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LENSES IN SKEW BROWNIAN FLOW

BY KRzYSZTOFBURDZY! AND HAYA KASPP
University of Washington and Technion Institute

We consider a stochastic flow in which individual particles follow skew
Brownian motions, with each one of these processes driven by the same
Brownian motion. One does not have uniqueness for the solutions of the
corresponding stochastic differential equation simultaneously for all real
initial conditions. Due to this lack ofhe simultaneous strong uniqueness
for the whole system of stochastic differential equations, the flow contains
lenses, that is, pairs of skew Brownian motions which start at the same point,
bifurcate, and then coalesce in a finite time. The paper contains qualitative
and quantitative (distributional) results on the geometry of the flow and
lenses.

1. Introduction and main results. The present paper is a continuation of
[1] and [4] where an investigation of a stochastic flow of skew Brownian motions
driven by a single Brownian motion was initiated. We will study multiple strong
solutions to the stochastic differential equation defining the skew Brownian
motion. For a fixed starting point, the strong solution to that equation is unique.
However, there exist exceptional times (“bifurcation times”) when multiple
solutions start. We will call pairs of such solutions “lenses” and we will study
their properties. Our paper is devoted to a detailed study of a model that belongs
to a family of processes analyzed in a series of recent interesting papers by Le Jan
and Raimond [9-12]. We will explain how our model fits into that more general
framework at the end of the Introduction.

A skew Brownian motion is a process that satisfies the stochastic differential
equation

(1.1) Xi =B+ BLy,

whereB; is a given Brownian motiorg € [—1, 1] is a fixed constant and; is the
symmetric local time o; at O, that is,

1 t
1.2 L,=Ilm— | 1_ X)ds.
( ) t ey 0 28/0 ( s,s)( s)ds

The existence and uniqueness of a strong solution to (1.1) and (1.2) was proved
by Harrison and Shepp [5]. In the special caseBof 1, the solution to (1.1)
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is the reflected Brownian motion. The cage= 0 is trivial. From now on we
will restrict our attention tgg| € (0, 1). An alternative way to define the skew
Brownian motion is the following. Consider the cage> 0. Take a standard
Brownian motionB; and flip every excursion oB; below 0 to the positive side
with probability 8, independent of what happens to other excursions. The resulting
process has the same distributionXadefined by (1.1) (see [6] and [18] for more
details).

The following is a straightforward generalization of (1.1). Suppose {Rat
t € R} is a Brownian motion on the real line, that {§;,¢ > 0} and{B_;, t > 0}
are two independent Brownian motions starting from 0. With probability 1, for all
rationals andx simultaneously, the equations

(1.3) X;* =x+B; — By + BL}”, t>s,
have unique strong solutions, where
1 t
1.4 L5 = lim —/ 1) (X0%) dut.
(1.4) t en02e J, (—e.0) (X ") du
Fors,x,teR,t>s, let
(1.5) X' = sup X7,
u,yeQ
u<s
XyY<x
(1.6) L™ = sup LY,
u,yeQ
u<s
Xy <x
(1.7) Xt = inf_ X",
u,yeQ
u<s
Xy >x
(1.8) LSt = inf LY.
u,yeQ
u<s
X

PROPOSITION 1.1. (i) X§*~ = X3t =x and X;"™ < X3t for all s,
xeRandr >y, as.

(i) The processest — X~ and + — X" are Holder continuous, for all
s,x €R, as.

(iii) With probability 1, for all s, x € R simultaneously, the pairs of processes
(X$*=, LS*7) and (X$*T, L5*T) satisfy (1.3),and L**~ and L$* T satisfy (1.4).

For a fixed “typical’» and a “typical” pair(s, x) € R2, X~ = x3** for
all + > s. This follows easily from the strong uniqueness for a fixed pair)
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and the Fubini theorem. Note that the solutions to (1.3) are consistent in the sense
that if X5~ = X5t and X*Y~ = X“Y* for someu < s, andX;>~ = x, then
X/ =x"" forallt > .
This paper is devoted mostly to thoge x) for which the processes; "~ and
X3** are not identical. We will later show that evenXf*~ and X;"** are not
identical, there exists some= (s, x) < oo such thatX;"*~ = X;** fort > 11.
DEFINITION 1.2. (i) We will say that{(X;*~, X)*"), 1 € [s,u]}, is a lens
with endpoints andu if s < u, X5~ = X5+ andXS KT X for t e (s, ).
If (X3*~, X2*M), 1 e [s,ul}, is alens, then will be called a bifurcation time.
(i) We will call a bifurcation times semi-flat if for somes; > s, either
Ly =L3*~ =0forall r €[s,s1] or L)*" = L5t =0 for all 7 € [s, s1].
A bifurcatlon time which is not semi-flat WI|| be called ordinary.
It is easy to see that if(X" ", X3, 1 € [s,u]}, is a lens, thenx = 0.
Hence, we will use the term * blfurcation timg rather than “bifurcation point
(s,x).” A similar remark applies to the lens endpoint that is, for every lens
X5 = X541 =0,

THEOREM1.3. (i) With probability 1, the family of all lens endpoints that is,
u € R such that for somes, x € R, u isthe endpoint of alens {(X*, X{* ") r e
[s, u]}, isinfinite and countable.

(i) There exist uncountably many bifurcation times, a.s.

Part (i) of Theorem 1.3 should be clear in view of the following assertion which
appears in the next section as Lemma 2.3(i). For any rational tmess, with
probability 1, the range d® > x — X3 consists of two semi-infinite “intervals”
(=00, y11 N Q and[y2, o0) N Q, and a countable s&tc (y1, y2) which does not
have accumulation points insider, y2).

THEOREM1.4. ()If |B| € (%, 1), then semi-flat bifurcation timesexit, a.s.
(i) If 18] € (O, %), then there are no semi-flat bifurcation times, a.s.

The critical exponen% appeared in Corollary 1.5 of [4], which says that there

exist random times WhenﬁL?’0 = sup ., By if and only if 8 > % It would be
interesting to find a direct link between that result and Theorem 1.4 above, for
example, via a time reversal argument; so far, we are unable to provide such a
direct link.

The next result is concerned with solutions to (1.3). For a deterministic function
t — By, the pair of equations (1.3) and (1.2) have a clear meaning, not depending
on any probabilistic concepts (but that does not mean that a solution must exist
for every deterministicB;). Hence, for any “fixed” Brownian pathB;, we can
consider all solutions to (1.3) and (1.2) with a given initial conditionx).
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THEOREM 1.5. (i) With probability 1, there exist (s, x) € R? where three
distinct solutionsto (1.3) start.
(ii) Thereareno (s, x) wherefour distinct solutions start.

We believe that “ordinary” bifurcation times are typical and “semi-flat”
bifurcation times are less typical. This informal claim is supported by Theorems
1.3(ii)) and 1.4(ii). One can probably formalize the claim by computing the
Hausdorff dimensions of ordinary and semi-flat bifurcation times for various
values of 8. We will not do this in the present paper. Instead, we will focus on
a subfamily of bifurcation times and the corresponding lenses because we can give
several fairly explicit formulas in this special case.

We will write X;~ instead oonx_ and, similarly, X;" = X,O*”. The
corresponding local times will be denotéd~ andL; . Recall thatX,O*x, x €Q,
denotes the family of unigue strong solutions to (1.3). For ratianake will
write X* = X% and L¥ = L. We will call a bifurcation times anticipated
if it corresponds to a leng(X:%, X%, ¢ e [s, u]}, and for somey € R, we
haveX)" =0 andX)™ =0. In other Words an anticipated bifurcation point may
appear onIy on the trajectory of one of the procesges or X’ for some realy.

Note thatX =X, 0+ a.s., and that for every = 0, there exists a random > 0
such thath_ = L)‘+ Oforall e [0, £1].

If s is a bifurcation timelU; will denote the leng(X;" 0- f*°+),t € [s,ul},
shifted to O, that is,

Us = (X307, X300) 1 € [0,u — )}

We let Us(t) = A, a cemetery state, far> u — 5. Let LS =Ly + Ly °+

=inf{u: L} > 1}, andz; = B|L50~ — L3O+ In otherwordsZ, is the distance

betweean o- and X 0+ on the time scale defined by the local time clock. Let
=inf{r > 0: X% = %"} and¢s, = inf{r > 0: 25 = 0}.

Brownian motion is continuous 9’ 0= andLy %+ increase on disjointintervals
for t € (s, £*), whose endpoints have no accumulation points ingidé*). This
and the definition ofZ; show that on some interva%’ increases at the rateand
on some other intervals it decreases at the fat@ other words, it is a piecewise

linear function with the slopg or —8 almost everywhere, on the interjal ¢%].

Let J’ =0, if attimeoy, Xf’o is at 0, and/! = 1, if at timeo;, X;- s at 0. If

B > 0, thenJ; is the indicator function of the intervals wherg is increasing.
Let 0% denote the distribution of(X?”‘,X,O’y),t > 0} killed at the time
=inf{t > O:X,O*x = X?’y}. Note that; < oo, a.s., by the result in [1]. Although
we have defined’(,o*x and X?’y for rational x and y only, it is clear that the
definition of the distributionD*-> applies to any reat andy.
The next theorem involves @-finite measureQ on C[0, c0)2. We will now
introduce some notation related to this measure. The mea3use supported
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on pairs of trajectories, say{X;,t > 0}, {)~(,,t > 0}). There exists a process
{B;,t > 0} (whose trajectories have Brownian path properties away fres0),
and

X; = B;+ BL;, )?t:B,+ﬂZ,,

where

JTOE/ 1( ee)(X )ds, L,— |Im05/ 1( ee)(X )ds.
We write L, = L, + L,, 6, = inf{s:Ls > t}, and Z; = B|Ls, — Z5,|. Hence,
Z, is the distance between the two components of@hkens on the time scale
defined by the local time clock. Finally, we lét= inf{r > 0:X, = X,} and
Lz =inf{t >0:Z, =0}.

THEOREM 1.6. (i) Let G denote the set of all anticipated bifurcation times.
With probability 1, all anticipated bifurcation times are times when the Brownian
motion B, attains its running extremum, that is, if s € G, then By = sup_, B; or
B, = inf,<; B;. The set G is countable. B

(i) Thereexistsa unique (up to a multiplicative constant) o -finite measure Q
on C[0, o0)? which is Markov on every interval (s, 00), s > 0, with the transition
probabilities Q*Y, and such that both paths start from 0, Q-a.e. We have
Iimyio(l/y)Q—yv0 = cQ, for a constant ¢. We will normalize Q so that c =1
in the last formula.

(i) Let |C| denote the Lebesgue measure of C C R. For a suitable normal-
ization of Q, (nonrandom) Borel sets A C R and bounded continuous functions
£:Cl[0,00)2 - R,

(1.9) E) 1a(By)f(Us) = (i—glfm( 00, 0]l + AN (O, OO)I)/fdQ-
seG

(iv) Let B bethe collection of pairs (By, Us) in R x C[0, 00)2 for all s € G.
The point process 8 is not Poisson.

(v) Let 9%/ bethe Q-distribution of the process (Z;, J;). Assumethat g > 0
and let A be the collection of all pairs (By, {(Z], J;),t € [0, £5,1}), wheres € G.
Let D be the space of cadlag functions mapping a finite or infinite interval [0, ¢]
to [0, 00) x {0, 1}. Then 4 is a Poisson point process on R x D with intensity
measure

1 x)d 1-F
(—00,0](X) dx X 118
An analogous result holdsin the case 8 < 0, by symmetry.

(vi) For any fixed b > 0, the Q% /-distributions of {Z;,t € [0, ¢2]} and
{Zo,—+,1 €10, £7]}, conditional on {sup. Z; = b}, areidentical.

0% +10,00)(x) dx x Q%
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(vii) For any fixed b > 0, the Q-distributions of processes {(X;, X,),t €0, 2]}
and {(X¢—r, X¢—r), t €[0, €]}, conditional on {sup.q Z; = b}, are different.

The measurg is the “distribution” of a lend/;. Theorem 1.6 shows that the
point process of lenses has only some of the properties of the familiar excursion
processes. It is not a Poisson point process, but one can find a Poisson point
structure by restricting attention to a functional of a lens, nam@ly, /). The
point process of lenses does satisfy a Maisonneuve-type formula (1.9) (cf. [13]).
A similar remark applies to the “lens lawQ. The lens lawQ is not invariant under
time-reversal, but the functionZl, of a lens is invariant under this transformation.

As a byproduct of the proof of Theorem 1.6, we obtain the following
Williams-type decomposition of; under Q [see the remark before the proof
of Theorem 1.6(vi) for an alternative presentation]. The prosss piecewise
linear on every closed interval contained (@, £7). The slope ofZ, is either
B or —gB, at almost every. Suppose thag > 0, condition the procesg; on
{sup-g Z; = b} and letv be such thaZ, = b. Forr < v, the proces¥; changes
the slope froms to —pB at the rate(1 — B)/(2Z;), and from—p to 8 at the
rate (1 + 8)/(2Z;). By Theorem 1.6(vi), the evolution df; for r > v, may be
described using time-reversal. Moreovit,, ¢ € [0, v]} and{Z,,_;,t € [v, {z]}
are independent undér given{sup. Z, = b}.

The rest of the paper contains some additional results and the proofs of the
main theorems; it is divided into two more sections. The next section deals with
the definition and properties of the flow and the existence of ordinary and semi-flat
bifurcation times. The last section is devoted to anticipated bifurcation times and
their distributions.

We will now explain how some of our results can be derived from those of
[9-12], although we will use our own elementary methods in the formal proofs to
keep our paper self-contained. The semigroup corresponding to the skew Brownian
motion is symmetric. By [9], it is possible to construct a coalescing @igysuch
that for every functiory in the domain of the generator of skew Brownian motion,
for all x ands < ¢,

t t
F(@5.0(0) = FO0) + / (@5 () dBy + 4 / £ (@50 (0)) du.

This shows thag; ,(x) = x + B, — By + BL;"", a property analogous to (1.3). For

s =0,anyn > 1, and anwq, xo, ..., x,, one can solve (1.3) simultaneously for all
initial conditionsxy, x2, ..., x,. One can show that this-point motion is Feller

and then one can apply a result from [10] to prove that there exists a unique, up to
a modification, coalescing flow solving (1.3). Our processgs™ and X" are
cadlag and caglad modifications of the flow, in the space variable. Lemma 2.2 can
be deduced from the flow property. Lemma 2.5 follows from the fact that the flow

is coalescing.
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2. Skew Brownian motion flow. We fix someg € (—1,0) U (0,1) in this
section, until stated otherwise.

Recall the notation and definitions from Section 1. The modulus of continuity
31,1 (r) Of the Brownian path on the intervat, »] is defined by

5[a,b](r) =SUH|BZ - le s, te [a’b]v |S _t| Sl"}

Note thatr — §4,,(r) is nondecreasing.

PROPOSITION2.1. With probability 1, for all rational s, x with s < a, and all
u,v € la,bl,

|X," = X3 < 2810,51(|lu — v)).

PROOF  Since rationals are countable, it is enough to prove the proposition
for fixed s andx. Let X;** and L;* be as in (1 3). For any > 0, let g(r) =
inf{u:L5* = L;"} andd(r) = sup{u : L3 = L }. We will argue thath(t) =0.
Suppose otherwise. Then for som& 0, X;* ;é Oforallu e (g(t) —e, g(t) +2).

It follows from (1.2) thatL;* = g(t) for aII ue (g(t) —¢e/2,g(t) +¢/2), and
this contradicts the definition gf(r). Similarly, X3, = 0, a.s. We have, ) =0
and in(f) = 0 for all rationals simultaneously, a.s. Then it is easy to see that,
in fact, X* x) =0 andXd(,) =0 for all real + > 0 simultaneously, a.s. Consider
u,v € la, b] and assume without loss of generality that v. If d(u) > g(v),
then|BLS* — BLS*| = 0. Otherwise|d (u) — g(v)| < |u — v| and

|BLSY — BLS™ | = |:8Ld(u) ﬁL;’(’;)| = |Baw) — Bow)|
< 81a.p1(ld () — g(W)]) < 8a,p1(lu — v|).

Hence,BL;" has the same modulus of continuity Bson [a, b], or smaller one.

SinceX$* is the sum of two functions + B. — By andBL#* with the modulus of

continuity bounded by, 51(-), its modulus of continuity is bounded b2 5(-).
O

Since for everyx < % the Brownian motion ist-Holder continuous, the same
is true forX;*, for all rationals andx simultaneously.

LEMMA 2.2. With probability 1, for all rational s1, s2, x1, x2 Simultaneously,
if 57 < 52, theneither X1 < X;2*2 for all > s, or X;+** > X722 for all t > s5.
PROOF The claim is a part of Proposition 1.7 of [4]]

PROOF OF PROPOSITION 1.1(i) AND (ii). Fix some reals andx and an
arbitrarily smalle > 0. Findy > 0 so small thabj,_, )(y) < ¢, a rationalu €
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[s —y,s], and arationab € [x — 3¢, x — 2¢]. It follows from Proposition 2.1 that
XiY € (x —4e, x). Sinces > 0 is arbitrarily small, it follows from definition (1.5)
that X3~ = x. Similarly, X3+ = x.

Lemma 2.2 and definitions (1.5) and (1.7) easily imply that a.s. for, allke R
andr > s simultaneouslyX;*t > x5~

It is an elementary fact that if all elements of an arbitrary family of functions
have moduli of continuity bounded by ;1(-), then so does the supremum of the
functions in the family. This, definitions (1.5) and (1.7) and the remark following
Proposition 2.1 imply that all process&s*~ and X"** are Hélder continuous,
for all reals andx simultaneously. [

LEMMA 2.3. (i) For any rational times s1 < s2, with probability 1, the range
of @ > x — X" consists of two semi-infinite “intervals’ (—oo, y1] N Q and
[y2, 00) N Q, and a countable set S C (y1, y2) which does not have accumulation
pointsinside (y1, y2). If x € Q and X2 ¢ (y1, y2), then Ll = 0.

(if) Fix any rational times s1 < s2 and let A = {X{" 1u € Q,u < s1,x € Q}.
With probability 1, {X;‘Z*X ‘u € Q,u < s1,x € Q} consists of two semi-infinite
“intervals’ (—oo, y1] N A and [y2,00) N A, and a countable set S C (y1, y2)
which does not have accumulation points inside (y1, y2). If u, x € Q, u < s1, and
X" ¢ (v, y2), then L& — LE-* = 0.

ProoF (i) Standard arguments can be used to derive (i) from Theorem 1.2
of [4]. (i) The argument proving (i) does not depend on the assumption thate
rational numbers but on the fact that rationals are countable. Singeountable,
the same argument applied.]

LEMMA 2.4. Wth probability 1, s is not a bifurcation time for any s whichis
alocal extremum of B;.

ProOF Consider the stochastic differential equation (1.3) with 0, rational
x # 0, driven by a three-dimensional Bessel procBs# place of the Brownian
motion. Recall that the path properties of the three-dimensional Bessel process are
the same as those of the Brownian motion on any fixed time intgrval], with
0 < 51 < 52 < 00, by the Cameron—Martin—Girsanov formula ([7], Section 3.5).
For everyx # 0, there exists (random} > 0 such thatB, # —x for all ¢ < s3.
Hence, we have strong existence and uniqueness for solutions to (1.3) with
s = 0, simultaneously for all rationat # 0, driven by a three-dimensional
Bessel process;, on every intervals1, s2] C (0, c0) and, in fact, on the whole
interval [0, 00).

Since the three-dimensional Bessel process is transient, it is easy to see that
P(L% ™ < 00) = p > 0. Hence,P (L% < b) = p1 > 0 for someb < co. By
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scaling,P(Lg;;X < xb) = p; for rationalx > 0. Hence, for every > 0,

P( U {Lg’o_xfxb}>21?1,

x€Q,xe(0,¢)

and so

P( N U w s xb}) > p1.

e>0xe€Q,x€(0,¢)

This and the definition ok>*~ andL%*~ show thatZ%%~ = 0 for all + > 0 with
probability greater than or equal ja. The eventd = US>O{L?’O_ =0, €[0,s]}
belongs to the germ-field o, and its probability is bounded below ;i > 0
so P(A) = 1, by Blumenthal's 0-1 law. IfA occurs, we must have2%~ = 0,
because the three-dimensional Bessel process never returns to 0 a.s. This proves
thatP(L%%~ =0)=1a.s.

Now we go back to solutions of (1.3) driven by a Brownian motgynSuppose
B < 0, consider any rational numbers(; < r2 < oo and lets denote the unique
time when B; attains its minimum orry, r2]. Note thats < rp a.s. It is well
known that{B,,; — By, t € [0, r» — s]} has the same path properties as the three-
dimensional Bessel process (this follows, e.g., from Williams’ decomposition,
see [15], Section VII.4). HenceLf’o_ =0 for ¢ € [0, r2 — s]. We obviously have
L;"°+ =0 forr € [0, r2 — 5], SOs is not a bifurcation time. It is easy to see that
is not a bifurcation time whe > 0. Every local minimum ofB; is the global
minimum over some intervdlri, r] with rational endpoints, so our argument
holds for all local minima simultaneously. The local maxima can be dealt with
in an analogous way.[

PROOF OF PROPOSITION1.1(iii). Fix arbitrary reals andx. Let s1 be the
smallest time greater than or equalstawith the property thatB;, = —x + B;
and By, is not a local extremum oB;. All local extrema ofB; occur at different
levels so there is at most one local extremune [s, s1) with the property that
By, = —x + B;.

ConsiderX;”~ and first suppose thdt;;*~ = 0. Then, clearlyX;"™ = x +
B, — By and L satisfy (1.3) on[s, s1]. If there is nos, as described above,

then obviouslyL;*~ satisfies (1.2) orjs, s1]. Next assume that there exists a
unique extremumsy € [s, s1) with B;, = —x + By. By Trotter's theorem on the
joint continuity of Brownian local time ([8], Section 5.1), the local time®f at
the level—x + B, does not increase between timeands;. Hence, agairi.;™*~
satisfies (1.2) oifs, s1].

Next we will keep the assumption thaf;*~ = 0 and considek; "~ for ¢ > s;.
Fix any rationalss > s1. Recall thats is not a local extremum. Since Brownian
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motion does not have points of increase, the rafer € [s1, s3]} contains an
interval of lengthe > 0 centered aBy, . It follows from Lemma 2.3 that

(X5 X5  e[x+ By — By —¢/2,x + By, — By +¢/2],u,y € Q,u < s}

is a finite set. This and the definition &~ andL;*~ imply that X}~ = X’
andL]"~ =L, for someu, y e Q and all > s3. Hence X"~ andL; "~ satisfy
(1.2) and (1.3) oriss, 00). Sincess > s1 is arbitrarily close tos1, the conditions
(1.2) and (1.3) are satisfied dng, c0). We will now consider the case when
Lg*™ > 0. It is easy to see that if there is np as defined at the beginning of
the proof, then we must have:*~ = 0. Similarly, it is easy to see thag;*~ = 0.
Moreover, inft: L~ > 0} = s, because otherwisk*~ would have been zero
on the whole intervalls, s1].

It is easy to see thap cannot be a local maximum ;. If it is, the Brownian
motion B; has to stay below-x + B for € [s, s2) in view of the definition ofs».

It follows that for anyr; € (s, s1), there existg1 < x such that forz € (z1, x), the
Brownian motionB; does not hit-z + By in the intervalls, 71). This implies that
Lgle— =0, a contradiction.

We will now assume that, is a local minimum ofB;. If 8 > 0, the definition
of X;*~ implies that it is the sum of + B, — B, and a nondecreasing process.
Hence, it stays above 0 on some interya, r2] with 7o > so. This and the
definition of X;**~ imply that for everyrs € (s2, ), there existg, < x such that
for all u, z € Q with u < s and X% € (z2, x), the process(,"* stays above 0 on
the interval(zs, 72]. Hence,L;"* does not increase on this interval and so the same
can be said about; "~ . Sincer; is arbitrarily close tos2, we see thaL;*~ does
not increase offsy, t,]—this contradicts the fact that ifif: L}~ > 0} = s».

Let us assume tha® < 0. Suppose that for some > so and allz € [s2, s4],
we have —BL;*" = inf,c(;.sq Bu — Bs,- Let s5 be the minimum ofB, on
some interval(sg, s4) with the property thaks # sg, s4 andsg € (s2, s4). Then
—;BLEE”X‘Y5 > BT - Ly ™) fort € [ss, sal andLii’X"5 T—o. Thus,ss is
a bifurcation point, but this contradicts Lemma 2.4. We conclude that in every right
neighborhood of; there exists with —BL;*™ > inf, (s s,] By — Bs,-

Considers7 > s, arbitrarily close tosp, and find sg € (s2, s7) satisfying
—ﬂL:ﬁé"— > inf,esg,571 B« — Bs,- Let 59 > sg be the smallest time such that
Byy = Bs, — BL3;"™ andsg is not a local extremum aB,. Then we can repeat the

argument applied above %@ andss to see thatX;*~ = X;"” andL{" ™ = L;"”
for someu, y € Q and allz > s1¢, for everysig > sg. By the uniform continuity of
all processed. and X [Proposition 1.1(ii)],sg — s2 ass7 — s2, so (1.2) and (1.3)
hold for X;*~ andL;* ™ on[sz, s1].

The same proof applies ;" andL{** by symmetry. O

LEMMA 2.5. With probability 1, for all sq, s2, x1, x2 € R simultaneously,

51,X1— s1,X1+ §2,X0— §2,X0+
th 1 :th 1 :Xl‘z 2 :Xl‘z 2
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for t > 11, wheret1 < oo dependson sy, s2, x1, X2.

PrROOF Consider any rationals < min(s1, s2) and note that, for sufficiently
large K < oo and all rationals: with |x| > K, L3 = L3 = 0. Choose rational
x3 and x4 with the property thatX;>" < x1, X3 < x2, X3 > x4, and
X" > x,. By a theorem from [1], W|th probability 1x;%*° = X;3* fort > 11,
wherer; = 11(s3, x3, x4) < oo. Note that this claim holds for all rationaj, x3
andx4 simultaneously, a.s. The lemma now follows frofjf** = X;>* and the

definitions of X111~ x 11T x2427 gndxi22t O

LEMMA 2.6. With probability 1, for all pairs s,s1 € R simultaneoudly, if
s <s1, thentheset {x e R: X§:*~ # X;:* "} is countable.

ProoF This follows easily from Lemma 2.3.0]

LEMMA 2.7. With probability 1, for any s,x € R and #; > s, there exist
s1,x1 € Q, such that X;*~ = X;** for r > 11, unless L;;* =0, and a similar
statement holds for X} "*

PrRooOF This follows from the argument given in the proof of Proposi-
tion 1.1(iii). O

Supposes, s» € Q, s1 < s2, and conS|der points; andy» in {X3™, x € Q},
such thaty; < y2 and(y1, y2) N {X ,x € Q} = @. Pointsy; andy> Wlth these
properties exist by the results of [4] (see Lemma 2.3 above). The results of [4]
show in addition that the sefs € Q: XiI™ = y1} and{x € Q: X" = y,} are
intervals inQ with a common endpoint. It follows easily thaty; = X*" <
Xf;’z+ = y2. Hence, we see that we cannot have strong uniqueness of solutions
to (1.3) simultaneously for all, x € R, and so bifurcation times exist. Note that
for a fixedsy, typically there are many's with X;1°~ < X;2*". Forallz 0, in
this family we havex >~ = X'2** for 1 € [s1, s3] and someg = 53(2) > s1.

Recall that if{(X;" "_, 5 er), t €[s,ul}isalens, them = X5+~ = X$*+ =0,

PROOF OF THEOREM 1.3(i). Consider any lensX:°%~, X5%%) ¢ e [s, ul}
and note that by Lemma 2.7, for somg s2, x1, x2 € Q andu1 € (s,u), we have
X507 = x5 and x50 = X522 for all 1 € [u1, u]. Hence,(u, X;+*Y) = (u, 0)
is a point in space-time where the proces¥és*! and X?2:*2 coalesce, for some
rationals1, s2, x1, x2 € Q. The set of such points is countable. It is easy to see that

it is also infinite. O

Note that in the next two lemmd3 denotes a bifurcation time.
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LEmMmA 2.8. The following holds with probability 1 for all s,r1,x € R
simultaneously. Suppose that s < #; and X'~ < X", Let Ty = inf{r >

siXPT £ XY and T = suplr > s LT vLsx+_O}.ThenT1 T>.

PrRooOF Clearly, T1 > T». Suppose thafy > T», note thatry > 71 and let
to € (T2, T1). Then, by Lemma 2.7, there exist sz, x1, x2 € Q such thatx; "~
XS and XSt = X722 for 1 > 1,. By the strong uniqueness of solutions to (1 3)
for rationals andx, Xf”‘_ = X1 = X722 = X>*F for 1 > 1,. This contradicts
the assumption that;,*~ < X};*" and soly = 7. O

LEMMA 2.9. With probability 1, the following holdsfor all s, x € R. Suppose
that X'~ < X;;*" for some 1 > s and x e R. Let T = inf{t > s: X}~ <
X 1 x £0, then T1 > s and Ty is not a semi-flat bifurcation time.

PROOF Itis obviousthak # 0 impIiesT1 > 5. By Lemma 2.4, the bifurcation
time 7Ty is not a local extremum aB,. Lety = B; —x. Note thatBr, = y and either
B, > yforallt €[s, Th) or B; < y fort € [s, Tl) Since Brownian motion does not
have points of increase (or decrease) dhds not a local extremum, it follows
that B, crosses the level infinitely often in every intervalTy, 71 + 8), § > 0.
By Lemma 2.8,L3" " = L?l’““ = 0. Suppose thaf; is a semi-flat bifurcation
time. Then for some; > 71, eitherLﬁ’l"— =0or lei” = 0. Assume without loss
of generality that:*~ = 0. Since the Brownian motios, crosses the level
repeatedly between timég andsj, it accumulates some local time at this level
(by Trotter and Ray—Knight theorems, [8], Sections 5.1 and 5.3), and so the process
Xg:*~ accumulates some local time at 0. This contradicts the assumption that
Ly =0. O

PROOF OFTHEOREM 1.3(ii). Recall that we call a bifurcation tim@dinary
if it is not semi-flat. First, we are going to show thakifs an ordinary bifurcation
time andsy > s is such thatx$;%~  X3,%%, then for everye > 0, there exists an

ordinary bifurcation timeso (s S1 A (s + &/2)) such thatXS - -0< X3 °+,

x3207 2 x52.0¢ LYy < Lipe, and LY%< Lifj. Sinces is an
ordlnary blfurcatlon time, we can fingg € (s,s1 A (s + £/2)) such that both
processes(*-%~ and X5-% cross 0 in the intervalss, s1 A (s 4+ €/2)). This and
Lemma 2.3 imply that the setX;,”, 1 < 53, X}, € (X507, X501,y e Q) is
finite; letx1 be the second largest element of this set and denpi:exgioﬂ that
is, the largest element of the set. Fok s1, let ', = inf{y € Q:Xﬁ’ly = Xf,iO*}
and note thaf’; is not constantly equal to 0 on any intenval s + §) because
s is an ordinary bifurcation time. Lefs € (s,s + (s3 — 5)/2) be so close to
that X**= and X*** cross 0 in the intervadu,,s + (s3 —5)/2), andT, # 0.

sa, s, — + . sa, g, —
Note thatXs, ™ < x1 < x2 < Xg1 "% and letsy = inf{r > st X,
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XS4’F’4+} By Lemma 2.9,s2 is an ordinary bifurcation time. Note thap <
s+ (s3—5)/2 < s1 A (s + ¢/2) becauseX*-9~ and X*:%* cross 0 in the interval
(sa, s + (53 —s)/2) MoreoverXS2 0- XS“’F’4 <x1<x2< X sl _ = x320F,
We haveL’% o < Ly%, andLiPf < ;fj becauseX‘ 0- and x50+
cross 0 in the intervalss, s1 A (s +¢/2)). It is easy to see thatf,éo <0< X;éOJF.
The inequdties are, in fact, sharpdzause on evgiinterval (s5, 0o) with s5 > s,
X%:0- agrees with som& -2 with rationalu andz, and the last process does not
pass through bifurcation points, a.s., and the same holdg'f8t. This completes
the proof of our claim.

Recall thats is an ordinary bifurcation time ang > s is such thatX;ViO— #+
Xj,iO*. We will construct a family of ordinary bifurcation timaswith « € [s, ((s +
51)/2) A s3) in the following inductive way. Start with an ordinary bifurcation
time sg such thatg € (s, (s + (s +51)/2) A 53), X;(,)O— <0< XS 0+ XSO’ < X1,

50,0+ s,0— 5,0+ LS O+
X = x2, L) < Ls+1’ and L5 o < Lig- Then find ordinary
bifurcation timeSsoo andsoz such thatsg < sgo < s01 < (s + 271 A s3, Xﬁg(;o <
50,0+ y,500,0 500.0+ o 50,0— 50,0— 50,0+
0 <0XS00 , Xi; <x1 0X > xo, LSO+2(S%0 s0) < LS+% 1 Lso+2(soo—sog <
50,0+ 50,0 50,0+ y-501,0 501,04+ 50, 50,0—
LT X5 <0< X5, Xo <, Xof™" = x2, Ly e,y < Lot
andL’®% < 1500

so+2so1—s0) = Pogpls |
We can find inductively ordinary bifurcation timeg,«,.. «, for all n > 2, with

k; =0, 1, with the following properties. Suppose that «,..«, have been defined
for n <m and lets,, be the minimum of distances between distinct elements
of {sokiky..kn-n < m,kj =0,1}. Then for anyk; =0,1, j =1,2,...,m, find
ordinary bifurcation timesoy ... ,,0 aNdsok, k,...k,,1 With

SOk1ko..ky < SOk1ko...kn 0 < SOk1ky...kp1
—m+1
< (SOkgkp.. ko + (B /20) A 27"F2) A s3,

SOkq kp...km »0— SOkq k.. ko > OF
Xsokgky kim0 < 0< X s0kgkp kim0 >

SOkq k... 0,0—
XS]_ S xlv

SOkq kp...kim 0: O+
XS]_ 2 x27

Um0 = SOkyky...kpy T 2(SOkks...kyO — SOkiko...kom )

7, 0k2kp- o ,0— < 7 SOFakakm ,0—
Um0 s+2-m ’

SOkqkp...km -0+
s42—m ’

SOkqkg...km -0+
Um0

L <L

0- SOkq k.. ko > OF

Soklkz...km s
(2.1) Xsokgkgim1 < 0< X 5ok kg kml
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S0kq kp...kin 1,0—

Xsl <xi1,
ngklkzmkml,o-‘r > 1.
Uml = SOkgkp...kp + 2(SOk1kp.. kin1 — SOkikp.. ki)
Li?'l:ikz...km ,0— szlilzk_z’.q;.km ,0—’
Li(r)’icikz...km .0+ - Lﬁlz]%r}'km ,0+.

It follows from (2.1) that the sequencBok,, Sokikyp» SOkikoks» - --) CONvVerges
for any choice of Qkq, k2, k3, ... The family 8 of limit points is uncountable.
We will show that every element of is a bifurcation time. Fix any € 4§
and anyui € (u, s1). Find Q k1, k2, k3, ... such thatso i, iy ks,...k, T . By con-
struction, X' SO0kq kp...Jem -0~ < X:YOklkz kmkyyy1:0— andXSOklkz dom 1O+ XSOklkz Kk 10+

on the mterval(so;qkzmkmk 00). Passing to the limit and using the fact that

m+1°
SOkq k... »0— x Okkg. 0+ SOkq k... »0— x Ok kin 0+
Xsokgkgdm0 < 0< X s0kykp. k0 and XSOklkZ...kml <0 Xsokgkptm1 1 WE
SOkq kp...km +0— SO0kq kp...k » OF .
see thatX, <0< X, For suff|C|entIy largem, we have
SOk k..o »0— SOkq k... »O— SOk ky...k 0+ SOkq kp...k
L, P27 < L™ andLy, "2 < Ly "2 ™. This implies that

L*-% and L*-% increase on the interval, u1). Hence, for everyip > u, X*-0F
agrees with som&?-* with rationalv andx on the intervalu», co), and the same
remark applies t -0~ SinceX?* does not pass through any bifurcation points,
eitheru is a bifurcation time orX;" 0= X}"O+ for all # > u. Our construction
implies thatX-9~ < x; <xz < X;‘l°+ sou must be a bifurcation time.[]

We will use excursion theory in the next proof and the proof of Theorem 1.6.
Various accounts of excursion theory may be found in [2, 15], Chapter XII,
and [16], Chapter 8. Some of the most relevant material is contained in [13]. We
will use Proposition 4.1 and Theorem 5.1 of [3].

PROOF OF THEOREM 1.4. (i) We will use the method of Watanabe [19].
First we will construct a family of “excursions” whose starting points are semi-
flat bifurcation points. Then we will assemble these excursion into a Brownian
motion, as in [19].

Assume without loss of generality thAte (—1, —%) and fix a largeK < oo
whose value will be specified later. L&, B2, ... be independent Brownian
motions starting from 0 and l&t* = BX — g2~ Define processe%! by equations
analogousto (1.3) and (1.2):

Xk=Bf 4Lk, 1>0,

1 gt
k_ ok o i k
Li=2"+ Im, 2¢ /0 Len (Xs)ds.



SKEW BROWNIAN FLOW 3099

Let
—ij .pl_ 1 1
Ty =inf{t >0:B; =0o0rX; > —KBL;},
Ty =inf{r>0:B*=0orLf =2 orxk > —kgL"), k=>2
Sk,n:Tk+Tk—1++Tn+1, n:O’lv"'vk_lv

Xk, fort € [0, Ty);
X s fort € [Skn, Skn-1),1<n<k—1,
vk — if By >0andX7 <—KBLy forallm <n;
"o for t € [Skn, Skn-1), L<n <k —1,
if B =0orXy =—KBLT forsomem <n;
0, fort > Sk.o,
Bf, forr € [0, Ty);
B Sin? fort € [Sk.ns Skn-1), 1<n<k-—-1,
Ak — if By >0andX7 <—KBLy forallm <n;
‘o for t €[Sk Skn-1), 1<n <k —1,
if B =0o0rXy =—KBLT forsomem <n;
0, for r > S.o.

In other words,Y* is a process assembled frokf, X1, ..., X! and A¥ is a

Brownian motion assembled frol*, B*~1, ..., BL. The processes* and A*
are sentto O at the time

Sy =inf{t > 0:AK=0o0ry* > —KBL*},

where

=2 +I|m—/ 1( 55)(Y )ds.
e—02
It is elementary to check that the procesﬁé‘s and Af satisfy the equation
analogous to that fok* and B:
vF=ak+ gLk,  0<r<s;.

Let 0* denote the distribution o and leto = £% — 725 We will argue that
limx_ o0 225 0% exists and defines an excursion l&ivfor Brownian motion.

Let Uy =inf{r > 0:LF > 27¥+1} The even{U; < S;} is the same as the first
excursion ofY} above 0 of height greater thanKﬂLk and the first excursion
of Y¥ below 0 which reaches the levLL* occuring afterL" increases by 2*.
Accordlng to the excursion theory, on the time scale correspondlng to the local
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time L" the point process of arrivals of excursmns)d‘f above 0 with height
greater than—KﬂLk is a Poisson point process with the variable intensity, equal
to fi(s) = —(1+ B)/(2KB(s + 27%)). The intensity for the analogous point
process of arrivals of excursions Bf below 0 which hitﬂZ’; is equal tofo(s) =

—(1 - B)/(2B(s + 275)). Hence, the probability that none of these excursions
occurs beford ¥ increases by 2 is equal to

25 —(1+p) p-1
expl — ds ).
p( /o <2Kﬂ(s +27K) * 2B(s + z—k)) s)
Elementary calculations show that this is equal 1§ A et U}! = inf{r > OzfﬂC >
27"} for n < k. By induction and the strong Markov property,

(2.2) PU! < §) =2 k=me,

It follows that for every fixedn and allk > n, the measures®2QF give the
same mass to paths Mf‘ in the set{U};! < S¢}. Itis clear from the construction
of processed} that for a fixedn, the conditional distributiorF} of U} given
{U{' < Sk} is nondecreasing ik, that is, the distribution?}’ , is stochastically
larger thanF;’. If we show that the expectations &f' are uniformly bounded
in k, that will prove that the distributions;’ converge ag — oo.

Let ¢1 be the expected lifetime of a Brownian excursion above 0 conditioned
on not hitting level 1. It is well known that; < co. By scaling, the expectation of
excursion lifetime conditioned on not hitting lewelis equal toc1a?. Fork > n,
the expectation of7! is equal to

2

S0 F}!’'s converge as — oo. This and the strong Markov property applied 4t
imply that the distributions ofY*,+ > U} under 2¥Q* converge a% — cc.
Since{Aﬂ‘, 0 <t <s}isafunction of{Yt", 0 <t < s}, we have similar convergence
for distributions of AK’s. The integem is arbitrary, so we conclude thdf =
liMi_ o0 22K OF exists.

It is clear from the definition that is a o-finite measure which is the
“distribution” of a process$A;, 0 <t < S} satisfying

2" 1 1-
ey [, (Flaks?+ Lap?)a a2,

Y,:A,+ﬁit, 0<r<S,
2.4 L,=lim=—[ 1 Y,
( ) 8@02 / (— ss)( s)ds,

=inf{r >0:A4,=00rY, > —KBL,},

and such that for every > 0, the distribution of A;, ¢ € [s, S} given{S > s} is a
Brownian motion stopped &t
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By (2.3), theH -expectation of§ A inf{r > 0: L, = 1} is bounded b[jpo c2 X
2732 — 50, assumingr < 3. Since thed -measure ofinf{r > 0: L,=1} <S8}
is finite, the H-measure of S > s} is finite for everys > 0. It follows from the
definition of H and (2.2) that théf-measure of—paths hitting level 2" is equal
to 2'“. This and the easy fact that has the same space-time scaling properties as
the Brownian motion imply thatl (S > s) = c3s~*/2. Hence, theH -expectation
of S on the se{S < 1} is finite if « < 2. Recall thatg € (—1, ——) and note that
we can choos& so large thair < 2.

Now generate a Poisson point process of excursions on the prodi@;toof
and the space of stopped continuous paths with intensity given by the product of
the Lebesgue measure afd The excursions can be assembled into a Brownian
path, as in [19], because thE-expectation ofS on the set{S < 1} is finite.
The starting points of constituent excursions in this Brownian path are semi-flat
bifurcation points—this follows from (2.4) and the fact thsat- 0 for H-almost
every path.

(i) This part of the proof is based on a classical covering argument.

Suppose without loss of generality tht (—1/3,0) and lety = (8 —1)/(28).
Theny > 2. LetS =inf{r > O:L?’o =1} andT, =inf{t > 0: B, = —¢},fore > 0.
The even{S < 7.} is the same as that the first excursiorX$° below 0, starting
at a times, which hits the level-¢ + ﬁL?’O occurring after timeS. We calculate
the probability of this event using excursion theory, as in part (i) of the proof,

(2.5) P(S<T) _exp( / =65 ﬂ ) s) =(1—B/e) 1P/ <167,

Let S;. =inf{t > 0:Ly"° =1} and Ty = inf{r > 0:X;** =0}, for ¢ > 0.
Note that7 . =inf{r > 0: B; — B; = —¢}. By the strong Markov property applied
atinfir > 0:X;""° =0}, (2.5), scaling and shift invariance of Brownian motion,
we have
(2.6) P(Ss.e < Tse) <ce?.

Fix somen > 1 anda € (2,y), lete =1/n ands, =k/n,fork=0,1,...,n
Let A, be the event that there exists a semi-flat bifurcation tinags;_1, s ] with
the following properties:x-%+, X0~ e [—¢V/* ¢¥#] and infr > 0:L"* =
1} <inf{r >0 :X;"0+ = 0}. Then Lemma 2.2 easily implies that @n, S;, 1/« <
T,, c1/a- By (2.6), P(Ay) < c2¢7/* and

(2.7) P( U Ak>§czey/°‘_1.

1<k=<n

The following standard estimate for Brownian motion,

(2.8) P( sup |B; — By ,| =&V )Scsel/“‘l/zexp(—%gz/“—l),

r€lsk—1,5%]
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applies also to all skew Brownian motions driven®ybecause of Proposition 2.1.
Hence, ifC; denotes the event that there exists a semi-flat bifurcation dirae

[sc_1, sg] with inf{r > 0: L%~ = 1} <inf{r > 0: X*“®* = 0}, then (2.7) and (2.8)

yield

P( U Ck>5czey/“_l+8_1C381/°‘_1/Zexp(—%82/0‘_1).

1<k<n

This goes to 0 as — 0 so there are no semi-flat bifurcation times [0, 1] with
inf{t >0:L}" 0= — 1) <inf{r > 0: X, 0+ _ 0}. An analogous argument shows that
for any integerm > 1, there are no semi-flat bifurcation timese [0, m] with
inf{r >0 :L?’O_ =1/m} <inf{r >0 :X}"OJr = 0}. Hence, there are no semi-flat
bifurcation times ifl 8] < 3. O

PrROOF OF THEOREM 1.5(i). Note that the distribution oL?*0 does not
depend ong. Since forg = 0 this is the usual Brownian local time:Lg’O has
a continuous density, for an§. An easy argument based on the strong Markov
property and scaling shows that for amythe random variable + 5L2’x has
a continuous density onx, co). This clearly implies that with probability 1,
for all rational x simultaneously,x + 5L2’x # 0. Hence, by Theorem 1.2
of [4], inf.cqlx + ﬁLl | > 0, a.s. Letp, = infcq|x + ﬁL *|. By scaling,
for + > 0, the distribution ofp, is the same as that of/zp1, and it is also
the same as the dlstrlbutlon of iy [x + ﬁLl_’ *|. Hence, for every:, p > 0,

P(infycq|x + ﬂLl *| < a) < p, for sufficiently larger. Note that the random

set{x + ﬂL’l’x :x € Q} is increasing irv. It follows that for everya, p > 0, and
sufficiently larger,

(2.9) (mfmﬂx+ﬁL1”ﬂ<a)<p.
xeQu>

Letl' = {Xg’x xeQ}, 1= Xl’ ,y2=Iinf{y eT":y > y1} andyz =supy €
I":y < y1}. It follows from Theorem 1.2 of [4] that4 is an isolated point i, so
Y3 <Y1 <Y2, aS. LetA, = {x € Q: X7 = y1} andso = inf{r: A, # @}. We will
prove thatsgp > —oo and then we will show that three distinct solutions to (1.3)
start at(sg, O).

Suppose thatg = —oco with positive probability. Finda, p1 > 0 such that
P(ly1| < a/2,s0 = —o0) > p1. According to (2.9), we can find > 0 so large
that

( inf Inf |x —i—ﬁL1 ) <a) < p1/2.

xeQu>t

Findz; > ¢ such that with probability greater than-1p1 /4, there exist® € (¢, 11),
such thatBy_;, = By. Then X3 2" = x + BLy "> for all rational x, and,
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hencegsg > 12 > 1. We see thaP (sg < 1) < p1/2+ p1/4, which contradicts the
assumption thaP (|y1| < a/2, so = —00) > p1. It follows that P (sg > —o0) = 1.

Let A, =infA;, ;" = supA;, y~ =liminf, A7, andy* =limsup A/

We will first prove thaty = = . Suppose that™ —y~ = b > 0 and finds; < sg
andsz > so so close tasg that SUp ¢y, 5,1 1Br — Bul < b/16. Then supq |x —
X' <b/8andr, <y~ +b/8<yt —b/8< ], by Proposition 2.1. Hence,
A5 — Ay, = 3b/4 and it follows that for somer € Q, Xt € (Aipr ). This
implies thatx € Ay, SOA,, # @ and inflz: A; # @} < s1 < so, @ contradiction.

Note that we must havaio’o_ < y3 and Xi°’°+ > y,. Consider anyx, €
Ago+1/n- FOr any fixedss > so, andn so large thako + 1/n < s3, the processes
{(xoTY/mn 4 e [53, 1]} are equicontinuous by Proposition 2.1. This implies that
a subsequence converges[ef 1]. Since this holds for anys > s, the diagonal
argument can be applied to show that a subsequen¢&’8tY ™" ¢ ¢ [so, 1]}
converges to some functidiy;, ¢ € [so, 1]}. One can show that this process solves
(1.3) just like in the proof of Proposition 1.1(iii). The three solutions of (1.3)
starting from(so, 0), Xfo’o_, Y, and Xf0’0+ are distinct becausﬁ‘f’o_ <y3<
yi=Y1<y2< XiO’OJF- O

3. Thelenslaw Q and anticipated bifurcation times. We will prove various
parts of Theorem 1.6 in different order than stated in the theorem. We will start
with the construction and analysis of the “lens la@” Our first result is a set of
explicit formulas we will need in our arguments.

We recall the definition oD*-Y. Supposer, y € R, x < y. ThenQ*-> denotes
the distribution of((X>*, X>*), + > 0} killed at the time¢ = inf{r > 0:X>* =
XY Let L = L2 + LY, o, =inf{s: Ly > 1}, and Z, = |x + BLO* — y —
ﬂLg;yL In other wordsZ; is the distance betweén,o’x andX,O’y on the time scale
defined by the local time clock. Lét= inf{r > O:X,O*x = X?’y} and{z = inf{t >
0:Z; = 0}. Note that the initial values OX?’X and X?’y (i.e., x andy) are not
reflected in the notation faZ,—this is because we will be mostly concerned with
the transition probabilities df,. Recall thatZ, is a piecewise linear function with
the slopeB or — B almost everywhere, on the inter@l, £;]. We have defined;
to be equal to O, if at timey, X?’x isat0, and/; =1, if at timeoy, X?’y isat0. If
B > 0, thenJ, is the indicator function of the intervals where is increasing.

PropPoOsSITION3.1. (i) Theprocess(Z;, J;) is Markov with the generator
0 1+ 1+
Af(zv 1) = ﬂ_f(zv 1) - —ﬂf(z’ 1) + —ﬂf(z’ 0)7
0z 2z 2z

d 1— 1-—
AF@ 0=~ f(2.0) - Z—fﬂz, 0 + Z—fﬂz, 1).
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(i) The potential density u((x, j), (z,k)) of (Z;, J;) (i.e., the density of the
expectation of the occupation measure) is given by

H—ﬂ <X

2p2 —
(3.1) u(@.0.@0)=1,7 ¢,

Er
(3.2) u((x,0), (z,1) = 1-Bx

Er

1;_72}3, Z=Xx,
(3.3) u((. D). @O)=1 11 5,

262 TF
(3.4) u(@D. @)=y g,

W;’ 7> X.

PrRoOOF (i) The claimthat Z;, J;) is a Markov process follows easily from the
classical Ité excursion theory so we will only outline the evolution of this process
and its relationship Witf{l(X?’x, X,O’y, ), ¢t > 0}. Supposep =0. Aslong as/; =0,
only X?’x visits 0. The excursions 07{',0”‘ below O occur at the ratd — 8)/2 and
the excursions above 0 occur at the rdte- 8)/2, on the local time scale, that is,
on the same time scale as for the procsswWhen an excursion on the negative
side occurs, with the absolute height exceedipgthenJ; jumps from 0 to 1 and
the analogous process starts: as long;as 1, onIyX,O’y visits 0. The excursions
of X,O’y below 0 occur at the ratél — 8)/2 and the excursions above 0 occur at
the rate(1+ B)/2, on the local time scale. When an excursion on the positive side
occurs, with the height exceedirfy, thenJ; jumps from 1 to 0. The excursions
of X,O’x and X?’y are generated according to the same excursion law as for the
standard Brownian motion, only their rates are different.

Suppose thatlp = 0. The “probability” that a Brownian excursion has an
absolute height greater thanis 1/x, according to the usual excursion law. It
follows from the above that the arrival time of the first negative excursidﬁ?d‘f,
with the absolute height exceedidg, has the distribution of the first jump arrival
time in the Poisson process with variable intensgity— 8)/(2Z;), on the local
time scale. This is the same as the jump rateJfofrom 0 to 1. Similarly, the
jump rate forJ, from 1 to O is the same as the rate of arrival of the first jump
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in the Poisson process with variable intengity 8)/(2Z;). The formula for the
generator follows directly from our description of thé,, J;) evolution.
(ii) It is elementary to check that the function

1-p
1+ﬂZ7
is harmonic for the semigroup afZ,;, J;), using the explicit formulas for the
generator given in part (i).
Forv >0, letT, =inf{z: Z, > v}. We will show that

hiz,1) =z, h(z,0) =

z1-8

(3.5) P, o(T, < 00) = ’ vivp T
1, v <z,
Z

(3.6) P.1(T, < o0) = I v U
1, v<z.

Sincen is positive, it follows thatV, = h(Z;, J;) is a positive martingale. By the
main result in [1],Z; — 0, a.s., as — o0, SON; — 0, a.s., ag — oo. By the
optional stopping theorem applied g at timeT, A ¢, we get, forv > z,

1-8

1+ 8°
Note that O< N; 11, > < vli1,~, andN;1L7,~,y — 0 ast — oo. It follows from
the dominated convergence theorem thatiufor z, i—gz =vP, o(T, < 00). For

v<gz,T,=0, Py .-a.s., and this completes the proof of (3.5). We obtain (3.6) in
the same manner from

z2=E;1(Nryant) =vP 1(Ty < 1) + E; 1(Ni (7, >1}).

Suppose thatZg, Jo) = (x, 0) and letS be the time of the first jump af; to 1.
It follows easily from our description of the evolution @f;, J;) in part (i) of the
proof (see also [1]) that

P(Zs/Zo <z)=71"P/@B) 0<z<1

Hence, the density ofs/Zg is 12_—ﬁ’3z(1‘3/3)/(2ﬁ) for z € (0,1). By the strong
Markov property applied af and (3.6), the probability thatZg, Jo) will return
to its starting point, that igx, 0), is equal to

= E; o(N1,ar) = VP, o(Ty <t) + E; o(NiLiz,~1})-

P1-8 aspren . 4, 17F
o 28 1+8
Hence, the expected number of returngitp0) (including the starting time) is
(1 1—5)—1_ 1+8
1+8) 28
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Since the slope df; is 8, the density of the expectation of the occupation measure
at(x, 0) is equal to(1+ B)/(282), as claimed in (3.1). Note that this number does
not depend on, so by the strong Markov property applied at the first hitting time
of z < x, the same formula holds for all< x, as stated in (3.1).

If z > x, the probability thaZ, will ever hitz is equalto(x/z)- (1—8)/(1+ B),
by (3.5). This combined with the strong Markov property at the hitting time of
and the first part of (3.1) yields the second part of (3.1).

Formula (3.2) can be obtained from (3.1) by noting thatfer x, the number
of visits to (z, 1) is the same as the number of visits(190), a.s. Forz < x, the
number of visits taz, 1) is one less than the number of visits(tg 0).

The other two formulas can be obtained in a very similar manner so the rest of
the proof is left to the reader.]

We will give two constructions ofQ. The first one, presented as a formal
proof of Theorem 1.6(ii), is based on an explicit representatio® dh terms
of h-processes. This construction is followed by a remark containing the second
construction, based on Maisonneuve’s ideas [13]. The second construction is
shorter and has a more abstract character.

PrROOF OF THEOREM 1.6. (i) The first assertion is a special case of
Lemma 2.8. It is easy to deduce tl@tis countable from Lemma 2.3().

(i) Recall that the functiork given byh(z,1) =z, h(z,0 =z(1— B)/(1+ B),
is harmonic for(Z,, J;). Let (Z}', J}") be the Doobi-transform of(Z,, J;). The
potential density.” for (z!*, J) is given by

h(y, u((x, j), (v, k)
h(x, j) '

By Proposition 3.1(ii) , fory > x, we haveu’((x, j), (v, k)) = c(j, k), where
c(j, k) depends only os.

Let (Z,(O’l), J,(O’l)) denote the procesZ;, J;) killed when Z, escapes from

0,1,k ;0,1),h 0,1 ,(0,1)

(0,1), and let(Z; A ) stand for the proces¥, ", J, ) transformed
by h. If the process(Z;, J;) starts from(x, j) with x < 1 and if Z; leaves
(0,1) through 1 at times, then, necessarilyl; = 1. Recall thatz(1,1) =1 and
limsup,_, osup; (z, j) = 0. This implies that(Zt(O’l)’h, Jt(o’l)’h) is the same as
the process$Z;, J;) conditioned by the event tha hits 1 before 0.

Let u©D pe the potential density foiz %Y, 7®Y) and letu©D-" have the
similar meaning for(z®Y" 7OV Wwe obviously have:©? < u and so
u©Dh < yh \We have shown that” is bounded by a constant, so the same applies
to u@D-" |t follows that

u ((x, j), (v, k) =

1
sup 3 [ u®((x, ), (v, k0) dy < oo,
XE(O’l)kZO,l 0
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This shows that the poiri0, -) is an entrance point fcﬂZ,(o’ 1”’, J,(O’l)’h) [it makes
no sense to specify when z! starts from 0 because it is clear that will
have infinitely many jumps on every intervé, ¢), ¢ > 0]. For anya > 0, we
can construct in a similar way a proce{§§°’“)’h, Jt(o’“)’h) starting from(0, -) and
representingZ,, J;) conditioned by the event tha; hitsa before 0.

On some measurable space define probability measQesvith disjoint
supports, such thaDy is the distribution of the proces(sZ{‘,J,k) with the
following properties. For an appropriate random varidfle (0, co), the process
{(Zk, JF),t € [0, Tx]} has the distribution ofz %2 k)’h, 702 k)’h) starting from
(0,-). For k > 1, the proces§(Z¥, J¥),t > T;} starts from(27%, 1), has the
transition probabilities of(Z;, J;) conditioned not to hit(2=**1 1), and is
independent of(Z J") t € [0, Tr]}. We do not have the conditioning in the case
k =0, that |s{(Z°, JO) t > Tp} starts from(l 1), has the tran5|t|on probabllltles
of (Z;, J;), and is independent qf(Z JO) t € [0, Tpl}. Let Q Zk>02 Qk
The weights forQy’s in the sum have been chosen according to (3.6), so that
underQ, the proces$ZQ, J,Q) has the same transition probabilities @, J;)
on (s, o0) for any s > 0. We add excursions toZtQ, J,Q), in the same manner
as described in part (i) of the proof of Proposition 3.1, to obtain a process
{(XtQ_,XtQJF),t > 0} with the transition probabilitiesD*-Y on every interval
(s, 00), s > 0. Its distribution will be denoted.

Next we will argue thap is the unique measure (“lens law”) with the transition
probabilities 0*Y. Note that given the distribution QthQ, J,Q), an argument,
as in part (i) of the proof of Proposition 3.1, shows that the distribution of
{(XtQ_, XtQ+),t > 0} is uniquely defined because und@r the last process has
transition probabilitiegD*Y on (s, co) for everys > 0. LetT,2 = inf{z: ZtQ > al.

The distribution of{(Z2, J,Q), t>TLYis uniquely defined (up to a multiplicative
constant) because und@r the transition probabilities for this process are the same
as for(Z;, J;). The distribution of{(Z J,Q) t €0, TQ]} underQ, conditioned

by {T.2 < oo}, is that of(Z,(0 akh J,(0 ). 1y starting from(0, -). This concludes
the proof of uniqueness fap.

It is clear from the construction of and (3.5) that Iir‘guo(l/y)Q‘y*O =cQ
for some constant. Recall that we have chosen our normalizatiorQo$o that

(3.7) lim(1/y)0™"%= 0.
¥{0
In view of (3.5) and (3.6),
oy_L1—-58
(3.8) ||m(1/Y)Q V= mQ

(iii) We will only outline the proof of (1.9) because the formula does not
require any independence of the lenses and so it is not very deep. Assume without
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loss of generality tha > 0. It is enough to prove the formula for sets of
the form (a, b), with b < 0 ora > 0. Suppose that > 0 and fix somes > 0.
Let 71 be the infimum of times such that for some lensy, with s; € G and
B, € (a,b), we haveL;“’0+ > Lfl’o_ +¢. Note thatT is a stopping time. Clearly,
{U, (), t = T1 — 51} has the same transition probabilities@sind its value at time
Ty — 51 is (—e, 0). Similarly, letT; be the infimum of times > T;_1 such that for
some lengU,, with sx € G and By, € (a, b), we haveLf"’0+ > Lf"’o_ +e. We
see thatly is a stopping time andUy, (¢),t > Ty — s} has the same transition
probabilities asQ. Summing over allk and using (3.7), we obtain (1.9) for
functions f which depend only on the pogt-process, wher& is the infimum
of times such thaZ, = ¢. The general result is obtained by letting> 0.

The caseb < 0 requires an application of (3.8) instead of (3.7) because
if we follow an analogous argument, we hatg, (71 — s1) = (0,¢) and not
Us, (T1 — 51) = (—¢, 0). This explains the factotfg on the left-hand side of (1.9).

O

REMARK 3.1. We will now sketch an alternative construction of the lens
law Q. We need the usual general Markov process setup, with some probability
space(L2, F, P), filtration {#;} and shift operator®, on & that act on the
Brownian motionB; as usual, that isB,(6;) = Bs+; — B;, and onX; in the

following manner:X; (6;) = sz; (6;). Consider the increasing process

L(6s) ~ _
A, = Z/ 1L (eIl _ pmliwl) gy,

seG 0

sS<t
where L is the length (in time units) of the leng(x) is its lower limit at time
u andii(u) is its upper limit. Sincg/>ye "5 /% e~ dx dt =1, and in the half-
planeR, x R, lenses do not intersect each other (although they may touch), we
see that/y” e ™' d A, < 1. It can be easily verified that,; = A; + A 0 6,. Thus,
(A;) is a raw additive functional of;, and since nq#;) stopping time passes
through its jumps, its dual predictable projectidn) is a continuous additive
functional of (¥;), which we shall call the lens local time. The functional> X*
is monotone, in the usual sense of inequality between functions. The family of
such functionals is “good” so arguing as in [13], we can prove that there exists a
kernel QX such that, for every#;)-predictableV and# -measurablef,

o0
EY. Vefob,=E [ V,0%0(f)dA,.
seG 0
Note further that the evolution of a lens (its width, the position of its upper
and lower parts during times between its formation and its coalescence, etc.) is
independent of the value of the functiaf] at times when the lens starts. It only
depends on the Brownian moti@®; o 6);>0 and the fact that at time, X7 =0
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for somex, and for a sequencs, increasing inz, with X5" < 0 for all n, X3"
increases to 0 as— oo. All points s € G satisfy this condition and, therefora,
does not charge points for whict; does not satisfy this condition. In particular,
FO) gu 3 (e~ — =) gy depends only 0KB; o 6),>o. It follows, as in the
derivation of “exit systems” in [13], that if is a function of the lens only and is
independent of the particular form &t (9,), then Qs (f) does not depend oki;
and we denote iQ(f). The normalization given in Theorem 1.6(ii) corresponds
to the following normalization ot and Q in the present context,

- 1-8 .
A= m(— an§|rt1 Bu) + TSXB“

andQ(l > v) = 1/v, wherel is the maximal opening of the lens.

The Williams decomposition of the Brownian excursion can be presented as
follows. Fix someb > 0. Let R! and R? be two independent Brownian motions
starting from 0 and conditioned to go to infinity before returning to 0O (i.e., they
are three-dimensional Bessel processes). Kiland R? when they hitb, call the
resultlng processeR! and R?, time-reverseR? to obtain R?, and concatenate
R} and R?. The result is a process with the same distribution as the Brownian
excursion conditioned to have heightA very similar construction of; underQ,
conditioned to have heigl#, can be given. The following is an informal version
of the argument given in the next proof, with minor changes. v,étand V,2
be two independent processes with the same transition probabilities as those
of Z, underQ*-, except thaﬂV1 V2| is conditioned to go to infinity before
returning to O, and assume thﬁ,l1 and v? start from 0. Kill V! and V72 when
|V — V2| = b, call the resulting processe\s, and V2, time- reverseV2 to
obtain V2, and concatenat&! and V2. This construction yields a process with
the same distribution &8; underQ, conditioned to have height

PROOF OF THEOREM 1.6. (vi) We will use Nagasawa’'s theorem on time
reversal (see [14] or [17]). In order to do that, we need to calculate generators
and potentials for some processes and find a reference measure under which the
processes are dual.

Fix any b > 0, let T, = inf{t: Z; = b}, and recall the generatot and a
harmonic functions from the statement of Proposition 3.1 and part (i) of
its proof. Let (Z(O b) J,(0 b)) denote the proces&;, J;) killed when Z; exits
(0, b), and Iet(Z(o ) Jt(o D), h) be(Z(o +b) J(o b)) conditioned byiz. The process
(Zt(0 '), h, J,(0 '), h) is (Z;, J;) conditioned by{ T} < oc}.

Leth—(x,1)=1—x/b, h (x,00=1— (x/b)(1 — B)/(1+ B) and note that
h~ is harmonic forA, with the boundary value 0 atb,1) and 1 at(O0, j).

Let (200" j OOy e (zOD 5Oy conditioned bys~ and note that
(zObh JODITyig (7, 1) conditioned by T}, = co).
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Consider(Z;, J;) under Q conditioned by{sup.,Z; = b} and note that the
distribution of {(Z;, J;),t € [0, T;]} under Q is the same as the distribution of
(Z,(O’b)’h ©.5), h) starting from (O, -), while the distribution of{(Z;, J;),t €

[Ty, Tol} is that of the processzt(0 0.k J(0 0.k ) starting from(b, 0). It will
suffice to show that the time reversal Zfo b)h™ starting fromb is the same, in
distribution, asZ(0 b). starting from 0.

By Proposition 3.1(i), and using conditioning by the generator o{Z,(o’b)’h,

J,(O’b)’h) is equal to
h p p
39 ApfD=p- f(z,l) —f(z,1)+—f(z 0),
9
310) 10 =—p 10 - 2Lre0+ L e,

Consider a proces(s‘Z,, J;) defined in the same manner@, J,), except that
the skewness parameter should-bé instead ofs. Recall thatJ, is the indicator
function of the intervals wheré&; is increasing. The process is the indicator
function of the intervals wherg, is decreasing. We writel 5 instead ofA to
emphasize the dependence of the generatatefined in Proposition 3.1, on the
parameteps. By that result,A = A_g. The functioni(z,0) = z, h(z, 1) = ng
is harmonic for(Z;, J,), and the generatad’ of the h-transform (2%, J%) of
(Z,, Jy) satisfiesA? = A" . This differs from (3.9) and (3.10) only in that the
roles of the states 0 and 1 gifhave been reversed. This means that the distribution
of Z(O b).h starting from 0 and the distribution @‘" starting from 0 and killed ai

are identical. It remains to show that the time reverseﬂk?fb) starting fromb
has the same distribution && starting from 0 and killed a.
In view of Proposition 3.1(i), the generator @ *?" " 1"y is equal to

b+z

A= f(z,l) <1+ﬁ
1
+z—z<

- 0
A" f(z,00= —f_f(z0) -
Z

‘)re

+z
b_z)f(z,o),

1-82 b—z
2z b—z+B0b+2)
1-—p2 b—z

M Y TS tA

f(z,0)
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Letm be defined by
1-—
m(dz, 1) = —’B(l . 5) dz,

282 b
1+8 1-Bz
m(dZ, O)Z( 2/32 — 2'82 E)d ,

and (f,g)m = [ fgdm. Note thatm depends orb. We want to show that
A" andA"™ are in duality with respect ta, that is,

(3.11) (A, 1), = (8. A" £),,.

for all C1-functions f, g with compact support if0, b). We omit tedious but
completely elementary calculations which show that the last formula is, indeed,
true. I

Next we will show that the duality measure is the potential of(Z", J!)
starting at(0, 0) (or rather wherZ{ = 0) and killed whenZ!" exits (0, ).

Recall the function: defined in Proposition 3.1(ii). We will make its depen-
dence org explicit by writing ug. When we apply Proposition 3.1(ii) with 8 in
place ofB, we see that the potential density(x, j), (z, k)) of (Z,, J;) is given by

i =u_g.Sinceh(z,0) =z, h(z,1) = i—gz, this implies that the potential density

ik ((x, j), (z.k)) of (Zh, j*) is equal to

1-pz .
0 282 x’ -
i"((x,0), (z,0)) = 1fﬂx
W, z>X,
1-8¢
y P
i"((x,0), (z. 1) = 1‘_3ﬁx
W, >X,
1
. Z%g%, Z=X,
i"((x, 1), (z,0)) = 1B
W, Zz>X,
1+8¢z
r ?—, =X,
it ((x, 1), (z, 1)) = 1‘_3}3)‘
W, >X

Let (2@ h Job). ) denote the procesg”, 1 killed whenZ! exits(0, b), and

let(0-0)- h((x, ]), (z, k)) denote the corresponding potential density.Ferb, the
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process(?f‘, ff’) hits (b, 1) with probability 1, so by the strong Markov property
applied at the hitting time aofb, 1), for x, z € (0, b),

AP ((x, j), (2. k) =" ((x, )), (2, k) — 2" ((B, 1), (z, k).
It is now straightforward to verify that

m(dz, 1) = Zﬂzﬁ (1— 5) dz:b;(O,b),il((O, 0),(z,1)dz,
m(dz.0) = (12;25 _ 12;f %) dz = a®P4((0,0), (z, 0))dz

This completes the proof that the duality measureis the potential of
(Zfo’b)’h j 0, h) starting at(0, 0). We have already shown thaf andA"~ are
dual [see (3.11)], so Nagasawa’s theorem |mpI|esAthat the time reve%ﬁf%fhi
starting fromb has the same distribution ﬁ(o’b)’h starting from 0. We have

already shown that the laws Zfo’b)’h and of?}o’b)’h are the same. This completes
the proof of part (vi) of Theorem 1.6.

(vii) Recall the argument in part (i) of the proof of Proposition 3.1 and the
notation in the paragraph following the statement of Theorem 1.6. Suppose that
Z, is increasing whetX; is hitting 0 (this depends on the sign gj. After time
reversal,Z; is decreasing when (the time-reversal o) is hitting 0. SinceZ;,
is adapted to the filtration generated bY,, X;), we see thaiQ-lenses are not
invariant under time reversal.

(v) We will discuss only the casg > 0. Forx < y, let

V(x,y)=inf{z>y:x+ BLY =y + BL; = z for somet}

and let Z;*Y be defined relative taX} and X; in the same way a<Z’ in
Theorem 1.6. It has been shown in the proof of Theorem 1.1 in [4] thatih < z,
thenV (x, y) is independent oV (y, z). The proof is based on the following idea.
The value ofV (x, y) is determined by the excursions &f above 0, and the
value ofV (v, z) is determined by excursions &f below zero. The two excursion
processes are independent, 80r, y) and V(y, z) are independent. The same
argument shows that the proces@és’ andZY-* are independent, for < y < z,
whereZ*-Y is the process defined at the beginning of the proof. We can generalize
this as follows. Ifx; < x2 < --- < x,, then the processdg**+1}1;<,_1 are
jointly independent.

For any integer, let 4, be the collection of pairg2~—", {zk2™"- *+D2™"yy,
The independence at*2"-«+12™"5 and (3.7) and (3.8) imply easily that the
point processest, converge weakly to a Poisson point process on the space
R x C[0, co) and intensity

1-—
(3.12) L o0 dx x +§QZ T 10,000 () dx X O,
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whereQ? is the Q-distribution of Z.

Let C([0, co) be the set of functiong € C[0, co) for which inf{z > 0: f(z) =
0} > ¢. We will show thatw,’s converge almost surely oR x C;[0, oo) for
every £ > 0. Let A, (£) be the number of points of,, in [0,1) x C,[0, c0).
It was noticed in [4] that forx < y < z, we have mai/ (x, y), V(y,z2)) =
V(x,z). This implies that4,,1(¢ — 27" 1) > 4,(¢) and so the limitA(¢) =
lim,, o0 A, (£ + 27") is well defined, a.s. We also have another monotonicity

—n—1 —n—1 —n —n
property, namelyz2? " @FD27 o k2 AED2T g0 a1l ¢+ and, similarly,

—n—1 —n—1 —n —n
ZGFDZR @227 Zk2 kD2 s ot hard to deduce from this that

for some point processt, the processest,’s converge almost surely tg on
[0,1) x C¢[0,00). Clearly, 4 is a Poisson point process whose distribution is
given by (3.12) restricted t®, 1) x C,[0, co). An extension td0, co) x C[0, co)

is routine. The extra factor in the formula for the intensity(ervo, 0] x C[0, o)

can be justified as in the proof of Theorem 1.6(iii) [see (3.7) and (3.8)].

Recall that the equation (1.3) has unique strong solutions for all rational
and x simultaneously, a.s. Hence, there are no anticipated bifurcation times
with By rational. If x is irrational then for every > 1, it belongs to an interval
k27", (k + 1)27"). It follows easily from the definition of a bifurcation time

and that onfZ S (D2 that there exists an anticipated bifurcation tisnevith
By = —x ifand only if (x, f) € 4 for somef € C;[0, co) with £ > 0.

(iv) This part of the theorem is not much more than a “soft” remark so we
will only sketch the proof. The idea of the argument is that different lenses
corresponding to anticipated bifurcation times overlap on the time scale and so
they cannot be independent because Brownian paths generated independently
cannot have the same shape.

Recall that B; denotes a one-dimensional Brownian motion. The three-
dimensional Brownian motion does not hit a fixed straight line, a.s. This and
standard arguments easily imply that for any fixads> > 0 andx1, x2 € R,
there are nay, o, t3 > 0 such thatt, — 11 = s1, 13 — t2 = 52, By, — By, = x1,
and B;, — B;, = x2. Let B/ be a Brownian motion independent 8f. It follows
by conditioning on the values d¥;, — B, and B;, — B,, thatif 1,12,13> 0 are
fixed, then with probability 1, there is nosuch thatB;2 — B;l = Biytu — Biytu
and B,’3 — Bj, = Big+u — By This holds for all rational tripletsy, 2, 3 > 0
simultaneously, a.s.

Suppose thaB is a Poisson process, that is, anticipated lenses are generated
independently. It is easy to see that the upper part of some anticipated lens agrees
with the lower part of some other anticipated lens on a honempty open interval.
Since such an interval contains a nonempty subinterval on which neither process
visits 0, we see that two Brownian paths generated independently agree on a
nondegenerate interval. This contradiction shows #& not Poisson. [J

PROOF OFTHEOREM 1.5(ii). Fix anintegen > 1, lete =1/n andsy =k/n
for k =0,1,...,n. Note that if four different solutions to (1.3) start &t, x),
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then necessarilg = 0. Fix o € (2, 3). Suppose without loss of generality that
B > 0 and for a leng(X;"%7, X5 1 € [s, ul}, let x(s) = BLSOT = BLS.O.
Suppose that four distinct solutions start at a p@in®). We will write x1(s) for
the quantity analogous t@(s), but defined relative to the lowest two solutions
starting at(s, 0). Similarly, x2(s) will correspond to the middle two solutions, and
x3(s) to the upper two. Fix some integerLet A; be the event that four different
solutions start as, 0) with s € [sk, sk+1) andx;(s) > 1 for j =1, 2, 3. We will
partition Ay into two events, A} and AZ. The eventA} is when A, occurs and

SupE[Sk_]_,Sk] |Bt - Bsk71| 2 El/a By (28),
(313) P(AI%) < ngl/a—l/zexq_%SZ/a—l).

We let AZ = Ay \ AL Let x1,x2,x3 and x4 be the values of the four solutions
starting at(s, 0), at the times;1. Since the pointS(siy1,x;), j = 1,2, 3,4,

lie on some solutions to (1.3), away from their starting points, they actually lie
on some solutions to (1.3) with rational coordinates of starting points. Hence,
x T = x4 UT and we will denote these processe$™ /. If A2 holds,

then x| < 2 for k = 1,2, 3,4, by the definition ofAl and Proposition 2.1.
Recall from the proof of Proposition 2.1 the8 L'2", 11 < u < 1} has the same
modulus of continuity a$B,, 1 < u < 2}, for any#; < . Assume thak is so

small thate¥/% < 1. Sincex;(s) > 1 for everyj, it follows thatx; + gL

must increase by at Iea%before it meets any othey, + gLS+1-*m m £ j. Hence,
there exist (at least) three anticipated bifurcation times with 3, relative to time
sr+1 rather than time 0, that is, for someg < y» < y3, and everyj = 1,2, 3,
we have infz:z = y; + L)Y = y; + LT for somer} > y; + 3.
Theorem 1.6 can be applied to processes starting from by shift invariance
of the Brownian motion. Note that ;| < 2¢V/@ pecause a similar bound holds
for x;'s. We see that ifAZ occurs, then there are three anticipated bifurcation
times corresponding to solutions of (1.3), starting at tispe;, at space points
within 261/ of 0. It is easy to see tha®(x > 1) < oo. Note thaty is a function
of Z, so by part (v) of Theorem 1.6, thex" point process is Poisson and,
therefore, the probability oA,f is bounded by1(2¢1/%)3. Hence, the probability
of Up<k<n_1 A2 is bounded by,(2:Y/9)3¢ =1 = ¢3e¥/*~1. Sincea € (2, 3), this
goes to zero as — 0. This combined with (3.13) yield® (Up<x<,_1 Ax) = O
asn = 1/e — oo. We conclude that there are nce [0, 1), where four different
solutions start withy ; (s) > 1 for every;. The same argument shows that for every
integerm > 1, there are ne € [—m, m), where four different solutions start with
xj(s) > 1/m for every j, a.s. Sincen is arbitrarily large, the proof is complete.
O
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