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CRITICAL RANDOM HYPERGRAPHS: THE EMERGENCE OF
A GIANT SET OF IDENTIFIABLE VERTICES
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Université Pierre et Marie Curie (Paris 6)

We consider a model for random hypergraphs withidentifiability,
an analogue of connectedness. This model has a phase transition in the
proportion of identifiable vertices when the underlying random graph
becomes critical. The phase transition takes various forms, depending on the
values of the parameters controlling the different types of hyperedges. It may
be continuous as in a random graph. (In fact, when there are no higher-order
edges, it is exactly the emergence of the giant component.) In this case, there
is a sequence of possible sizes of “components” (including but not restricted
to N2/3). Alternatively, the phase transition may be discontinuous. We are
particularly interested in the nature of the discontinuous phase transition and
are able to exhibit precise asymptotics. Our method extends a result of Aldous
[Ann. Probab.25 (1997) 812–854] on component sizes in a random graph.

1. Poisson random hypergraphs. The emergence of the giant component in
a random graph is now a well-understood phenomenon (see [5]). The purpose of
this paper is to demonstrate that an analogous, but richer, phenomenon occurs in
random hypergraphs. We employ stochastic process methods of the type described
in [6].

We use the framework of Poisson random hypergraphs introduced by Darling
and Norris [3]. Suppose we are given a set of verticesV of sizeN . Denote the
power set ofV by P (V ). We define a Poisson random hypergraph with parameters
(βk : k ≥ 2) by a random map� : P (V ) → Z

+ such that

�(A) ∼ Poisson
(
Nβk

/(
N

k

))
whenever|A| = k.

�(A) is the number of hyperedges of sizek (or “k-edges”) over the setA. The
numbers of hyperedges over different subsets of the vertex set are independent.
We allow multiple edges and the distribution of�(A) depends only on|A|. Define
a generating function,β(t) = ∑∞

k=2 βkt
k . Throughout this paper, we shall assume

thatβ ′(1) < ∞, which ensures that each vertex is contained in a finite number of
edges.

We now proceed by defining identifiability. This analogue of connectedness
was first introduced by Darling and Norris [3] and further studied by Darling,
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Levin and Norris [2]. We put 1-edges (orpatches) on certain arbitrarily chosen
vertices, which make those vertices act like roots of “components.” We define the
set of identifiable vertices to be the smallest set satisfying the following recursive
conditions. First, vertices with patches on them are identifiable. Furthermore,
a vertex without a patch is identifiable if there existsr ≥ 2 such that it is contained
a hyperedge of sizer and the otherr − 1 vertices are all identifiable. In a random
graph (with patches), the identifiable vertices are those which are in the same
component as a vertex with a patch on it. Thus, the patches “pick out” some of
the components.

It is useful to have an algorithm for finding the identifiable vertices in a
hypergraph. Pick a patch at random and delete it and the vertexv underneath it.
Collapse all of the other hyperedges overv down onto their remaining vertices
so that, for example, a 4-edge over{u, v,w,x} becomes a 3-edge over{u,w,x}.
In particular, any 2-edges includingv become new patches. Repeat until there are
no patches left. The set of identifiable vertices consists of those vertices deleted.
It turns out that the order of deleting patches in this collapse procedure does not
affect the ultimate set of identifiable vertices (see [3]).

We will also consider the vertices identifiable from a particular vertex. Define
the domain of v to be the set of vertices identifiable when a single patch is
put on the hypergraph, atv. An equivalent definition is as follows:w is in
the domain ofv if and only if either (a)w = v or (b) there exists a sequence
v0 = v, v1, v2, . . . , vr = w for somer ≥ 1 such that for each 1≤ i ≤ r there exists
a hyperedge consisting ofvi and some nonempty subset of{v0, v1, . . . , vi−1}. In
a graph, the domain ofv is the same as its component and, indeed, domains will
play the role of components in what follows. Note, however, that in a general
hypergraph identifiability from a vertex is not a symmetric property. It is perfectly
possible forw to be in the domain ofv without v being in the domain ofw.
Because of this lack of symmetry, the analogy with the concept of a component
is incomplete. We observe, nonetheless, that in a Poisson random hypergraph with
β2 > 0 there is an underlying random graph and the domains of any two vertices
in the same underlying 2-edge component are the same.

THEOREM 1.1 ([2]). Let DN be the size of the domain of an arbitrarily
chosen vertex in a Poisson random hypergraph onN vertices withβ2 > 0. Define
t∗ = inf{t ≥ 0 :β ′(t) + log(1 − t) < 0} and suppose that there are no zeros of
β ′(t) + log(1− t) in (0, t∗). Then

1

N
DN

d→ t∗1{M=∞}

asN → ∞, whereM has theBorel(2β2) distribution [i.e., the distribution of the
total population of a branching process withPoisson(2β2) offspring].
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Let us first discuss the meaning of this result for a random graph. The critical
value for the emergence of a giant component isβ2 = 1/2. The significance ofM
is that the component of the specific vertex on which we put our patch has a size
which converges in distribution toM asN → ∞ (this reflects the fact that small
components look very much like branching process family trees). Ifβ2 ≤ 1/2,
the largest component is of sizeo(N). Thus, putting one patch onto the graph

identifies at mosto(N) vertices and soDN/N
p→0. This corresponds to the fact

that forβ2 ≤ 1/2, M < ∞ almost surely. Consider now the caseβ2 > 1/2. Either
the patch falls on the giant component [with probabilityP(M = ∞)] and identifies
a positive proportion,t∗, of the vertices, or it falls on a small component [with
probability P(M < ∞)] and identifies onlyo(N). The theorem tells us that this
limiting justification works even in the presence of higher-order edges but that
the precise proportion identified depends on the parameters of those higher-order
edges. Thus, Theorem 1.1 characterizes a phase transition in the proportion of
identifiable vertices for a random hypergraph with a single patch.

For a random graph,t∗ represents the proportion of vertices in the giant
component (and note thatt∗ = 0 for β2 ≤ 1/2). In a random hypergraph,
t∗ represents the proportion of vertices in a “giant domain.” Note that it is not clear
that there is a unique such domain (although it is clear from Theorem 1.1 that any
such domain must contain the vertices of any giant 2-edge component). However,
it seems that a giant domain is close to being unique in that all giant domains
contain an asymptotic proportiont∗ of the vertices. In a random hypergraph, we
havet∗ = 0 for β2 < 1/2 but we may havet∗ > 0 for β2 = 1/2. To be precise,
if β2 = 1/2 andβ3 > 1/6, thent∗ > 0, whereas ifβ2 = 1/2 andβ3 < 1/6, then
t∗ = 0. If β3 = 1/6, we must look at whetherβ4 is less than or greater than 1/12.
In general, there exists a sequence of “critical” values for theβj ’s such that if there
existsk such that for 2≤ j ≤ k − 1, βj = 1/j (j − 1) andβk > 1/k(k − 1), then
t∗ > 0, whereas if there existsk such that for 2≤ j ≤ k − 1, βj = 1/j (j − 1) and
βk < 1/k(k − 1), thent∗ = 0. [Note that the caseβj = 1/j (j − 1) for all j ≥ 2
is explicitly excluded by the assumptionβ ′(1) < ∞.] So it appears that, in some
sense, a giant domain may already be present at the critical point in a random
hypergraph (although we have probability 0 of hitting it with our single patch).
Thus, the random hypergraph phase transition can be discontinuous, in thatt∗ may
not be a continuous function ofβ2 at β2 = 1/2, whereas the random graph phase
transition is always continuous.

In order to investigate the random hypergraph phase transition further, we will
consider what happens when, instead of a single patch, we putω(N) patches on
the critical hypergraph, whereω(N)/N → 0 asN → ∞. We will add a patch to
the hypergraph, collapse as far as possible and then add another patch on a vertex
chosen uniformly at random from those remaining whenever needed to keep going.
Is there ever a functionω(N) such that we identify�(N) vertices (i.e., a giant set
of vertices)?
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2. Results. Let α(k) = (2k − 4)/(2k − 3) and

Wk(t) = B(t) + 1

k − 1

(
k(k − 1)βk − 1

)
tk−1,

where(B(t))t≥0 is a standard Brownian motion.

THEOREM 2.1. Consider a Poisson random hypergraph onN vertices.

(i) Suppose that there existsk ≥ 3 such that for 2 ≤ j ≤ k − 1, βj =
1/j (j − 1) and βk < 1/k(k − 1). Let XN be the number of vertices identified
whenω(N) patches are added to the hypergraph one by one, as necessary, where
ω(N)/N → 0 asN → ∞. Then we have

1

N
XN

p→0(2.1)

asN → ∞. Recall thatDN is the size of the domain of a randomly chosen vertex
[so thatDN is the same asXN whenω(N) = 1]. Then for anyε > 0, there existsC
such that for all sufficiently largeN ,

P
(
N−α(k)DN < C

) ≥ 1− ε.(2.2)

(ii) Suppose now that there existsk ≥ 3 such that for2 ≤ j ≤ k − 1, βj =
1/j (j − 1) andβk > 1/k(k − 1). LetAδ

N be the number of patches we need to add
one by one, as necessary, until we have identified more thanNδ vertices, for δ > 0.
Then for allδ > 0 sufficiently small,

N−α(k)/2Aδ
N

d→ − inf
t≥0

Wk(t).(2.3)

Let XN be the total number of vertices identified when we add patches one by
one as before until at leastNδ vertices have been identified(i.e., the number of
vertices identified whenAδ

N patches are added), for δ sufficiently small that(2.3)
is satisfied. Then

1

N
XN

p→ t∗(2.4)

asN → ∞, wheret∗ = inf{t ≥ 0 :β ′(t) + log(1− t) < 0}.

3. Breadth-first walk. In order to track the process of collapse (adding
patches whenever they are needed to keep going), we construct an extension to
hypergraphs of the usual breadth-first walk on graphs. (Note that this is a different
extension from that used in [7].)

Consider any hypergraph onN vertices, with no patches and an arbitrary
numbering of the vertices. Then we may define thebreadth-first orderingas
follows:
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1. Take the lowest-numbered vertex, call itv(1) and put a patch on it. Define the
childrenof vertexv(1) to be those vertices connected to it by a 2-edge. Suppose
thatv(1) hasc(1) children. Number themv(2), . . . , v(c(1) + 1), retaining the
ordering of the original labels. Now collapse the patch onv(1), leaving patches
on all of its children and any higher-order edges collapsed onto their remaining
vertices.

2. Now look atv(2). Label its children asv(c(1) + 2), . . . , v(c(1) + c(2) + 1),
where, in general, we define the children of a vertex to be those vertices
connected to it by a 2-edge which have not yet been renumbered. Note that
some of these children may only just have appeared as a result of the collapse
of vertex v(1). For example, in Figure 1,v(3) is the child ofv(2) but only
becomes visible as such after the deletion ofv(1).

3. Continue in this way, collapsing the vertices in numerical order [so the next
one to consider isv(3)]. When we run out of patches, pick the next lowest-
numbered vertex in the old ordering, put a patch on it and proceed as before.
The process terminates when there are no more vertices to consider.

So, loosely speaking, we number within levels of an underlying tree before moving
further from the “root,” the only complication being that the children ofv(i) may
only all be visible after the deletion of vertexv(i − 1).

Now we can define a walk(z(i))0≤i≤N on the integers associated with this
hypergraph by

z(0) = 0,

z(i) = z(i − 1) + c(i) − 1, i ≥ 1,

where, as before,c(i) is the number of children of vertexv(i) in the breadth-first
ordering. Theni is the number of vertex deletions (we will also refer to this as a
time) andz(i) is the number of patched vertices on the hypergraph after theith

FIG. 1. Children of vertices can appear during the process of collapse.
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vertex deletion, minus the number of patches added before the(i +1)st deletion to
keep the process going. The process(z(i))0≤i≤N is called the breadth-first walk.

Thus, for a random hypergraph onN vertices, we obtain a random walk,
(ZN(i))i≥0, on the integers which summarizes information about the hypergraph.
[In the sequel, we will refer to the random number of children of vertexv(i)

asCN(i).] Most importantly, the number of vertices which are identifiable from
the patches we add are coded as excursions above past minima in the breadth-
first walk. This is because the breadth-first walk picks out an underlying forest
structure, with each tree naturally having one more vertex than it has edges. For
more details, see [1].

It will be useful later to have some notation for the number of patches added to
the hypergraph so far. LetPN(0) = 1 and, fori ≥ 1,

PN(i) = 1− min
j≤i

ZN(j).

ThenPN(i) is the number of patches added before the(i + 1)st vertex deletion.
ZN(i) + PN(i) is the actual number of patches on the hypergraph just after the
deletion of v(i) and is always greater than or equal to 1. Thus, we have the
alternative representation

PN(i) = 1+
N−1∑
i=1

1{ZN(i−1)+PN(i−1)=1, CN (i)=0}.(3.1)

Recall thatα(k) = (2k − 4)/(2k − 3) and that

Wk(t) = B(t) + 1

k − 1

(
k(k − 1)βk − 1

)
tk−1,

where (B(t))t≥0 is a standard Brownian motion. Then our key result is the
following:

THEOREM 3.1. Suppose that(ZN(i))0≤i≤N is the breadth-first walk on the
Poisson random hypergraph onN vertices and that there exists ak ≥ 3 such that
βj = 1/j (j − 1) for all 2≤ j ≤ k − 1. Rescale by defining

Z̄N(t) = N−α(k)/2ZN

(⌊
Nα(k)t

⌋)
.

Then

Z̄N
d→Wk

asN → ∞ in D[0,∞).

Note that here the convergence is uniform on compact time-intervals. The proof
of this result is deferred to Section 6 to enable us to first interpret its implications
for the hypergraph.
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4. Consequences. If there existsk such thatβj = 1/j (j − 1) for all 2 ≤ j ≤
k − 1 andβk < 1/k(k − 1), then the limit process has a negative drift which
increases in magnitude with time. Thus, the process keeps hitting its previous
minima, on average resulting in smaller and smaller numbers of identifiable
vertices per patch added. This is very like what we see in Theorem 3 of [1] where
the components of a random graph appear in size-biased order. In the critical
random graph case,β3 = 0 < 1/6 and the components are of sizeO(N2/3), as is
well known. However, in the random hypergraph, there is a whole series of critical
scalings (N2/3, N4/5, N6/7, . . . ) which can be attained by suitable adjustments of
the parametersβ3, β4, . . . . Thus, the random hypergraph demonstrates much richer
behavior than the random graph.

If there existsk such thatβj = 1/j (j − 1) for all 2 ≤ j ≤ k − 1 andβk >

1/k(k − 1), then the processWk has positive drift and so there is a (random)
last time that it hits its own minimum. This signals the start of a giant excursion
which is too big to be measured on the scale ofNα(k). We wish to prove that the
domain which this excursion represents is, in fact, of size comparable toN . In
order to do this, we will show that the giant excursion has length at leastNδ for all
sufficiently smallδ > 0. This will then allow us to prove a fluid limit theorem for
the breadth-first walk; the length of the excursion of the fluid limit above 0 gives
us the asymptotic size of the giant set of identifiable vertices. We will also discuss
the fluctuations of the breadth-first walk around this fluid limit.

5. The giant set of identifiable vertices. For ease of notation, defineµk =
k(k − 1)βk − 1. We will now fix k ≥ 3 and look at the caseµk > 0, µj = 0 for
2 ≤ j ≤ k − 1 in more detail. First, we state a proposition which will be of use to
us later:

PROPOSITION5.1. For Wk defined as in Section2,

P
(
Wk(R2) > R

) → 1

asR → ∞.

PROOF. We have

P
(
Wk(R2) > R

) = P

(
B(R2) + µk

k − 1
R2(k−1) > R

)

= 1− �

(
1− µk

k − 1
R2k−3

)

→ 1

asR → ∞, where� is the standard Normal distribution function.�
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Thus, it is a corollary of Theorem 3.1 that the event{ZN(�Nα(k)R2	) >

RNα(k)/2} has asymptotically high probability in the sense that

lim
R→∞ lim

N→∞ P
(
ZN

(⌈
Nα(k)R2⌉)

> RNα(k)/2) = 1.(5.1)

Recall thatPN(i) = 1 − minj≤i ZN(i) is the number of patches added before
the (i + 1)st deletion to keep the process going. Then, by Theorem 3.1 and the

continuous mapping theorem (Corollary 3.1.9 of [4]),N−α(k)/2PN(
Nα(k)t�) d→
− inf0≤s≤t W

k(s). Because of the positive drift ofWk , we have

P

(
inf
s≥0

Wk(s) < −R

)
→ 0

asR → ∞ and so it is clear that

lim
R→∞ lim

N→∞ P
(
PN

(⌈
Nα(k)t

⌉)
< RNα(k)/2) = 1(5.2)

for any value oft .
Define

SR
N = inf

{
i ≥ Nα(k)R2 :ZN(i) ≤ 0

}
.

THEOREM 5.2. There existsδ > 0 such that

lim
R→∞ lim

N→∞ P(SR
N ≤ Nδ) = 0.

Essentially, by time�Nα(k)R2	, the processZN is, with high probability, in an
excursion above its last minimum of length�(N).

Define

z(t) = 1− t − exp
(−β ′(t)

)
(5.3)

and recall thatt∗ = inf{t ≥ 0 :z(t) < 0}. Assume that there are no zeros of the
functionz(t) in (0, t∗) and note thatt∗ < 1. Let Z̃N be a modified version ofZN

such that no more patches are added after time
Nδ�, for δ as in Theorem 5.2.
Thus, P̃N(
Nt�) = PN(
Nδ�) for all t ≥ δ and the first time thatZ̃N goes
below its past-minimum after time
Nδ�, it stops evolving and stays constant.
Let z̃(t) = z(t ∧ t∗). Theorem 5.2 allows us to prove a fluid limit for this modified
version ofZN .

THEOREM 5.3. For all ε > 0,

lim
N→∞ P

(
sup

0≤t≤1

∣∣∣∣ 1

N
Z̃N(
Nt
) − z̃(t)

∣∣∣∣ > ε

)
= 0.
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This implies that for any 0< σ < t∗,

sup
0≤t≤σ

∣∣∣∣ 1

N
ZN(
Nt�) − z(t)

∣∣∣∣ p→0.

In addition to Theorem 5.3, we have a functional central limit theorem, which
describes the fluctuations of the breadth-first walk around its fluid limit.

THEOREM 5.4. For any0< σ < t∗,

1√
N

(
ZN(Nt) − Nz(t)

)
0≤t≤σ

d→ (Xt)0≤t≤σ ,

where

Xt = exp
(−β ′(t)

) ∫ t

0
exp

(
β ′(s)

)
dGs

and (Gt)t≥0 is a Gaussian process such that if(Bt )t≥0 is a standard Brownian
motion, then(Gt)t≥0 ∼ (Bz(t)+t )t≥0.

REMARK. This result is consistent with Theorem 3.1; the scaling there gives
a zoomed-in version.

Assuming Theorems 3.1, 5.2 and 5.3 (which are proved in Section 6), we may
now prove Theorem 2.1.

PROOF OF THEOREM 2.1. (i) Darling and Norris [3] studied the limiting
proportion of identifiable vertices in a hypergraph with a Poisson(Nβ1) number
of patches, whereβ1 > 0 and the patches are placed on vertices chosen uniformly
at random (with replacement) right at the start, before any collapse has occurred.
In their Theorem 2.1, they show that this limiting proportion is

t∗β1
= inf{t ≥ 0 :β1 + β ′(t) + log(1− t) < 0}.

Note that if there exists ak ≥ 3 such thatβj = 1/j (j − 1) for 2 ≤ j ≤ k − 1 and
βk < 1/k(k −1), thent∗β1

→ 0 asβ1 → 0. We will exploit this result to show (2.1).
The first thing we need to do is to find a way to compare the situation where

we put all our patches on the hypergraph right at the start with the situation where
we put them on one by one when needed to continue the process of collapse. We
can couple the two situations as follows. Fix a particular realization of a Poisson
random hypergraph onN vertices with parameters all critical up to a certain
point and then one subcritical. Take the breadth-first construction, as outlined in
Section 3. Instead of putting the patches on root vertices which are always the
next-lowest numbered when we come to the end of a domain, we try to put our
next patch on a vertex chosen uniformly at random from{1, . . . ,N}. Of course,
there is some probability that the vertex we choose has already been identified, in
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which case we keep trying in the same manner until we find a vertex which has not
yet been identified. Clearly, this takes a geometric number of trials. Then, within
a domain, we continue as before in the breadth-first order. Fixδ > 0 and stop the
process of identification if ever we have reached the end of a domain and more
thanNδ vertices have been identified.

Suppose we identify the domains of up toω(N) root vertices (before having
identified Nδ vertices). LetπN be the number of vertices (possibly counting
some more than once) on which we try to put patches, including the up toω(N)

successful placings. Each of theseπN vertices is drawn uniformly at random from
{1, . . . ,N} and puttingπN patches down on them right at the start would have
identified the same vertices as putting the up toω(N) patches on one by one when
needed. Then takingG1, . . . ,Gω(N) to be independent and identically distributed
Geometric(1− δ) random variables, we have

πN ≤st

ω(N)∑
i=1

Gi,

because the proportion of vertices already identified each time we try to find a root
vertex is always less thanδ.

Let πε
N be an independent Poisson(Nε) random variable and letXε

N be the
number of vertices identified whenπε

N patches are placed on the hypergraph right
at the start. Then, for anyδ > 0,

P(XN > Nδ) ≤ P(XN > Nδ|πN < πε
N) + P(πN ≥ πε

N)

≤ P(Xε
N > Nδ) + P(πN ≥ πε

N)

≤ P(Xε
N > Nδ) + P

(
ω(N)∑
i=1

Gi ≥ πε
N

)
.

The second line follows from the obvious monotonicity property that adding more
patches identifies a stochastically larger number of vertices. By Theorem 2.1 of [3],

we haveXε
N/N

p→ t∗ε andt∗ε → 0 asε → 0. Thus, if we takeε small enough that
t∗ε < δ, we have thatP(Xε

N > Nδ) → 0 asN → ∞. Moreover, asω(N)/N → 0 as

N → ∞, we have thatP(
∑ω(N)

i=1 Gi ≥ πε
N) → 0 asN → ∞, for anyε > 0. Thus,

for anyδ > 0,

P(XN > Nδ) → 0

as N → ∞. This gives (2.1). Equation (2.2) follows immediately from Theo-
rem 3.1.

(ii) Aδ
N = PN(
Nδ�) and so Theorems 3.1 and 5.2 give (2.3). Equation (2.4)

then follows from Theorem 5.3.�
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6. Proofs.

PROOF OFTHEOREM 3.1. Our method of proof follows that of Theorem 3
of [1].

LEMMA 6.1. Let

λ2(N, i) = N

i∑
j=0

βj+2

(
i

j

)/(
N

j + 2

)

and ρ(N, i) = 1 − exp(−λ2(N, i)). Then, givenZN(i − 1) and PN(i − 1), the
distribution ofCN(i) is

Bin
(
N − (i − 1) − ZN(i − 1) − PN(i − 1), ρ(N, i − 1)

)
.

PROOF. Consider a Poisson random hypergraph,�, and delete a deterministic
set S of the vertices, collapsing any hyperedges with vertices inS down onto
their remaining vertices. Suppose|S| = i. Call the hypergraph on the remaining
vertices�′. For anyA ⊆ V \ S,

�′(A) = ∑
B⊆V : A⊆B

�(B).

If |A| = k, this has a Poisson distribution with parameter

λk(N, i) = N

i∑
j=0

βk+j

(
i

j

)/(
N

j + k

)

and the random variables(�′(A) :A ⊆ V \ S) inherit independence from the
original hypergraph. Thus,�′ is another Poisson random hypergraph.

When we perform the breadth-first walk on the hypergraph we do not delete
a deterministic set of vertices. We aim to show, nonetheless, that when we
have deletedi vertices, the probability that the number of 2-edges over the pair
{v(i + 1),w}, for any vertexw we have not yet looked at, is Poisson(λ2(N, i)),
independently for all suchw. Start with a Poisson random hypergraph and letL
be the set consisting of a list of the vertices. LetR be the set of vertices we have
reached (empty to start with). Perform the following version of the breadth-first
numbering algorithm:

1. Remove a vertex at random fromL, call it v(1) and add it toR.
2. Examine the number of hyperedges over the sets{v(1),w}, w ∈ L. The

children ofv(1) are thosew such that this number of hyperedges is 1 or greater.
3. Retaining the original ordering of the vertex-labels, call the childrenv(2), . . . ,

v(CN(1) + 1), where CN(1) is the number of children ofv(1). Remove
v(2), . . . , v(CN(1) + 1) from the listL and add them toR.
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4. Suppose we have already found the children of verticesv(1), . . . , v(i − 1). If
there is a vertexv(i) in the setR, go to step 5. Otherwise, take a randomly
chosen vertex fromL, call thatv(i), add it toR and go to step 5.

5. The children ofv(i) are thosew ∈ L such that the number of original
hyperedges over the set{v(i),w} ∪ A is 1 or greater for at least one set
A ⊆ {v(1), . . . , v(i − 1)}. (In our original version of the breadth-first ordering,
A would have been collapsed by now and sow really is a child.)

6. Rename the children as before, remove them fromL and add them toR.
Incrementi and repeat from step 4.

Observe that, before we find the children ofv(i), we do not look at the sets
{v(i),w} ∩ A, wherew ∈ L andA ⊆ {v(1), . . . , v(i − 1)}. Thus, in order to find
the children, we need only consider random variables which are independent of
what we have seen so far. So, if we imagine deletingv(1), . . . , v(i − 1), the
2-edge parameter in the remaining hypergraph is, indeed,λ2(N, i − 1). Thus, any
particular 2-edge is present with probabilityρ(N, i−1) = 1−exp(−λ2(N, i−1)).

Finally, we need to find the number of vertices eligible to be children ofv(i):

#{vertices which cannot be a child ofv(i)}
= |R|
= CN(1) + · · · + CN(i − 1) + PN(i − 1)

= ZN(i − 1) + (i − 1) + PN(i − 1),

and soCN(i) ∼ Bin(N − (i − 1) − ZN(i − 1) − PN(i − 1), ρ(N, i − 1)). �

In the statement of Theorem 3.1, we have used the floor function to inter-
polate between integer-valued time-points. Here, we will prove that the process
(ZN(i))0≤i≤N converges with a different interpolation but this will be equivalent
to the theorem as stated. Let(Ei,j : 1≤ i ≤ N, 1 ≤ j ≤ N − (i −1)−ZN(i −1)−
PN(i − 1)) be a family of independent Exp(λ2(N, i − 1)) random variables and
set

ZN(i − 1+ u) = ZN(i − 1) − u

+
N−(i−1)−ZN(i−1)−PN(i−1)∑

j=1

1{Ei,j≤u}, 0≤ u ≤ 1.

Take the filtrationF N
t = σ(ZN(u) :u ≤ t). This filtration is spatial in that it tells

us what we can “see” on the hypergraph at timet . Imagine that the vertexv(i) is
deleted at timei − 1 [recall thatZN(i) is the number of patches on the hypergraph
after the deletion ofv(i), adjusted for patches we have introduced]. Imagine that
the patches on the children ofi appear one by one in the interval(i − 1,1]. There
areN − (i − 1) − ZN(i − 1) − PN(i − 1) possible children ofv(i) (i.e., vertices
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we have not yet reached) and each of them is actually a child with probability
ρ(N, i − 1) = 1 − exp(−λ2(N, i − 1)). Imagine each of these potential children
having an Exp(λ2(N, i − 1)) random variable associated with it; then the ones
which actually are children are those whose exponential random variable is less
than 1.

Define new processes by the standard decompositions

ZN = MN + AN,(6.1)

M2
N = RN + QN,(6.2)

whereMN(0) = AN(0) = RN(0) = QN(0) = 0, MN and RN are martingales,
AN is a continuous adapted bounded variation process andQN is a continuous
adapted increasing process.

We will show that, for fixedt0,

1

Nα(k)/2 sup
t≤Nα(k)t0

∣∣∣∣AN(t) − µk

(k − 1)

tk−1

Nk−2

∣∣∣∣ p→ 0,(6.3)

1

Nα(k)
QN

(
Nα(k)t0

) p→ t0,(6.4)

1

Nα(k)
E

[
sup

t≤Nα(k)t0

|MN(t) − MN(t−)|2
]

→ 0.(6.5)

Equivalently, on rescaling, we will show that

sup
t≤t0

∣∣∣∣ĀN(t) − µk

k − 1
tk−1

∣∣∣∣ p→ 0,

Q̄N(t0)
p→ t0,

E

[
sup
t≤t0

|M̄N(t) − M̄N(t−)|2
]

→ 0,

where

ĀN(t) = N−α(k)/2AN

(
Nα(k)t

)
,

M̄N(t) = N−α(k)/2MN

(
Nα(k)t

)
,

Q̄N(t) = N−α(k)QN

(
Nα(k)t

)
.

By the martingale central limit theorem (Theorem 7.1.4(b) of [4]), conditions
(6.4) and (6.5) are sufficient to prove that

M̄N
d→B,

whereB is a standard Brownian motion. In conjunction with (6.3), this implies
that (

Z̄N(t)
)
t≥0

d→
(
B(t) + µk

k − 1
tk−1

)
t≥0

.
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Now, sinceAN is continuous, the jumps ofMN are those ofZN , which are of
size 1 by construction and so (6.5) is obvious. So we just need to find the explicit
forms of the martingale decompositions.

Define PN(t) = PN(
t�) = 1 − infs≤
t� ZN(s), a continuous-time version of
number of patches added to keep the process going. Let

aN(t) dt = P(some new child appears during[t, t + dt]|F N
t ).

Then, asZN has drift of rate−1 and jumps of+1,

AN(t) =
∫ t

0

(
aN(s) − 1

)
ds,(6.6)

QN(t) =
∫ t

0
aN(s) ds.(6.7)

Heuristically, this is because

AN(t + dt) − AN(t)

= E[ZN(t + dt) − ZN(t)|F N
t ]

= −dt + P(some new child appears during[t, t + dt]|F N
t ),

QN(t + dt) − QN(t)

= E
[(

ZN(t + dt) − ZN(t)
)2|F N

t

]
= P(some new child appears during[t, t + dt]|F N

t ).

Thus,

QN(t) = AN(t) + t.(6.8)

Defineλ2(N, t) = λ2(N, 
t�). So, for 0≤ u ≤ 1,

#{vertices at timei − 1+ u which cannot be a child ofv(i)}

= ZN(i − 1) + (i − 1) + PN(i − 1) +
N−(i−1)−ZN(i−1)−PN(i−1)∑

j=1

1{Ei,j≤u}

= ZN(i − 1+ u) + (i − 1+ u) + PN(i − 1+ u),

and so, at timet , the time until the next child appears is the minimum of
N − t − ZN(t) − PN(t) independent Exp(λ2(N, t)) random variables, and so is
exponential with parameter(N − t − ZN(t) − PN(t))λ2(N, t). Hence,

aN(t) = (
N − t − ZN(t) − PN(t)

)
λ2(N, t).

Then we have the following lemma:
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LEMMA 6.2. Fix 0≤ r < 1. Then forN sufficiently large and all0≤ t ≤ rN ,∣∣∣∣∣Nλ2(N, t) −
(

k−3∑
i=0

(
t

N

)i

+ k(k − 1)βk

(
t

N

)k−2
)∣∣∣∣∣

(6.9)
= O

(
(logN)2/N + (t/N)k−1),∣∣∣∣aN(t) − 1− µk

(
t

N

)k−2∣∣∣∣
(6.10)

≤ β(r)
|ZN(t)| + PN(t)

N
+ O

(
(logN)2

N
+

(
t

N

)k−1)
.

PROOF. Lemma 6.1 of [3] says that there exists a constantC < ∞ such that

|Nλ2(N, t) − β ′′(t/N)| ≤ C(logN)2/N(6.11)

for all N ∈ N and allt ∈ Z ∩ [0, rN]. Also, for 0≤ t ≤ rN ,∣∣∣∣∣β ′′(t/N) −
(

k−3∑
i=0

(t/N)i + k(k − 1)βk(t/N)k−2

)∣∣∣∣∣ ≤ (t/N)k−1 sup
0≤s<r

β(k+1)(s)

= (t/N)k−1β(k+1)(r)

by Taylor’s theorem and (6.9) follows. Furthermore, using (6.9),

aN(t) =
(

1− t

N
− ZN(t) + PN(t)

N

)
Nλ2(N, t)

=
(

1− t

N
− ZN(t) + PN(t)

N

)(
k−3∑
i=0

(
t

N

)i

+ k(k − 1)βk

(
t

N

)k−2
)

+ O

(
(logN)2

N
+

(
t

N

)k−1)

and so∣∣∣∣aN(t) − 1− µk

(
t

N

)k−2∣∣∣∣ ≤ β(r)
|ZN(t)| + PN(t)

N
+ O

(
(logN)2

N
+

(
t

N

)k−1)

for sufficiently largeN and (6.10) holds. �

Thus, on integratingaN(t) − 1 − µk(t/N)k−2 and using the fact thatPN(t) =
1− infs≤
t� ZN(s), we obtain that for some constantC < ∞,

∣∣∣∣AN(t) − µk

(k − 1)

tk−1

Nk−2

∣∣∣∣ ≤ 2Ct maxs≤t |ZN(s)|
N

+ O

(
t (logN)2

N
+ tk

Nk−1

)
.



1588 C. GOLDSCHMIDT

We wish to prove that

1

Nα(k)/2 sup
t≤Nα(k)t0

∣∣∣∣AN(t) − µk

(k − 1)

tk−1

Nk−2

∣∣∣∣ p→0

and so it will be sufficient to prove that

1

N1−α(k)/2 sup
t≤Nα(k)t0

|ZN(t)| p→0

or the stronger statement that1
Nα(k)/2 supt≤Nα(k)t0

|ZN(t)| is stochastically bounded
asN → ∞.

Fix a large constantK and let TN = inf{t ≥ 0 :|ZN(t)| > KNα(k)/2} ∧
(Nα(k)t0). Then

E|ZN(TN)| ≤ E|MN(TN)| + E|AN(TN)|
≤

√
E[M2

N(TN)] + E|AN(TN)|
= √

E[QN(TN)] + E|AN(TN)|
= √

E[AN(TN) + TN ] + E|AN(TN)|
≤

√
E|AN(TN)| + Nα(k)t0 + E|AN(TN)|,

where the equality on the third line is by the optional stopping theorem applied to
(6.2) and the fourth line is from (6.8). Now, there exists a constantC < ∞ such
that

E|AN(TN)| ≤ E

[∫ TN

0
|aN(t) − 1|dt

]

≤ E

[∫ Nα(k)t0

0
µk

(
t

N

)k−2

dt

]
+ E

[∫ TN

0
C

PN(t) + |ZN(t)|
N

dt

]

+ O
(
N(k−3)/(2k−3))

≤ E

[
2CTN

N
sup
t<TN

|ZN(t)|
]

+ O
(
Nα(k)/2)

≤ 2CNα(k)t0KNα(k)/2

N
+ O

(
Nα(k)/2)

= 2Ct0KN(k−3)/(2k−3) + O
(
Nα(k)/2).

Hence,E|ZN(TN)| ≤ C′KN(k−3)/(2k−3) +C′Nα(k)/2 for some constantC′ and so,
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by Markov’s inequality,

P

(
N−α(k)/2 sup

t≤Nα(k)t0

|ZN(t)| > K

)
= P

(|ZN(TN)| > KNα(k)/2)

≤ E|ZN(TN)|
KNα(k)/2

≤ C′

K
+ C′N−1/(2k−3),

which gives the required stochastic boundedness asN → ∞.
Finally, we need to show that

1

Nα(k)
QN

(
Nα(k)t0

) p→ t0.

But sinceQN(t) = AN(t) + t , this follows immediately from

1

Nα(k)/2 sup
t≤Nα(k)t0

∣∣∣∣AN(t) − µk

(k − 1)

tk−1

Nk−2

∣∣∣∣ p→0.
�

PROOF OF THEOREM 5.2. Return now to the discrete-time setting of
Theorem 5.2. The proof is quite involved and so we will begin by outlining our
method. The random walkZN , started from aboveRNα(k)/2 at timeR2Nα(k), is
close to dominating the breadth-first walk associated with the tree produced by
a Galton–Watson branching process with Poisson offspring distribution of mean
1+ 1

2µkN
−α(k)/2R2(k−2). This branching process is ( just) supercritical and so the

associated breadth-first walk has both positive drift and the virtue of identically
distributed step sizes. We will essentially work with that process instead, using it
as a lower bound for our original breadth-first walk. If, with high probability, the
lower bound goes forNδ steps without hitting 0, then so does our original breadth-
first walk. In order to show that the smaller random walk is unlikely to come back
to 0, we use an exponential supermartingale argument and the optional stopping
theorem.

Fix R > 0 and work on the set


N,R = {
ZN

(⌈
Nα(k)R2⌉)

> RNα(k)/2,PN

(⌈
Nα(k)R2⌉)

< RNα(k)/2}.
As we have already seen at (5.1) and (5.2), this set has asymptotically high
probability. It will be useful to keep track of the times when(ZN(i))�Nα(k)R2	≤i≤N

goes above and below the linef (i) = 1
2µki

k−2N−k+3. To this end, introduce two
sequences of stopping times,(τn)n≥1 and(τ ′

n)n≥1, such that

τ1 = inf
{
i ≥ ⌈

Nα(k)R2⌉ :ZN(i) ≥ f (i)
}
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and, forn ≥ 1,

τ ′
n = inf{i > τn :ZN(i) < f (i)},

τn+1 = inf{i > τ ′
n :ZN(i) ≥ f (i)}.

Let 
N(i) = {�Nα(k)R2	 ≤ i < τ1}∪ (
⋃

n≥1{τ ′
n ≤ i < τn+1}), the event thatZN(i)

is below the line. DefineF N
i = σ(ZN(j) : j ≤ i).

LEMMA 6.3. For sufficiently largeN , there exists aθ < 0 such thatLN(i) =
exp(θZN(i)) is a supermartingale on the disjoint sets of times{⌈

Nα(k)R2⌉, . . . , τ1
}
, {τ ′

1, . . . , τ2}, {τ ′
2, . . . , τ3}, . . . .

That is, (LN(i))0≤i≤N is an integrable adapted process and

E[LN(i)|F N
i−1] ≤ LN(i − 1)

wheneveri − 1∈ {�Nα(k)R2	, . . . , τ1 − 1} ∪ (
⋃

n≥1{τ ′
n, . . . , τn+1 − 1}).

PROOF. Consider the conditional moment generating function of an increment
of ZN : by Lemma 6.1,

φi(N, θ) = E
[
exp

(
θ
(
ZN(i) − ZN(i − 1)

))|F N
i−1

]
= exp

{(
N − (i − 1) − ZN(i − 1) − PN(i − 1)

)
× log

(
1+ ρ(N, i − 1)(eθ − 1)

) − θ
}

≤ exp
{(

N − (i − 1) − ZN(i − 1) − PN(i − 1)
)

× ρ(N, i − 1)(eθ − 1) − θ
}
.

Equation (6.11) implies that there exists a constantC < ∞ such that

Nρ(N, i − 1) ≥ β ′′
(

i

N

)
− C(logN)2

N
.

On the set
N,R ∩ 
N(i − 1), we havePN(i − 1) < RNα(k)/2 and so, for
sufficiently largeN ,(

N − (i − 1) − ZN(i − 1) − PN(i − 1)
)
ρ(N, i − 1)

≥
(

1− i

N
− 1

2
µk

(
i

N

)k−2)
β ′′

(
i

N

)
− KN−(k−1)/(2k−3)

for some constantK < ∞ depending onR. The first nonzero derivative of
(1 − s − 1

2µks
k−2)β ′′(s) at 0 is the(k − 2)nd which is 1

2(k − 2)!µk . Thus, there
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exists aδ > 0 such that(1− s − 1
2µks

k−2)β ′′(s) is increasing on[0, δ]. Therefore,
for i ≤ δN on
N,R ∩ 
N(i − 1), we have(

1− i

N
− 1

2
µk

(
i

N

)k−2)
β ′′

(
i

N

)

≥
(

1− Nα(k)−1R2 − 1

2
µkN

(α(k)−1)(k−2)R2(k−2)

)
β ′′(Nα(k)−1R2)

by putting ini = Nα(k)R2. Now, expandingβ ′′(s) as 1+ s + · · · + sk−3 + k(k −
1)βks

k−2 and incurring an error of sizeO(sk−1), we see that the right-hand side is
bounded below by

1+ 1
2µkN

−α(k)/2R2(k−2) − K ′N−(k−1)/(2k−3)

for some constantK ′ < ∞. Thus,

φi(N, θ) ≤ exp
{(

1+ 1
2µkN

−α(k)/2R2(k−2))(eθ − 1) − θ

+ K ′N−(k−1)/(2k−3)(1− eθ )
}
.

If we had the breadth-first walk on the tree produced by a branching process with
Poisson offspring distribution of mean 1+ 1

2µkN
−α(k)/2R2(k−2), we would have

exp
{(

1+ 1
2µkN

−α(k)/2R2(k−2))(eθ − 1) − θ
}

as the conditional moment generating function of an increment. Thus, we will
effectively use this simpler process as a “lower bound” for our original process.

Now, let θ̄ be the value ofθ which minimizes

exp
{(

1+ 1
2µkN

−α(k)/2R2(k−2))(eθ − 1) − θ
}
,

so that it is easily seen that

θ̄ = − log
(
1+ 1

2µkN
−α(k)/2R2(k−2))

(and so, trivially,θ̄ < 0). Fori ≤ Nδ on
N,R ∩ 
N(i − 1),

φi(N, θ̄) ≤ exp
{(

1+ 1

2
µkN

−α(k)/2R2(k−2)

)(
eθ̄ − 1

) − θ̄

+ K ′N−(k−1)/(2k−3)(1− eθ̄ )}

= exp
{

log
(

1+ 1

2
µkN

−α(k)/2R2(k−2)

)
− 1

2
µkN

−α(k)/2R2(k−2)

+ (1/2)µkK
′N−1R2(k−2)

1+ (1/2)µkN−α(k)/2R2(k−2)

}

≤ exp
{−C2N

−α(k) + C1N
−1}

≤ 1,
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for some constantsC1,C2 and sufficiently largeN . Hence, for θ = θ̄ and
sufficiently largeN , E[LN(i)|F N

i−1] ≤ LN(i − 1) on the set
N,R ∩ 
N(i − 1).
�

LEMMA 6.4. We have

lim
N→∞ P(SR

N ≤ Nδ|
N,R) ≤ exp
(−1

2µkR
2k−1).

PROOF. ZN cannot hit 0 when it is above the linef (i) = 1
2µki

k−2N−k+3.
Thus, if ZN does hit 0 before timeNδ, it must occur before timeτ1 or between
timesτ ′

i andτi+1 for somei ≥ 1 and so

P(SR
N ≤ Nδ|
N,R)

≤ P
(
SR

N ≤ τ1 ∧ (Nδ)|
N,R

)
+

∞∑
i=1

P
(
SR

N ≤ τi+1 ∧ (Nδ)|
N,R, τi < SR
N ∧ (Nδ), τ ′

i < Nδ
)

≤ P
(
SR

N ≤ τ1 ∧ (Nδ)|
N,R

)
+

∞∑
i=�Nα(k)R2	

P
(
SR

N ≤ Ti ∧ (Nδ)|
N,R,ZN(i − 1) ≥ f (i − 1),

ZN(i) < f (i)
)
,

whereTi = inf{j ≥ i :ZN(j) > f (j)} and each term in the above summation
expresses the probability of a downcrossing from the linef (i) to 0. It will turn
out that only the termP(SR

N ≤ τ1 ∧ (Nδ)|
N,R) makes a significant contribution
(intuitively because the process is much closer to 0 at time�Nα(k)R2	 than it is
at τ ′

i for anyi ≥ 1).
As SR

N ∧τ1∧(Nδ) is a bounded stopping time, by the optional stopping theorem
we obtain that

LN

(⌈
Nα(k)R2⌉)

1
N,R
≥ E

[
LN

(
SR

N ∧ τ1 ∧ (Nδ)
)
1
N,R

|F N
�Nα(k)R2	

]
≥ P

(
SR

N ≤ τ1 ∧ (Nδ)|F N
�Nα(k)R2	

)
1
N,R

.

Hence,

P
(
SR

N ≤ τ1 ∧ (Nδ)|
N,R

) ≤ E
[
LN

(⌈
Nα(k)R2⌉)|
N,R

]
= E

[
exp

(
θ̄ZN

(⌈
Nα(k)R2⌉))|
N,R

]
≤ exp

(
θ̄RNα(k)/2)

= exp
(− log

(
1+ 1

2µkN
−α(k)/2R2(k−2))RNα(k)/2)



CRITICAL RANDOM HYPERGRAPHS 1593

= exp
(−1

2µkR
2k−1 + O

(
N−α(k)/2))

→ exp
(−1

2µkR
2k−1)

asN → ∞. By a similar argument,

P
(
SR

N ≤ Ti ∧ (Nδ)|
N,R,ZN(i − 1) ≥ f (i − 1),ZN(i) < f (i)
)

≤ E[LN(i)|
N,R,ZN(i − 1) ≥ f (i − 1),ZN(i) < f (i)]
≤ E[LN(i)|
N,R,ZN(i) = �f (i − 1)	 − 1]
≤ C exp

(1
2µkθ̄ik−2N−k+3),

whereC is a constant and the second inequality holds becauseZN can step down
by at most 1 and so the smallest thatZN(i) can be and still have hadZN(i − 1)

above the line is�f (i − 1)	 − 1. Fori ≥ �Nα(k)R2	,

exp
(1

2µkθ̄ik−2N−k+3)
≤ exp

(1
2µkθ̄N−(k−3)/(2k−3)R2(k−3)i

)
= exp

(−1
2µkN

−(k−3)/(2k−3)R2(k−3) log
(
1+ 1

2µkN
−α(k)/2R2(k−3))i)

= [(
1+ 1

2µkN
−α(k)/2R2(k−3))−(1/2)µkN

−(k−3)/(2k−3)R2(k−3)]i
.

Let

g(N,R) = (
1+ 1

2µkN
−α(k)/2R2(k−3))−(1/2)µkN

−(k−3)/(2k−3)R2(k−3)

.

Then
∞∑

i=�Nα(k)R2	
P

(
SR

N ≤ Ti ∧ (Nδ)|
N,R,ZN(i − 1) ≥ f (i − 1),ZN(i) < f (i)
)

≤ C

∞∑
i=�Nα(k)R2	

g(N,R)i = Cg(N,R)�Nα(k)R2	

1− g(N,R)
.

This behaves essentially likeN(2k−5)/(2k−3) exp(−N1/(2k−3)) and so converges
to 0 asN → ∞. Hence,

lim
N→∞ P(SR

N ≤ Nδ|
N,R) ≤ exp
(−1

2µkR
2k−1). �

Now note that

P(SR
N ≤ Nδ) ≤ P(SR

N ≤ Nδ|
N,R) + P(
c
N,R)

and so

lim
N→∞ P(SR

N ≤ Nδ) ≤ exp
(−1

2µkR
2k−1)

+ P
(
Wk(R2) ≤ R

) + P

(
− inf

s≥0
Wk(s) ≥ R

)
,
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which converges to 0 asR → ∞. Theorem 5.2 follows. �

PROOF OFTHEOREM 5.3. We will make use of a weaker version of the fluid
limit methods expounded in [3]. Suppose, for the moment, that(XN

t )t≥0 is a time-
homogeneous pure jump Markov process taking values inIN = 1

N
Z

d ⊆ R
d . Let

KN(x, dy) be the Lévy kernel of(XN
t )t≥0. Define the Laplace transform of this

Lévy kernel by

mN(x, θ) =
∫

Rd
e〈θ,y〉KN(x, dy),

where〈·, ·〉 is the usual inner product onRd . Let S be an open subset ofR
d and

defineSN = IN ∩S. We are interested in the behavior of(XN
t )t≥0 up until the first

time it leavesS (e.g., this may mean that one of its coordinates hits 0). With this
in mind, define the relevant stopping time

T N = inf{t ≥ 0 :XN
t /∈ S} ∧ t0,

wheret0 > 0 is a constant.

THEOREM 6.5 ([3]). Assume the following conditions:

1. There exists a limit kernelK(x, dy), defined forx ∈ S, and a constantη0 > 0
such thatm(x, θ) < ∞ for all x ∈ S and ‖θ‖ ≤ η0, wherem is the Laplace
transform ofK .

2. We have

sup
x∈SN

sup
‖θ‖≤η0

|N−1mN(x,Nθ) − m(x, θ)| → 0

asN → ∞.
3. Let b(x) = m′(x,0), where m′(x, θ) is the vector of partial derivatives in

components ofθ . Then assume thatb is Lipschitz onS.

4. We have‖XN
0 − x0‖ p→0 asN → ∞ for some constantx0 ∈ S̄.

Denote by(x(t))t≥0 the unique solution to the differential equationẋ(t) = b̃(x(t))

with initial conditionx(0) = x0, whereb̃ is a Lipschitz extension ofb to R
d . Then,

sup
0≤t≤T N

‖XN
t − x(t)‖ p→0

asN → ∞.

In simple cases, wherex(t) does not graze the boundary ofS before crossing it,
it is straightforward to show thatT N converges in probability to the first exit time
of x(t) from S.
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In order to apply this theorem, we need to be working with a pure jump
Markov process. Now,(ZN(i),PN(i))0≤i≤N is a discrete-time Markov chain. Take
(νN

t )t≥0 to be a Poisson process of rateN and let

XN
t = (X

1,N
t ,X

2,N
t ,X

3,N
t ) = 1

N

(
νN
t ,ZN(νN

t ),PN(νN
t )

)
.

We will prove a fluid limit with this embedding into continuous time, which will
imply the theorem as stated.

We need to check that conditions 1–4 of Theorem 6.5 hold. The processXN

is naturally defined onIN = {x ∈ R
3 :Nx1 ∈ Z

+,Nx2 ∈ Z,Nx3 ∈ Z
+}. Let

S = {x ∈ R3 : |x1| < r1,0 < x2 < r2, |x3| < r3} for constantsr1, r2, r3 < ∞ and
let SN = IN ∩ S. Let KN(x, dy) be the Lévy kernel ofXN . Then, using the
representation (3.1) of the evolution ofPN and Lemma 6.1,N−1KN(x, ·) is the
law of

N−1(1,BN − 1,1{x2+x3=1/N, BN=0}
)
,

where BN ∼ Bin(N − Nx1 − Nx2 − Nx3, ρ(N,Nx1)). Thus, KN(x, dy) has
Laplace transform

mN
1 (x, θ) = Neθ/N,

mN
2 (x, θ) = N exp

(
(N − Nx1 − Nx2 − Nx3)

× log
(
1+ ρ(N,Nx1)(e

θ/N − 1)
) − θ/N

)
,

mN
3 (x, θ) =




Neθ/N
(
1− ρ(N,Nx1)

)N−Nx1−1

+ N
(
1− (1− ρ(N,Nx1))

N−Nx1−1), if x2 + x3 = 1/N ,
N, if x2 + x3 �= 1/N .

Using (6.11),BN
d→Poisson((1 − x1 − x2 − x3)β

′′(x1)) asN → ∞ and so there
exists a limit kernelK(x, dy) with Laplace transform

m1(x, θ) = eθ ,

m2(x, θ) = exp
(
(1− x1 − x2 − x3)β

′′(x1)(e
θ − 1) − θ

)
,

m3(x, θ) =
{

(eθ − 1)exp
(−(1− x1)β

′′(x1)
) + 1, if x2 = −x3,

1, if x2 �= −x3.

Furthermore, there existsη0 > 0 such thatm(x, θ) < ∞ for all x ∈ S and‖θ‖ ≤ η0
and also such that

sup
x∈SN

sup
‖θ‖<η0

|N−1mN(x,Nθ) − m(x, θ)| → 0,

where ‖ · ‖ is the Euclidean norm onR3 (note thatx2 �= −x3 in S). Thus,
conditions 1 and 2 are satisfied.

Let TN = inf{t ≥ 0 :XN
t /∈ SN } and recall thatz(t) = 1 − t − exp(−β ′(t)).

Fix a largeR < ∞. We will prove the fluid limit result in three time intervals:
[0,R2Nα(k)−1], [R2Nα(k)−1, δ] and[δ,1].
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Time interval[0,R2Nα(k)−1]. Until time R2Nα(k)−1, ZN is in the Brownian
regime of Theorem 3.1 and so

sup
0≤t≤R2Nα(k)−1

|N−1ZN(
Nt�) − z(t)|

≤ sup
0≤t≤R2Nα(k)−1

|N−1ZN(Nt)| + sup
0≤t≤R2Nα(k)−1

|z(t)|,

which converges to 0 in probability asN → ∞, regardless of the value ofR.
Similarly,

sup
0≤t≤R2Nα(k)−1

|N−1PN(Nt)| p→0.

It is elementary that sup0≤t≤R2Nα(k)−1 |N−1νN
t − t | p→0. Thus,

sup
0≤t≤R2Nα(k)−1

‖XN
t − x(t)‖ p→0,(6.12)

wherex(t) = (t, z(t),0).

Time interval[R2Nα(k)−1, δ]. Expression (6.12) provides us with condition 4
of the fluid limit theorem. Suppose now that we fixN andR and work on the set


N,R = {
X

2,N

�R2Nα(k)−1	 > RNα(k)/2−1,X
3,N

�R2Nα(k)−1	 < RNα(k)/2−1}.
DefineT R

N = inf{t ≥ R2Nα(k)−1 :XN
t /∈ S} (which, forr1, r2 andr3 large enough in

the definition ofS, is the time thatX2,N first hits 0; this is a Poissonized equivalent
of SR

N of Section 5). On
N,R , X
3,N
t is constant on the interval[R2Nα(k)−1, T R

N ]
and so

sup
0≤t≤T R

N

∣∣N−1X
3,N
t

∣∣ p→0

also. Now, settingb(x) = m′(x,0), we have that forx ∈ S,

b1(x) = 1,

b2(x) = (1− x1 − x2 − x3)β
′′(x1) − 1,

b3(x) = 0.

Condition 3 is clearly satisfied. By takingr1, r2 andr3 large enough, the differen-
tial equationẋt = b(x(t)) has unique solutionx(t) = (t,1− t −exp(−β ′(t)),0) =
(t, z(t),0) in S. Thus, Theorem 6.5 entails that for allε > 0,

lim
N→∞ P

(
sup

R2Nα(k)−1≤t≤T R
N ∧δ

‖XN
t − x(t)‖ > ε

∣∣∣
N,R

)
= 0.
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Now, for small enoughδ > 0 we have thatδ < t∗ and limR→∞ limN→∞ P(SR
N >

Nδ) = 1 and so we will also have limR→∞ limN→∞ P(T R
N > δ) = 1. Then

lim
N→∞ P

(
sup

R2Nα(k)−1≤t≤δ

‖XN
t − x(t)‖ > ε

)

≤ lim
N→∞ P

(
sup

R2Nα(k)−1≤t≤T R
N ∧δ

‖XN
t − x(t)‖ > ε,T R

N > δ
∣∣∣
N,R

)

+ lim
N→∞ P(T R

N ≤ δ|
N,R) + lim
N→∞ P(
c

N,R),

where the first of the three terms on the right-hand side is 0 as we have just proved.
Thus, for allR < ∞ and allε > 0, we have that

lim
N→∞ P

(
sup

0≤t≤δ

‖XN
t − x(t)‖ > ε

)
≤ lim

N→∞ P

(
sup

0≤t≤R2Nα(k)−1
‖XN

t − x(t)‖ > ε

)

+ lim
N→∞ P

(
sup

R2Nα(k)−1≤t≤δ

‖XN
t − x(t)‖ > ε

)

and so we can take the limit asR → ∞ on the right-hand side to obtain

lim
N→∞ P

(
sup

0≤t≤δ

‖XN
t − x(t)‖ > ε

)

≤ lim
R→∞ lim

N→∞ P(T R
N ≤ δ|
N,R) + lim

R→∞ lim
N→∞ P(
c

N,R)

= 0.

Time interval[δ,1]. Suppose we now start from timeδ. We have just shown
that the initial value converges in probability. RedefineTN = inf{t ≥ δ :XN /∈ SN }
and letX̃N be such thatX̃1,N

t = X
1,N
t , X̃

2,N
t = X

2,N
t∧TN

andX̃
3,N
t = X

3,N
δ . Minor

modifications to our argument in the previous section lead us to the limiting
function x̃(t) = (t, z(t ∧ t∗),0) and the conclusion that for allε > 0,

lim
N→∞ P

(
sup

δ≤t≤1
‖X̃N

t − x̃(t)‖ > ε

)
= 0,

where we have thatTN
p→ t∗ by our assumption that there are no zeros of the

functionz(t) in (0, t∗). Thus, finally,

lim
N→∞ P

(
sup

0≤t≤1
|X̃2,N

t − z̃(t)| > ε

)

≤ lim
N→∞ P

(
sup

0≤t≤δ

|X2,N
t − z(t)| > ε

)
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+ lim
N→∞ P

(
sup

δ≤t≤1
|X̃2,N

t − z(t ∧ t∗)| > ε

)

= 0. �

PROOF OF THEOREM 5.4. We use the interpolation from the proof of
Theorem 3.1 and the Doob decompositions contained therein.

LEMMA 6.6. Choose0 < σ < t∗. Then

1√
N

(
ZN(Nt) − AN(Nt)

)
0≤t≤σ

d→ (Gt)0≤t≤σ

as N → ∞, where (Gt)t≥0 has the distribution of the time-changed standard
Brownian motion(Bt+z(t))t≥0.

PROOF. By the martingale central limit theorem (Theorem 7.1.4(b) of [4]), it
is sufficient to show that

1

N
QN(Nt)

p→ z(t) + t

and that

1

N
E

[
sup

0≤t≤Nσ

(
MN(t) − MN(t−)

)2
]

→ 0,

the latter being obvious from the fact thatMN cannot jump by more than 1.
Now, by (6.8), QN(t) = AN(t) + t and so it will be sufficient to show that
1
N

AN(Nt)
p→ z(t). By (6.6) and the definition ofz at (5.3),

1

N
AN(Nt) − z(t)

= 1

N

∫ Nt

0

((
N − s − ZN(s) − PN(s)

)
λ2(N, s) − 1

)
ds −

∫ t

0
ż(s) ds

=
∫ t

0

((
1− s − 1

N
ZN(Ns) − 1

N
PN(Ns)

)
Nλ2(N,Ns)

− β ′′(s)
(
1− s − z(s)

))
ds,

for t ≤ σ . There exists a constantC < ∞ such that∣∣∣∣ 1

N
AN(Nt) − z(t)

∣∣∣∣ ≤
∣∣∣∣
∫ t

0
(1− s)

(
Nλ2(N,Ns) − β ′′(s)

)
ds

∣∣∣∣
+ C

∫ t

0

∣∣∣∣ 1

N
ZN(Ns) − z(s)

∣∣∣∣ds + C

∫ t

0

∣∣∣∣PN(Ns)

N

∣∣∣∣ds.
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By (6.11), there exists aK < ∞ such that the right-hand side is bounded above by

K
(logN)2

N
+ C

∫ t

0

∣∣∣∣ 1

N
ZN(Ns) − z(s)

∣∣∣∣ds + C

∫ t

0

∣∣∣∣PN(Ns)

N

∣∣∣∣ds.

As µk > 0, by Theorems 3.1 and 5.2, onlyO(Nα(k)/2) patches need to be added
before the breadth-first walk begins its giant excursion and so, asα(k) < 1, we
must have

sup
0≤t≤σ

∣∣∣∣PN(Nt)√
N

∣∣∣∣ p→0

asN → ∞. Thus,|N−1AN(Nt) − z(t)| converges to 0 in probability, uniformly
in 0 ≤ t ≤ σ , by Theorem 5.3. �

Now define

XN
t = 1√

N

(
ZN(Nt) − Nz(t)

)
,

GN
t = 1√

N

(
ZN(Nt) − AN(Nt)

)
.

Then we know already from Lemma 6.6 that(GN
t )0≤t≤σ

d→ (Gt)0≤t≤σ and we
wish to prove that(XN

t )0≤t≤σ
d→ (Xt)0≤t≤σ . Now,

XN
t = GN

t + √
N

∫ t

0

(
aN(Ns) − 1

)
ds − √

N

∫ t

0
ż(s) ds

= GN
t + EN

t −
∫ t

0
XN

s β ′′(s) ds,

where

EN
t =

∫ t

0

(√
N(1− s) − 1√

N

(
ZN(Ns) + PN(Ns)

))(
Nλ2(N,Ns) − β ′′(s)

)
ds

−
∫ t

0

1√
N

PN(Ns)β ′′(s) ds.

Observe that, because 1≤ ZN + PN ≤ N , we have

|EN
t | ≤

∫ t

0
2
√

N |Nλ2(N,Ns) − β ′′(s)|ds + β ′′(σ )t sup
0≤s≤t

∣∣∣∣PN(Ns)√
N

∣∣∣∣
≤ 2t

(logN)2
√

N
+ β ′′(σ )t sup

0≤s≤t

∣∣∣∣PN(Ns)√
N

∣∣∣∣.
At the end of the proof of Lemma 6.6, we showed that sup0≤t≤σ |PN(Nt)√

N
| p→0 as

N → ∞ and so sup0≤t≤σ |EN
t | p→0.
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Now, there exists a continuous function (ofpaths) F :C0[0, σ ] → C0[0, σ ] such
thatXN = F(GN + EN). Let X = F(G), that is, let(Xt) satisfy

dXt = dGt − Xtβ
′′(t) dt.

Then (GN
t + EN

t )0≤t≤σ
d→ (Gt)0≤t≤σ and so, by continuity ofF and the

continuous mapping theorem (Corollary 3.1.9 of [4]),(XN
t )0≤t≤σ

d→ (Xt)0≤t≤σ .
By using an integrating factor to solve the above stochastic differential equation,
we see that

Xt = exp
(−β ′(t)

) ∫ t

0
exp

(
β ′(s)

)
dGs. �
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