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We consider a model for random hypergraphs widentifiability,
an analogue of connectedness. This model has a phase transition in the
proportion of identifiable vertices when the underlying random graph
becomes critical. The phase transition takes various forms, depending on the
values of the parameters controlling the different types of hyperedges. It may
be continuous as in a random graph. (In fact, when there are no higher-order
edges, it is exactly the emergence of the giant component.) In this case, there
is a sequence of possible sizes of “components” (including but not restricted
to N2/3). Alternatively, the phase transition may be discontinuous. We are
particularly interested in the nature of the discontinuous phase transition and
are able to exhibit precise asymptotics. Our method extends a result of Aldous
[Ann. Probab25 (1997) 812—854] on component sizes in a random graph.

1. Poisson random hypergraphs. The emergence of the giant component in
a random graph is now a well-understood phenomenon (see [5]). The purpose of
this paper is to demonstrate that an analogous, but richer, phenomenon occurs in
random hypergraphs. We employ stochastic process methods of the type described
in [6].

We use the framework of Poisson random hypergraphs introduced by Darling
and Norris [3]. Suppose we are given a set of vertigesf size N. Denote the
power set ofV by £ (V). We define a Poisson random hypergraph with parameters
(Br :k > 2) by arandom map : (V) — Z* such that

A(A) ~ Poissor(Nﬁk/(]Z» whenevelA| =k.

A(A) is the number of hyperedges of sizgor “k-edges”) over the sed. The
numbers of hyperedges over different subsets of the vertex set are independent.
We allow multiple edges and the distribution&tA) depends only oifA|. Define
a generating functiorg(r) = >_72, Bit*. Throughout this paper, we shall assume
that 8’(1) < oo, which ensures that each vertex is contained in a finite number of
edges.

We now proceed by defining identifiability. This analogue of connectedness
was first introduced by Darling and Norris [3] and further studied by Darling,
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Levin and Norris [2]. We put 1-edges (patche$ on certain arbitrarily chosen
vertices, which make those vertices act like roots of “components.” We define the
set of identifiable vertices to be the smallest set satisfying the following recursive
conditions. First, vertices with patches on them are identifiable. Furthermore,
a vertex without a patch is identifiable if there exists 2 such that it is contained

a hyperedge of size and the other — 1 vertices are all identifiable. In a random
graph (with patches), the identifiable vertices are those which are in the same
component as a vertex with a patch on it. Thus, the patches “pick out” some of
the components.

It is useful to have an algorithm for finding the identifiable vertices in a
hypergraph. Pick a patch at random and delete it and the vertederneath it.
Collapse all of the other hyperedges owedown onto their remaining vertices
so that, for example, a 4-edge oVer, v, w, x} becomes a 3-edge ovér, w, x}.

In particular, any 2-edges includingbecome new patches. Repeat until there are
no patches left. The set of identifiable vertices consists of those vertices deleted.
It turns out that the order of deleting patches in this collapse procedure does not
affect the ultimate set of identifiable vertices (see [3]).

We will also consider the vertices identifiable from a particular vertex. Define
the domainof v to be the set of vertices identifiable when a single patch is
put on the hypergraph, at. An equivalent definition is as followsw is in
the domain ofv if and only if either (a)w = v or (b) there exists a sequence
vg=v, v1, V2, ..., U, = w for somer > 1 such that for each &£ i <r there exists
a hyperedge consisting of and some nonempty subset{@b, v1,...,v;_1}. In
a graph, the domain af is the same as its component and, indeed, domains will
play the role of components in what follows. Note, however, that in a general
hypergraph identifiability from a vertex is not a symmetric property. It is perfectly
possible forw to be in the domain ob without v being in the domain ofv.
Because of this lack of symmetry, the analogy with the concept of a component
is incomplete. We observe, nonetheless, that in a Poisson random hypergraph with
B2 > 0 there is an underlying random graph and the domains of any two vertices
in the same underlying 2-edge component are the same.

THEOREM 1.1 ([2]). Let Dy be the size of the domain of an arbitrarily
chosen vertex in a Poisson random hypergrapmbwertices withg, > 0. Define
t* =inf{r > 0:8'(r) + log(1 — r) < 0} and suppose that there are no zeros of
B'(t) +log(1—1) in (0, *). Then

1 d
— Dy —t 1y
N N {M =00}

as N — oo, whereM has theBorel(28,) distribution[i.e., the distribution of the
total population of a branching process wiBoissori282) offspring.
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Let us first discuss the meaning of this result for a random graph. The critical
value for the emergence of a giant componerfizis= 1/2. The significance oM
is that the component of the specific vertex on which we put our patch has a size
which converges in distribution t& as N — oo (this reflects the fact that small
components look very much like branching process family treesp, K 1/2,
the largest component is of siz€N). Thus, putting one patch onto the graph

identifies at mosb(N) vertices and scDN/N—p> 0. This corresponds to the fact
that for 82 <1/2, M < oo almost surely. Consider now the cg$e> 1/2. Either
the patch falls on the giant component [with probabifyM = oo)] and identifies
a positive proportions*, of the vertices, or it falls on a small component [with
probability P(M < oo)] and identifies onlyo(N). The theorem tells us that this
limiting justification works even in the presence of higher-order edges but that
the precise proportion identified depends on the parameters of those higher-order
edges. Thus, Theorem 1.1 characterizes a phase transition in the proportion of
identifiable vertices for a random hypergraph with a single patch.

For a random graph:* represents the proportion of vertices in the giant
component (and note that = 0 for B, < 1/2). In a random hypergraph,
t* represents the proportion of vertices in a “giant domain.” Note that it is not clear
that there is a unique such domain (although it is clear from Theorem 1.1 that any
such domain must contain the vertices of any giant 2-edge component). However,
it seems that a giant domain is close to being unique in that all giant domains
contain an asymptotic proportiafi of the vertices. In a random hypergraph, we
haver* = 0 for 82 < 1/2 but we may have* > 0 for 8, = 1/2. To be precise,
if B2 =1/2 andBs > 1/6, thens* > 0, whereas if8, = 1/2 andps3 < 1/6, then
t*=0. If B3 =1/6, we must look at whethes, is less than or greater thar12.
In general, there exists a sequence of “critical” values fopthesuch that if there
existsk such thatfor < j <k —1,8; =1/j(j — 1) andpy > 1/k(k — 1), then
t* > 0, whereas if there existssuch that for < j <k —1,8; =1/j(j — 1) and
Bk < 1/k(k — 1), thent* = 0. [Note that the casg; =1/j(j — 1) forall j > 2
is explicitly excluded by the assumptighi(1) < cc.] So it appears that, in some
sense, a giant domain may already be present at the critical point in a random
hypergraph (although we have probability O of hitting it with our single patch).
Thus, the random hypergraph phase transition can be discontinuous,shriineat
not be a continuous function @b at 8o = 1/2, whereas the random graph phase
transition is always continuous.

In order to investigate the random hypergraph phase transition further, we will
consider what happens when, instead of a single patch, we @} patches on
the critical hypergraph, whewe(N)/N — 0 asN — oo. We will add a patch to
the hypergraph, collapse as far as possible and then add another patch on a vertex
chosen uniformly at random from those remaining whenever needed to keep going.
Is there ever a functiom (N) such that we identify (V) vertices (i.e., a giant set
of vertices)?
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2. Results. Leta(k) = (2k —4)/(2k — 3) and
Wk(t) = B(t) + lel(k(k — D — Dkt
where(B(t));>0 is a standard Brownian motion.

THEOREMZ2.1. Consider a Poisson random hypergraph 8nvertices

() Suppose that there exists> 3 such that for2 < j <k — 1, 8; =
1/j(j — 1) and By < 1/k(k — 1). Let Xy be the number of vertices identified
whenw (N) patches are added to the hypergraph one by, asenecessaryhere
w(N)/N — 0asN — oo. Then we have

1 P
2.1 —X 0
(2.1) N N —

as N — oo. Recall thatDy is the size of the domain of a randomly chosen vertex
[so thatDy is the same aX y whenw (N) = 1]. Then for any > 0, there exists”
such that for all sufficiently largev,

(2.2) P(IN“PDy <C)>1—e¢.

(i) Suppose now that there exists> 3 such that for2 < j <k -1, B; =
1/j(—DandBy > 1/k(k — 1). LetA‘ISV be the number of patches we need to add
one by ongas necessaryntil we have identified more thavs verticesfor § > 0.
Then for all§ > 0 sufficiently small

(2.3) Ne®/248 4 inf wk(r).
1>

Let X be the total number of vertices identified when we add patches one by
one as before until at leasys vertices have been identifi€de., the number of
vertices identified when‘}v patches are addgdfor § sufficiently small thaf2.3)

is satisfied Then

1 P
2.4 —Xy—>t*
(2.4) ~Xx
asN — oo, wheret* = inf{t > 0:8'(t) + log(1—t) < 0}.

3. Breadth-first walk. In order to track the process of collapse (adding
patches whenever they are needed to keep going), we construct an extension to
hypergraphs of the usual breadth-first walk on graphs. (Note that this is a different
extension from that used in [7].)

Consider any hypergraph oN vertices, with no patches and an arbitrary
numbering of the vertices. Then we may define treadth-first orderingas
follows:
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1. Take the lowest-numbered vertex, calhiil) and put a patch on it. Define the
childrenof vertexv(1) to be those vertices connected to it by a 2-edge. Suppose
thatv(1) hasc(1) children. Number them(2), ..., v(c(1) + 1), retaining the
ordering of the original labels. Now collapse the patch @b, leaving patches
on all of its children and any higher-order edges collapsed onto their remaining
vertices.

2. Now look atv(2). Label its children as(c(1) + 2),...,v(c(1) + c(2) + 1),
where, in general, we define the children of a vertex to be those vertices
connected to it by a 2-edge which have not yet been renumbered. Note that
some of these children may only just have appeared as a result of the collapse
of vertex v(1). For example, in Figure 1y(3) is the child ofv(2) but only
becomes visible as such after the deletiondf).

3. Continue in this way, collapsing the vertices in numerical order [so the next
one to consider i®(3)]. When we run out of patches, pick the next lowest-
numbered vertex in the old ordering, put a patch on it and proceed as before.
The process terminates when there are no more vertices to consider.

So, loosely speaking, we number within levels of an underlying tree before moving
further from the “root,” the only complication being that the childrerv@f) may
only all be visible after the deletion of vertexi — 1).

Now we can define a walkz(i))o<i<ny On the integers associated with this
hypergraph by

z(0) =0,
z2)=zG(—-D +c@)—1, i>1,

where, as before;(i) is the number of children of vertex(i) in the breadth-first
ordering. Then is the number of vertex deletions (we will also refer to this as a
time) and z(i) is the number of patched vertices on the hypergraph afteitthe

Fic. 1. Children of vertices can appear during the process of collapse
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vertex deletion, minus the number of patches added beforg #h#)st deletion to
keep the process going. The procés$))o<;<y is called the breadth-first walk.

Thus, for arandom hypergraph onN vertices, we obtain a random walk,
(Zn(i))i=0, ON the integers which summarizes information about the hypergraph.
[In the sequel, we will refer to the random number of children of veméy
asCy(i).] Most importantly, the number of vertices which are identifiable from
the patches we add are coded as excursions above past minima in the breadth-
first walk. This is because the breadth-first walk picks out an underlying forest
structure, with each tree naturally having one more vertex than it has edges. For
more details, see [1].

It will be useful later to have some notation for the number of patches added to
the hypergraph so far. Lty (0) =1 and, fori > 1,

Py(i)=1—minZy(j).
Jj<i

Then Py (i) is the number of patches added before the 1)st vertex deletion.
Zn (i) + Py (i) is the actual number of patches on the hypergraph just after the
deletion ofv(i) and is always greater than or equal to 1. Thus, we have the
alternative representation
N-1
(3.1) Py(i) =1+ ) L{zyG-1+Pyi-D=L Cy()=0}-
i=1
Recall thatx (k) = (2k — 4)/(2k — 3) and that

W) = B(r) + lel(k(k — g — 1)L

where (B(1));>0 is a standard Brownian motion. Then our key result is the
following:

THEOREM 3.1. Suppose thatZy (i))o<i<n IS the breadth-first walk on the
Poisson random hypergraph avi vertices and that there existska> 3 such that
Bj=1/j(j —1 forall 2< j <k — 1. Rescale by defining

Zn(t) = N"02zy (N D).
Then

asN — oo in D[0, 00).

Note that here the convergence is uniform on compact time-intervals. The proof
of this result is deferred to Section 6 to enable us to first interpret its implications
for the hypergraph.
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4. Consequences. If there existst such thatg; =1/j(j — 1) forall2< j <
k—1 and B < 1/k(k — 1), then the limit process has a negative drift which
increases in magnitude with time. Thus, the process keeps hitting its previous
minima, on average resulting in smaller and smaller numbers of identifiable
vertices per patch added. This is very like what we see in Theorem 3 of [1] where
the components of a random graph appear in size-biased order. In the critical
random graph cas@s = 0 < 1/6 and the components are of si#¢N%/3), as is
well known. However, in the random hypergraph, there is a whole series of critical
scalings (v%/3, N*/5, N7 ) which can be attained by suitable adjustments of
the parametergs, B4, ... . Thus, the random hypergraph demonstrates much richer
behavior than the random graph.

If there existsk such thatg; =1/j(j —1) forall 2< j <k —1 andp; >
1/k(k — 1), then the proces®* has positive drift and so there is a (random)
last time that it hits its own minimum. This signals the start of a giant excursion
which is too big to be measured on the scaleVéf*). We wish to prove that the
domain which this excursion represents is, in fact, of size comparahble to
order to do this, we will show that the giant excursion has length at }e&éor all
sufficiently smalls > 0. This will then allow us to prove a fluid limit theorem for
the breadth-first walk; the length of the excursion of the fluid limit above O gives
us the asymptotic size of the giant set of identifiable vertices. We will also discuss
the fluctuations of the breadth-first walk around this fluid limit.

5. The giant set of identifiable vertices. For ease of notation, defing, =
k(k — 1)Br — 1. We will now fix k > 3 and look at the casg; > 0, u; = 0 for
2 < j <k —1in more detail. First, we state a proposition which will be of use to
us later:

PROPOSITION5.1. For W* defined as in Sectio?,
]P’(Wk(Rz) >R)—>1

as R — oo.

PRoOOE We have

P(W*(R? > R) = IP’(B(RZ) + %Rz(k—n - R)

—1- q>(1— ﬂRZk*)
k-1

-1

asR — oo, whered is the standard Normal distribution function]
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Thus, it is a corollary of Theorem 3.1 that the evedaty ([N*® R?]) >
RN*®/2y has asymptotically high probability in the sense that
im lim P(Zy([N*®PR?]) > RN*®/2) =1,

|
R—o0 N—oo

(5.1)

Recall thatPy (i) =1 — min;<; Zy(i) is the number of patches added before
the (i 4+ 1)st deletion to keep the process going. Then, by Theorem 3.1 and the

continuous mapping theorem (Corollary 3.1.9 of [4});*®/2py (| N*®)]) %
— info<s<; W¥(s). Because of the positive drift a¥*, we have

IP’( inf Wr(s) < —R) -0
s>0
asR — oo and so it is clear that

(5.2) (Py([N*®1]) < RN*®/2) =1

im Ilim P
R—00 N—>o0
for any value of.

Define

SR —inf{i > N*PR?: Zy (i) <0).

THEOREMb5.2. There exist$ > 0 such that

lim lim P(SX <Ns§)=0.

R—o00o N—oo

Essentially, by timg N R?], the proces<y is, with high probability, in an
excursion above its last minimum of leng@(N).
Define

(5.3) 2(t)=1—1—exp(—p'(1))

and recall that* = inf{r > 0:z(r) < 0}. Assume that there are no zeros of the
functionz(z) in (0, 7*) and note that* < 1. Let Zy be a modified version of y
such that no more patches are added after fi¥ié|, for § as in Theorem 5.2.
Thus, Py(|Nz]) = Py(|NS]) for all + > § and the first time thatZy goes
below its past-minimum after timeN§ |, it stops evolving and stays constant.
Letz(¢t) = z(t At*). Theorem 5.2 allows us to prove a fluid limit for this modified
version ofZy.

THEOREMb5.3. Forall ¢ >0,

lim ]P’( sup

N—oo \o<r<1

%ZN(LNtL) —Z(I)‘ > g) =0.
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This implies that for any G- o < ¥,

1
sup | = Zn(LNt]) — z(t)| > 0.
O<t=<o
In addition to Theorem 5.3, we have a functional central limit theorem, which
describes the fluctuations of the breadth-first walk around its fluid limit.

THEOREMb5.4. ForanyO<o < t*,

1
= (ZN(ND) = N2()) gy =y > (X010

VN

where
t
X, = exp(—B'(1)) fo exp(B'(s)) dGs

and (G,);>0 is a Gaussian process such that(®;);>0 is a standard Brownian
motion then(G;);>0 ~ (B (t)+1)1>0-

REMARK. This result is consistent with Theorem 3.1; the scaling there gives
a zoomed-in version.

Assuming Theorems 3.1, 5.2 and 5.3 (which are proved in Section 6), we may
now prove Theorem 2.1.

PrROOF OF THEOREM 2.1. (i) Darling and Norris [3] studied the limiting
proportion of identifiable vertices in a hypergraph with a Poisa] number
of patches, wherg; > 0 and the patches are placed on vertices chosen uniformly
at random (with replacement) right at the start, before any collapse has occurred.
In their Theorem 2.1, they show that this limiting proportion is

tg, =inf{r > 0:B1+ B'(t) +log(1 — 1) < 0}.

Note that if there exists &> 3 such thaig; =1/j(j —1) for2< j <k —1 and
Br <1/k(k—1), thent;‘1 — 0 asp; — 0. We will exploit this result to show (2.1).

The first thing we need to do is to find a way to compare the situation where
we put all our patches on the hypergraph right at the start with the situation where
we put them on one by one when needed to continue the process of collapse. We
can couple the two situations as follows. Fix a particular realization of a Poisson
random hypergraph otV vertices with parameters all critical up to a certain
point and then one subcritical. Take the breadth-first construction, as outlined in
Section 3. Instead of putting the patches on root vertices which are always the
next-lowest numbered when we come to the end of a domain, we try to put our
next patch on a vertex chosen uniformly at random fidm .., N}. Of course,
there is some probability that the vertex we choose has already been identified, in
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which case we keep trying in the same manner until we find a vertex which has not
yet been identified. Clearly, this takes a geometric number of trials. Then, within
a domain, we continue as before in the breadth-first orders B0 and stop the
process of identification if ever we have reached the end of a domain and more
than N § vertices have been identified.

Suppose we identify the domains of upd@N) root vertices (before having
identified N§ vertices). Letzy be the number of vertices (possibly counting
some more than once) on which we try to put patches, including the wpNO
successful placings. Each of thesg vertices is drawn uniformly at random from
{1,..., N} and puttingzy patches down on them right at the start would have
identified the same vertices as putting the uptd/) patches on one by one when
needed. Then takingi, ..., G, (v) to be independent and identically distributed
Geometric(1- §) random variables, we have

w(N)
my <st Y _ Gi,

i=1
because the proportion of vertices already identified each time we try to find a root
vertex is always less than

Let 75 be an independent Poissai) random variable and leXy, be the

number of vertices identified whery; patches are placed on the hypergraph right
at the start. Then, for anyy> 0,

P(Xy > N8§) <P(Xy > Né|ny <my) + Py > 7))
<P(Xy > N8 +P(ay > 7y)

w(N)
<P(X% > N9) +IP’< > Gi znfv).

i=1
The second line follows from the obvious monotonicity property that adding more
patches identifies a stochastically larger number of vertices. By Theorem 2.1 of [3],
we haveva/N—p> ty andtf — 0 ase — 0. Thus, if we take: small enough that
t¥ <8, we have thaP(X}, > Né) — 0 asN — oo. Moreover, aso(N)/N — 0 as
N — oo, we have tha]P’(Zj”z(’l\’) G, >my) — 0asN — oo, for anye > 0. Thus,
foranyé > 0,

P(Xy > N§) — 0

as N — oo. This gives (2.1). Equation (2.2) follows immediately from Theo-
rem 3.1.

(i) A%, = Py(LN$8]) and so Theorems 3.1 and 5.2 give (2.3). Equation (2.4)
then follows from Theorem 5.3.01
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6. Proofs.

PROOF OFTHEOREM 3.1. Our method of proof follows that of Theorem 3
of [1].

LEMMA 6.1. Let

ava=n o)/, 1)

and p(N,i) =1 — exp(—A2(N,i)). Then given Zy (i — 1) and Py (i — 1), the
distribution of Cy (i) is

BiN(N — (i —1) — Zy(i —1) — Py(i — 1), p(N, i — 1)).

PrROOF Consider a Poisson random hypergrafghand delete a deterministic
set S of the vertices, collapsing any hyperedges with vertices idown onto
their remaining vertices. Suppogg = i. Call the hypergraph on the remaining
verticesA’. ForanyA C V \ S,

AA)= > AB.

BCV:ACB

If |A| =k, this has a Poisson distribution with parameter

wva-n (/1)

and the random variableg\’(A): A € V \ §) inherit independence from the
original hypergraph. Thus\’ is another Poisson random hypergraph.

When we perform the breadth-first walk on the hypergraph we do not delete
a deterministic set of vertices. We aim to show, nonetheless, that when we
have deleted vertices, the probability that the number of 2-edges over the pair
{v(@ + 1), w}, for any vertexw we have not yet looked at, is Poissdp(V, i)),
independently for all sucly. Start with a Poisson random hypergraph anddet
be the set consisting of a list of the vertices. [®Rbe the set of vertices we have
reached (empty to start with). Perform the following version of the breadth-first
numbering algorithm:

1. Remove a vertex at random fraf call it v(1) and add it taR.

2. Examine the number of hyperedges over the $efd), w}, w € L. The
children ofv(1) are thosew such that this number of hyperedges is 1 or greater.

3. Retaining the original ordering of the vertex-labels, call the childi@, .. .,
v(Cy(1) + 1), where Cy(1) is the number of children ob(1). Remove
v(2),...,v(Cy () + 1) from the list.L£ and add them ter.
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4. Suppose we have already found the children of verti¢és ..., v(i — 1). If
there is a vertex(i) in the setR, go to step 5. Otherwise, take a randomly
chosen vertex fronxZ, call thatv(i), add it toR and go to step 5.

5. The children ofv(i) are thosew € £ such that the number of original
hyperedges over the séb(i), w} U A is 1 or greater for at least one set
AC{v(),...,v@@ — D} (In our original version of the breadth-first ordering,
A would have been collapsed by now andusoeally is a child.)

6. Rename the children as before, remove them fednand add them tor.
Increment and repeat from step 4.

Observe that, before we find the childrenwaf), we do not look at the sets
{v(@),w}N A, wherew € £ andA C {v(1),...,v(i — 1)}. Thus, in order to find
the children, we need only consider random variables which are independent of
what we have seen so far. So, if we imagine deletird), ..., v(i — 1), the
2-edge parameter in the remaining hypergraph is, indegd/, i — 1). Thus, any
particular 2-edge is present with probabilityN, i —1) = 1—exp(—X2(N,i —1)).
Finally, we need to find the number of vertices eligible to be children(of

#{vertices which cannot be a child ofi)}
=|RI
=Cn@D+--+CyGi—-D+Pyi -1
=ZNi—-D+G-D+ Pvi—1),
and soCy (i) ~Bin(N — (i — 1) — Zy(i — 1) — Py(i — 1), p(N,i — 1)). O

In the statement of Theorem 3.1, we have used the floor function to inter-
polate between integer-valued time-points. Here, we will prove that the process
(Zn(i))o<i<n converges with a different interpolation but this will be equivalent
tothe theoremasstated. L@, ;:1<i <N, 1<j<N—-((—-1)—-ZyGi—-1)—

Py (i — 1)) be a family of independent Exjo(N, i — 1)) random variables and
set

InGi—14+u)=ZyGi—1) —u
N—(i—1)~Zy (-1~ Py(i-1)
+ Z 1{Ei,_,'§u}’ O<u<l
j=1

Take the fiItration?ftN =o(Zy(u):u <1). This filtration is spatial in that it tells

us what we can “see” on the hypergraph at timamagine that the vertex(i) is
deleted at timé — 1 [recall thatZy (i) is the number of patches on the hypergraph
after the deletion ofv(i), adjusted for patches we have introduced]. Imagine that
the patches on the children o&ppear one by one in the interv@l— 1, 1]. There
areN — (i — 1) — Zy(i —1) — Py(i — 1) possible children of (i) (i.e., vertices
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we have not yet reached) and each of them is actually a child with probability
p(N,i —1)=1—exp(—Ar2(N,i — 1)). Imagine each of these potential children
having an Expr2(N,i — 1)) random variable associated with it; then the ones
which actually are children are those whose exponential random variable is less
than 1.

Define new processes by the standard decompositions

(6.1) Zy =My + Ay,
(6.2) M1%=RN+QN,

where My (0) = Ax(0) = Ry(0) = On(0) = 0, My and Ry are martingales,
Ay is a continuous adapted bounded variation process@nds a continuous
adapted increasing process.

We will show that, for fixedy,

1 TP L
6.3 ——= Sup |A (t)—i—‘—>0,
(6.3) Ne®72, S0 AN T ) N
1
(6.4) oy v (N Or0) L 1o
1
(6.5) —E[ sup |My(r) —MN(I_)|2:| — 0.
Ne® 1<N*®y

Equivalently, on rescaling, we will show that

- Mk p—1| P
SupAy () — ——t 0,
,S,ﬂ R Ta B

On(to) 5 o,

E[supmN(r) —Mnao)2| > 0

t<tg J
where
An(t) = N~*072 45 (N ®y),

My (t) = N7*®O2p (N*©r),

On() =N"*® on(N“Dy).
By the martingale central limit theorem (Theorem 7.1.4(b) of [4]), conditions
(6.4) and (6.5) are sulfficient to prove that

My B,
where B is a standard Brownian motion. In conjunction with (6.3), this implies
that
v

(ZN(I))tzo_d) <B(t) + k —kltkl>t>0.
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Now, sinceAy is continuous, the jumps affy are those ofZy, which are of
size 1 by construction and so (6.5) is obvious. So we just need to find the explicit
forms of the martingale decompositions.

Define Py (t) = Pn(|t]) = 1 — infy<|;) Zn(s), @ continuous-time version of
number of patches added to keep the process going. Let

ay (t) dt =P(some new child appears durifg ¢ + dt] |}‘tN).

Then, asZy has drift of rate—1 and jumps of+-1,

t
(6.6) An() = /0 (an(s) — 1) ds,

t

(6.7) On ()= [ an(s)ds.
Heuristically, this is because
An(@+dt) — An(t)
=E[Zn(t +d1) = Zn ()| F"]
= —dt + P(some new child appears duripgt + dt]|F,N),
On(t+dt) — On(1)
=E[(Zn(t +d1) — Zy ()71 FV]
= P(some new child appears durifig s + dt]|FN).
Thus,
(6.8) On()=AN() +1.
Definela (N, t) = A2(N, |t]). So, forO<u <1,

#{vertices at time — 1 + u which cannot be a child af(i)}

N—(i—1)—-Zy(i—-1)—Py(i—-1)

=ZNGi—D4+ G-+ PyGi—1) + > E, ;<u)
j=1

=ZnG—-14uw)+ G —14u)+Py(i—1+u),

and so, at timer, the time until the next child appears is the minimum of
N —t — Zn(t) — Py(¢) independent Ex@.2(N, 1)) random variables, and so is
exponential with parametéN —r — Zy (¢) — Pn(¢))A2(N, t). Hence,

an(t)=(N —t — Zn(t) — Pn(1))22(N, 1).

Then we have the following lemma:
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LEMMA 6.2. Fix0<r <1.Then forN sufficiently largeandald <t <rN,

k=3, o N\i t\k—2
N)LZ(NJ)_( — | +k(k=DBi| — )
69 ;(1\7) <N)
' — 0((logN)2/N + (1/NY1),
k—2
an(t) — 1—#1«(%) ’
(6.10) Zn ()] + Py (0) (IogN)2 £ \k1
N N
< B +(9( N +(ﬁ> )

PROOF Lemma 6.1 of [3] says that there exists a constart co such that
(6.11) INA2(N, 1) — B"(1/N)| < C(log N)?/N
forall NeNandallr e ZN|[0,rN]. Also, for0<t <rN,

< (t/N)*1 sup g% ()

O<s<r

k—3
B"(t/N) — (Z(z/N)" + k(k — 1>/3k(z/N>k—2>

i=0

= (t/N)* D)
by Taylor's theorem and (6.9) follows. Furthermore, using (6.9),

z P
ay(t) = (1— % _ M)NAZ(N, )

B (1_ % B %PNU» (kf(%) +k(k— 1)/3}{(%);(_2)

i=0
o (1))

|Zn ()] + Py (1) ((IogN)2 <z>’<—1)
1) -
N LR

for sufficiently largeN and (6.10) holds. (I

and so

t k—2
an(t) - 1—uk<ﬁ) ‘ < B

Thus, on integratingy (t) — 1 — ux(r/N)*~2 and using the fact thaky (1) =
1—infs<|;) Zn(s), we obtain that for some constafit< oo,

=11 2Ctmax< |Z t(log N)? tk
Wk - X<t | N(S)|+(9(( gnN) )

AV = oy N2 = N N Nk-1
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We wish to prove that
k=1

1 Ik P
—— sup |An(t) — ————|>
Ne®/2 | St (k — 1) Nk=2

and so it will be sufficient to prove that

sup |Zy(1)] 50

NTa®/2 oo,

or the stronger statement thﬁg(lwz SUR < ey, [ Zn (2)] is stochastically bounded
asN — oo.
Fix a large constantk and let Ty = inf{r > 0:|Zy(t)| > KN*®/2} A
(N“®¢0). Then
E|ZN(TN)| < EIMN(TN)| + E|AN(TN)]

< VE[M{(Tv)] + E|An(T)]

=VE[ON(TN)] +E[AN(TN)|

= VEIAN(TN) + Tn1+ E|AN(Ty)|

<VEIAy(Tw)| + N*®1g + E|Ay (Ty)].

where the equality on the third line is by the optional stopping theorem applied to
(6.2) and the fourth line is from (6.8). Now, there exists a consfart co such
that

Ty
Elax Tl < B[ [ lav -1 dr]

NP0 g \k? v Py(t)+|Zn(t
SE/ Mk<—> dt]+E[ Yo N (1) + | N()ldt}
0 N 0 N

+ @(N(k—3)/(2/<—3))

<E 2 sup |zN(z)|} + o (N*R/2)

L t<Tyn
_ 20N K N*©/2
- N

CTn

+ o (N ®/2)

HenceE|Zy (Ty)| < C'K N*=3/2k=3) ¢’ N*®)/2 for some constar@’ and so,
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by Markov’s inequality,

P(N‘“(k)/z sup |Zn(0)| > K) =P(|Zn(Ty)| > K N*®/?)
t<Ne® g
- E|ZyN(Ty)|
- KNok)/2

C/
< L ONV@&Y
- K

which gives the required stochastic boundednesg as oc.
Finally, we need to show that

1

P
o OV (V) L o

But sinceQy (t) = Ay (¢) + ¢, this follows immediately from

tk—l

1 Mk p
——— sup |AN(t) — ————|—0.
Na®)/2 ISNQ(E’)[O N (1) k— 1) NE2 .

PROOF OF THEOREM 5.2. Return now to the discrete-time setting of
Theorem 5.2. The proof is quite involved and so we will begin by outlining our
method. The random walK y, started from abov& N*®)/2 at time RZN*®) | is
close to dominating the breadth-first walk associated with the tree produced by
a Galton—Watson branching process with Poisson offspring distribution of mean
1+ S N~2®/2R24=2) This branching process is (just) supercritical and so the
associated breadth-first walk has both positive drift and the virtue of identically
distributed step sizes. We will essentially work with that process instead, using it
as a lower bound for our original breadth-first walk. If, with high probability, the
lower bound goes foN § steps without hitting 0, then so does our original breadth-
first walk. In order to show that the smaller random walk is unlikely to come back
to 0, we use an exponential supermartingale argument and the optional stopping
theorem.

Fix R > 0 and work on the set

Qn.g ={Zn([N“®R?]) > RN*D/2 py([N*® R?]) < RN*D/2).

As we have already seen at (5.1) and (5.2), this set has asymptotically high
probability. It will be useful to keep track of the times Wh@N(i))(N(X(k)RzE,-SN

goes above and below the linfgi) = %Mkik_zN‘k”. To this end, introduce two
sequences of stopping tim&s,),>1 and(z, ),>1, such that

r=inf{i > [N“OR?]: Zn () = f ()
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and, forn > 1,
T, =inf{i > 7,: Zy (i) < f(i)},
T =inf{i > 7, Zn (@) > f())}.
Let @y (i) = {TN*®PR?] <i < 11} U (U,=117, <i < Tas1}), the event thag y (i)
is below the line. DefingF;¥ = o (Zy (j):j <i).

LEMMA 6.3. For sufficiently largeN, there exists & < O such thatL y (i) =
expi@Zy (i) is a supermartingale on the disjoint sets of times

{[N“(k)R2—|, cootb b, T
Thatis (L (i))o<i<n iS an integrable adapted process and
E[Ly@)IFYq] < Lyt —1)
whenevei — 1€ {[N*®R?], ... 11— 1}U Uy=1it)s - Torr — 1.

PROOF  Consider the conditional moment generating function of an increment
of Zy: by Lemma6.1,

¢i(N.0) =E[exp(6(Zn (i) — Zn (i — 1))|FY4]
= eXp{(N —(@—-1)—-ZnyG—-1)— Py — 1))
x log(1+ p(N,i — (e’ — 1)) — 6}
<exp{(N—(G—-1)—Zy@i—1) —PyGi—1)
x p(N,i— 1)’ —1) -0},
Equation (6.11) implies that there exists a constart oo such that

j C(ogN)?2
Np(N,i—l)zﬁ/’<lﬁ> —$.

On the setQy z N Qn(@ — 1), we have Py(i — 1) < RN*®/2 and so, for
sufficiently largen,

(N—(@—1)—Zy@i —1) — Py(i —1)p(N,i — 1)

>(1 i 1 (i)“)ﬂ//(z‘> K N1/
U v 2"\ N

for some constanik < oo depending onR. The first nonzero derivative of
(1—s — 3us*2)B"(s) at 0 is the(k — 2)nd which is3(k — 2)!. Thus, there
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exists & > 0 such thatl —s — 31.s¥=2) " (s) is increasing o0, 81. Therefore,
fori <N onQy rNQy@E — 1), we have

i1 i\ i
) )
( N 2" k(N) )’3 N
1
> (1 _ yet-1p2 _ EMkN(a(k)—l)(k—Z)RZ(k—Z))ﬂ//(Na(k)—lRZ)
by putting ini = N*® R2. Now, expandings”(s) as 1+ s + --- + s* 3 + k(k —

1)Brs¥=2 and incurring an error of siz€ (s*~1), we see that the right-hand side is
bounded below by

14 %MkN—a(k)/ZRZ(k—Z) _ K/ N—-k=D/@2k=3)
for some constank’ < co. Thus,
¢i(N,6) < exp|{(1+ 3N *®2RA=2) (! —1) -0
4 K N-*D/@=3 g _ ee)}.

If we had the breadth-first walk on the tree produced by a branching process with
Poisson offspring distribution of mear13 ., N~*®/2R2*=2 'we would have

exp|(1+ Fue N~ ®2R2E=2)) (e — 1) — 9}

as the conditional moment generating function of an increment. Thus, we will
effectively use this simpler process as a “lower bound” for our original process.
Now, letd be the value of which minimizes

exp{(1+ 3pu N~*®/ZR2E=2) (00 — 1) — 9},
so that it is easily seen that
0 = —log(1+ 3 N~*®/2R24=2)
(and so, trivially,§ < 0). Fori < N§ onQy.zr N Qn (i — 1),

_ 1 i
8:(4.6) < expf (14 SN~ ORI )~ 1)~
+ KN/ (g eé)}

_ exp{log(l n :_ZLMkN—a(k)/zRZ(k—z)) _ :_ZLMkN—a(k)/sz(k—z)

(1/2)ur K'N~1R2*=2)

< exp{—CoN~*® + c1N 1

=1
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for some constants”"1, Co> and sufficiently largeN. Hence, for6 = 6 and
sufficiently largen, IE[LN(i)|JT/X1] <Ly(i —1) onthe seQy g N Qn@{ — 1).
O

LEMMA 6.4. We have

lim P(SR < N8|Qy ) < exp(—3uR*Y).
N—o0

PROOF  Zy cannot hit 0 when it is above the ling(i) = 3ui*=2N=*+3.
Thus, if Z does hit 0 before tim&V$, it must occur before time;, or between
timest/ andr; 1 for somei > 1 and so

P(S§ < N8|Qn.r)

<P(S§ <11 A (N8)IQN,R)

o

+ ) P(SK < Tis1 A (NO)|Qw,r. T < SK A (NS), T/ < N§)

i=1

R
<P(Sy <11 A (NS)|QN,R)

0

+ Y PENSTAWNYIQ R ZnvG =1 = fi - D),
i=[Ne®) R2]

Zn(i) < f(@)),

whereT; =inf{j >i:Znx(j) > f(j)} and each term in the above summation
expresses the probability of a downcrossing from the }fiig to 0. It will turn
out that only the termP’(S}\‘} <11 A (NJ)|Q2N,r) makes a significant contribution
(intuitively because the process is much closer to 0 at {ini&® R?] than it is
att/ foranyi > 1).

As SR A1 (N$) is abounded stopping time, by the optional stopping theorem
we obtain that

Ly([N*OR*))1qy , = E[LN(SK A ta A (N®) Ty ¢ F Naw g ]
> P(Sy < 11 A (NOIF Nuwo g2y) 1w -
Hence,
P(SE <11 A (N8)|Qn.8) < E[Ln([N*®R?])|Qu £]
= E[exp(0Zy ([N*® R?])) |2 £]
< exp@RN*D/2)
= exp(—log(1 + Fux N~@®/2R2E=2) g N (b)/2)
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= exp(— s R¥ 1+ o(N~*®/2))
— exp(—%,ukRZk_l)
asN — oco. By a similar argument,

P(Sy <T; A(N®IQw.r. ZnG — 1) = £ — 1), Zn () < (D))
<E[LNDIQNR ZNGC =D = f( =D, ZnG) < f()]
<E[LND)|QnN.r, ZN@) =Tf(—1DT-1]
< Cexp(3ui* 2N ~*13),

whereC is a constant and the second inequality holds becZysean step down
by at most 1 and so the smallest that (i) can be and still have hady (i — 1)
above the line ig f (i — 1)1 — 1. Fori > [N*® R?],

< exp(LuxdN~K-9/@=3 g2k=3);)
— exp(— 110 N3/ @3 Rk |0g(1 4 1y, N0 W2 R20=3);)

- —3)\—(1/2) g N~ *k=3/(2=3) p2k=3) ;
= [(1 + L N 0/2R2=) =1/ D T

Let
_ —(k=3)/(2k—3) R2(k—3)

¢(N,R) = (1+ %Mkaa(k)/ZRZ(ka)) (1/2)ux N R .
Then

o0

Yo P(SNSTiAWNSIQNR ZnG =D = f(i — D). Zn () < (D))

i=[N*®) R2]
ad . Cg(N,R [N R
<c Y sw.ri=SD
i=[N*® R2]

This behaves essentially likly %—5/(2=3) exp(— N1/(2=3)) and so converges
to 0 asN — oo. Hence,

; R 1 2k—1
Jim P(Sy < No|Qv.r) < exp(— 3R ). 0

Now note that
P(Sy < N8) <P(S§ < N3|Q r) + P(Qf &)
and so
Jim P(SR < N§) < exp(— 3 R* 1)

+P(WX(R? < R) + IP’(— im:) Wwk(s) > R),
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which converges to 0 a® — co. Theorem 5.2 follows. [

PROOF OFTHEOREM5.3. We will make use of a weaker version of the fluid
limit methods expounded in [3]. Suppose, for the moment, tkidt),~o is a time-
homogeneous pure jump Markov process taking valuds'ia= %Zd C R, Let
KN (x,dy) be the Lévy kernel otXtN)tzo. Define the Laplace transform of this
Lévy kernel by

mN(x, 0) = /d e(e’y>KN(x, dy),
R

where(-, ) is the usual inner product dR“. Let S be an open subset & and
definesV = 1V N S. We are interested in the behavior@f"),~o up until the first
time it leavesS (e.g., this may mean that one of its coordinates hits 0). With this
in mind, define the relevant stopping time

TV =inf{r > 0: XN ¢ S} A 1,

whererg > 0 is a constant.

THEOREMG6.5 ([3]). Assume the following conditions

1. There exists a limit kerne (x, dy), defined forx € S, and a constant)g > O
such thatm(x, ) < oo for all x € § and ||9| < no, wherem is the Laplace
transform ofK .

2. We have

sup sup [N~'m"(x, NO) —m(x,0)| > 0
xeSN 1611=no
asN — oo.
3. Let b(x) = m'(x,0), where m’(x, 0) is the vector of partial derivatives in
components af. Then assume thatis Lipschitz onS.
4. We han|XéV — x| £ 0asN — oo for some constantg € S.

Denote by(x(t));>0 the unique solution to the differential equatié(r) = b(x(1))
with initial conditionx (0) = xo, whereb is a Lipschitz extension &fto R?. Then

P
sup XY —x(®]>0
0<t<TN

asN — oo.
In simple cases, wherg(r) does not graze the boundary$before crossing it,

it is straightforward to show that” converges in probability to the first exit time
of x(¢) from S.
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In order to apply this theorem, we need to be working with a pure jump
Markov process. Now,Zy (i), Pn(i))o<i<n IS a discrete-time Markov chain. Take
(vV);>0 to be a Poisson process of rafeand let

1
1, 2, 3,
XN =N XN X0 = S0 Ze ), Pyerl)).

We will prove a fluid limit with this embedding into continuous time, which will
imply the theorem as stated.

We need to check that conditions 1-4 of Theorem 6.5 hold. The proc&ss
is naturally defined oV = {x € R®:Nx1 € Z*, Nx» € Z, Nx3 € Z1}. Let
S ={x € R3:|x1| < r1,0 < x2 < rp, |x3| < r3} for constants-, r2, r3 < co and
let SN =1V N S. Let KV (x,dy) be the Lévy kernel ofx". Then, using the
representation (3.1) of the evolution 8f and Lemma 6.1N 1KV (x, -) is the
law of

N7HL, By — 1, Ljytxs=1/N. By=0});
where By ~ Bin(N — Nx1 — Nxo — Nx3, p(N, Nx1)). Thus, KV (x,dy) has
Laplace transform
my (x,0) = NV,
mY (x,0) = Nexp((N — Nx; — Nxz — Nx3)
x log(1+ p(N, Nxp) (/N — 1)) —0/N),
Ne?/N(1— p(N, Nxp)N Mt
m% (x,0)=1{ + N(1— (1 — p(N, Nxp))N-Nx1=1), if xo4+x3=1/N,
N, if xo+x37#1/N.
Using (6.11),By 4 Poissoii(1 — x1 — x2 — x3)8”(x1)) asN — oo and so there
exists a limit kernekK (x, dy) with Laplace transform
mi(x,0) = 69,
ma(x,0) = exp((1— x1 — x2 — x3) " (x1) (e’ — 1) — ),
(e — Dyexp(—(L—x1)p"(x1)) + 1, if x2=—x3,
1, if xo £ —xs.
Furthermore, there existg > 0 such thatn(x, 0) < oo for all x € S and||0] < no
and also such that
sup sup [N 1m"(x, NO) —m(x,0)| — O,
xeSN 118ll<no
where || - || is the Euclidean norm ofR® (note thatx, # —x3 in S). Thus,
conditions 1 and 2 are satisfied.
Let Ty = inf{r > 0: X" ¢ SV} and recall that:(t) = 1 — ¢t — exp(—pB'(1)).
Fix a largeR < co. We will prove the fluid limit result in three time intervals:
[0, RZN®—1] [RZN*®-1 5] and[s, 1].

m3(x,0) =
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Time interval[0, RZN*®~1]. Until time RZN*®)~1 7, is in the Brownian
regime of Theorem 3.1 and so

sup  INT1Zy(INt]) —z()]
O§t5R2N“(k)—1

< sup IN“'zZyWNoI+  sup |z,
ostsRZNa(k)fl o§t§R2No¢(k)—1
which converges to 0 in probability a8 — oo, regardless of the value @t.
Similarly,

sup  [N“Py(Np)|2o0.
OStsRZNa(k)—l

Itis elementary that syp, - g2yaw-1 IN~2vN — 7| 5 0. Thus,

(6.12) sup XN —x@|5o0,
O<t<RZNek)—1

wherex (1) = (¢, z(1), 0).

Time interval[R2ZN*®~1 s]. Expression (6.12) provides us with condition 4
of the fluid limit theorem. Suppose now that we Nxand R and work on the set

> RN®®)/2-1 x3N - RNa(k)/Z—l}.

N
QN r= {X [R2Na(k)—1]

2,
"RZNa(k)fl]

DefineT R =inf{r > R2ZN*®~1: XN ¢ S} (which, forry, r, andrs large enough in
the definition ofS, is the time tha& 2" first hits 0; this is a Poissonized equivalent
of SX of Section 5). Or2y z, X" is constant on the intervaR2N*® -1 TR]
and so
sup [IN“1x2N| 50
0<r<TR

also. Now, setting(x) = m’(x, 0), we have that fox € S,

bi(x) =1,
bo(x) = (1—x1—x2 — x3)8"(x1) — 1,
b3(x) =0.

Condition 3 is clearly satisfied. By taking, ro andrs large enough, the differen-
tial equationt; = b(x(¢)) has unique solution(z) = (¢, 1 —t —exp(—B'(¢)), 0) =
(t,z(¢),0) in S. Thus, Theorem 6.5 entails that for al- 0,

lim IP( sup XN —x@)| > g‘QN,R> —0.

N=oo A payutb-1<;<T&As
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Now, for small enouglé > 0 we have thaé < * and limg_, o IimNﬁooP(Sf, >
N§) =1 and so we will also have lig, IimN_wo]P’(TA’f >§8)=1. Then

lim IP’( sup  IXN —x()| >s>

N=oo  \ p2yet-1<1<s
: N R
< lim ]P’( sup IXN —x@)|| > e, TS >5‘QN,R)
N—o0

R2ZNe®-1<t<TR A8
+ lim P(TF <8|1Qn.r) + lim P(Q% g).
N—oo N—o0 '

where the first of the three terms on the right-hand side is 0 as we have just proved.
Thus, for allR < co and alle > 0, we have that

Nlim IP’( sup ||XN—x(t)||>8><NIIm ]P( sup ||X{V—x(t)||>e>

o0 \0<r<é —00  \p<t<R2No(®)-1

+ lim IP’( sup ||x,N—x(z)||>s>

N=0oo \p2yat-1<r<s

and so we can take the limit &— oo on the right-hand side to obtain

I|m IF’( sup | XN — x| >g>

N—o0 0<r<$é

< I|m I|m IP’(TN <3|QN.r) + I|m Iim P(Q%§ »)
N—o0 ’

—oo N

=0.

Time interval[8, 1]. Suppose we now start from tinde We have just shown
that the initial value converges in probability. Redefiie= inf{r > §: XV ¢ SV}
and letX" be such thak " = XN, X2V = xZ). andx>" = X3, Minor
modifications to our argument in the previous section lead us to the limiting

functionx(r) = (¢, z(t A t*), 0) and the conclusion that for all> 0,

I|m ]P’( sup | XN — %)) > 8) =0,

-0 §<t<1

where we have thaly 5 t* by our assumption that there are no zeros of the
functionz(z) in (0, t*). Thus, finally,

Aim IP>< sup |X2N —z()| > e)

N—oo O<r<1

< lim IP’( sup |X,2’N —z(1)] >e)

N—oo 0<t<$
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+ Jim IP( sup |X2N =zt A1) >e)

N—00 §<r<1

=0. O

PROOF OF THEOREM 5.4. We use the interpolation from the proof of
Theorem 3.1 and the Doob decompositions contained therein.

LEMMA 6.6. Choosed < o < t*. Then

1 d
ﬁ(zN(Nf) - AN(Nt))Ogtfa — (G1)o<r<o
as N — oo, where (G;);>0 has the distribution of the time-changed standard
Brownian motion(B;;(1)):>0-

PrROOFE By the martingale central limit theorem (Theorem 7.1.4(b) of [4]), it
is sufficient to show that

%E[ sup (My (1) —MN(t—))2:| — 0,

0<t<No

the latter being obvious from the fact thafy cannot jump by more than 1.
Now, by (6.8), On(t) = An(t) + t and so it will be sufficient to show that
LAn(N1) 5 2(r). By (6.6) and the definition of at (5.3),

%AN(Nt)—Z(t)
1 Mt '
:N/ ((N—s—ZN(s)—PN(s))/\z(N,s)—l)ds—fO z(s)ds
1
—f (( —s——ZN(Ns)—NPN(Ns))N)Lz(N Ns)

—B'()(1—s— z(s))) ds

for t <o. There exists a constaft < oo such that

1 1
‘NANUVr) - z(z)] < ‘ / (1= $)(N22(N, Ns) — B"(s)) ds

PN(NS)

ZN(NS) —z(s) ds.
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By (6.11), there exists & < oo such that the right-hand side is bounded above by

g (0gN)? PN<Ns>
N
As ;. > 0, by Theorems 3.1 and 5.2, onty( N*%)/2) patches need to be added

before the breadth-first walk begins its giant excursion and sa/as< 1, we
must have

ZN(NS) —z(s) ds.

sup 20

O<t<o

VN

asN — oo. Thus,|[N~1Ax(N1) — z(¢)| converges to 0 in probability, uniformly
in0<t<o,byTheorem5.3. O

Now define
1
xN = TN(ZN(Nt) — Nz(t)),
1
GN = TN(ZN(Nt) — An(ND)).

Then we know already from Lemma 6.6 tk(a[rf\’)oftfg 4 (G1)o<i<s and we
wish to prove thatX)o<;< 4 (X1)o<r<o - Now,

t t
{V=G§V+¢N/() (aN(Ns)—l)ds—\/N/(; z(s)ds

t
=GN+ EN —/ xNg"(s)ds,
0
where

1
_/ (x/_(l—s)—\/—N(ZN(NS)—FPN(NS)))(NAZ(N Ns) — B"(s))ds

f Py (Ns)B"(s) ds.

Observe that, because_<lZN + Py < N, we have

|EN| < /0 "2V NINA2(N, Ns) — B"(s)] ds + ﬂ”(o)roigg PNJ(%S)
(logN)? Py(Ns)
<2 + t su .
sa— g tAer sup oS

At the end of the proof of Lemma 6.6, we showed thatysyp, |%| £ 0as
N — oo and so sug, -, |EN| 5 0.
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Now, there exists a continuous function (&thg F : Co[0, o] — Col[0, o] such
thatX" = F(GN + EN). Let X = F(G), that is, let(X,) satisfy

dXz =th - X;,B//(t) dt

Then (GiV + E;N)ngga—d)(Gt)Ogtgo and so, by continuity ofF and the
continuous mapping theorem (Corollary 3.1.9 of [4))o</<o 4 (X1)o<t<o-

By using an integrating factor to solve the above stochastic differential equation,
we see that

Xt:exp(—ﬂ’(t))/o exp(B’(s)) dGs. 0
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