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The Brownian web (BW) is the random network formally consisting
of the paths of coalescing one-dimensional Brownian motions starting from
every space-time point iR x R. We extend the earlier work of Arratia and of
Toth and Werner by providing a new characterization which is then used to
obtain convergence results for the BW distribution, including convergence of
the system of all coalescing random walks to the BW under diffusive space-
time scaling.

1. Introduction. In this paper, we present a number of results concerning
the characterization of and convergence to a striking stochastic object called the
Brownian wel(BW). Several of the main results were previously announced, with
sketches of the proofs, in [13].

Roughly speaking, the BW is the collection of graphs of coalescing one-
dimensional Brownian motions (with unit diffusion constant and zero drift)
starting from all possible starting points in one plus one-dimensional (continuous)
space-time. This object was originally studied more than twenty years ago by
Arratia [5], motivated by asymptotics of one-dimensional voter models, and then
about five years ago by Téth and Werner [26], motivated by the problem of
constructing contiuum “self-repelling motions.” Our own interest in this object
arose because of its relevance to “aging” in statistical physics models of one-
dimensional coarsening [14, 15]—which returns us to Arratia’s original context
of voter models, or equivalently coalescing random walks in one dimension. This
motivation leads to our primary concern with weak convergence results, which
in turn requires a careful choice of space for the BW so as to obtain useful
characterization criteria for its distribution.
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We remark that there are two questions we do not address in this paper that
are worthy of consideration. The first is whether our convergence results might
play some role in studying the convergemndeliscrete to continuum self-repelling
motion [26]. The second is whether there are interesting connections between the
BW and super-Brownian motions; in this regard, the work of [8, 9] may be relevant
since it deals with noncrossing paths.

We continue the Introduction by discussing coalescing random walks and their
scaling limits. Let us begin by constructing random paths in the plane, as follows.
Consider the two-dimensional lattice of all poiriisj) with i, j integers and + j
even. Let a walker at spatial locatiérat time j move right or left at unit speed
between timeg and; + 1 if the outcome of a fair coin toss is heads (f = +1) or
tails (A; ; = —1), with the coin tosses independent for different space-time points
(i, j). Figure 1 depicts a simulation of the resulting paths.

The path of a walker starting fromg at time sg is the graph of a simple
symmetric one-dimensional random walk, ;,(¢). At integer times,Y,, () is
the solution of the simple stochastic difference equation,

(1.1) Y(+D—-Y()=Ayvi.j Y (s0) = yo

Furthermore, the paths of distinct walkers starting from differ@gt sg)’'s are
automaticallycoalescing—that is, they are independent of each other until they
coalesce (i.e., become identical) upon meeting at some space-time point.

If the incrementsA; ; remain i.i.d. but take values besided (e.g.,£3), then
one obtains nonsimple random walks whose paths can cross each other in space-
time, although they still coalesce when they land on the same space-time lattice

.
SN AT A DD

Fic. 1. Coalescing random walks in discrete tiimtee horizontal coordinate is space and the
vertical coordinate is time
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site. Such systems with crossing paths will be discussed in Section 5 (see also
[20]).

After rescaling to spatial steps of sizeand time steps of siz&?, a single
rescaled random walk (say, starting from O at timngﬁé(t) = 8Y0,0(8‘2t)
converges a8 — 0 to a standard Brownian motiaBi(z). That is, by the Donsker
invariance principle [10], the distribution (‘3()) on the space of continuous paths
converges a8 — 0 to standard Wiener measure.

The invariance principle is also valid for continuous-time random walks, where
the move fromi to i + 1 takes an exponentially distributed time. In continuous
time, coalescing random walks are at the heart of Harris’ graphical representation
of the (one-dimensional) voter model [18] and their scaling limits arise naturally
in the physical context of (one-dimensional) aging (see, e.g., [14, 15]). Of course,
finitely many rescaled coalescing walks in discrete or continuous time (with
rescaled space-time starting points) converge in distribution to finitely many
coalescing Brownian motions. In this paper, we present results concerning the
convergence in distribution of the complete collection of the rescaled coalescing
walks fromall the starting points.

Our results are in two main parts:

1. A new characterization of the limiting object, the standard BW.
2. Convergence criteria, which are applied, in this paper, to coalescing random
walks.

As a cautionary remark, we point out that the scaling limit motivating our
convergence results does not belong to the realm of hydrodynamic limits of particle
systems but rather to the realm of invariance principles.

A key ingredient of the new characterization and the convergence is the choice
of a space on which the BW measure is defined; this is a space whose elements
are collectionsof paths (see Sections 2 and 3). The convergence criteria and
application (see, e.g., Theorems 2.2 and 6.1) are the BW analogues of Donsker’s
invariance principle. Like Brownian motion itself, we expect that the BW and
its variants will be quite ubiquitous as scaling limits, well beyond the context
of coalescing random walks (and our sufficient conditions for convergence). One
situation where this occurs is for two-dimensional “Poisson webs” [11]. Another
example is in the area of river basin modelling; in [24] (see also [16, 21, 27]),
coalescing random walks were proposed as a model of a drainage network. Some
of the questions about scaling in such models may find answers in the context of
their scaling limits. For more on coalescing random walk and other models for
river basins, see [23, 30, 31].

Much of the construction of the BW (but without convergence results) was
already done in the groundbreaking work of Arratia [4, 5] (see also [6, 19]) and
then in the work of Téth and Werner [26] who derived many important properties
of the BW (see also [25] and [28]; in the latter reference, the BW is introduced
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in relation toblack nois¢. Arratia, Toth and Werner all recognized that in the
limit § — O there would be (nondeterministic) space-time points) starting

from which there are multiple limit paths and they provided various conventions
(e.g., semicontinuity inx) to avoid such multiplicity. An important feature of
our approach to the BW is to accept the intrinsic nonuniqueness by choosing an
appropriate metric space in which the BW takes its values. Roughly speaking,
instead of using some convention to obtain a process thatsmge-valued
mapping from each space-time starting point to a single path from that starting
point, we allowmultivalued mappings; more accurately, our BW value is the
collection ofall paths from all starting points. This choice of space is very much
in the spirit of earlier work [1-3] on spatial scaling limits of critical percolation
models and spanning trees, but modified for our particular space-time setting; the
directed (in time) nature of our paths considerably simplifies the topological setting
compared to [1-3].

The Donsker invariance principle implies that the distribution of any continuous
(in the sup-norm metric) functional oYé% converges to that for Brownian
motion. The classic example of such a functional is the random walk maximum,
SUR</<1 Yé%(t). An analogous example for coalescing random walks is the
maximum over all rescaled walks starting at (or passing through) some vertical
(time-like) interval, that is, the maximum value (for timeg [s, 1]) over walks
touching any space-time point of the for(,s) for somes € [0, 1]. In this
case, the functional is not quite continuous for our choice of metric space, but
it is continuous almost everywhere (with respect to the BW measure), which is
sufficient.

The rest of the paper is organized as follows. Section 2 contains two theorems.
The first, Theorem 2.1, is a characterization of the BW, as in [5, 26] but adapted
to our choice of space; the second and one of our main results is Theorem 2.2
which is a convergence theorem for the important special case where, even before
taking a limit, all paths are noncrossing. Section 3 contains propositions related to
Theorem 2.1, as well as an alternative characterization, Theorem 3.1, in which a
kind of separability condion is replaced by a mininlidy condition. In Section 4,
we present our new characterization results (Theorems 4.1 and 4.2) based on
certain counting random variables, which will be needed for the derivation of our
main convergence results. We remark that there are analogous characterization
and convergence results jointly for the BW and its dual web of backward paths
(important properties of the BW and its dual may be found in [25, 26]; see
also [12]). In Section 5, we extend our convergence results to cover the case
of crossing paths; the proof of the noncrossing result, Theorem 2.2, is given
here as a corollary of the more general result. In Section 6, we apply our
(noncrossing) convergence results to the case of coalescing random walks. There
are two appendices: the first covers issues of measurability, the second issues of
compactness and tightness.
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A number of theorems and propositions in this paper are either essentially
contained in or easily derived from [5] and/or [26]. In those cases, we have omitted
the proofs and simply refer the reader to the papers cited above. Detailed proofs
can be found in a previous longer version of this paper [12], which uses the same
choice of space and notation as this paper.

2. Convergencefor noncrossing paths. We begin with three metric spaces:
(R?, p), (I1,d) and (¥, ds). The elements of the three spaces are, respectively:
points in space-time, paths with specified starting points in space-time and collec-
tions of paths with specified starting points. The BW will be(&f, £ )-valued
random variable, wher€y is the Borelr -field associated to the metrit,. Com-
plete definitions of these three spaces will be given in Section 3.

For an(#, F3)-valued random variabl@v (or its distributionu), we define
the finite-dimensional distributionef ‘W as the induced probability measures
M(xy,m:..:0n.1,) ON the subsets of paths starting from any finite deterministic set
of points (x1, 1), ..., (xu, f,) in R2. There are several ways in which the BW
can be characterized; they differ from each other primarily in the type of extra
condition required beyond the finite-dinganal distributions (which are those
of coalescing Brownian motions). In the next theorem, the extra condition is a
type of Doob separability property (see, e.g., Chapter 3 of [29]). Variants are
stated later either using a minimality property (Theorem 3.1) or a counting random
variable (Theorems 4.1 and 4.2). Theorem 4.2 is the one most directly suited to the
convergence results of Section 5.

The events and random variables appearing in the next two theorems are
(#, Fg)-measurable. This claim follows straightforwardly from Proposition A.1.
The proof of Theorem 2.1 follows primarily from Propositions 3.1 and 3.3. The
proofs of these proposins are essentially contained [5] and [26].

THEOREM 2.1. There is an(¥, Fy)-valued random variablew whose
distribution is uniquely determined by the following three properties

(0) From any deterministic pointx, #) in R2, there is almost surely a unique
path W, ; starting from(x, 7).

() For any deterministicn, (x1,t1), ..., (x4, t,), the joint distribution of
Wit - Wy, 1S that of coalescing Brownian motior(svith unit diffusion
constan}.

(i) For any deterministicdense countable subs@tof R?, almost surelyW is
the closure in(#, dg) of (W, (x,t) € D}.

REMARK 2.1. One can choose a single dense countdijeand in (o),
(i) and (i) restrict to space-time starting points from tl#g. Different charac-
terization theorems for the BW with alternatives for (ii) are given in Sections
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3 and 4. We note that there are natut, £ )-valued random variables satis-
fying (0) and (i) but not (ii). An instance of such a random variable will be studied
elsewhere, and shown to arise as the scaling limit of stochastic flows, extending
earlier work of Piterbarg [22].

The next theorem is our convergence result for noncrossing processes; a more
general result is given in Section 5. We first define a counting variable essential
to all our convergence results and the related new characterization results of
Section 4.

DEFINITION 2.1. Fort > 0 andfg,a,b € R with a < b, let n(to, t; a, b) be
the number oflistinctpoints inR x {zg + ¢} that are touched by paths # which
also touch some pointifa, b] x {to}. Let also#(to, t; a, b) = n(to, t; a, b) — 1.

We note that by duality arguments (see [5, 26]), it can be shown that for
deterministicr, 7, a, b, this7 is equidistributed_with the number of distinct points
in [a, b] x {tg + t} that are touched by paths W which also touchR x {zq}.

THEOREM 2.2. SupposéX1, Xo, ... are (J#, Fz)-valued random variables
with noncrossing pathslf, in addition, the following three conditions are
valid, then the distributionu,, of X,, converges to the distributiopy of the
standard BW

(I1) There exis®, € X, for y € R? satisfying for any deterministioy, . .., y,, €
D, 6, ...,6;™ converge in distribution as — oo to coalescing Brownian
motions(with unit diffusion constafttarting atys, ..., yn.

(B1) ¥t >0, limsup,_, o, SUR, 1)cr2 #n (N (t0, 1; a,a + ) > 1) — Oase — ot.
(B2) Vi > 0,e7tlimsup,_, , SUR, o)cr2 in(A(l0. 1:a,a + &) = 2) — Oas
e — 0T,

Convergence of coalescing random walks (in discrete and continuous time) (see
Theorem 6.1) is obtained as a corollary to Theorem 2.2.

3. Construction and initial characterizations. In this section, we discuss
the construction of the BW and the proof of Theorem 2.1. Then we give in
Theorem 3.1 a somewhat different characterization of the BW distribution.

Let (2, ¥, IP) be a probability space where an i.i.d. family of standard Brownian
motions(B;) j>1 is defined. LetD = {(x;,¢;), j > 1} be a countable dense set
in R2. Let W; be a Brownian path starting at positiepat timez;. More precisely,

(31) Wj(t):x‘,-+B‘,-(t—tj), r=>1j.

We now construct, following [5], coalescing Brownian paths out of the family
of paths(W;) ;1 by specifying coalescing rules. When two paths meet for the first
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time, they coalesce into a single path, which is that of the Brownian motion with
the lower index. We denote the coalescing Brownian path@p,yj > 1. Notice
that the strong Markov property of Brownian motion allows for a lot of freedom
in giving a coalescing rule. Any rule, even nonlocal, that does not depend on the
realization of thgW;)’s afterthe time of coalescence will yield the same object in
distribution. General definitions and constructions of coalescing Brownian motions
can be found in [5].

We define the BW skeletow (D) with starting setD by

(3-2) Wi = We(D) = (W;:1<j <k,
(3.3) W=wD) =W
k

__Now we give detailed definitions of the three spaces introduced in Section 2.
(R?, p) is the completion (or compactification) & under the metrip, where

tanhx1) tanh(xp)

1+ 0] 1+ e

R2 may be thought of as the image[efoo, co] x [—o0, co] under the mapping
tanh(x) )

———, tanh) ).

1+ |¢] .

For tg € [—o0, <], let C[r] denote the set of functiong from [zg, oc] to
[—o0, 0o] such thad (£ (¢), t) is continuous. Then define

(3.6) n= J Clrwl x {1},

to€[—00,00]

(3.4) p((x1,11), (x2,12)) = ’ v |tanh(r1) — tanh(r)|.

(3.5) (x,8) ~ (P(x,1), ¥ (1)) = <

where(f, to) € Il represents a path R? starting at( f (1), to). FOr(f, to) in TI,
we denote byf the function that extendg to all [—o0, co] by setting it equal to
f(t) for t < rg. Then we take

(3.7) d((f1, 1), (f2, 12)) = (sgqcb(fl(r), 1) — ®(f2(1), r)|) VW (1) — W(t2)].

(1, d) is a complete separable metric space.
Let now # denote the set of compact subsetgkat d), with dg the induced
Hausdorff metric, that is,

(3.8)  dw(K1,K2)= sup inf d(gi,g2)V sup inf d(gi,g2).
g1eky 82€K2 g2ek, 81€K1
(H,dg) is also a complete separable metric space.
DEFINITION 3.1. ‘W(D) is the closure i1, d) of W(D).

Propositions 3.1 and 3.3 are essenyiathntained in Theorem 2.1 of [26].
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PROPOSITION3.1. ‘W(D) satisfies propertie®@) and (i) of Theoren®.1;that
is, its finite-dimensional distribution@hether from points i or not) are those
of coalescing Brownian motions

The next result is contained in Proposition B.5.
PROPOSITION3.2. ‘W(D) is almost surely a compact subse{(bf, d).

REMARK 3.1. Almost surelyW(D) = limy_ o Wi (D), where the limit is
taken in#¢.

REMARK 3.2. It can be shown by the methods discussed in Remark B.1 that,
almost surely, all paths i (D) are Holder continuous with exponentfor any

PrROPOSITION 3.3. The distribution of W(D) does not depend omD
(including its orde). Furthermore W (D) satisfies propertyii) of Theoren?.1.

The next theorem provides an alternative characterization to Theorem 2.1. Other
characterizations that will be used for our convergence results, are presented in
Section 4.

DEFINITION 3.2 (Stochastic ordering).u1 << u2 if, for g any bounded
measurable function oQ#, £5) that isincreasing][i.e., g(K) < g(K’) when
KCK'], [gdp1 < [gdua.

THEOREM 3.1. There is an(#, F)-valued random variableW whose
distribution is uniquely determined by properti@d, (i) of Theoren?.1and
(i) if w*is any othen ¢, 3)-valued random variable satisfyir(@) and (i),

PrROOF The proof of this theorem follows easily from Theorem 2.0

4. Characterization via counting. In this section, we give other characteri-
zations of the BW that will be used for our convergence theorem. They will be
given in terms of the counting random variableands defined in Definition 2.1.

We begin with some properties of the BW as constructed in Section 1.

PrRoOPOSITION4.1. For a BW skeletoriw (D), the corresponding counting
random variableyy = ngp (10, t; a, b) satisfies
(4.1) P(p > k) <P(p >k —DP@p > 1)

(4.2) < (PGip = 1) = (©®B —a, 1),
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where ® (b — a,t) is the probability that two indeendent Brownian motions
starting at a distancé — a apart at time zero will not have met by timéwhich
itself can be expressed in terms of a single Brownian mitibinus 75 is almost
surely finite andE(np) < oco.

PROOF  The proof of this proposition fot = 2 is contained in [26]. The proof
for k > 2 can be readily obtained by using the FKG inequalities—see [12]. (The
following remark notes that stronger bounds may be obtainable by the methods
of [26].) O

REMARK 4.1. By analogy with the number of crossings in the scaling limit of
percolation and other statistical mechanics models [2], one may expect the actual
decay to be Gaussian inrather than exponential, as in (4.2). Indeed, as noted by
an Associate Editoprobablyan upper bound of the for@[(b — a) /+/t Fk+D/2
can be obtained by applying the method of proof of Lemma 9.4 of [26] and a result
from [17].

The next proposition is aonsequence of the one just before. It can also be
found in Propositia 2.2 of [26].

__PrRoPOsITION4.2.  Almost surelyfor everye > 0 and everyd = (f, o) in
W (D), there exists a path, = (g, 1) in the skeletorW (D) such thafg(s) = f (s)
forall s > 1 + €.

The proof of the next proposition follows essentially from Propositions
4.1 and 4.2.

__PrROPOSITION4.3. Let# = 1(to, t; a, b) be the counting random variable for
W(D). ThenP(# > k) < (O©(b —a, 1)), and thus is almost surely finite with
finite expectationFurthermore 1 = 75 almost surely and thus

(4.3) P >k) <P@H=k—-DPH=>1)
(4.4) <PGH=1) = @O0 —a,n)

THEOREM 4.1. Let W be an (#, Fg)-valued random variableits dis-
tribution equals that of thgstandard BW W (as characterized by Theorems
2.1 and 3.1) if its finite-dimensional distributions are coalescirfgtandard
Brownian motiongi.e., conditions(o) and (i) of Theoren®.1are valid and

(i”) forall 10, ¢, a, b, nw is equidistributed with ;.

For purposes of proving our convergence results, we will use a modified version
of the above characterization theorem in which conditions (0), (1)) ére all
weakened.
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THEOREM4.2. LetW’ be an(#, F4)-valued random variable and led be
a countable dense deterministic subseRéfand for eachy € D, let9” € W be
some singlérandon) path starting aty. ‘W’ is equidistributed with théstandard
BWW if :
(i") thed”’s are distributed as coalescirfgtandard) Brownian motionsand
(ii"”) forall rg,t,a,b, nw < n, thatis P(nw > k) <P(n4 > k) for all k.

PROOF We need to show that the above conditions together imply that
the distribution ofW’, equals the distributiop of the constructed BV#v. Let n’
be the counting random variable appearing in conditidf) fior .’. Choose some
deterministic dense countable subgetnd consider the countable collecti®#i®
of paths of W starting from H. By condition (), W* is equidistributed
with our constructed BW skeletomv (based on the sam®) and hence the
closure W* of W* in (I1,d) is a subset ofw’ that is equidistributed with our
constructed BWW. To complete the proof, we will use condition”(ji to show
that W’ \ ‘W* is almost surely empty by using the fact that the counting random
variable n* for ‘W* already satisfies condition /(i) since W* is distributed as
a BW. If W\ ‘W* were nonempty (with strictly positive probability), then there
would have to be some ratioral ¢, a, b for whichn’ > n*. But then

(4.5) P(n'(t0. 15 a,b) > n*(to, t;a,b)) > 0

for some rationaly, ¢, a, b, and this together with the fact th&i(n' > n*) =1
(which follows from'W* c ‘W’) would violate condition (ii") with thosero, ¢, a, b.
The proof is complete.

REMARK 4.2. The conditiom+ < 4 can be replaced ly(nw) < E(n5).
We note thaE () = 1+ (b—a)/+/7t, as givenin [13] by a calculation stretching
back to [7]. So, in particular, in the context of Theorem 4.2, if besidgs (i
E(mw) <14 (b — a)/«/mt for all 1o, t,a, b, then W is equidistributed with
the BW.

5. General convergence results. In this section, we state and prove Theo-
rem 5.1, which is an extension of our convergence result for noncrossing paths,
Theorem 2.2, to the case where paths can cross (before the scaling limit has been
taken). At the end of the section, we show that the noncrossing Theorem 2.2 fol-
lows from Theorem 5.1 and other results.

Before stating our general theorem that allows crossing, we briefly discuss
some systems with crossing paths, to which it should be applicable (see also
Section 1.3 of [5] and [20]). Consider the stochastic difference equation (1.1)
where theA; ;’s are i.i.d. integer-valued random variables, with zero mean and
finite nonzero variance. Allowing, /) to be arbitrary irZ2, we obtain as a natural
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generalization of Figure 1 a collection of random piecewise linear paths that can
cross each other, but thstill coalese when they meet at a lattice points.

With the natural choice of diffusive space-time scaling and under conditions
of irreducibility and aperiodicity (to ensure that the walks from any two starting
points have a strictly positive probability of coalescing), the scaling limit of such a
discrete time system should be the standard BW. To see what happens in reducible
cases, consider simple random walks ( = 41), where the paths on the even
and odd subsets &?2 are independent of each other, and so the scaling limit on
all of Z2 consists of the union of two independent BWs. Bor; = £2, the limit
would be the union of four independent BWs. We remark that for continuous-time
random walks (as discussed in the next section of this papekfor= £1), no
aperiodicity condition is needed.

We proceed with some definitions needed for our general convergence theorem.
Fora, b, g e R, a < b, andr > 0, we define two real-valued measurable functions
lio,:([a, b]) and ry ;([a, b]) on (H, Fz) as follows. ForkK e # , I, ;(la, b))
evaluated atK is defined as iffir € [a,b]|3y € R and a path inK which
touches bothx, 1) and(y, 1o + 1)} andry, ;([a, b]) is defined similarly with the
inf replaced by sup. We also define the following functions(@6, £3) whose
values are subsets Bf As before, we lei € # and suppresk on the left-hand
side of the formula for ease of notation:

Nt ([a, b]) ={y € R|3x € [a, b] and a path irK which

(5.1)
touches bothx, 719) and(y, 1o + 1)},
N (la,b]) = {y € Rjthere is a path ik which
2) touches botttl, ([a, b]), t0) and(y, 10 + 1)},
(5:3) No 1 (la, b]) = {y e R|there is a path ik which

touches botttr,, ,([a, b]), 10) and(y, to + 1) }.
REMARK 5.1. We notice thalV;, ;([a, b])| = n(to, t; a, b).

Let{X,,} be asequence ¢f¢, F5)-valued random variables with distributions
{um}. We define conditions (B}, (B2) as follows.

(BY) VB > 0,limsup,_, o SUR- g SUR, 4er Hm (INy.: ([a — &,a + e])| > D)— 0
ase — Ot.

(B2) VB > 0,1limsup, ., SUR. SRy ek m (N (la — e.a + €]) #
N (la—e,a+e)) UNg, (la—¢ a+e]) —> 0ass — 0.

REMARK 5.2. Note that if we consider a process with noncrossing paths, then
conditions (B1) and (B2) follow from conditions (B1) and (B2), respectively,
because of the following monotonicity property. Forak b, ro and O< s < r,

P(In(t0,t; a, b)| > k) <P(|n(to, s; a, b)| > k)
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forall k e N.

THEOREMS5.1. Suppose thafu,, } is tight If Conditions(11), (B1') and(B2)
hold, then{X,,} converges in distribution to the BW.

Theorem 5.1 is proved through a series of lemmas.

LEMMA 5.1. Let u be a subsequential limit ofu,,} and suppose that
satisfies conditioifi’) of Theoren#t.2and

(B1”) VB >0,sup.5SUp, o (N ([a —,a +¢])| > 1) - Oase — OF,
(B2") VB >0, %Sug>ﬁ SUR,. 4 (Ng.r([a —&,a +¢]) # ,/V,(t,([a —¢g,a+e])U
Nygi([a —€,a+¢€])) > 0ase — OF.

Thenu is the distribution of the BW

ProoOF It follows from conditions (i) and (BY') that the limiting random
variable X satisfies condition (i) of the characterization Theorem 2.1. That is,
() almost surely there is exactly one path starting from each poidd aind
these paths are distributed as coalescing Brownian motions. Let us define an
(#, Fz)-valued random variablé¢’ on the same probability space as the one
on which X is defined to be the closure if11, d) of the paths ofX starting
from D. We will denote probabilities in the common probability spacePbyx’
has the distribution o#w. We need to show that it also satisfies conditiof{Xidf
Theorem 4.2. Let < b, t9 € R andz > 0 be given. For the random varialfle we
will denote the counting random variabjé€y, ¢; a, b) by n and the corresponding
variable forX’ by n'. Letz; = (a+j(b—a)/M, tp),for j=0,1,...,M,beM +1
equally spaced points in the interJal b] x {ro}.

Now defineny = |{x € R|3 a path in X which touches both a point in
{zo,...,zm} and (x,r + r0)}|, where| - | stands for cardinality. Let, be the
corresponding random variable f&t’. Clearly,n > ny andn’ > n},. From (BY')
it follows thatny = 1), almost surely. Now let = (b;M“). By condition (B2),
letting M — oo (¢ — 0), we obtain

P(n>ny) =P >ny)—>0  asM — oc.
Thus,P(n > ') = 0, showing that; is stochastically dominated hy. This
completes the proof of the lemma.
Fort>0,6>0,0<¢' <§,0<6< % consider the following event:
O(a,to,t,¢6,¢,0)
= {K € #|there are three pat{s1(7), t1), (x2(?), 12), (x3(2), 3) Iin K

with #1, 1o, 13 <tg+ 8, x1(to+8) € (a —e —&',a — e + &),
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xo(to+8)e(a—e+2¢ a+e—2),
x3(to+8)ea+e—¢c,at+e+¢e)
andxa(fo + 1) # x1(to + 1), x2(to + 1) # x3(tg + 1) }.

LEMMA 5.2. Condition(B2”) in Lemma5.1 can be replaced by

(B2") ¥B>0, 1limsup,_ osup. gSup,,limsup_ou©(a, 0,1, ¢,8) — 0
ase — Ot.

PROOF We prove the lemma by showing that condition§ @nd (B1')

together with (B2') imply condition (B2'). Let 8 > 0. DefineC1(b, 19, &', §) as
{K € H|there is a path iK' which touches botlw, 7o)
and{b — &'} x [0, 10+ 8] U {b + &'} x [10, 10 + 81},
andCs(a, tg, &, &', 8) as
{K € #|there is a path ik which touches botfu — ¢, a + ¢] x {10}
and{a —e — &'} x [to, to+ 8] U {a + & + &} x [10, 10 + 81}

Now observe that (modulo sets of zeraneasure)

{MNo.i([a —e,a+¢]) # J\ft;,([a —g,a+e)UN, (la—ea + ¢}
NCi(a+e¢,to,&',8)NCi(a—e,t0,¢,8) NC5(a,to, ¢ ¢, 8)
N{|Mots.—s(la —& —2¢',a —e + 2'])| =1}
N{|Ng+s.—s(la+e—2¢",a+e+2e'])| =1}

C O(a,tot,e¢€,6).
Therefore, we have
w(Nos(la —e,a+el) #NS (la—e.a+e) UN (la—¢ a+e])
<un(O(a,t,t,¢¢,8)+ u(Cala, o, 6 €', 8)) + u(Cila + ¢, 10, €', 8))
+ 1(Crla — &, 10, €', 8)) + (| Nig4s,i—s([a — & — 26’ ,a — e + 2¢'])| > 1)
+ (| Ngs.i—s(la +e — 26" a+ e+ 26'])| > 1).
Lettingd — 0, we obtain
W Noi(la —e,a+el) NS (la—e.a+el) UN , (la—¢ a+e])

<limsup{u(O(a,to,t,¢,¢',8)) + n(Caa, 1o, &, €', 8))
§—0

(5.4) + n(Ci(a+¢,10,€',8)) + n(C1(a — ¢, 10, €', 8))
+ (| Ngs.i—s(la —e — 26’ ,a — e + 26'])| > 1)
+ (| Moss.i—sla+ e — 26" a+e+2'D] > 1)},
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Now,
lim w(Ci(a +¢,10,¢",8)) = lim u(Ci(a — &, 10, €', 8))
§—0 §—0
= lim p(Ca(a, 10, ¢,¢',8)) =0,
§—0

since elements off are compact subseis of I, and compact sets of continuous
functions are equicontinuous. If the above limit did not vanish, then there would be
positive u-measure folK to contain paths with arbitrarily close to flat segments,
thus violating equicontinuity.

Now sinces — 8 > 12 > % it follows from (B1”) that

supsup sup (| Nigss,i—s(la — v, a+yD| > 1)
t>p a,to 0<d<t/2

< sup supu(|Nps(la—y,a+yD|>1) -0  asy — 0.
t>B/2a.to

This implies that for alk > 0,

(5.5) Ilmsupsupsupllmsupu(|,/\/,o+3, s(late—2¢,ate+2¢])|>1)=0.

g—0 t>Baty 50

Together with (5.4), this gives us

SupsupM(Mo,l‘([a —&a+ ‘9])

t>p to,a
(5.6) # NS (la—e a+e)UN (la—ea+e))

< limsupsupsuplimsupu (0 (a, fo, 1, &, €', 8)).
g—0 t>Batly §—0

Now, using (B2’), we obtain

1
—SupsuppL(JV,O,([a g,a+e)) #M;rt([a g, a—i—s])UJ\f,O,([a g, a—i—s])) -0

€ t>p to,a

ase — 0T, proving the lemma. O

PrROOF OFTHEOREM5.1. Tightness implies that every sub-sequendegf
has a sub-subsequence converging to samket us denote the corresponding
limiting random variable byX.. We prove the theorem by showing that every such
w = . From Lemmas 3 and 52 it follows that it is sufficient to prove condition
(i") of Theorem 4.2, condition (B? and condition (B2).

Let 8 > 0 and define for all O< § < 5, ,N’fo’,([a,b]) = {y € R|3 a path
(x(s), s0), 50 < to + 8 in K such thatx(zg + 8) € (a,b) andx (o + t) = y}. We
note that the se[q:/v/fo’,([a, b])| > 1} is an open subset of for all § > 0. Then
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we have

supsupi (| N ([a — &,a +€])| > 1)

t>p to,a

< supsuplimsup{u(|&”y ,(la — 2¢,a + 2¢])| > 1) + 1 (C2(a, 10, &, &, 8)) }

t>pB to,a §—0

< sup supu(|N/%,z([“ —2¢e,a+2¢])| > 1)
t>B/2 t.a

+ suplimsupu(Ca(a, to, €, €, 8)).

fo,a §—0

Now,

lim SUp,u(Cz(a, 10, &, &, 8)) =0,
§—0
since elements af¢ are compact subsets of. This together with the fact that
{|J\f”s ([a, b])| > 1} is an open subset o¥ leads to

10,1

supsupi (| Nig.r ([a — &,a +e])| > 1)

t>p to,a

< sup supu(|=/V/?o’,([a —2e,a+2¢])| > 1)
t>p/2 to,a

< sup suplim Supum(|d\f/?o,t([a —2¢,a+2¢])| > 1)

t>p/21,a m

< sup suplimsupg, (|Ng.: (la — 2¢,a + 2¢])| > 1)

t>B/210,a m

<limsup sup supum, (| Ny, ([a — 2, a + 2¢])| > 1).

m  t>B/21.a
It follows from (BY) that

lim sup sup supm (| Nyg.r([a — 26, a + 2¢])| > 1) - 0 ase — 0.
m  t>B/210.a

This proves (BY), which implies that:

(o) starting from any deterministic point, thereuisalmost surely only a single
path inXG.

Combining this with (11), we readily obtain that:

(i) the finite-dimensional distributions dX are those of coalescing Brownian
motions with unit diffusion constant.

Condition (i) of Theorem 42 follows immediately from (0) and (i). Now we
proceed to verify condition (B2).
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We have

supsuplimsupu(O(a, 1o, t, &, €', §))
t>pto,a §—0

< supsupu(O(a,1o,1,¢,¢",0))
t>pB/2a,l

< limsup sup supun,(O(a, to, t, ¢, €', 0))
m . t>B/2a.ty

<limsup sup supum (N ([a —c — &', a+e+¢'])
m [>/3/2 a,tp

#N(la—e—¢ a+e+e])
UN,g, (la—e —¢&,a+e+e),

where the second inequality follows from the fact thata, 7o, 7, €, ¢/, 0) is an
open subset of¢. For the third inequality to hold we need to ensure that there
is no more than one path touching eitiier— ¢ — ¢’, 1p) or (a + ¢ + &/, 1p); this
follows from (BY). Sinces’ < g, ¢ + ¢’ — 0 ase — 0, using condition (B3, we
obtain

1. .
= limsupsuplimsupu(O(a, to, , 6,¢',8)) - 0 ase — 0T,
€ g0 fo.a §—0

proving condition (B2'). This completes the proof of the theorent.]

We now suppose thdk1, X, ... is a sequence of#, Fy)-valued random
variables so that eacki; consists ohoncrossingaths. The noncssing ondition
produces a considerable simplification of Theorem 5.1, namely, Theorem 2.2.

PROOF OFTHEOREM2.2. Thisis an immediate consequence of Remark 5.2,
Theorem 5.1 and Proposition B.2]

6. Convergencefor coalescing random walks. We now apply Theorem 2.2
to coalescing random walks. For that, we begin by precisely defini(rgsp.Y),
the set of all discrete- (resp. continuous-) time coalescing random wall& on
For § an arbitrary positive real number, we obtain sets of rescaled walks,
Y® and¥®, by the usual rescaling of spacedsind time bys2. The (main) paths
of Y are the discrete-time random walkg ,, as described in the Introduction and
shown in Figure 1, with(yg, so) = (ig, jo) € Z x 7Z arbitrary except thaiy + jo
must be even. Each random walk path goes fkoni) to (i £1, j + 1) linearly.

In addition to these, we add some boundary paths soXthatll be a compact
subset off1. These are all the paths of the fory, so) with sg € Z U {—00, oo}
and f = oo or f = —oo. Note that forso = —oo there are two different paths
starting from the single point ag = —oo in R2.
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The continuous-tim& can be defined similarly, except that hesds anyig € Z
and sg is arbitrary inR. Continuous-time walks are normally seen as jumping
fromitoi+1atthe timeg,fi) € (—o0, 00) of arate-1 Poisson process. If the jump
is, say, ta + 1, then our polygonal path will have a linear segment betvveai‘,g(i))
and (i + 1, T/*Y), whereT,/ " is the first Poisson event at+ 1 after 7,").
Furthermore, i7" < so < 7%, then there will be a constant segment in the

path before the first nonconstant linear segmentg K 7,'”, then we take two
paths: one with an initial constant segment and one without.

THEOREM 6.1. Each of the collections of rescaled coalescing random
walk paths Y@ (in discrete timg and Y® (in continuous timg converges in
distribution to the standard BW &ds— 0.

PROOF By Theorem 2.2, it suffices to verify conditions (11), (B1) and (B2).

Condition (I11) is basically a consequence of the Donsker invariance principle,
as already noted in the Introduction. Conditions (B1) and (B2) follow from the
coalescing walks version of the inequality of (4.3), which is

6.1)  ws(nlo.t3a,a+¢) = k) < [us(nto. t;a,a+¢) = 2)]

Taking the sup ovefa, tgp) and the limsup oves and using standard random
walk arguments produces an upper bound of the fgitz /+/7 )*~1, which yields
(B1) and (B2) as desired.]

APPENDIX A

Some measur ability issues. Let (#, dg) denote the Hausdorff metric space
induced by(I1, d). F3 denotes ther-field generated by the open sets .
We will consider nowcylindersof #. Let us fix nonempty horizontal segments
I,....I,inR? (i.e., Iy = I} x {t}), where eacHi; is an interval (which need not
be finite and can be open, closed or neither) areR. Define

Cﬁ, :={K e #: there existg f, t) € K such that

(A1)
t > to and(f, t) goes througHy, ..., I,,},
(A.2) CP ., ={K e there existg f, 1) € K such that
' t > o and(f, t) goes throughy, ..., I},
Cr,...1 ={K € #: there exists f, t) € K such that
g S here exists f hth

(f, 1) goes throughy, ..., I,,}.

We will call sets of the form (A.1ppen cylindersf eachl; is open, and sets of
the form (A.2)closed cylinder#f eachly is closed.
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REMARK A.1. Itis easy to see that sets of the form (A.1)—(A.3) for arbitrary
I1, ..., I, can be generated by open cylinders.

Let now¢ be theo -field generated by the open cylinders.
PROPOSITIONA.1. Fy =C.

The proposition is a consequence of the following two lemmas.
LEMMA A.1. ¥y DC.

PROOF It is enough to observe that the open cylinders are open seté. of
Indeed, take an open cylinder, an elemg&nin that cylinder, and f, 7) € K such
thatt > 19 anda; < f(t;) < b; foralli =1,...,n. All points of Bx(K, ¢), the
open ball in# aroundK with radiuse, contain a path(f’,¢) in a ball in IT
around(f, r) of radiuse. Thus by choosing small enough(f’,¢") will satisfy
fo<t <t;anda; < f'(t;) <b; foralli=1,...,n. O

LEMMA A.2. Fyp CC.

PROOF Itis enough to generate tlaeballs in #¢ with cylinders. We will start
with e-balls around points off consisting of finitely many paths ai.

We will use the concept of aonein R2 around(f,t). Letr— =r"(t,¢) and
rT =rT(t, ¢) be the two solutions of

(A.4) |[tanh(r) — tanh(t)| = ¢,

with = < r*. For s fixed, letx~(s) = x~(s,&) andx'(s) = xT (s, ¢) be the
solutions for smalk of

tanh(x) —tanh(f(s)) _
ls|+1 B

with x~(s) < x"(s). The cone aroundf, t) is defined as

(A.6) C::{(x,y)eRzix_(y)§x§x+(y), y>r"}.

(A.5) +e,

Now let Ko ={(f1,1), ..., (fu,tn)}. LetCq,..., C, be the respective cones of
(f1,10), s (fustn). Fori=1,....n,letr;" =rt @, e), r, =r=(t,¢).

Consider now a family of horizontal lined.1, Lo, ...} =R x &8, whered$ =
{s1, 52, ...}, with thes, s distinct and such that);~., L, is dense iR2. For fixedk,
consider the segments (of nonzero Iengl;j1)nto which L, is divided by all the
points of the formx;™ (s) andxl*(sk) fori =1,...,n (number of such segments
< 2n +1). Segments with interior points in some cone are closed; otherwise, they
are open.
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Letd = {I‘i, cees I,;’:} be any finite sequence of the intervals defined above, with
ki, ...,k distinct. For 1<i < n, we will say that{ is i-goodif C; contains all
the intervals ing. If £ is noti-good for any 1< i < n, thenJ is bad [Roughly
speaking,{ is bad unless the intervals @fclosely track (within distance) some
particular path ofKp.] Let

a’ = {K € J: there existg f, t) € K such that
telr7,ri\1and{f(s)} x {s} € C; for all s >t}

(A.8) ={K € #: there exists f, 1) € K suchthatd((f, 1), (fi,t;)) <¢}.
It is not hard to see thaf; belongs to¢ by writing [r;” ri7] as a finite union

of small subintervals and then approximatiag by a filnitel union of sets of the
form C5, whered = {I1, ..., Ly} Ir =[x (s)), x;"(s))] x {s}}; s <57 <55 <+
s, sy € [r;,r1; and eachy, € 8. Note that in the definition (A.2) of such@;,
the starting time of the path( £, r) must be infs, s;]. DefineC := (', C;.
We next give an explicit, somewhat complicated, formula for the closed ball

B3 (Ko, €). An explanation is presented immediately after the formula:

(A9) m{( U C1>U<Lnj U Cj")}cma

m, 4 4 isbad i=1 m,Jd,k: 4 isi-good and

r-;' 14 is j-good

(A7)

sk>maxj[

If K € ¢ is such thatix (K, Kg) < ¢, then (i) for each = 1, ..., n, there exists

a path(f,t) € K such thad((f,1), (fi,)) < &, which is clearly equivalent t&
belonging toC, and (ii) for each pathif, r) € K, there exists € {1, ...,n} such
thatd ((f, 1), (fi, t;)) < e. The latter condition is equivalent to’jithere is no path
in K which is at a distance greater thafrom every(f;,),i =1, ..., n. Butthat

is equivalent taK not belonging to the set within square brackets. Indeed {fsad
in the first term of that expression, ensure that some pakhigat distance greater
thane of (f;, ;) for everyi =1, ..., n spatially; in the second term, some path in
K starts at a distance greater thafrom the starting time of everyf;, ¢;) from
which its spatial distance is acceptable. Equation (A.9) is thus established.

To complete the proof we generalize frdii finite to a generak . To generate
By (K, e) for arbitrary K € #, we approximateBs(K,e) by an increasing
seqguence of balls arourid’s consisting of finitely many paths. For that, we note
that, by compactness &f, for every integerj > 1, there existX ; € # consisting
of finitely many paths such tha; C K (as subsets dfl) anddx (K, K;) < ¢/j
forall j > 1. We then have

(A.10) By (K, (1—2/j)e) C Bx(Kj,(1—1/j)e) C By (K,¢).

The first inclusion is justified as follows. L&k’ € By (K, (1 — 1/j)s). Then
d#x(K,K’) < (1—1/j)e and, by the triangle inequality,

dyu(K;j,K') <dgp(K;, K)+dg(K,K"
<e/j+A-2/j)e=1-1/je.

(A.11)
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ThusK’ € Bx (K, ¢). The second inclusion is justified similarly. It is clear now
that\U;.1 Bz (K, (1—2/j)e) = U1 B (K, (1—1/j)e) = By (K, ¢). O

APPENDIX B

Compactness and tightness. Let Ay, r =[—L,L] x [T, T], and let{u,,}
be a sequence of probability measures(#fy F3). For xg, 7o € R andu, r > 0,
let R (xo, f0; u, ) denote the rectangleo — 5, xo + 51 x [to, fo +¢] In R2. Define
Ay .u(x0, 10) to be the event (i) that K (in #) contains a path touching both
R(xo, t0; 5, t) and (at a later time) the left or right boundary of the bigger rectangle
R(xo, to; u, 2t). See Figure 2.

Our tightness condition is

(T1) g@t,u; L,T) = t7Hlimsup, SURy, yen,  #m(Aru(xo,10) — O as
t— 0t.

ProOPOSITIONB.1. Condition(T1) implies tightness offu,,}.

ProOF Let

gmt,u; L, T)= Sup  Um (At,u(xO, tO))-
(xo0.00)€AL,T
Now define B; ,(xo,70) as the event (infy) that K (in #¢) contains a path
which touches a pointx’, ") = (f(¢'),t") € R(xo, t0; 5,t) and for somer” e
[t/, ¢+, | f(t") — f(t')| > u. We observe thaB; , (xo, o) C A;.,(x0, 10)-
We now coverA v with 5 x t rectangular boxes. Leétp = Lp(u) = {—L +
k%:keZ,0<k< ffTLzU andTp =Tp(t) = {—T +mt:m e Z,0<m < [2L7}.

A

u/2 2t

™ t
(Xo,1t )

FIG. 2. Schematic diagram of a path causing the unlikely evani(xg, f9) to occur



THE BROWNIAN WEB 2877

Then,
Mm< J Brulxo to))
(xo.t0)€AL,T
=< I/Lm( U Bt,u (x0, tO))
(x0,t0)€LpxTp
< um( U At,u<xo,ro))
,to)eL T,
(B.1) (x0,20)€LpxTp

2L +1772T +1
< t,u; L, T
—M/z ” t ng“t )

<C/£ (t,u; L, T)
= tugm ’u7 9’

<C/LT(” ;L T)+34
=< 78(1‘,% ) )+)

for any 8 > 0, where in (B.1)m is larger than som@é/(t,u; L, T; §). The first
inequality follows from the observation thataf (in #¢) is an outcome irB; ,, (x, 1)
for some(x,7) € A r, thenK is an outcome inB; ,(x’, ") for some(x’,t’) €
LD X TD.

The strategy of the remainder of the proof is to use (B.1) to control the
oscillations of paths within a single large rectangle r and then, by the
compactification ofR? [see (3.4) and (3.5)], we will control the oscillations
globally by appropriately choosing sequenced.ofl’ values tend to and, u, §
values tend to 0.

Now let {u,} be a sequence of positive real numbers with,lim, u, = 0.
Since® (x, 1) = (1+ |¢]) "L tanh(x), it easily follows that we can choogg, — oo
and 7, — oo such that|®(x, t)| <u, if |t| > T, and|®P(x,t) — O(£L,,1)| <
u, if |t] < T, and +x > L,. Now choose sequences of positive real numbers
{t/}, {8,) — O such thaC’L;—}(g(z,g, un, Ln, T,) +8,) <27".Foralln €N, let

(B.2) Co)=C(t,un; L, T)= | Bru, (x0. 10).

(x0,70)€A L, T,

From (B.1) we havew,, (C,(1,)) < 27" if m > M, :== M(t,,u,; L,, T,; §»). Let

{r/'} be a sequence of real numbers converging to 03t C,.(¢)) # @, then

there exists a compact subgeét of IT which belongs taC,(r) for all k. Since a
compact set of continuous functions is equicontinuous, this is impossible and we
conclude thafp2; C,.(t)) = @. Thereforew,,(C(t,u; L, T)) — 0 ast — 0 for

any fixedm, u, L, T. Thus there existg > 0 such tha,, (C,(z,)) < 27" for all

m < M,. If we now letC, = C, (1, A1), then, by the monotonicity of, (¢) in 7,
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we have for alln,

(83) mm (Cp) < (Cn (tr/l)) N Um (Cn (t,;/)) <2

Now let K € C; be a compact set of paths. A bound on the oscillations of
paths inK can be obtained as follows. L&t, = VW (T, + t,) — ¥(T},). [Recall
that W (z) = tanh(r).] Suppose(f, 1) € K. If 19 < s1 < 52 are times such that
|W(s2) — W(s1)| < ¥, then |®(f(s1),s1) — ®(f(s2),52)| < 3u,. [E.g., note
that [W(s2) — W(s1)| < ¥, for |s1|, [s2] < T, implies |sp — s1] < t,.] Let G, =
Niz,4+1Cy. Then for anym,

(B.4) /fLm(Gn)=1_lfLm< U Ci)Zl_ Z 27i=1-2".

i=n+1 i=n+1

Finally, let D, = Ug¢g, K. ThenD, is a family of equicontinuous functions.
By the Arzela—Ascoli theoremp,, is a compact subset dfl. SinceG,, is a
collection of closed (and hence compact) subset®,gfG,, is a compact subset
of #. Lete > 0. Choosei(¢) € N such that 2"®) > ¢. Then we have

(B.5) SUPUm (Gn(e)) >1-—e¢,
m

where G, is a compact subset off. This proves that the family of mea-
sures{u,,} is tight. O

REMARK B.1. An argument similar to that for Proposition B.1 can be made
to show that, if instead of (T1), one has the condition

(Tl/) Zt 1t=2"% keN ¢+ sup, Sugco,zo Mm (At,t“ (xo, to)) <00

for somea > 0, then eachu,, as well as any subsequential limit of (u,,) is
supported on paths which are Hélder continuous with ingdex

PROPOSITIONB.2. SupposgX,,} is a sequence af#, dg)-valued random
variables whose paths are noncrossiBgppose in additign

(I11") For eachy € D, there exist(measurablg path-valued random variables
6 € X, such thatd,, converges in distribution to a Brownian moticf,
starting aty.

Then the distribution$u.,,, } of {X,,} are tight

PrROOFE From the proof of Proposition B.1, it is sufficient to show that for
eachu > 0,

lim supum< U B; . (x0, to)> -0 ast — 0.

" (x0,10)€L p(u)x Tp (1)
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Foru > 0,t > 0, (xo, to) e R2, choose two pointgy, y» € D from the two
rectanglesR (xo F gu to—35 4) respectively. Let

§
B]_ (XO, tOv t M) {

max |6t
max [61(5) - y1|<16}

max 0,2 }
(ma 16,7 (s) — y2|<16

andD;", (xo, fo) = BY' N B3'. Now observe thab;", (xo, o) < By , (xo, fo) for large
enougrm Therefore we have

B3 (xo, to, 1, u) = {K IS4

(B.6) lim sup,um( U By .y (x0. to)>

(x0,t0)€LpxTp
(B.7) < > [1 — liminf 1m (D], (x0, to))].
(x0,t0)eLpxTp

Since#d;, converges in distribution to a Brownian motian starting aty, we have

L. u
(B.8) |Imn1lnf(um(BT)) =]P’( Lnaé |Zy,(s) — y1l < E)
Cr?
B.9 >1— —
(B.9) e
and
. m u
(B.10) Ilmmlnf(um(B2 ) _IP<S£rt1a>§t|Zy2(s) y2| < 16)
2
(B.11) e
u

Therefore we have
liminf 12, (D}", (x0, 10)) = 1 — 2C1?/u’*,
which gives us
lim suwm( U By u(xo. to)) <2C > 2 /u.
" (x0.10)€Lp(u)x Tp (1) (x0,t0)€L p (u)x Tp (1)

Since|Lp(u) x Tp(t)| ~ =, we have shown that

ut’

lim supum< U By . (xo, to)> -0 ast— 0,
m

(x0,t0)€Lp(u)xTp (1)

and the proof is complete.[]
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REMARK B.2. The proof of Propason B.2 shows that the limiting processes
Z, starting aty = (x, 1) need not be Brownian motions. It is sufficient that they
be continuous processes such that for each fixed,

(B.12) %sup]P’( sup |Zy(s) — Zy()| > u) —0 ast— 0t
y

[<s<t+t

PROPOSITION B.3. Let D be a countable dense subset®? and let u
beN the diitribution of tha #, F3)-valued random variablew, = W, (D) =
{W1, ..., W} [as defined if{3.2)]. Then the family of measur¢s;} is tight

PROOFE This is an immediate consequence of Proposition B[2.

PrROPOSITIONB.4. If ‘W, is an as. increasing sequence o#¢, dz)-valued
random variables and the family of distributiofys, } of W, is tight, then{J,, W,
is almost surely compagin (I1, d)].

PROOF Let W, be an increasing sequence of points (subsetgIpfin
(H, dﬂ) which converge inlz metric to some pomw in (F#,dg). If for some
k, ‘W, is not a subset o#, then there exists an> 0 such thatiyx (W, W,) > ¢
foralln >k, contradlctlng the claim thaW;, converges tow. Therefore; W, € ‘W
for all k. This implies{J, ‘W, € ‘W and therefore is a compact subsetibkince
it is a closed subset of the compact 8t Since{u, )} is tight, given ane > 0,
there exists a compact subset K#fsuch thatP(W,, € K) > 1— ¢ for all n, so by
monotonicity, P (W, € K for all n) > 1 —¢. Butif W, € K for all n, then since
K is compact, there exists a subsequeée which converges to a point il
and thus in¥. This implies by the first part of this proof they, . W, (=U, W
becausé&V, is increasing im) is a compact subset of. Thus we have shown that
P, W, is a compact subset &f) > 1 — ¢. Since the claim is true for all > 0,
we have proved the proposition]

PROPOSITION B.5. Let D = {(%,7):i = 1,2,...} be a (deterministi¢
dense countable subset &2 and let {’W,-:i =12, ...} be (I, d)-valued
random variables starting froniz;, ;). Suppose that the joint distribution of
each finite subset of thay,’s is that of coalescing Brownian motion§hen
U221 { W1, Wa, ..., W,} is almost surely compacin particular, for W, defined
in Proposition(B.3), W = U, W, is almost surely compact

ProoOF The proof follows immediately from Propositions B.3 and B.4]
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PROPOSITIONB.6. LetD and{W,:i =1,2,...} be as in PopositionB.5
and let {’Wi’:i =1,2,...} (on some other probability spacée equidistri-
buted with {W;:i = 1,2,...}. Then W = {W,:i=1,2,...} and W =
{W{ :i=1,2,...} are equidistributed #, £3)-valued random variables

PROOF It is an easy consequence of Proposition B.5 {hgt:i =1, ..., n}
(resp{W/:i =1,...,n}) converges a.s. as— oo in (¥, dy) to W (resp.W').
But then the identical distributions ¢W; :i =1,...,n} and{W/:i =1,...,n}
converge, respectively, to the distributions ®f and W/, which thus must be
identical. [
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