[Z](1+ mq−2)

q−2
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and therefore our induction assumption yields

mq
q ≤

(
1− 1

q

)q/2

(CqAE[Z])q/2+ (CqAE[Z])q/2

2C

[
1√

CqAE[Z] +
√

1− 2

q

]q−2

.

Now we use the fact that sinceZ is nonnegative,mq ≤ EZ. Then we may always
assume thatCqA ≤ EZ, since otherwise the last inequality of Corollary 1 is
implied by this crude upper bound. Combining this inequality withA > 1 leads
to

1√
CqAE[Z] ≤ 1

Cq
,

so that plugging this in the inequality above and settingxq = m
q
q(CqAEZ)−q/2,

we derive that

xq ≤
(

1− 1

q

)q/2

+ 1

2C

(
1

Cq
+
√

1− 2

q

)q−2

.

Now we claim that (
1

Cq
+
√

1− 2

q

)q−2

≤ e−1+1/C.(5.5)

Indeed, (5.5) may be checked numerically forq = 3, while forq ≥ 4, combining√
1− 2

q
≤ 1− 1

q
− 1

2q2

with ln(1+ u) ≤ u leads to

ln

[(
1

Cq
+
√

1− 2

q

)q−2]
≤ −1+ 1

C
+ 1

q

(
3

2
+ 1

q
− 2

C

)
≤ −1+ 1

C
+ 1

q

(
7

4
− 2

C

)
,

which, sinceC < 8/7, implies (5.5). Hence

xq ≤
(

1− 1

q

)q/2

+ 1

2C
e−1+1/C ≤ e−1/2 + 1

2C
e−1+1/C,

which, by definition ofC, means thatxq ≤ 1, completing the proof of the third
inequality. �

PROOF OF COROLLARY 2. This corollary follows by noting that ifV − is
bounded by a nondecreasing function ofZ, then by negative association,

E
[
V −(Z − E[Z])q−2

−
]

≤ E
[
g(Z)(Z − E[Z])q−2

−
]

≤ E[g(Z)]E[(Z − E[Z])q−2
−

]
.
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Thus, writing

mq = ‖(Z − E[Z])−‖q,

we have

mq
q ≤ m

q
q−1 + E[g(Z)](q − 1)m

q−2
q−2.

This recursion is identical to the one appearing in the proof of Theorem 1, so the
rest of the proof is identical to that of Theorem 1.�

PROOF OFCOROLLARY 3. Letq be a number,q ≥ 2. Let θ > 0. Then

‖(Z − E[Z])+‖q ≤ √
κq‖WZ‖q/2 (by Theorem 3)

≤ √
κq‖Z‖q‖W‖q (by Hölder’s inequality)

≤ θ

2
‖Z‖q + κq

2θ
‖W‖q

[for θ > 0,since
√

ab ≤ (a2 + b2)/2 for a, b ≥ 0].

Now Z ≥ 0 implies that‖(Z − E[Z])−‖q ≤ E[Z] and we have‖Z‖q ≤ E[Z] +
‖(Z − E[Z])+‖q . Hence, for 0< θ ≤ 1,

‖Z‖q ≤ 1

1− θ/2
E[Z] + κq

2θ(1− θ/2)
‖W‖q

≤ (1+ θ)E[Z] + κq

2

(
1+ 1

θ

)
‖W‖q,

concluding the proof of the first statement. To prove the second inequality, note
that

‖(Z − E[Z])+‖q

≤ √
κq‖WZ‖q/2 (by Theorem 3)

≤ √
κq‖W‖q‖Z‖q (by Hölder’s inequality)

≤ √
κq‖W‖q(2E[Z] + κq‖W‖q) (by the first inequality withθ = 1)

≤ √
2κq‖W‖qE[Z] + κq‖W‖q,

as desired. �
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6. Sums of random variables. In this section we show how the results stated
in Section 2 imply some classical moment inequalities for sums of independent
random variables such as the Khinchine–Kahane, Marcinkiewicz and Rosenthal
inequalities. In all cases, the proof basically does not require any further work.
Also, we obtain explicit constants which only depend onq. These constants are
not optimal, though in some cases their dependence onq is of the right order. For
more information on these and related inequalities we refer to [13].

The simplest example is the case of Khinchine’s inequality:

THEOREM 7 (Khinchine’s inequality). Let a1, . . . , an be nonnegative con-
stants, and let X1, . . . ,Xn be independent Rademacher variables(i.e., with
P{Xi = −1} = P{Xi = 1} = 1/2). If Z = ∑n

i=1 aiXi , then for any integerq ≥ 2,

‖(Z)+‖q = ‖(Z)−‖q ≤ √
2Kq

√√√√ n∑
i=1

a2
i

and

‖Z‖q ≤ 21/q
√

2Kq

√√√√ n∑
i=1

a2
i ,

whereK = 1/(e − √
e ) < 0.935.

PROOF. We may use Theorem 1. Since

V + =
n∑

i=1

E
[(

ai(Xi − X′
i )
)2
+|Xi

] = 2
n∑

i=1

a2
i 1aiXi>0 ≤ 2

n∑
i=1

a2
i ,

the result follows. �

Note also that using a symmetrization argument (see, e.g., [13], Lemma 1.2.6),
Khinchine’s inequality above implies Marcinkiewicz’s inequality: ifX1, . . . ,Xn

are independent centered random variables, then for anyq ≥ 2,∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
q

≤ 21+1/q
√

2Kq

√√√√∥∥∥∥∥∑
i

X2
i

∥∥∥∥∥
q/2

.

The next two results are Rosenthal-type inequalities for sums of independent
nonnegative and centered random variables. The following inequality is very
similar to inequality (Hr ) in [16] which follows from an improved Hoffmann–
Jørgensen inequality of [24]. Note again that we obtain the result without further
work.
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THEOREM 8. Define

Z =
n∑

i=1

Xi,

whereXi are independent and nonnegative random variables. Then for all integers
q ≥ 1 andθ ∈ (0,1),

‖(Z − E[Z])+‖q ≤
√

2κq

∥∥∥∥max
i

|Xi |
∥∥∥∥
q

E[Z] + κq

∥∥∥∥max
i

|Xi |
∥∥∥∥
q

,

‖(Z − E[Z])−‖q ≤
√

Kq
∑
i

E[X2
i ]

and

‖Z‖q ≤ (1+ θ)E[Z] + κ

2
q

(
1+ 1

θ

)∥∥∥∥ max
1≤i≤n

Xi

∥∥∥∥
q

.

PROOF. We may use Corollary 3 to get the first and the third inequalities; just
note that

V =
n∑

i=1

X2
i ≤ WZ,

where

W = max
1≤i≤n

Xi.

In order to get the second inequality, just observe that

V − ≤ ∑
i

E[X′2
i ],

and apply Theorem 1 to−Z. �

Next we use the previous result to derive a Rosenthal-type inequality for sums
of centered variables. In spite of the simplicity of the proof, the dependence of
the constants onq matches the best known bounds. (See [35] which extends the
theorem below for martingales.)

THEOREM 9. Let Xi , i = 1, . . . , n, be independent centered random vari-
ables. Define

Z =
n∑

i=1

Xi, σ 2 = ∑
i

E[X2
i ], Y = max

1≤i≤n
|Xi |.

Then for any integerq ≥ 2 andθ ∈ (0,1),

‖(Z)+‖q ≤ σ
√

2κ(2+ θ)q + qκ

√
1+ 1

θ
‖Y‖q .
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PROOF. We use Theorem 2. Note that

V + = ∑
i

X2
i +∑

i

E[Xi
′2].

Thus,

‖(Z)+‖q ≤ √
2κq‖V +‖q/2 (by Theorem 2),

≤
√

2κq

√√√√(∑
i

E[Xi
′2]

)
+
∥∥∥∥∥∑

i

X2
i

∥∥∥∥∥
q/2

≤
√

2κq

√√√√∑
i

E[Xi
′2] + (1+ θ)

∑
i

E[X2
i ] + κq

2

(
1+ 1

θ

)
‖Y 2‖q/2

(by Theorem 8)

=
√

2κq

√√√√(2+ θ)
∑
i

E[X2
i ] + κq

2

(
1+ 1

θ

)
‖Y 2‖q/2

≤ σ
√

2κ(2+ θ)q + qκ

√
1+ 1

θ
‖Y‖q . �

7. Suprema of empirical processes. In this section we apply the results
of Section 2 to derive moment bounds for suprema of empirical processes. In
particular, the main result of this section, Theorem 12, may be regarded as
an analogue of Talagrand’s inequality [40] for moments. Indeed, Talagrand’s
exponential inequality may be easily deduced from Theorem 12 by bounding the
moment generating function by bounding all moments.

As a first illustration, we point out that the proof of Khinchine’s inequality in
the previous section extends, in a straightforward way, to an analogous supremum:

THEOREM 10. Let T ⊂ R
n be a set of vectorst = (t1, . . . , tn) and let

X1, . . . ,Xn be independent Rademacher variables. If Z = supt∈T
∑n

i=1 tiXi , then
for any integerq ≥ 2,

‖(Z − E[Z])+‖q ≤ √
2Kq sup

t∈T

√√√√ n∑
i=1

t2
i ,

whereK = 1/(e − √
e ) < 0.935,and

‖(Z − E[Z])−‖q ≤ √
2C1q sup

t∈T

√√√√ n∑
i=1

t2
i ∨ 2

√
C1q sup

i,t

|ti |,

whereC1 is defined as in Theorem4.
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Before stating the main result of the section, we mention the following
consequence of Corollary 3.

THEOREM 11. Let F be a countable class of nonnegative functions defined
on some measurable setX. Let X1, . . . ,Xn denote a collection ofX-valued
independent random variables. LetZ = supf ∈F

∑
i f (Xi) and

M = max
1≤i≤n

sup
f ∈F

f (Xi).

Then, for all q ≥ 2 andθ ∈ (0,2),

‖Z‖q ≤ (1+ θ)E[Z] + κ

2
q

(
1+ 1

θ

)
‖M‖q.

Next we introduce the relevant quantities for the statement and proof of our
main theorem about moments of centered empirical processes.

Let F denote a countable class of measurable functions fromX → R. Let
X1, . . . ,Xn denote independentX-valued random variables such that for all
f ∈ F andi = 1, . . . , n, Ef (Xi) = 0. Let

Z = sup
f ∈F

∣∣∣∣∣
n∑

i=1

f (Xi)

∣∣∣∣∣.
The fluctuations of an empirical process are known to be characterized by two
quantities that coincide when the process is indexed by a singleton. The strong
variance	2 is defined as

	2 = E

[
sup
f

∑
i

f 2(Xi)

]
,

while the weak varianceσ 2 is defined by

σ 2 = sup
f

E

[∑
i

f 2(Xi)

]
.

A third quantity appearing in the moment and and tail bounds is

M = sup
i,f

|f (Xi)|.

Before stating the main theorem, we first establish a connection between the weak
and the strong variances of an empirical process:

LEMMA 7.

	2 ≤ σ 2 + 32
√

E[M2]E[Z] + 8E[M2].
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If the functions inF are uniformly bounded, then	 may be upper bounded
by a quantity that depends onσ and E[Z] thanks to the contraction principle
(see [30]). Giné, Latała and Zinn [16] combine the contraction principle with
a Hoffmann–Jørgensen-type inequality. To follow their reasoning, we need the
following lemma.

LEMMA 8. Letε1, . . . , εn denote independent Rademacher variables. Letλ >

4 and definet0 = √
λE[M2]. Then

E

[
sup
f

∣∣∣∣∣∑
i

εif
2(Xi)1supf |f (Xi)|>t0

∣∣∣∣∣
]

≤ 1

(1− 2/
√

λ)2
E[M2].

The proof of this lemma is postponed to Appendix A.3.

PROOF OF LEMMA 7. Let ε1, . . . , εn denote independent Rademacher ran-
dom variables, and lett0 = √

λE[M2]. Then

	2 ≤ E

[
sup
f

∣∣∣∣∣∑
i

f 2(Xi) − E[f 2(Xi)]
∣∣∣∣∣
]

+ sup
f

E

[∑
i

f 2(Xi)

]

≤ σ 2 + 2E

[
sup
f

∣∣∣∣∣∑
i

εif
2(Xi)

∣∣∣∣∣
]

(by the symmetrization inequalities [29], Lemma 6.3)

≤ σ 2 + 2E

[
sup
f

∣∣∣∣∣∑
i

εif
2(Xi)1supf |f (Xi)|≤t0

∣∣∣∣∣
]

+ 2E

[
sup
f

∣∣∣∣∣∑
i

εif
2(Xi)1supf |f (Xi)|>t0

∣∣∣∣∣
]

≤ σ 2 + 4t0E

[
sup
f

∣∣∣∣∣∑
i

εif (Xi)

∣∣∣∣∣
]

+ 2E

[
sup
f

∣∣∣∣∣∑
i

εif
2(Xi)1supf |f (Xi)|>t0

∣∣∣∣∣
]

(the contraction principle for Rademacher averages [29], Lemma 6.5

sinceu �→ u2/(2t0) is contracting on[−t0, t0])

≤ σ 2 + 4t0E

[
sup
f

∣∣∣∣∣∑
i

εif (Xi)

∣∣∣∣∣
]

+ 2

(1− 2/
√

λ)2
E[M2] (by Lemma 8)

≤ σ 2 + 8
√

λE[M2]‖Z‖1 + 2

(1− 2/
√

λ )2
E[M2]

which, by takingλ = 16, completes the proof.�
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The next theorem offers two upper bounds for the moments of suprema of
centered empirical processes. The first inequality improves inequality (3) of [35].
The second inequality is a version of Proposition 3.1 of [16]. It follows from the
first combined with Lemma 8.

THEOREM 12. Let F denote a countable class of measurable functions from
X → R. LetX1, . . . ,Xn denote independentX-valued random variables such that
for all f ∈ F andi = 1, . . . , n, Ef (Xi) = 0. Let

Z = sup
f ∈F

∣∣∣∣∣
n∑

i=1

f (Xi)

∣∣∣∣∣.
Then for allq ≥ 2,

‖(Z − E[Z])+‖q ≤ √
2κq(	 + σ) + 2κq

(
‖M‖q + sup

i,f ∈F
‖f (Xi)‖2

)
,

and furthermore,

‖Z‖q ≤ 2EZ + 2σ
√

2κq + 20κq‖M‖q + 4
√

κq‖M‖2.

PROOF. The proof uses Theorem 2 which states that

‖(Z − E[Z])+‖q ≤ √
2κq‖V +‖q/2.

We may boundV + as follows:

V + ≤ sup
f ∈F

n∑
i=1

E
[(

f (Xi) − f (X′
i)
)2|Xn

1
]

≤ sup
f ∈F

n∑
i=1

(
E[f (Xi)

2] + f (Xi)
2)

≤ sup
f ∈F

n∑
i=1

E[f (Xi)
2] + sup

f ∈F

n∑
i=1

f (Xi)
2.

Thus, by Minkowski’s inequality and the Cauchy–Schwarz inequality,

√‖V +‖q/2 ≤
√√√√ sup

f ∈F

n∑
i=1

E[f (Xi)2] +
∥∥∥∥∥ sup

f ∈F

n∑
i=1

f (Xi)2

∥∥∥∥∥
q/2

≤ σ +
∥∥∥∥∥ sup

f ∈F

√√√√ n∑
i=1

f (Xi)2

∥∥∥∥∥
q

= σ +
∥∥∥∥∥ sup

f ∈F
sup

α : ‖α‖2≤1

n∑
i=1

αif (Xi)

∥∥∥∥∥
q
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≤ σ + 	 +
∥∥∥∥∥
(

sup
f ∈F ,α : ‖α‖2≤1

n∑
i=1

αif (Xi)

− E

[
sup

f ∈F ,α : ‖α‖2≤1

n∑
i=1

αif (Xi)

])
+

∥∥∥∥∥
q

.

The last summand may be upper bounded again by Theorem 2. Indeed, the
correspondingV + is not more than

max
i

sup
f ∈F

f 2(Xi) + max
i

sup
f ∈F

E[f 2(Xi)],

and thus∥∥∥∥∥
(

sup
f ∈F ,α : ‖α‖2≤1

n∑
i=1

αif (Xi) − E

[
sup

f ∈F ,α : ‖α‖2≤1

n∑
i=1

αif (Xi)

])
+

∥∥∥∥∥
q

≤ √
2κq

(
‖M‖q + max

i
sup
f ∈F

‖f (Xi)‖2

)
.

This completes the proof of the first inequality of the theorem. The second
inequality follows because by nonnegativity ofZ, ‖(Z − E[Z])−‖q ≤ EZ and
therefore ‖Z‖q ≤ EZ + ‖(Z − E[Z])+‖q and since by the first inequality,
combined with Lemma 7, we have

‖(Z − E[Z])+‖q ≤ √
2κq

(
σ +

√
32

√
E[M2]E[Z] +

√
8E[M2] + σ

)
+ 2κq

(
‖M‖q + sup

i,f ∈F
‖f (Xi)‖2

)
≤ E[Z] + 2σ

√
2κq + 16κ

√
E[M2] +

√
16κqE[M2]

+ 2κq

(
‖M‖q + sup

i,f ∈F
‖f (Xi)‖2

)
(using the inequality

√
ab ≤ a + b/4).

Using ‖M‖2 ≤ ‖M‖q and supi,f ∈F ‖f (Xi)‖2 ≤ ‖M‖2, we obtain the desired
result. �

8. Conditional Rademacher averages. Let F be a countable class of
measurable real-valued functions. The conditional Rademacher average is defined
by

Z = E

[
sup
f ∈F

∣∣∣∣∣∑
i

εif (Xi)

∣∣∣∣∣∣∣∣Xn
1

]
,
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where theεi are i.i.d. Rademacher random variables. Conditional Rademacher
averages play a distinguished role in probability in Banach spaces and in statistical
learning theory (see, e.g., [1–3, 22, 23]). When the set of functions is bounded,
Z has been shown to satisfy a Bernstein-like inequality [7]. Here we provide
bounds on the growth of moments in the general case.

THEOREM 13. Let Z denote a conditional Rademacher average and let
M = supi,f f (Xi). Then

‖(Z − E[Z])+‖q ≤ √
2κq‖M‖qE[Z] + κq‖M‖q

and

‖(Z − E[Z])−‖q ≤ √
2C2

{√
q‖M‖qE[Z] + 2q‖M‖q

}
.

PROOF. Define

Zi = E

[
sup
f ∈F

∣∣∣∣∣∑
j �=i

εjf (Xj )

∣∣∣∣∣∣∣∣Xn
1

]
.

The monotonicity of conditional Rademacher averages with respect to the
sequence of summands is well known, as it was at the core of the early
concentration inequalities used in the theory of probability in Banach spaces
(see [29]). Thus, for alli, Z − Zi ≥ 0 and∑

i

(Z − Zi) ≤ Z.

Thus, we have

V ≤ ZM and Z − Zi ≤ M.

The result now follows by Corollary 3, noticing thatM = W. �

9. Moment inequalities for Rademacher chaos. Throughout this section,
X1,X2, . . . ,Xn denote independent Rademacher random variables. LetIn,d be
the family of subsets of{1, . . . , n} of sized (d < n). Let T denote a set of vectors
indexed byIn,d . T is assumed to be a compact subset ofR(n

d).
In this section we investigate suprema of Rademacher chaos indexed byT of

the form

Z = sup
t∈T

∣∣∣∣∣ ∑
I∈In,d

(∏
i∈I

Xi

)
tI

∣∣∣∣∣.
For each 1≤ k ≤ d, let Wk be defined as

Wk = sup
t∈T

sup
α(1),...,α(k)∈Rn : ‖α(h)‖2≤1,h≤k∣∣∣∣∣ ∑

J∈In,d−k

(∏
j∈J

Xj

)( ∑
i1,...,ik : {i1,...,ik}∪J∈In,d

(
k∏

h=1

α
(h)
ih

)
t{i1,...,ik}∪J

)∣∣∣∣∣.
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(Note thatWd is just a constant, and does not depend on the value of theXi ’s.)
The main result of this section is the following.

THEOREM 14. Let Z denote the supremum of a Rademacher chaos of order
d and letW1, . . . ,Wd be defined as above. Then for all realsq ≤ 2,

‖(Z − E[Z])+‖q ≤
d−1∑
j=1

(4κq)j/2
E[Wj ] + (4κ)(d−1)/2

√
2Kqd/2Wd

≤
d∑

j=1

(4κq)j/2
E[Wj ].

Before proving the theorem, we show how it can be used to obtain exponential
bounds for the upper tail probabilities. In the special case ofd = 2 we recover an
inequality proved by Talagrand [40].

COROLLARY 4. For all t ≥ 0,

P{Z ≥ E[Z] + t} ≤ 2exp

(
− log(2)

4κ

d∧
j=1

(
t

2dE[Wj ]
)2/j

)
.

PROOF. By Theorem 14, for anyq,

P{Z ≥ E[Z] + t} ≤ E[(Z − E[Z])+]q
tq

≤
(∑d

j=1(4κq)j/2
E[Wj ]

t

)q

.

The right-hand side is at most 2−q if for all j = 1, . . . , d, (4κq)j/2
E[Wj ] ≤ t/(2d).

Solving this forq yields the desired tail bound.�

PROOF OFTHEOREM14. The proof is based on a simple repeated application
of Theorem 2. First note that the cased = 1 follows from Theorem 10. Assume
thatd > 1. By Theorem 2,

‖(Z − E[Z])+‖q ≤ √
2κq

∥∥√V +∥∥
q .

Now straightforward calculation shows that
√

V + ≤ √
2W1

and therefore

‖(Z − E[Z])+‖q ≤ √
2κq

√
2
(
E[W1] + ‖(W1 − E[W1])+‖q

)
.
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To bound the second term on the right-hand side, we use, once again, Theorem 2.
Denoting the random variableV + corresponding toW1 by V +

1 , we see that
V +

1 ≤ 2W2
2 , so we get

‖(W1 − E[W1])+‖q ≤ √
2κq

√
2
(
E[W2] + ‖(W2 − E[W2])+‖q

)
.

We repeat the same argument. Fork = 1, . . . , d −1, letV +
k denote the variableV +

corresponding toWk . Then

V +
k ≤ 2 sup

t∈T
sup

α(1),...,α(k)∈Rn : ‖α(h)‖2≤1,1≤h≤k

∑
i

( ∑
J∈In,d−k : i∈J

( ∏
j∈J\{i}

Xj

)( ∑
i1,...,ik : {i1,...,ik}∪J∈In,d

k∏
h=1

α
(h)
ih

)
t{i1,...,ik}∪J

)2

= 2W2
k+1.

Thus, using Theorem 2 for eachWk , k ≤ d − 1, we obtain the desired inequality.
�

REMARK. Here we consider the special cased = 2. Let T denote a set of
symmetric matrices with zero diagonal entries. The setT defines a Rademacher
chaos of order 2 by

Z = 2 sup
t∈T

∣∣∣∣∣∑
i �=j

XiXj t{i,j}
∣∣∣∣∣.

Let Y be defined as

Y = sup
t∈T

sup
α : ‖α‖2≤1

n∑
i=1

Xi

∑
j �=i

αj ti,j

and letB denote the supremum of theL2 operator norms of matricest ∈ T .

Theorem 14 implies the following moment bound forq ≥ 2:

‖(Z − E[Z])+‖q ≤ 4
√

κq E[Y ] + 4
√

2
√

κKqB.

By Corollary 4, this moment bound implies the following exponential upper tail
bound forZ:

P{Z ≥ E[Z] + t} ≤ 2exp
(
− log(2)

t2

64κE[Y ]2 ∧ t

16
√

2
√

κKB

)
.

This is equivalent to Theorem 17 in [7] and matches the upper tail bound stated in
Theorem 1.2 in [40]. Note, however, that with the methods of this paper we do not
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recover the corresponding lower tail inequality given by Talagrand.

We finish this section by pointing out that a version of Bonami’s inequality [5]
for Rademacher chaos of orderd may also be recovered using Theorem 14.

COROLLARY 5. LetZ be a supremum of Rademacher chaos of orderd. Then

‖Z‖q ≤
√

4κqd
d+1 − 1√

4κqd − 1
‖Z‖2.(9.1)

Note that Bonami’s inequality states‖Z‖q ≤ (q − 1)d/2‖Z‖2 so that the bound
obtained by Theorem 14 has an extra factor of the order ofdd/2 in the constant.
This loss in the constant seems to be an inevitable artifact of the tensorization at
the basis of our arguments. On the other hand, the proof based on Theorem 2 is
remarkably simple.

SKETCH OF PROOF OFCOROLLARY 5. By Theorem 14, it suffices to check
that for allj,1≤ j ≤ d,

E[Wj ] ≤ dj/2‖Z‖2.

Letting W0 = Z, the property obviously holds forj = 0. Thus, it is enough to
prove that for anyk > 1,

E[Wk] ≤ ‖Wk‖2 ≤ √
d‖Wk−1‖2.

To this end, it suffices to notice that, on the one hand,

‖Wk‖2
2 = E

[
sup
t∈T

sup
α(1),...,α(k−1) : ‖α(h)‖2≤1,h<k

∑
J,J ′∈In,d−(k−1)

|J ∩ J ′|
( ∏

j∈J

Xj

)( ∏
j∈J ′

Xj

)

( ∑
i1,...,ik : {i1,...,ik−1}∪J∈In,d

(
k−1∏
h=1

α
(h)
ih

)
t{i1,...,ik−1}∪J

)

( ∑
i1,...,ik : {i1,...,ik−1}∪J ′∈In,d

(
k−1∏
h=1

α
(h)
ih

)
t{i1,...,ik−1}∪J ′

)]

(the cumbersome but pedestrian proof of this identity is omitted), and on the other
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hand,

‖Wk−1‖2
2 = E

[
sup
t∈T

sup
α(1),...,α(k−1) : ‖α(h)‖2≤1,h<k

∑
J,J ′∈In,d−(k−1)

( ∏
j∈J

Xj

)( ∏
j∈J ′

Xj

)
( ∑

i1,...,ik : {i1,...,ik−1}∪J∈In,d

(
k−1∏
h=1

α
(h)
ih

)
t{i1,...,ik−1}∪J

)
( ∑

i1,...,ik : {i1,...,ik−1}∪J ′∈In,d

(
k−1∏
h=1

α
(h)
ih

)
t{i1,...,ik−1}∪J ′

)]
.

Noticing that the contraction principle for Rademacher sums (see [29], Theo-
rem 4.4) extends to Rademacher chaos in a straightforward way, and using the
fact that|J ∩ J ′| ≤ d, we get the desired result.�

10. Boolean polynomials. The suprema of Rademacher chaos discussed
in the previous section may be considered as special cases of suprema of
U -processes. In this section we consider another family ofU -processes, defined
by bounded-degree polynomials of independent{0,1}-valued random variables.
An important special case is the thoroughly studied problem of the number of
occurrences of small subgraphs in a random graph.

In this sectionX1, . . . ,Xn denote independent{0,1}-valued random variables.
Just like in the previous section,In,d denotes the set of subsets of sized of
{1, . . . , n} andT denotes a compact set of nonnegative vectors fromR(n

d). Note
that in many applications of interest, for example, in subgraph-counting problems,
T is reduced to a single vector.

The random variableZ is defined as

Z = sup
t∈T

∑
I∈In,d

(∏
i∈I

Xi

)
tI .

For the cased = 1, moment bounds forZ follow from Theorem 11. Fork = 0,

1, . . . , d − 1, letMk be defined as

max
J∈In,d−k

sup
t∈T

∑
I∈In,d : J⊆I

( ∏
j∈I\J

Xj

)
tI .

Note that allMk are again suprema of nonnegative boolean polynomials, but the
degree ofMk is k ≤ d.

Lower tails for Boolean polynomials are by now well understood thanks to the
Janson–Suen inequalities [17, 38]. On the other hand, upper tails for such simple
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polynomials are notoriously more difficult; see [20] for a survey. We obtain the
following general result.

THEOREM 15. LetZ andMk be defined as above. For all realsq ≥ 2,

‖(Z − E[Z])+‖q

≤ 2
d∑

j=1

{
(κq)j/2

√
d!

(d − j)!
√

E[Z]E[Md−j ] + (κq)j
d!

(d − j)!E[Md−j ]
}
.

PROOF. The proof is based on a repeated application of Corollary 3, very
much in the spirit of the proof of Theorem 14. For eachi ∈ {1, . . . , n}, define

Zi = sup
t∈T

∑
I∈In,d : i /∈I

tI

(∏
j∈I

Xj

)
.

The nonnegativity assumption for the vectorst ∈ T implies that Zi ≤ Z.

Moreover,

Z − Zi ≤ Md−1

and ∑
i

(Z − Zi) ≤ dZ.

Thus,V ≤ dMd−1Z. Hence, by Corollary 3,

‖(Z − E[Z])+‖q ≤ √
2κqd‖Md−1‖qE[Z] + κdq‖Md−1‖q .

We may repeat the same reasoning to eachMk , k = d − 1, . . . ,1, to obtain

‖Mk‖q ≤ 2
{
E[Mk] + κkq

2
‖Mk−1‖q

}
.

By induction onk, we get

‖Md−1‖q ≤ 2

{
k=d−1∑

0

(κq)d−1−k (d − 1)!
k! E[Mk]

}
,

which completes the proof.�

REMARK. Just like in the case of Rademacher chaos, we may easily derive an
exponential upper tail bound. By a similar argument to Corollary 4, we get

P{Z ≥ E[Z] + t}

≤ exp

(
− log 2

dκ

∧
1≤j≤d

(
t

4d
√

E[Z]E[Mj ]
)2/j

∧
(

t

4dE[Md−j ]
)1/j

)
.
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REMARK. If d = 1, Theorem 15 provides Bernstein-like bounds, and is, in a
sense, optimal. For higher order, naive applications of Theorem 15 may not lead
to optimal results. Moment growth may actually depend on the special structure
of T . Consider the prototypical triangle counting problem (see [18] for a general
introduction to the subgraph counting problem).

In theG(n,p) model, a random graph ofn vertices is generated in the following
way: for each pair{u, v} of vertices, an edge is inserted betweenu andv with
probability p. Edge insertions are independent. LetXu,v denote the Bernoulli
random variable that is equal to 1 if and only if there is an edge betweenu andv.

Three verticesu, v and w form a triangle ifXu,v = Xv,w = Xw,z = 1. In the
triangle counting problem, we are interested in the number of triangles

Z = ∑
{u,v,w}∈In,3

Xu,vXv,wXu,w.

Note that for this particular problem,

M1 = sup
{u,v}∈In,2

∑
w : w/∈{u,v}

Xu,wXv,w.

M1 is thus the maximum of
(n
2

)
(correlated) binomial random variables with

parametersn − 2 andp2. Applying Corollary 1 (withA = 2), we get forq ≥ 1,

‖M1‖q ≤ n ∧ (E[M1] + q − 1).

Simple computations reveal that

E[M1] ≤ 2(logn + np2).

Applying Corollary 3 toZ, we finally get

‖(Z − E[Z])+‖q ≤ √
6κqE[M1]E[Z]

+ q
(√

6κE[Z] + 3κ
(
n ∧ (

E[M1] + 3(q − 1)
)))

,

which represents an improvement over what we would get from Theorem 15,
and provides exponential bounds with the same flavor as those announced in [7].
However, the above inequality is still not optimal. In the following discussion we
focus on upper bounds onP{Z ≥ 2E[Z]} whenp > logn/n. The inequality above,

takingq = �n2p3

288κ � or q = �
√

E[Z]
12

√
κ

�, implies that for sufficiently largen,

P{Z ≥ 2E[Z]} ≤ exp
(
− log

4

3

n2p3

144κ
∨ log 2

√
E[Z]

12
√

κ

)
.

Recent work by Kim and Vu [21] show that better, and in a sense optimal, upper
bounds can be obtained with some more work; see also [19] for related recent
results. Kim and Vu use two ingredients in their analysis. In a first step, they tailor
Bernstein’s inequality for adequately stopped martingales to the triangle counting
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problem. This is not enough since it provides bounds comparable to the above
inequality. In the martingale setting, this apparent methodological weakness is
due to the fact that the quadratic variation process〈Z〉 associated withZ may
suffer from giant jumps [larger than�(n2p2)] with a probability that is larger
than exp(−�(n2p2)). In the setting advocated here, huge jumps in the quadratic
variation process are reflected in huge values forM1. [In fact, the probability that
M1 ≥ np is larger than the probability that a single binomial random variable with
parametersn andp2 is larger thannp which is larger than exp(−�(np)).] In order
to get the right upper bound, Kim and Vu suggest a partitioning device. An edge
(u, v) is said to be good if it belongs to less thannp triangles. A triangle is good
if its three edges are good. LetZg andZb denote the number of good and bad
triangles. In order to bound the probability thatZ is larger than 2E[Z], it suffices
to bound the probability thatZg ≥ 3/2E[Z] and thatZb > E[Z]/2. Convenient
moment bounds forZg can be obtained easily using the main theorems of this
paper. IndeedZg/np satisfies the conditions of Corollary 1 withA = 3. Hence,

‖(Zg − E[Zg])+‖q ≤ √
κ

[√
3qnpE[Zg] + 3qnp√

2

]
.

This moment bound implies that

P

{
Zg ≥ 3

2
E[Z]

}
≤ exp

(
− log

4

3

n2p2

144

)
.

We refer the reader to ([21], Section 4.2) for a proof thatP{Zb ≥ E[Z]/2} is upper
bounded by exp(−�(n2p2)).

The message of this remark is that (infamous) upper tail bounds concerning
multilinear Boolean polynomials that can be obtained using Bernstein inequalities
for stopped martingales can be recovered using the moment inequalities stated in
the present paper. However, to obtain optimal bounds, subtle ad hoc reasoning still
cannot be avoided.

APPENDIX

A.1. Modified φ-Sobolev inequalities. Recall the notation used in Section 3.
As pointed out in [25], provided thatφ′′ is strictly positive, the condition 1/φ′′
concave is necessary for the tensorization property to hold. Here we point out
the stronger property that the concavity of 1/φ′′ is a necessary condition for the
φ-entropyHφ to be convex on the setL+∞(�,A,P) of bounded and nonnegative
random variables.

PROPOSITIONA.1. Let φ be a strictly convex function onR+ which is twice
differentiable onR∗+. Let(�,A,P) be a rich enough probability space in the sense
that P mapsA onto [0,1]. If Hφ is convex onL+∞(�,A,P), thenφ′′(x) > 0 for
everyx > 0 and1/φ′′ is concave onR∗+.
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PROOF. Let θ ∈ [0,1] and x, x′, y, y′ be positive real numbers. Under the
assumption on the probability space we can define a pair of random variables
(X,Y ) to be(x, y) with probability θ and(x′, y′) with probability (1 − θ). Then
the convexity ofHφ means that

Hφ

(
λX + (1− λ)Y

) ≤ λHφ(X) + (1− λ)Hφ(Y )

for everyλ ∈ (0,1). Defining, for every(u, v) ∈ R
∗+ × R

∗+,

Fλ(u, v) = −φ
(
λu + (1− λ)v

)+ λφ(u) + (1− λ)φ(v),

the inequality is equivalent to

Fλ

(
θ(x, y) + (1− θ)(x′, y′)

) ≤ θFλ(x, y) + (1− θ)Fλ(x
′, y′).

Hence,Fλ is convex onR∗+ × R
∗+. This implies, in particular, that the determinant

of the Hessian matrix ofFλ is nonnegative at each point(x, y). Thus, setting
xλ = λx + (1− λ)y,

[φ′′(x) − λφ′′(xλ)][φ′′(y) − (1− λ)φ′′(xλ)] ≥ λ(1− λ)[φ′′(xλ)]2,
which means that

φ′′(x)φ′′(y) ≥ λφ′′(y)φ′′(xλ) + (1− λ)φ′′(x)φ′′(xλ).(A.1)

If φ′′(x) = 0 for some pointx, we see that eitherφ′′(y) = 0 for everyy, which is
impossible becauseφ is assumed to be strictly convex, or there exists somey such
thatφ′′(y) > 0 and thenφ′′ is identically equal to 0 on the nonempty open interval
with endpointsx andy, which also leads to a contradiction with the assumption
thatφ is strictly convex. Henceφ′′ is strictly positive at each point ofR∗+ and (A.1)
leads to

1

φ′′(λx + (1− λ)y)
≥ λ

φ′′(x)
+ 1− λ

φ′′(y)
,

which means that 1/φ′′ is concave. �

PROOF OFPROPOSITION2. Without loss of generality we may assume that
φ(0) = 0. If φ is strictly convex,

1

φ′′((1− λ)u + λx)

≥ 1− λ

φ′′(u)
+ λ

φ′′(x)
(by concavity of 1/φ′′)

≥ λ

φ′′(x)
(by positivity ofφ′′, i.e., strict convexity ofφ).

In any case, the concavity of 1/φ′′ implies that for everyλ ∈ (0,1) and every
positivex andu,

λφ′′((1− λ)u + λx
) ≤ φ′′(x),
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which implies that for every positivet ,

λφ′′(t + λx) ≤ φ′′(x).

Letting λ tend to 1, we derive from the above inequality thatφ′′ is nonincreasing,
that is,φ′ is concave. Settingψ(x) = φ(x)/x, one has

x3ψ ′′(x) = x2φ′′(x) − 2xφ′(x) + 2φ(x) = f (x).

The convexity ofφ and its continuity at 0 imply thatxφ′(x) tends to 0 asx goes
to 0. Also, the concavity ofφ′ implies that

x2φ′′(x) ≤ 2x
(
φ′(x) − φ′(x/2)

)
,

so x2φ′′(x) tends to 0 asx → 0 and thereforef (x) → 0 asx → 0. Denoting
(abusively) byφ(3) the right derivative ofφ′′ (which is well defined since 1/φ′′ is
concave) and byf ′ the right derivative off , we havef ′(x) = x2φ(3)(x). Then
f ′(x) is nonpositive becauseφ′′ is nonincreasing. Thus,f is nonincreasing. Since
f tends to 0 at 0, this means thatf is a nonpositive function and the same property
holds for the functionψ ′′, which completes the proof of the concavity ofψ . �

PROOF OFLEMMA 2. Without loss of generality we assume thatφ(0) = 0.
The convexity ofφ implies that for every positiveu,

−φ(E[Z]) ≤ −φ(u) − (E[Z] − u)φ′(u),

and therefore

Hφ(Z) ≤ E[φ(Z) − φ(u) − (Z − u)φ′(u)].
Since the latter inequality becomes an equality whenu = m, the variational
formula (3.7) is proven. SinceZ′ is an independent copy ofZ, we derive from
(3.7) that

Hφ(Z) ≤ E[φ(Z) − φ(Z′) − (Z − Z′)φ′(Z′)]
≤ −E[(Z − Z′)φ′(Z′)]

and by symmetry

2Hφ(Z) ≤ −E[(Z′ − Z)φ′(Z)] − E[(Z − Z′)φ′(Z′)],
which leads to (3.8). To prove (3.9), we simply note that

1
2E

[
(Z − Z′)

(
ψ(Z) − ψ(Z′)

)]− Hφ(Z) = −E[Z]E[ψ(Z)] + φ(E[Z]).
But the concavity ofψ implies thatE[ψ(Z)] ≤ ψ(E[Z]) = φ(E[Z])/E[Z] and
we derive from the preceding identity that (3.9) holds.�
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PROOF OF THEOREM 6. Fix first ỹ ≤ x ≤ y. Under the assumption that
g = φ′ ◦ f is convex,

φ(f (y)) − φ(f (x)) − (
f (y) − f (x)

)
φ′(f (x))

(A.2) ≤ 1
2(y − x)2f ′2(ỹ)φ′′(f (ỹ)).

Indeed, denoting byh the function

h(t) = φ(f (y)) − φ(f (t)) − (
f (y) − f (t)

)
g(t),

we have

h′(t) = −g′(t)
(
f (y) − f (t)

)
.

But for everyt ≤ y, the monotonicity and convexity assumptions onf andg yield

0≤ −g′(t) ≤ −g′(ỹ) and 0≤ −(
f (y) − f (t)

) ≤ −(y − t)f ′(ỹ),

hence

−h′(t) ≤ (y − t)f ′(ỹ)g′(ỹ).

Integrating this inequality with respect tot on [x, y] leads to (A.2). Under the
assumption thatψ ◦ f is convex, we notice that

0 ≤ −(
f (y) − f (x)

) ≤ −(y − x)f ′(ỹ)

and

0 ≤ −(
ψ(f (y)) − ψ(f (x))

) ≤ −(y − x)f ′(ỹ)ψ ′(f (ỹ)),

which implies(
f (y) − f (x)

)(
ψ(f (y)) − ψ(f (x))

) ≤ (x − y)2f ′2(y)ψ ′(f (y)).(A.3)

The tensorization inequality combined with (3.7) and (A.2) leads to

Hφ(f (Z)) ≤ 1
2

n∑
i=1

E[(Z − Zi)
2f ′2(Z̃)φ′′(f (Z̃))]

and therefore to the first inequality of Theorem 6, while we derive from the
tensorization inequality (3.9) and (A.3) that

Hφ(f (Z)) ≤
n∑

i=1

E[(Z − Z′
i)

2+f ′2(Z̃)ψ ′(f (Z̃))],

which means that the second inequality of Theorem 6 indeed holds.
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In order to prove the third inequality, we simply definẽf (x) = f (−x) and
Z̃ = −Z. Thenf̃ is nondecreasing and convex and we can use the first inequality
of Theorem 5 to boundHφ(f (Z)) = Hφ(f̃ (Z̃)), which gives

Hφ(f̃ (Z̃)) ≤
n∑

i=1

E[(Z̃ − Z̃′
i)

2+f̃ ′2(Z̃)ψ ′(f̃ (Z̃))]

≤
n∑

i=1

E[(Z − Z′
i)

2−f ′2(Z)ψ ′(f (Z))],

completing the proof of the result.�

A.2. Proof of Lemma 6. By Stirling’s formula,

k! =
(

k

e

)k√
2πke2βk ,

whereβk is positive and decreases to 0 ask → ∞. Using the above formula with
k = q − 2, k = q − 1 andk = q leads to

xq ≤ eβq−βq−1−1/2
(

q − 1

q

)1/4

+ 1

K
eβq−βq−2−1

(
(q − 1)2

q(q − 2)

)1/4

.

By the monotonicity of Stirling’s correction, we haveβq ≤ βq−1 ≤ βq−2, and the
preceding inequality becomes

xq ≤ e−1/2
(

q − 1

q

)1/4

+ 1

K
e−1

(
q − 1

(q − 2)q

)1/4

.

Our aim is to prove thatxq ≤ 1. Let

aq = e−1/2(q − 1)1/4q−1/4,

uq = e−1(q − 1)1/2(q − 2)−1/4q−1/4

1− aq

.

Then

xq ≤ aq + 1

K
uq(1− aq)

and sinceuq → K asq → ∞, in order to show thatxq ≤ 1, it is enough to prove
that uq ≤ uq+1 for everyq ≥ 4. Let θ = 1/q. Thenuq ≤ uq+1 is equivalent to
g(θ) ≥ 0, where

g(θ) = (1− 2θ)1/4(1− e−1/2(1− θ)1/4)+ e−1/2(1− θ)3/4

(A.4) − (1− θ)1/2(1− θ2)1/4.
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Now, t → t−2((1− t)1/2 − (1− 2t)1/4) is easily seen to be increasing on(0,1/2)

(just notice that its power series expansion has nonnegative coefficients), so since
θ ≤ 1/4, settingγ = 16(

√
3/4− 2−1/4), one has(1− 2θ)1/4 ≥ (1− θ)1/2 − γ θ2.

Plugging this inequality in (A.4) yields

g(θ) ≥ (1− θ)1/2(1− (1− θ2)1/4)− γ θ2(1− e−1/2(1− θ)1/4)
and therefore, using again thatθ ≤ 1/4,

g(θ) ≥ (3
4

)1/2(1− (1− θ2)1/4)− γ θ2(1− e−1/2(3
4

)1/4)
.

Finally, note that 1− (1− θ2)1/4 ≥ θ2/4 which implies

θ−2g(θ) ≥ 1
4

(3
4

)1/2 − γ
(
1− e−1/2(3

4

)1/4)
and since one can check numerically that the right-hand side of this inequality is
positive (more precisely, it is larger than 0.041), we derive that the sequence(uq)

is increasing and is therefore smaller than its limitK and the result follows.

A.3. Proof of Lemma 8. The statement follows from a version of Hoffmann–
Jørgensen’s inequality. In particular, we use inequality (1.2.5s) on page 10 in [13]
with p = 1 andt = 0. Then we obtain

E

[
sup
f

∣∣∣∣∣∑
i

εif
2(Xi)1supf |f (Xi)|>t0

∣∣∣∣∣
]

≤
(

E[M2]1/2

1− (4P[supf |∑i εif 2(Xi)| > t0])1/2

)2

.

The right-hand side may be bounded further by observing that, by Markov’s
inequality,

P

[
sup
f

∣∣∣∣∣∑
i

εif
2(Xi)1supf |f (Xi)|>t0

∣∣∣∣∣ > 0

]
=

[
sup
f,i

|f (Xi)| > t0

]

≤ E[M2]
t2
0

= 1

λ
.
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