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LIMITING SHAPE FOR DIRECTED PERCOLATION MODELS

BY JAMES B. MARTIN

CNRS and Université Paris 7

We consider directed first-passage and last-passage percolation on the
nonnegative latticeZd+, d ≥ 2, with i.i.d. weights at the vertices. Under
certain moment conditions on the common distribution of the weights, the
limits g(x) = limn→∞ n−1T (�nx�) exist and are constant a.s. forx ∈ R

d+,

whereT (z) is the passage time from the origin to the vertexz ∈ Z
d+. We

show that thisshape functiong is continuous onRd+, in particular at the
boundaries. In two dimensions, we give more precise asymptotics for the
behavior ofg near the boundaries; these asymptotics depend on the common
weight distribution only through its mean and variance. In addition we discuss
growth models which are naturally associated to the percolation processes,
giving a shape theorem and illustrating various possible types of behavior
with output from simulations.

1. Introduction. We consider directedfirst-passageandlast-passageperco-
lation models on the nonnegative latticeZ

d+, focusing in particular on behavior
close to the boundaries of the orthant.

With each nodez ∈ Z
d+, associate theweightX(z). We assume that the weights

{X(z), z ∈ Z
d+} are i.i.d. according to some common distributionF on R; by

allowing the weights to take negative as well as positive values we can consider
first-passage and last-passage models simultaneously.

A directed pathin Z
d+ is a path each step of which consists of increasing a single

coordinate by 1. LetT (z), thelast-passage time toz, be the maximum weight of all
directed paths from the origin to the pointz, where the weight of a path is the sum
of the weights of the nodes along the path. (See Section 2 for precise definitions.)
Natural objects of study are asymptotic quantities such as the functiong :Rd+ �→ R

defined by

g(x) = sup
n∈N

ET (�nx�)
n

.

From superadditivity properties, we have that this supremum is in fact a limit,
and thatn−1T (�nx�) → g(x) a.s. asn → ∞, for all x ∈ R

d+. We callg theshape
function, since it determines the limiting shape for the growth model associated
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to the percolation process;g(x) is also sometimes known as thetime constantin
directionx.

Analogous first-passage percolation models on the undirected lattice are by now
very well known—see, for example, Kesten [14, 15] or Durrett [7] for fundamental
results. Recently, the directed last-passage model has also received much attention;
in particular, the case whered = 2 and the weight distributionF is geometric or
exponential. First, this is essentially the only nontrivial case (whether directed or
undirected, first- or last-passage) where the form of the shape functiong above is
known; for exponential weights, it was first given by Rost [25]. But much more
precise results are now available; in particular Johansson [13] extended methods
developed by Baik, Deift and Johansson [2] for the closely related model of the
longest increasing subsequence of a random permutation, and showed that, for
α > 0, the distribution ofn−1/3{T ((n, �αn�)) − ng((1, α))} converges asn → ∞
to a nondegenerate limit (the Tracy–Widom distribution, which also arises as the
limiting distribution for the size of the largest eigenvalue of a random matrix from
the Gaussian unitary ensemble).

Two-dimensional directed last-passage percolation problems with general
weight distributions have also been studied in detail in the context of tandem
queueing systems; see, for example, [1, 10, 19].

Our first observation is a condition on the weight distributionF under which
the shape functiong above is finite everywhere. The condition required on the
positive tail is that

∫∞
0 (1−F(s))1/d ds < ∞; this follows quickly from analogous

results for the related model ofgreedy lattice animals(introduced in [5] and [9];
the precise results we use are from [20]). We note that, as in the greedy lattice
animals model, there is still a small gap between this sufficient condition and the
best currently known necessary condition, which is thatEXd+ < ∞ (see [20] for a
discussion).

Our first main result is then that the shape functiong is continuous on all of
R

d+, including at the boundaries (in fact, continuity on the interior is immediate
from a simple concavity property). We note that the question of continuity for the
directed first-passage model was raised by Newman and Piza [21]; for the two-
dimensional last-passage model it was resolved (in a queueing theory context)
by Glynn and Whitt [10] for distributions with an exponential tail, and then
by Baccelli, Borovkov and Mairesse [1] and Martin [19] under weaker moment
conditions. Particular tools which we use to prove continuity at the boundaries
in any dimension are a truncation which relies on a bound given in [20] for the
growth rate in the greedy lattice animals model, and a concentration inequality
derived from a result of Talagrand [27].

In two dimensions we then give more precise information about the behavior of
g close to the boundary. For a distributionF with meanµ and varianceσ 2, we
prove the asymptotic formula, asα → 0,

g
(
(1, α)

) = µ + 2σ
√

α + o
(√

α
)
.
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In addition to the tools used in the proof of continuity, we use here a comparison
with a variant form of directed percolation analyzed by Seppäläinen [26], and an
estimate for the speed of convergence in the central limit theorem from [24],
in order to prove a universality property over allF for the asymptotics at
the boundary. Comparing the exact formula known for the case whereF

is the exponential distribution then yields the result. These asymptotics are
linked to theBrownian directed percolationmodel—obtained, loosely speaking,
by reversing the order of the limitsn → ∞ (in the definition of g) and
α → 0—which has been widely studied recently in various contexts; see,
for example, [3, 11, 12, 23]. See also [22] for a survey of the connections
between these various directed percolation processes, random matrix theory and
noncolliding particle systems.

For various results on the dependence of the time constant on the weight
distribution in the context of undirected first-passage percolation, see, for example,
[16, 18, 28].

Just as in the case of undirected first-passage percolation, there aregrowth
processesnaturally associated to the directed percolation models considered here.
In Section 5 we describe these and prove ashape theoremanalogous to those given
in [4] and [14]. We also discuss, with illustrations from simulations (see Figures
1–7), various possible behaviors of the growth processes, and the differences which
exist between the directed and undirected cases and between the first-passage and
last-passage cases.

2. Notation and main results. We work with thed-dimensional nonnegative
lattice Z

d+. For x ∈ Z
d+ (and similarlyZ

d , R
d+ and R

d ) we write xi for the ith
component ofx; we use the norm‖x‖ = ∑ |xi |, and writex ≤ x′ if xi ≤ x′

i for
i = 1, . . . , d . We write0 for the origin and1 for the point all of whose coordinates
equal 1, andei for the point all of whose coordinates are 0 except theith which
is 1 (so thatx = ∑d

i=1 xiei).
With each pointv of Z

d+, associate theweightX(v). We assume that the weights
{X(v),v ∈ Z

d+} are i.i.d. random variables, with common distribution functionF ,
whereF(s) = P(X ≤ s) (as here, we sometimes write simplyX to denote a generic
random variable with distributionF ).

A directed pathin Z
d+ is a path each step of which consists of increasing a

single coordinate by 1. Forz1, z2 ∈ Z
d+, with z1 ≤ z2, let �[z1, z2) be the set of

directed paths fromz1 to z2. We identify a path with the set of points it contains;
by convention we exclude the final pointz2 (but include the initial pointz1, unless
z1 = z2). Note that all paths in�[z1, z2) have size (or “length”)‖z2 − z1‖.

For z1 ≤ z2, defineT (z1, z2), thelast-passage timefrom z1 to z2, by

T (z1, z2) = max
π∈�[z1,z2)

∑
v∈π

X(v).

In the casez1 = 0, we write simply�[z) = �[0, z) and

T (z) = T (0, z) = max
π∈�[z)

∑
v∈π

X(v).(2.1)
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We immediately have the following superadditivity property: ifz1 ≤ z2 ≤ z3 ∈
Z

d+, then

T (z1, z2) + T (z2, z3) ≤ T (z1, z3).(2.2)

SupposeE |X| < ∞. Then alsoE |T (z)| < ∞ for all z ∈ Z
d+. For x ∈ R

d+, we
now define

g(x) = sup
n∈N

1

n
ET (�nx�)(2.3)

(which may be infinite). We sometimes writegF (x) to emphasize the dependence
on the distributionF ; we also writeg(x1, . . . , xd) for g(x) whenx = (x1, . . . , xd)

in order to avoid proliferation of brackets.
The following basic properties of the functiong are immediate from this

definition and from the superadditivity in (2.2), using (a superadditive version of )
Kingman’s subadditive ergodic theorem:

PROPOSITION2.1. SupposeE |X| < ∞.

(i) For all x ∈ R
d+,

1

n
T (�nx�) → g(x) asn → ∞, a.s. and[if |g(x)| < ∞] in L1.

(ii) g(αx) = αg(x) for all α ≥ 0, x ∈ R
d+.

(iii) g is invariant under permutations of the coordinates.
(iv) g(x) + g(y) ≤ g(x + y) for all x,y ∈ R

d+.

The following result gives conditions under which the functiong is finite.
Condition (2.5) isstronger than the condition thatEXd+ < ∞ (which is known
to be necessary for the finiteness) but weaker, for example, than the condition
EXd+(log+ X)d−1+ε < ∞. See [20] for details.

PROPOSITION2.2. If

E |X| < ∞(2.4)

and ∫ ∞
0

(
1− F(s)

)1/d
ds < ∞,(2.5)

then|g(x)| < ∞ for all x ∈ R
d+.

Our first main result is then:

THEOREM 2.3. Under conditions(2.4) and (2.5), the shape functiong is
continuous on all ofRd+ (including at the boundaries).



2912 J. B. MARTIN

Proposition 2.2 and Theorem 2.3 are proved in Section 3. In Section 4 we prove
the following theorem, which gives more precise asymptotics forg at the boundary
in the cased = 2.

THEOREM 2.4. Let d = 2. Let the distribution F have meanµ and
varianceσ 2, and satisfy ∫ ∞

0

(
1− F(s)

)1/2
ds < ∞(2.6)

and ∫ 0

−∞
F(s)1/2ds < ∞.(2.7)

Then asα ↓ 0,

g(1, α) = µ + 2σ
√

α + o
(√

α
)
.(2.8)

Note that the framework effectively includes first-passage as well as last-
passage percolation models, since the weights may take negative as well as positive
values; replacingmaxby min and replacing the weightsX(z) by −X(z) would
simply change the sign ofT and so ofg. When considering associated growth
models in Section 5, however, it is easier to consider first-passage and last-passage
models separately. For completeness, we also state here the first-passage versions
of the results above. Define the quantities{S(z), z ∈ Z

d+} and {h(x),x ∈ R
d+},

analogous to the last-passage quantities{T (z)} and {g(x)} defined at (2.1) and
(2.3), by

S(z) = min
π∈�[z)

∑
v∈π

X(v),(2.9)

h(x) = inf
n∈N

1

n
ES(�nx�).(2.10)

COROLLARY 2.5. (i) If E |X| < ∞ and
∫ 0
−∞(F (s))1/d < ∞, then|h(x)| < ∞

for all x ∈ R
d+, andh is continuous on all ofRd+ (including at the boundaries).

(ii) Let d = 2. If F has meanµ and varianceσ 2 and satisfies(2.6)and (2.7),
then asα ↓ 0,

h(1, α) = µ − 2σ
√

α + o
(√

α
)
.

Definitions, results and discussions for the growth models are given in Section 5.
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3. Continuity at the boundary.

3.1. Case of bounded weights.We first prove the continuity result of Theo-
rem 2.3 for the case where the weights are bounded. We will need the following
concentration inequality, which follows easily from Theorem 8.1.1 of [27]; see, for
example, Lemma 5.1 of [20] for the argument.

LEMMA 3.1. Let Yi, i ∈ I , be a finite collection of independent random
variables, such that

P(|Yi| ≤ L) = 1

for all i ∈ I . LetC be a set of subsets ofI such that

max
C∈C

|C| ≤ R,

and let

Z = max
C∈C

∑
i∈C

Yi.

Then for anyu > 0,

P(|Z − EZ| ≥ u) ≤ exp
(
− u2

64RL2 + 64
)
.

We apply the concentration inequality in the following lemma, which is the
central part of the proof of the continuity ofg.

LEMMA 3.2. SupposeP(|X| ≤ L) = 1 for some finiteL. LetR > 0 andε > 0.
There existsδ > 0 such that ifx ∈ R

d+ with ‖x‖ ≤ R andxj = 0 (where1 ≤ j ≤ d),
then

|g(x + hej ) − g(x)| < ε

for all 0≤ h ≤ δ.

PROOF. Without loss of generality, letj = 1. Rephrased, the statement is that
for x = (x2, x3, . . . , xd) ∈ R

d−1+ ,

g
(
(h,x)

) → g
(
(0,x)

)
ash ↓ 0,

uniformly in {x : |x| ≤ R}.
So leth > 0 andn ∈ N. Any path from0 to the point(�nh�, �nx�) contains

exactly�nh� steps which increase the first coordinate, so can be decomposed into
a disjoint union of paths from(r,mr) to (r,mr+1), r = 0,1,2, . . . , �nh�, where
mr ∈ Z

d−1+ for eachr , and

0 = m0 ≤ m1 ≤ · · · ≤ m�nh�+1 = �nx�.(3.1)
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We have

T
(
(�nh�, �nx�))= max

m0,m1,...,m�nh�+1

[�nh�∑
r=0

T
(
(r,mr ), (r,mr+1)

)
(3.2)

+
�nh�−1∑

r=0

X(r,mr+1)

]
.

(The second term on the right-hand side appears because of the convention that a
path fromz1 to z2 does not include the “final point”z2.) Here and below themr

range over values satisfying (3.1). The number of such choices for themr is
d∏

i=2

( �nxi� + �nh�
�nh�

)
,

which, by Stirling’s formula, is exp[nφ(h,x) + o(n)], where

φ(h,x) = ∑
2≤i≤d

xi>0

(
h log

xi + h

h
+ xi log

xi + h

xi

)
.

We now consider the expectation of the quantity within the maximum on the
right-hand side of (3.2). For fixed{mr}, we have

E

[�nh�∑
r=0

T
(
(r,mr), (r,mr+1)

)+
�nh�−1∑

r=0

X(r,mr+1)

]

= E

�nh�∑
r=0

T
(
(0,mr ), (0,mr+1)

)+ �nh�EX

≤ ET
(
(0,m0), (0,m�nh�+1)

)+ nhL (by superadditivity)(3.3)

= ET
(
(0, �nx�))+ nhL

≤ n
[
g
(
(0,x)

)+ hL
]

(by definition ofg and superadditivity again).
Still keeping{mr} fixed, note that the quantity inside the expectation on the

left-hand side of (3.3) may be written as the maximum of the sum of various
sets of weightsX; each such set has size‖(�nh�, �nx�)‖ ≤ n‖(h,x)‖ and, by
assumption, none of the weights has absolute value greater thanL. So we can
apply the concentration inequality in Lemma 3.1 to give

P

[�nh�∑
r=0

T
(
(r,mr ), (r,mr+1)

)+
�nh�−1∑

r=0

X(r,mr+1) ≥ n
(
g
(
(0,x)

)+ hL + ε
)]

≤ P

[�nh�∑
r=0

T
(
(r,mr), (r,mr+1)

)+
�nh�−1∑

r=0

X(r,mr+1)
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deviates from its expectation by more thannε

]

≤ exp
(
− (nε)2

64n‖(h,x)‖L2
+ 64

)

= exp
(
− nε2

64‖(h,x)‖L2 + 64
)
.

Thus, taking the sum over all possible{mr},
P
[
T
(
(�nh�, �nx�))≥ n

(
g
(
(0,x)

)+ hL + ε
)]

≤ exp[nφ(h,x) + o(n)]exp
(
− nε2

64‖(h,x)‖L2 + 64
)
.

This sums overn ∈ N to a finite amount whenever

ε > 8L
√‖(h,x)‖φ(h,x).

Since

g
(
(h,x)

) = lim
n→∞

1

n
T
(
(�nh�, �nx�)) a.s.,

Borel–Cantelli then gives

g
(
(h,x)

)− g
(
(0,x)

)≤ hL + 8L
√‖(h,x)‖φ(h,x).

The right-hand side tends to 0 ash ↓ 0, uniformly in‖x‖ ≤ R, as required.
In the other direction, the superadditivity property in Proposition 2.1(iv) implies

g
(
(h,x)

)− g
(
(0,x)

) ≥ g
(
(h,0)

)
= hEX

≥ −hL,

which again tends to 0 ash ↓ 0, uniformly over allx. �

LEMMA 3.3. SupposeP(|X| ≤ L) = 1 for some finiteL. Theng is continuous
on all of Rd+.

PROOF. Let ε > 0 and y ∈ R
d+. Suppose thaty has exactlyk nonzero

coordinates. Without loss of generality, assume that in factyi > 0 for 1≤ i ≤ k

andyi = 0 for k + 1 ≤ i ≤ d .
Define the functiongk on R

k+ by gk(u) = g(u1, . . . , uk,0, . . . ,0) (appending
d − k zeros to the end ofu).

Sinceg is concave onRd+ [by Proposition 2.1(iv)],gk is concave onRk+, and so
is continuous on the interior ofRk+.
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Hence we can chooseδ′ > 0 small enough that if|hi | < δ′ for 1 ≤ i ≤ k, then

|gk(x1 + h1, . . . , xk + hk) − gk(x1, . . . , xk)| < ε,

and so ∣∣∣∣∣g
(

x +
k∑

i=1

hiei

)
− g(x)

∣∣∣∣∣ < ε.(3.4)

Choose anyR > ‖y‖ + kδ′. We now fixδ > 0 small enough that the conclusion
of Lemma 3.2 applies (for our chosenL, R andε), and also small enough that
‖y‖ + kδ′ + (d − k)δ < R.

Take anyh ∈ R
d with ‖h‖ ≤ min(δ′, δ) and with(y + h) ∈ R

d+. Then certainly
|hi | ≤ δ′ for 1≤ i ≤ k, and also 0≤ hi ≤ δ for k + 1 ≤ i ≤ d .

We are about to apply Lemma 3.2(d −k) times, once for each of the coordinates
of y which is 0. Specifically, fork + 1≤ j ≤ d , setx(j ) = y +∑j−1

i=1 hiei . Then for

k + 1 ≤ j ≤ d , we have‖x(j )‖ < R (by choice ofδ) andx
(j)
j = 0 (sinceyj = 0),

so all the required conditions of Lemma 3.2 apply.
Using also (3.4), we obtain

|g(y + h) − g(y)| ≤
∣∣∣∣∣g
(

y +
k∑

i=1

hiei

)
− g(y)

∣∣∣∣∣
+

d∑
j=k+1

∣∣∣∣∣g
(

y +
j∑

i=1

hiei

)
− g

(
y +

j−1∑
i=1

hiei

)∣∣∣∣∣
=

∣∣∣∣∣g
(

y +
k∑

i=1

hiei

)
− g(y)

∣∣∣∣∣
+

d∑
j=k+1

∣∣g(x(j ) + hjej

)− g
(
x(j )

)∣∣
< ε + (d − k)ε

≤ (d + 1)ε.

Sinceε was arbitrary, we have thatg is continuous aty, as desired. �

3.2. Extension to unbounded weight distribution.Define a lattice animal of
sizen to be a connected subset ofZ

d of sizen which includes the origin. Extend
the i.i.d. array{X(z)} to all of Z

d , so that{X(z), z ∈ Z
d} is an i.i.d. array with

common distributionF . LetA(n) be the set of lattice animals of sizen, and define

N(n) = max
ξ∈A(n)

∑
z∈ξ

X(z),
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the maximum weight of a lattice animal of sizen.
The results in the following proposition are taken from Theorems 1.1 and 2.3

of [20]. (In fact the model in [20] covers only the case where the weightsX(z) are
nonnegative; but replacing weights whose value is 0 by negative weights can only
reduce the left-hand side of (3.5) or (3.6) and leaves the right-hand side unchanged.
Alternatively, see [6] for a detailed treatment of the lattice animals model where
the weights can take negative values.)

PROPOSITION 3.4. There existsc = c(d) < ∞ such that, for all F satisfy-
ing (2.5):

(i) for all n > 1,

EN(n) ≤ cn

∫ ∞
0

(
1− F(s)

)1/d
ds;(3.5)

(ii) with probability1,

lim sup
n→∞

N(n)

n
≤ c

∫ ∞
0

(
1− F(s)

)1/d
ds.(3.6)

Now we can easily deduce the following lemma for the directed percolation
model. Part (iii) implies Proposition 2.2.

LEMMA 3.5. There existsc = c(d) < ∞ such that, for all F satisfying(2.5):

(i) for all z ∈ Z
d+,

ET (z) ≤ c‖z‖
∫ ∞

0

(
1− F(s)

)1/d
ds;(3.7)

(ii) with probability1,

lim sup
n→∞

1

n
max

z : ‖z‖≤n
T (z) ≤ c

∫ ∞
0

(
1− F(s)

)1/d
ds;(3.8)

(iii) for all x ∈ R
d+,

‖x‖EX ≤ g(x) ≤ c‖x‖
∫ ∞

0

(
1− F(s)

)1/d
ds.(3.9)

PROOF. First note that ifz ∈ Z
d+ and‖z‖ = n, then any pathπ ∈ �[z) is a

lattice animal of sizen; thusT (z) ≤ N(n), and parts (i) and (ii) follow immediately
from Proposition 3.4.

Puttingz = �nx� in (i), dividing by n and then lettingn → ∞ gives the upper
bound in (iii).
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For the lower bound in (iii), letz ∈ Z
d+, and letπ̃ be any path in�[z); then

|π̃ | = ‖z‖, and we have

ET (z) = E max
π∈�[z)

∑
v∈π

X(v)

≥ E
∑
v∈π̃

X(v)

= ‖z‖EX.

Again letz = �nx� and letn → ∞ to obtain the lower bound in (iii). �

We now introduce truncated versions of the weights{X(z)}. ForL > 0 andz ∈
Z

d+, let X(L)(z) = max{min{X(z),L},−L} [so that|X(L)(z)| = min(|X(z)|,L)].
Then let{T (L)(z), z ∈ Z

d+} and{g(L)(x),x ∈ R
d+} be defined just as{T (z)} and

{g(x)}, but with the quantities{X(z)} replaced by the truncated versions{X(L)(z)}.
LEMMA 3.6. Suppose that(2.4)and(2.5)hold. Then for anyx ∈ R

d+,

g(L)(x) − ‖x‖
∫ −L

−∞
F(s) ds

(3.10)
≤ g(x) ≤ g(L)(x) + c‖x‖

∫ ∞
L

(
1− F(s)

)1/d
ds,

wherec is as in Lemma3.5.Thus, for anyR > 0,

sup
x∈R

d+ : ‖x‖≤R

∣∣g(x) − g(L)(x)
∣∣→ 0 asL → ∞.(3.11)

PROOF. Note that

−[L − X(z)]+ ≤ X(z) − X(L)(z) ≤ [X(z) − L]+.

We consider first the positive tail. Letx ∈ R
d+. Then

g(x) − g(L)(x) = lim
n→∞

1

n
ET (�nx�) − lim

n→∞
1

n
ET (L)(�nx�)

= lim
n→∞

1

n
E

[
sup

π∈�[0,�nx�)

∑
v∈π

X(v) − sup
π∈�[0,�nx�)

∑
v∈π

X(L)(v)

]

≤ lim
n→∞

1

n
E sup

π∈�[0,�nx�)

[∑
v∈π

X(v) − ∑
v∈π

X(L)(v)

]
(3.12)

= lim
n→∞

1

n
E sup

π∈�[0,�nx�)

[∑
v∈π

[X(v) − L]+
]

≤ c‖x‖
∫ ∞
L

(
1− F(s)

)1/d
ds;
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the last inequality follows from Lemma 3.5, since the variables{[X(v) − L]+,
v ∈ Z

d+} are i.i.d. with distribution functionF (>L), whereF (>L)(s) = 0 for s ≤ L

andF (>L)(s) = F(s) for s > L. This gives the lower bound in (3.10).
For the negative tail, letz ∈ Z

d+, and letπ∗ ∈ �[0, z) be the maximizing path
for T (L)(z). (If there are several maximizing paths, choose, say, the one that is first
in the lexicographic order.)

Now for any v ∈ Z
d+, P(v ∈ π∗|X(v) ≤ s) is a nondecreasing function ofs.

[This follows from a simple coupling, since{X(v′),v′ ∈ Z
d+} are independent and,

for a fixed realization of the other weights{X(v′),v′ ∈ Z
d+,v′ �= v}, the function

I {v ∈ π∗} is a nondecreasing function ofX(v).]
Hence in particularP(v ∈ π∗|X(v) ≤ −L) ≤ P(v ∈ π∗), and so by simple

manipulation of conditional probabilities,

P
(
X(v) ≤ −L|v ∈ π∗) ≤ P

(
X(v) ≤ −L

)
.

Furthermore, the event{v ∈ π∗} depends only on{max{X(v′),−L},v′ ∈ Z
d+};

thus, conditional on{X(v) ≤ −L}, X(v) is independent of{v ∈ π∗}. Hence

E
([−L − X(v)]+|v ∈ π∗)

= E
([−L − X(v)]+|X(v) ≤ −L

)
P
(
X(v) ≤ −L|v ∈ π∗)

≤ E
([−L − X(v)]+|X(v) ≤ −L

)
P
(
X(v) ≤ −L

)
= E

([−L − X(v)]+)
=

∫ −L

−∞
F(s) ds.

Now

ET (z) = E max
π∈�[z)

∑
v∈π

X(v)

≥ E max
π∈�[z)

∑
v∈π

(
X(L)(v) − [−L − X(v)]+)

≥ E
∑

v∈π∗
X(L)(v) − E

∑
v∈π∗

[−L − X(v)]+

= ET (L)(z) − ∑
v∈Z

d+

P(v ∈ π∗)E
([−L − X(v)]+|v ∈ π∗)

≥ ET (L)(z) −
∫ −L

−∞
F(s) ds

∑
v∈Z

d+

P(v ∈ π∗)

= ET (L)(z) −
∫ −L

−∞
F(s) dsE |π∗|

= ET (L)(z) − ‖z‖
∫ −L

−∞
F(s) ds,
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sinceπ∗ ∈ �[z) and all paths in�[z) have length‖z‖.
Letting z = �nx� and takingn → ∞ then gives the first inequality in (3.10), as

required. The convergence in (3.11) then follows since, under (2.4) and (2.5), both
the integrals in (3.10) tend to 0 asL → ∞. �

It is now immediate to extend the continuity property proved in Lemma 3.3 to
the case of unbounded weights, and so complete the proof of Theorem 2.3.

Lemma 3.3 shows that the functionsg(L) are continuous for eachL, and (3.11)
shows that, under the conditions (2.4) and (2.5),g(L) → g asL → ∞, uniformly
on any compact subset ofR

d+. Henceg itself is continuous, as required.

4. Asymptotics at the boundary for d = 2. In this section we prove
Theorem 2.4.

We first obtain an estimate on the growth rate in the case whereF is a Bernoulli
distribution. This is done using a comparison with an alternative percolation model
in which the Bernoulli distribution is an exactly solvable case. We write Ber(p) for
the Bernoulli distribution with parameterp, with P(X = 1) = 1− P(X = 0) = p.

LEMMA 4.1. For all α > 0, p ∈ [0,1],
gBer(p)(1, α) ≤ (1+ α)p + 2

√
α
√

1+ α
√

p(1− p).

PROOF. Recall that

T (m,n) = max
π∈�[m,n)

∑
z∈π

X(z),

where�[m,n) is the set of paths of the form

z0, z1, . . . , zm+n−1

such thatz0 = 0, such that, for all 1≤ i ≤ m + n − 1, zi − zi−1 = ej for some
j ∈ {1, . . . , d}, and such that also(m,n) − zm+n−1 = ej for somej ∈ {1, . . . , d}.

Define an alternative set of increasing paths�̃[m,n) to be those paths of the
form

(0, y0), (1, y1), . . . , (m − 1, ym−1),

where 0≤ y0 ≤ y1 ≤ · · · ≤ ym−1 ≤ n, and define

T̃ (m,n) = max
π̃∈�̃[m,n)

∑
z∈π̃

X(z).

Define the functionψ :Z2+ �→ Z
2+ by ψ(x, y) = (x + y, y).

Sinceψ(z) �= ψ(z′) wheneverz �= z′, and since{X(z), z ∈ Z
2+} are i.i.d., we

have

ET (m,n) = E max
π∈�[m,n)

∑
z∈π

X(z) = E max
π∈�[m,n)

∑
z∈π

X(ψ(z)).(4.1)
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For a pathπ = z0, . . . , zr−1, write ψ(π) for the pathψ(z0), . . . ,ψ(zr−1).
From the definitions of the path sets above, one can obtain that ifπ ∈ �[m,n),
thenψ(π) ∈ �̃[m + n,n). (We do not require that all paths iñ�[m + n,n) can
be written asψ(π) in this way.) Put another way: letψ(�[m,n)) be the set
{π̃ : π̃ = ψ(π) for someπ ∈ �[m,n)}; thenψ(�[m,n)) ⊆ �̃[m + n,n).

Continuing from (4.1),

ET (m,n) = E max
π∈�[m,n)

∑
v∈ψ(π)

X(v)

= E max
π̃∈ψ(�[m,n))

∑
v∈π̃

X(v)

≤ E max
π̃∈�̃[m+n,n)

∑
v∈π̃

X(v)

= E T̃ (m + n,n).

Then

g(1, α) = lim
n→∞

1

n
ET (n, �αn�)

(4.2)

≤ lim inf
n→∞

1

n
E T̃ (�1+ α�n, �αn�).

Seppäläinen [26] analyzes directed percolation based on the path sets�̃, and in
particular obtains that, for the case of Bernoulli weights,

lim
n→∞

1

n
E Ber(p)T̃ (�α1n�, �α2n�)

=


p(α1 − α2) + 2

√
α1α2

√
p(1− p), if p ≤ α1

α1 + α2
,

α1, if p ≥ α1

α1 + α2
.

A calculation then shows that for allp,

lim
n→∞

1

n
E Ber(p)T̃ (�α1n�, �α2n�) ≤ α1p + 2

√
α1α2

√
p(1− p).

Substituting into (4.2) withα1 = 1+ α, α2 = α gives the required result.�

LEMMA 4.2. Let F1 and F2 be distributions with meansµ1 and µ2 and
satisfying(2.6)and(2.7).Then for allα > 0,∣∣gF1(1, α) − gF2(1, α) − (1+ α)(µ1 − µ2)

∣∣
≤ 2

√
α(1+ α)

∫ ∞
−∞

|F1(s) − F2(s)|1/2ds.
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PROOF. Let {U(z), z ∈ Z
2+} be i.i.d. uniform on[0,1], and for i = 1,2, let

Xi(z) = F−1
i (U(z)), whereF−1(u) = sup{x :F(x) ≤ u}.

Then fori = 1,2, {Xi(z), z ∈ Z
2+} are i.i.d. with distributionFi , and for anyx,

P
(
X1(z) ≥ x,X2(z) < x

) = [F2(x) − F1(x)]+
and

P
(
X2(z) ≥ x,X1(z) < x

) = [F1(x) − F2(x)]+.

Now

gF1(1, α) − gF2(1, α)

= lim
n→∞

1

n
E max

π∈�(n,�αn�)
∑
z∈π

X1(z) − lim
n→∞ E max

π∈�(n,�αn�)
∑
z∈π

X2(z)

≤ lim
n→∞

1

n
E max

π∈�(n,�αn�)
∑
z∈π

(
X1(z) − X2(z)

)
= lim

n→∞
1

n
E max

π∈�(n,�αn�)

∫ ∞
−∞

∑
z∈π

[
I
(
X1(z) ≥ x,X2(z) < x

)
− I

(
X1(z) < x,X2(z) ≥ x

)]
dx

≤ lim
n→∞

1

n
E

∫ ∞
−∞

max
π∈�(n,�αn�)

∑
z∈π

[
I
(
X1(z) ≥ x,X2(z) < x

)
− I

(
X1(z) < x,X2(z) ≥ x

)]
dx

=
∫ ∞
−∞

lim
n→∞

1

n
E max

π∈�(n,�αn�)
∑
z∈π

[
I
(
X1(z) ≥ x,X2(z) < x

)
− I

(
X1(z) < x,X2(z) ≥ x

)]
dx

(by Fubini’s theorem and bounded convergence)

≤
∫ ∞
−∞

lim
n→∞

1

n

{
E max

π∈�(n,�αn�)
∑
z∈π

[
I
(
X1(z) ≥ x,X2(z) < x

)]

+ E max
π∈�(n,�αn�t)

(∑
z∈π

[
1− I

(
X1(z) < x,X2(z) ≥ x

)]

− ∑
z∈π

1

)}
dx

=
∫ ∞
−∞

{
gBer([F2(x)−F1(x)]+)(1, α) + gBer(1−[F1(x)−F2(x)]+)(1, α) − (1+ α)dx

}
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≤
∫ ∞
−∞

{
(1+ α)

([F2(x) − F1(x)]+ + 1− [F1(x) − F2(x)]+)
+ 2

√
α
√

1+ α
([F2(x) − F1(x)]1/2

+ + [F1(x) − F2(x)]1/2
+

)
− (1+ α)

}
dx

(by Lemma 4.1)

= (1+ α)

∫ ∞
−∞

{F2(x) − F1(x)}dx

+ 2
√

α
√

1+ α

∫ ∞
−∞

|F1(x) − F2(x)|1/2 dx

= (1+ α)(µ1 − µ2) + 2
√

α
√

1+ α

∫ ∞
−∞

|F1(x) − F2(x)|1/2dx.

Similarly,

gF2(1, α) − gF1(1, α)

≤ (1+ α)(µ2 − µ1) + 2
√

α
√

1+ α

∫ ∞
−∞

|F1(x) − F2(x)|1/2 dx.

Together these give the desired result.�

LEMMA 4.3. Let F satisfy (2.6) and (2.7), and let ε > 0. Then there is a
distributionF̃ with bounded support which has the same mean and variance asF ,
and which satisfies ∫ ∞

−∞
|F(s) − F̃ (s)|1/2ds < ε.

PROOF. Let X have distributionF . For brevity we cover only the case where
P(X ≥ 0) = 1; the negative tail can be truncated in an analogous way.

Take anyt > 0. If P(X > t) = 0, thenF itself has bounded support and we take
F̃ = F . Otherwise, letm = E (X|X > t) andw = E (X2|X > t), and choosep, u

to satisfy

(1− p)t + pu = m,(4.3)

(1− p)t2 + pu2 = w.(4.4)

The solution is

p = (m − t)2

(m − t)2 + w − m2 ,

u = t + m − t

p
;
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note that 0< p ≤ 1 andu > t , sincem > t andw ≥ m2.
Then let

F̃ (x) =


F(x), if 0 ≤ x < t ,
1− p[1− F(t)], if t ≤ x < u,
1, if x ≥ u.

(4.5)

Now F̃ has bounded support sincẽF(u) = 1. For the mean and variance, letX̃

have distributioñF , and use (4.3) and (4.5) to give

E X̃ = E (X;X ≤ t) + (1− p)[1− F(t)]t + p[1− F(t)]u
= E (X;X ≤ t) + P(X > t)[(1 − p)t + pu]
= EX;

similarly use (4.4) to giveE X̃2 = EX2.
For the final part we have∫ ∞

0
|F(s) − F̃ (s)|1/2ds ≤

∫ ∞
t

[1− F(s)]1/2ds +
∫ ∞
t

[1− F̃ (s)]1/2ds

=
∫ ∞
t

[1− F(s)]1/2ds +
∫ u

t

[
p
(
1− F(t)

)]1/2
ds

≤
∫ ∞
t

[1− F(s)]1/2ds + [pu2
P(X > t)]1/2

≤
∫ ∞
t

[1− F(s)]1/2ds + E (X2;X > t)1/2.

By assumption,
∫∞
0 [1−F(s)]1/2ds < ∞, and this implies thatEX2 < ∞ also;

hence by choosingt large enough we can make the right-hand side as small as
desired. �

LEMMA 4.4. Let F be a distribution with bounded support, and, for k ∈ N,
let F (k) be the distribution ofX1 + X2 + · · · + Xk , where{Xi} are i.i.d. ∼ F . Let
r :R+ �→ N be any function satisfyingr(α) → ∞ andr(α)

√
α → 0 asα ↓ 0.Then

lim
α↓0

1√
α

∣∣∣∣gF (1, α) − 1

r(α)
gF (r)

(
1, αr(α)

)∣∣∣∣= 0.

PROOF. For (x, y) ∈ Z
2+ and r ∈ N, let B(r)(x, y) be the set{(rx + i, y),

i = 0,1, . . . , r − 1}.
The setsB(r)(z) partitionZ

2+; essentially we have grouped the sites ofZ
2+ into

“blocks” of lengthr and height 1. We will compare our original model with one
where each of these blocks functions as a single site, whose weight is the sum of
the original sites contained in the block.
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Givenπ ∈ �(nr,m), we can findπ̃ ∈ �(n,m) such that∣∣∣∣∣⋃
z∈π̃

B(r)(z) � π

∣∣∣∣∣ ≤ mr,(4.6)

where� denotes the symmetric difference. [For instance, letπ̃ = {z :π ∩B(r)(z) �=
∅}.] Similarly, given π̃ ∈ �(n,m), we can findπ ∈ �(nr,m) such that (4.6) is
satisfied.

Suppose that{X(z), z ∈ Z
2+} are i.i.d. with distributionF . Define

X̃(r)(z) = ∑
v∈B(r)(z)

X(z).

Then {X̃(r)(z), z ∈ Z
2+} are i.i.d. with distributionF (r). Let K be such that

P(|X| > K) = 0. Then by the properties (in both directions) noted at (4.6) and
after, ∣∣∣∣∣ max

π∈�(nr,m)

∑
z∈π

X(z) − max
π̃∈�(n,m)

∑
z∈π̃

X̃(z)

∣∣∣∣∣ ≤ mrK,

so that ∣∣∣∣ 1

nr
E FT (nr,m) − 1

r

1

n
E F (r)T (n,m)

∣∣∣∣ ≤ 1

nr
mrK.

Puttingm = �αnr� and lettingn → ∞ gives∣∣∣∣gF (1, α) − 1

r
gF (r) (1, αr)

∣∣∣∣≤ αrK.

If r is a function ofα such thatr
√

α → 0 asα ↓ 0, then the right-hand side is
o(

√
α ) asα ↓ 0, as desired. �

LEMMA 4.5. Let F be a distribution with bounded support, with meanµF

and varianceσ 2
F . LetF (k) andr be as in Lemma4.4.Then

lim
α↓0

1√
α

∣∣∣∣ 1

r(α)
gF (r)

(
1, αr(α)

)− µF − σF

g
(1, αr(α))√
r(α)

∣∣∣∣= 0,

where
 is the standard normal distribution.

PROOF. Theorem 5.16 of [24] gives a bound on the rate of convergence in the
central limit theorem, for distributionsF which have a finite third moment. Here
F has bounded support and so certainly finite third moment; we obtain that there
existsC = C(F ) such that∣∣F̃ (r)(x) − 
(x)

∣∣≤ Cr−1/2(1+ |x|)−3
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for all r ∈ N, x ∈ R, where F̃ (r) is the distribution of(X1 + · · · + Xr −
rµF )/(σF

√
r ). (Note thatF̃ (r) is simply the distributionF (r) normalized to have

mean 0 and variance 1.)
Now combine this estimate with Lemma 4.2; for anyr ∈ N,

1√
α

∣∣∣∣1r gF (r) (1, αr) − µF − σF

g
(1, αr)√
r

∣∣∣∣
= 1√

α

∣∣∣∣ σF√
r
gF̃ (r) (1, αr) − σF

g
(1, αr)√
r

∣∣∣∣
= σF√

αr
|gF̃ (r) (1, αr) − g
(1, αr)|

≤ σF√
αr

2
√

αr
√

1+ αr

∫ ∞
−∞

|Cr−1/2(1+ |x|)−3|1/2dx

= C′σF

√
1+ αr

r1/4 ,

whereC′ is some constant independent ofr andα. If r is a function ofα such that
r
√

α → 0 andr → ∞ asα ↓ 0, then the right-hand side tends to 0 asα ↓ 0, as
required. �

The following lemma is the universality result which we need:

LEMMA 4.6. Let F be a distribution with meanµF and varianceσ 2
F ,

and satisfying(2.6) and (2.7), and let the functionr satisfy the conditions of
Lemma4.4.Then

lim
α↓0

1√
α

∣∣∣∣gF (1, α) − µF − σF

g
(1, αr(α))√
r(α)

∣∣∣∣ = 0.(4.7)

PROOF. Let ε > 0. Using Lemma 4.3, choose a distributioñF with bounded
support, with the same mean and variance asF , and with∫ ∞

−∞
|F(x) − F̃ (x)|1/2 dx < ε/2.(4.8)

Then

lim sup
α↓0

1√
α

∣∣∣∣gF (1, α) − µF − σF

g
(1, αr(α))√
r(α)

∣∣∣∣
≤ lim sup

α↓0

1√
α

∣∣∣∣gF̃ (1, α) − µF − σF

g
(1, αr(α))√
r(α)

∣∣∣∣
+ lim sup

α↓0

1√
α

|gF (1, α) − gF̃ (1, α)|.
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The first term is 0 by combining Lemmas 4.4 and 4.5 and using the fact thatF̃ has
the same mean and variance asF ; the second term is≤ ε by Lemma 4.2 and (4.8).
This works for anyε > 0, so the desired result follows.�

Finally, we compare with an exactly solvable case to yield the asymptotic
behavior for allF :

PROOF OF THEOREM 2.4. Choose anyr that satisfies the conditions of
Lemma 4.4, for example,r(α) = �α−1/4�.

WhenF is the exponential distribution with mean 1 (and so also variance 1),
we have the exact formulagF (1, α) = 1+ 2

√
α + α (see, e.g., [25]). Substituting

into (4.7) gives

lim
α↓0

1√
α

∣∣∣∣2√
α − g
(1, αr(α))√

r(α)

∣∣∣∣ = 0.(4.9)

Now take anyF satisfying (2.6) and (2.7). Combining (4.7) and (4.9) gives

lim
α↓0

1√
α

∣∣gF (1, α) − µF − 2σF

√
α
∣∣ = 0,

as required for (2.8). �

5. Growth models.

5.1. Definitions and statement of shape theorem.Recall that first-passage
quantitiesS andh, analogous toT andg, were defined at (2.9) and (2.10).

DefineB(t), thelast-passage shape at timet , by

B(t) = {x ∈ R
d+ :T (�x�) ≤ t},

and defineC(t), thefirst-passage shape at timet , by

C(t) = {x ∈ R
d+ :S(�x�) ≤ t}.

Both B(t) and C(t) are increasing int , in the sense that for 0≤ t1 ≤ t2,
B(t1) ⊆ B(t2) andC(t1) ⊆ C(t2).

We further define subsetsB andC of R
d+ by

B = {x :g(x) ≤ 1},
C = {x :h(x) ≤ 1}.

B is concave [by Proposition 2.1(iv)]; similarly,C is convex.B and C are
asymptotic shapesfor the processes{B(t)} and{C(t)} in the sense of the following
theorem, which is analogous to well-known results for undirected first-passage
percolation models (see, e.g., [4, 14]). We give the proof in Section 5.3.
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THEOREM 5.1. Suppose that the weight distributionF satisfies∫ 0

−∞
F(s)1/dds < ∞(5.1)

and ∫ ∞
0

(
1− F(s)

)1/d
ds < ∞.(5.2)

(i) Last-passage shape theorem.
If E F X > 0, then for anyε > 0,

(1− ε)B ⊆ B(t)

t
⊆ (1+ ε)B(5.3)

for all sufficiently larget , with probability1.
(ii) First-passage shape theorem. If

inf
x∈R

d+\{0}
h(x)

‖x‖ > 0,

then for anyε > 0,

(1− ε)C ⊆ C(t)

t
⊆ (1+ ε)C

for all sufficiently larget , with probability1.

REMARK 5.1. (i) Note that by a subadditivity property forh, analogous to
the superadditivity property forg in Proposition 2.1(iv), we have that for all
x ∈ R

d+, h(x) ≥ ‖x‖
d

h(1,1, . . . ,1); thus the condition in part (ii) is equivalent to
the condition thath(1,1, . . . ,1) > 0. If the weights are nonnegative, then this is
implied by the condition thatF(0) < p

(d)
c , wherep

(d)
c is the critical value for

directed percolation ind dimensions; this follows, for example, from the same
arguments as the property, noted by Kesten and Su [17], that (in their case for
undirected percolation) the critical points for percolation and for “1-percolation”
coincide.

(ii) In fact, the moment conditions in Theorem 5.1 are stronger than necessary;
for the last-passage case one can replace (5.1) by the condition thatE |X−| < ∞,
and for the first-passage case one can replace (5.2) by the condition thatEX < ∞.

In particular, combining with the previous remark, for the first-passage model
with nonnegative weights it suffices for the limiting shape result thatEX < ∞ and
F(0) < p

(d)
c .

To prove the theorem under these weaker conditions, one can follow an
approach similar to that used by Cox and Durrett [4] for the undirected first-
passage case, making use of the fact thatEX < ∞ ⇒ E min(X1, . . . ,Xd)d < ∞,
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whereX1, . . . ,Xd are i.i.d. copies ofX. However, the proof needs a rather lengthy
enumeration of cases and a description of a variety of different sets of “alternative
paths”; in addition, the fundamental ideas are already in [4], so we do not include
it here.

Under the stronger conditions in Theorem 5.1 (already almost optimal for
the last-passage case with nonnegative weights), bounds of the sort given in
Lemma 3.5 are available, and the proof is simpler.

5.2. Discussion of the growth models.In this section we describe and illustrate
various possible types of behavior for the first-passage and last-passage growth
processesB(t) andC(t).

We will concentrate on the case where the weights{X(z)} are nonnegative. Then
for all t ≥ 0, B(t) andC(t) are connected; in addition,B(t) is a decreasing subset
of R

d+, althoughC(t) does not generally have a similarly simple property.
If the weight distributionF is exponential (resp. geometric), then the processes

{B(t), t ≥ 0} and{C(t), t ≥ 0} are Markov in continuous (resp. discrete) time; in
the two-dimensional last-passage case this yields the growth model considered in,
for example, Rost [25] and Johansson [13]. Simulations ofB(t) andC(t) in two
dimensions with exponentially distributed weights are given in Figures 1 and 2,
and the three-dimensional last-passage case is shown in Figure 7.

In fact B(t) andC(t) are also Markov in discrete time when the weights are
Bernoulli (taking values 0 and 1).

FIG. 1. Simulation of the last-passage
process ford = 2 and F exponential with
mean1. The setsB(t) are shown fort = 150
(darkest), 300,450,600 (lightest). Here the
asymptotic shapeB is known to be{(x, y) ∈
R

2+ :
√

x + √
y ≤ 1}.

FIG. 2. First-passage process C(t),
t = 50,100,150,200 for d = 2 andF exponen-
tial with mean1.
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We now discuss various ways in which the shape result in Theorem 5.1 may
fail.

First, the last-passage case. Note that ifg(x) = ∞ for somex in the interior of
R

d+, then (by a simple superadditivity argument)g = ∞ throughout the interior.
A sufficient condition for this to occur is thatEXd = ∞. Then the growth ofB(t)

in any interior direction is sublinear int ; on a linear scale, the asymptotic shape
collapses into the boundary (or even to the origin alone ifEX = ∞). An example
is illustrated in Figure 3 for a distribution with finite mean but infinite variance,
with d = 2.

The undirected first-passage case onZ
d is comparable. Here again there are

just two possibilities: either the shape function is 0 everywhere (in which case the
asymptotic shape is essentially the whole ofR

d ), or the shape function is nonzero
everywhere.

For the directed first-passage case, in contrast, the different behaviors can co-
exist. If p

(d)
c < P(X = 0) < 1, thenh = 0 for some cone around the direction1

(this is the cone in which “oriented percolation of sites with weight 0” occurs),
but h > 0 elsewhere. In this case there will a.s. be some infinite path starting at
the origin which has finite total weight, and the setC(t) will have infinite size at
some finite time. The shapeC = {x :h(x) ≤ 1} is noncompact, but not equal to the
whole ofRd+, and the shape theorem does not apply as given. See Figure 4 for a
simulation of such a case.

FIG. 3. B(t), t = 150,300,450,600, with
d = 2 and the Pareto distributionF(x) =
min(0,1− (3x)−3/2), which has mean1 but in-
finite variance. The asymptotic shapeB consists
only of two lines, between the origin and(0, 1)
and between the origin and(1, 0).

FIG. 4. C(t), t = 18,36,54, with d = 2 and
X = 0 w.p. 0.645andX = (0.355)−1 w.p. 0.355
(showing only the intersection with the box
[0,350]2). Hereh(x) = 0 for some(though not
all) x; thus the asymptotic shape is noncompact
(but not the whole ofRd+), and a.s. the setC(t)

will be infinite for somet .
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Note that if againX attains its minimum value with probability more thanp
(d)
c ,

but this minimum is now greater than 0, thenh(x)/‖x‖ is constant on some cone
around the direction1, and the boundary ofC has a flat section—see Figure 5. This
is the same phenomenon observed by Durrett and Liggett [8] for the undirected
case.

If EX = ∞, thenh(e1) = ∞, and the shape theorem cannot hold as stated, but
an amended version for a cone excluding the boundaries may hold. However, if
(only slightly more strongly)E min(X1, . . . ,Xd)d = ∞, then the result fails more
fundamentally. Still the limit h(x) = limn→∞ n−1S(�nx�) exists and is finite and
constant a.s. for anyx in the interior ofRd+, and one can define the asymptotic
shapeC as before. However, it is no longer the case that the convergence is a.s.
uniform on compact subsets ofR

d+; in effect, the “holes” in the shapeC(t) persist,
as seen in Figure 6. The same sort of behavior would occur for the undirected
first-passage model whenE min(X1, . . . ,X2d)d = ∞; see, for example, related
discussions in [4].

5.3. Proof of Theorem5.1. Note first that for part (i) of Theorem 5.1, the
condition EX > 0 implies that infx∈R

d+\{0}
g(x)
‖x‖ > 0 [since, by superadditivity,

g(x) ≥ ‖x‖g(1,0, . . . ,0) = ‖x‖EX].
Note also that, by replacing the weights{X(z)} by {−X(z)}, part (ii) can be

rewritten as follows in terms of last-passage rather than first-passage quantities:
If

sup
x∈R

d+\{0}

g(x)

‖x‖ < 0,

then for anyε > 0,

(1− ε)B− ⊆ B−(t)

t
⊆ (1+ ε)B−(5.4)

for all sufficiently larget , with probability1, where

B−(t) = {x ∈ R
d+ :T (�x�) ≥ −t}

and

B− = {x :g(x) ≥ −1}.

By Theorem 2.3, we know that|g(z)| < ∞ for all z; then (5.3) and (5.4) are
immediately implied by the following property: for anyε > 0, there are a.s. only
finitely manyz ∈ Z

d+ such that|T (z) − g(z)| ≥ ε|g(z)|.
Since we assume in both cases that|g(z)|/‖z‖ is bounded away from 0, we

have |g(z)| ≥ ‖z‖ infz′ |g(z′)|/‖z′‖, so in fact it is enough to show that for any
ε > 0, there are a.s. only finitely manyz such that|T (z) − g(z)| ≥ ε‖z‖.
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FIG. 5. C(t), t = 50,100,150,200, with
d = 2 andX = 0.5 w.p. 0.8,X = 3 w.p. 0.2.

FIG. 6. C(400) for d = 2 and the Pareto
distribution F(x) = min(0,1 − x−3/4), which
has infinite mean.

FIG. 7. B(30) for d = 3 andF exponential with mean1.
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This follows immediately from Lemmas 5.2–5.5, which we state immediately
and then prove in turn.

LEMMA 5.2. SupposeF satisfies
∫ 0
−∞ F(s)1/d ds < ∞ and

∫∞
0 (1 −

F(s))1/d ds < ∞, and letε > 0. If L is large enough, then with probability1,∣∣T (z) − T (L)(z)
∣∣< ε‖z‖

for all except finitely manyz ∈ Z
d+.

LEMMA 5.3. Letε > 0 andL > 0. With probability1,∣∣T (L)(z) − ET (L)(z)
∣∣< ε‖z‖,

for all except finitely manyz ∈ Z
d+.

LEMMA 5.4. Letε > 0 andL > 0. Then for all except finitely manyz ∈ Z
d+,∣∣ET (L)(z) − g(L)(z)

∣∣ < ε‖z‖.

LEMMA 5.5. SupposeF satisfies
∫ 0
−∞ F(s)1/d ds < ∞ and

∫∞
0 (1 −

F(s))1/d ds < ∞, and letε > 0. If L is sufficiently large, then for allz ∈ Z
d+,∣∣g(L)(z) − g(z)

∣∣< ε‖z‖.

PROOF OFLEMMA 5.2. LetL be large enough thatc
∫∞
L (1− F(s))1/d ds <

ε/2 andc
∫−L
−∞ F(s)1/d ds < ε/2, wherec is the constant in Lemma 3.5.

Let z ∈ Z
d+; for someπ∗ ∈ �[z), we have

T (z) − T (L)(z) = ∑
v∈π∗

[
X(v) − X(L)(v)

]
,

so that ∣∣T (z) − T (L)(z)
∣∣ ≤ ∑

v∈π∗
[X(v) − L]+ + ∑

v∈π∗
[−L − X(v)]+

(5.5)
≤ max

π∈�[z)
∑
v∈π

V (L)(v) + max
π∈�[z)

∑
v∈π

W(L)(v),

where we defineV (L)(v) = [X(v) − L]+ andW(L)(v) = [−L − X(v)]+.
Note that{V (L)(v),v ∈ Z

d+} are i.i.d. with common distributionF (L)
V , where

F
(L)
V (x) = 0 for x < 0 andF

(L)
V (x) = F(L + x) for x ≥ 0.

Similarly, {W(L)(v),v ∈ Z
d+} are i.i.d. with common distributionF (L)

W , where

F
(L)
W (x) = 0 for x < 0 andF

(L)
W (x) = 1− F(−L − x) for x ≥ 0.
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From Lemma 3.5 (applied to{V (L)(v)} andF
(L)
V rather than to{X(v)} andF ),

we then have that, with probability 1,

lim sup
n→∞

1

n
max

z : ‖z‖≤n
max

π∈�[z)
∑
v∈π

V (L)(v) ≤ c

∫ ∞
0

(
1− F

(L)
V (s)

)1/d
ds

= c

∫ ∞
L

(
1− F(s)

)1/d
ds

< ε/2.

In particular, there are a.s. only finitely manyz ∈ Z
d+ such that

max
π∈�[z)

∑
v∈π

V (L)(v) ≥ ε

2
‖z‖.

Applying Lemma 3.5 to{W(L)(v)} andF
(L)
W in the same way, one obtains that

there are a.s. only finitely manyz ∈ Z
d+ such that

max
π∈�[z)

∑
v∈π

W(L)(v) ≥ ε

2
‖z‖.

Thus from (5.5), there are a.s. only finitely manyz ∈ Z
d+ such that∣∣T (z) − T (L)(z)

∣∣ ≥ ε‖z‖,
as required. �

PROOF OF LEMMA 5.3. All the paths in�[z) have length‖z‖, and the
weightsX(L)(v) have absolute value no greater thanL. Hence we may apply the
concentration inequality in Lemma 3.1 to give

P
(∣∣T (L)(z) − ET (L)(z)

∣∣ ≥ ε‖z‖) ≤ exp
(
− (ε‖z‖)2

64‖z‖L2 + 64
)

= exp
(
−ε2‖z‖

64L2
+ 64

)
.

Forn ∈ Z+, there are certainly no more than(n+1)d pointsz such that‖z‖ = n;
thus∑

z∈Z
d+

P
(∣∣T (L)(z) − ET (L)(z)

∣∣≥ ε‖z‖) ≤ ∑
n∈Z

d+

(n + 1)d exp
(
− ε2n

64L2
+ 64

)
< ∞,

and Borel–Cantelli yields the desired result.�

PROOF OF LEMMA 5.4. From the definition ofg and so ofg(L), we have
ET (L)(z) ≤ g(L)(z) for all z, so we need to show thatET (L)(z) > g(L)(z)− ε‖z‖,
except for finitely manyz.
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Fix a > 0. The distributionF (L) has bounded support, so certainly satisfies (2.4)
and (2.5); thus by Theorem 2.3,g(L) is continuous onRd+, and hence is uniformly
continuous on the compact subset{x ∈ R

d+ :‖x‖ ≤ 2d}.
So chooseu < min(1, a) such that whenever‖x‖ ≤ d and‖x − x′‖ ≤ ud , then

|g(L)(x) − g(L)(x′)| ≤ a.
Now letC be the set {

ur, r ∈
{

0,1, . . . ,

⌊
1

u

⌋}d}
.

C is a finite subset ofRd+, and for everyy ∈ C, we have [by Proposition 2.1(i)],

ET (L)(�ny�)
n

→ g(L)(y) asn → ∞.

Hence there isN = N(a) such that, for alln ≥ N and ally ∈ C,

ET (L)(�ny�) ≥ n
(
g(L)(y) − a

)
.

Let z satisfy maxzi ≥ N . Define

y = u

⌊
1

u

z
maxzi

⌋
;

theny ∈ C, with (maxzi)y ≤ z, with ‖y‖ ≤ d and with∥∥∥∥ z
maxzi

− y
∥∥∥∥ ≤ ud ≤ ad.

Using first superadditivity, then the fact that all the weights{X(L)(z)} are no
smaller than−L, then the continuity bounds above, we obtain

ET (L)(z) ≥ ET (L)(�(maxzi)y�)+ ET (L)(z − �(maxzi)y�)
≥ ET (L)(�(maxZi)y�)− L‖z − �(maxZi)y�‖
≥ (maxzi)

(
g(L)(y) − a

)− L
(‖z − (maxzi)y‖ + d

)
= g(L)(z) − (maxzi)

{[
g(L)

(
z

maxzi

)
− g(L)(y)

]

+ a + L

∥∥∥∥ z
maxzi

− y
∥∥∥∥+ Ld

maxzi

}

≥ g(L)(z) − (maxzi)

{
a + a + Lad + Ld

maxzi

}
.

Hence ifa < 2ε−1(2 + Ld), then for allz with maxzi ≥ max(N(a),2Ld/ε),
we have

ET (L)(z) > g(L)(z) − (maxzi)ε

≥ g(L)(z) − ε‖z‖,
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as required. �

PROOF OF LEMMA 5.5. Under the moment conditions onF , the result
follows immediately from Lemma 3.6.

This completes the proof of Theorem 5.1.�
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