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We consider the seM,, of all n-truncated power moment sequences
of probability measures ofi0, 1]. We endow this set with the uniform
probability. Pickingrandomly a point inM,, we show that the upper
canonical measure associated with this point satisfies a large deviation
principle. Moderate deviation are also studied completing earlier results
on asymptotic normality givenybChang, Kemperman and Studdefnp.
Probab. 21 (1993) 1295-1309]. Surprisingly, our large deviations results
allow us to compute explicitly théz + 1)th moment range size of the set
of all probability measures having the saméirst moments. The main tool
to obtain these results is the representatiom/gfon canonical moments [see
the book of Dette and Studden].

1. Introduction. In this work we will study the asymptotic behavior in large
deviations of random power moment problem. PgfO, 1]) denote the set of all
probability measures (p.m.s) on the interf@l1]. In the whole paper this set will
be endowed with the weak topology [see Billingsley (1999)]. ForanyP([0, 1])
thekth (power) moment of. will be denoted by ():

cr(p) = /[o e,

In this paper we focus on some asymptotic properties of the finite moment
spaceM,,:

My ={c (W) = (ca(w). ..., ca@) 1 € PO, 1D}, neN*.
M, is the closed convex hull of the curve
{(x, 2. ixelo, 11}

[see Karlin and Studden (1966) and Kreand Nudelman (1977)]. A3, is

a compact subset dR” having nonvoid interior, we may define the uniform
probability?,, on M,,. M,, is a very “small” set. Indeed, its volume has ordef?2

for largen. Moreover, this set “concentrates” (in some sense) on a single point.
More precisely, Chang, Kemperman and Studden (1993) have shown that for any
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fixed k € N* and under the probabilit,, the k first components ot e M,
converge in probability to the first moments of the arcsine law. That is,

C(n) =
1 1
Cr Ck
wherec; =c;(v), j € N*, and
dx
2 dx) = —.
2) v(dx) wA/x(1—x)

Hence, M,, is concentrated around theth first moments of the arcsine law.
Moreover, Chang, Kemperman and Studden (1993) have studied the fluctuation
limit law in (1). They have shown that the limit distribution of the fluctuations is
Gaussian:

3) Jn(zZP —®) % N (0, Zp),

whereZ,(,k) denotes the random vector built with thérst coordinates of,, = ¢™
(drawn randomly with distributior®,). ¢® = (¢1,¢2, ..., )T is the vector of
thek first moment ofv. The covariance matriX; will be described in Section 2.5.
The main result of this paper is a functional large deviations principle for the
sequence(Z,Sk)). This means thaz\® “concentrates” exponentially fast. More
precisely, for any™ e M, there exists a unique measurg(c™) whosen first
moments are™ and maximizing th&n + 1)th moment [see Section 2.3, Karlin
and Studden (1966), Kine and Nudelman (1977) and Dette and Studden (1997)].
In Section 2.4 we show that' (Z,) satisfies a large deviations principle (LDP).
Roughly speaking, this means thgt (Z,) concentrates exponentially fast on

In other words, for large,

(4) Pu(0,(Z,) € A) ~ exp(—n inf I(u)),
ne

where A is a Borel-measurable set ([0, 1]) and I is the rate function of the

LDP (see Sections 2.1 and 2.4 for the more precise statement). Although we
prove this main result using a limit projective approach [see Dembo and Zeitouni
(1998)] we manage to compute precisely the rate funciiomhis is performed
using Szeg6 asymptotic theory on orthogonal polynomials [Grenander and Szeg6
(1958)]. Surprisingly, is the reversed Kullback information (or cross entropy)
with respect ta. Moreover, this computation gives quantitative evaluations of the
(n + 1)th moment range size of the set of all probability measures having the same
prescribed: first moments in term of the reversed Kullback information. To our
knowledge these results on power moment problem are new, they are developedin
Section 3.
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In Section 2.5, we give large and moderate deviation principles for the

random vect0|Z,(,k). Hence, we study exponential rates of convergence, between

(3) and (4), for this vector. All the proofs are postponed to Section 4. This last

section begin with a section on canonical moments [Dette and Studden (1997)]
which are the main tool to prove our results.

2. Main results.

2.1. Large deviations. Let us first recall what is a LDP [see, e.g., Dembo and
Zeitouni (1998)]. Let(u,,) be a decreasing positive sequence of real numbers.

DEFINITION 2.1. We say that a sequenc®,) of probability measures on a
measurable Hausdorff spate, 8(U)) satisfies a LDP with rate functioh and

speedu,) if:

(i) I islower semicontinuous (l.s.c.), with valuesRr U {+oo}.
(i) For any measurable setof U,
—I(intA) <liminfu,logR,(A) <limsupu,logR,(A) < —I(cloA),
n—0o0 n—00
wherel (A) =infgc4 1(£) and intA (resp. clad) is the interior (resp. the closure)
of A.

We say that the rate functiahis good if its level sefx € U : I (x) < a} is compact
for anya > 0. More generally, a sequenceldfvalued random variables is said to
satisfy a LDP if their distributions satisfy a LDP.

To be self-contained let us recall some facts and tools on large deviations which
will be useful in the paper [we refer to Dembo and Zeitouni (1998) for more on
large deviations]:

e Contraction principle Assume thaiR,,) satisfies a LDP onU, 8(U)) with
good rate functiond and speedu,). Let T be a continuous mapping frofi
to another spac¥. Then,(R, o T 1) satisfies a LDP oV, B(V)) with good
rate function

'Y= inf I(x), Vv,
» LI () y e
and speedu,,).

e Exponential approximatiarAssume that is a metric space and letdenote
the distance o/. Let (X,,) be aU-valued random sequence satisfying a LDP
with good rate functionf and speed,. Let (Y,) be anothel/-valued random
sequence. If for any > 0,

lim supu, logP(d(X,, Y,) > &) = —o0,

n—oo

then(Y,) shares the same LDP 6é%,,).
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In the sequel, talking about large deviations, if we omit the sequéngeit
means thai,, = % (n € N*). Following Section 3.7 of Dembo and Zeitouni (1998),
when the sequence,) satisfiesn—1 = o(u,,) we will say moderate deviations
rather than large deviations with spe@gl).

2.2. Kullback and reversed Kullback informationLet (U, 8(U)) be a mea-
surable space an#t and Q be p.m.s. on(U, 8(U)). Recall that theKullback
informationor cross entropy oP with respect toQ is defined by

/Io 4P 4p. it P< 0 and log't € LL(P)
K(P,Q)z{ v 9a0" 910 ’
+00

otherwise.

Properties ofK as a function ofP may be found in Bretagnolle (1979 is the

rate function for Sanov large deviations theorem [see Dembo and Zeitouni (1998)].
The rate function involved in this paper is the reversed Kullback information with
respect to, that is,

I(n) =K(v, u, n € P([0, 1]),

wherev is the arcsine law (2). Observe thais |.s.c. [Theorem 2.7 of Borwein
and Lewis (1993)]. Moreover, it is obviously a good rate functiBa(, 1]) is a
compact set].

The following property may be found in Theorem 2.1 of Gamboa and Gassiat
(1997) and in Section 3 of Borwein and Lewis (1993):

PropPosSITION2.2. (i) For u € P([0, 1)),

1 1
160=swp ([*fwduw + [[in@- rw)avw)
feC[0,11\JO 0
whereC|0, 1] is the set of all continuous functions @& 1]. (In the whole of the
paper we take the conventitmr = —oo whenever < 0.)
(i) Letd = (Py,..., Pp)T € (C[0, 1])* and forc e R¥,

1
Se(c) = {pc e IP([0, 1]):/0 O;(x)du(x)=cj,j =1,...,k}.
Then

1
inf I(u)= sup {Ao+(/\,c)+/ In(l—ko—(k,d>(x)))dv(x)},
//.GS(D(C) ()\.O,A.)ERk+l 0

where(., -) denotes the usual scalar product BA.

We will come back on the second point in Section 2.5. This property will be
helpful to show the results of Section 3.

For x € [0,1] andk € N*, let ¢ (x) = (x,x2,...,x5T. For ¢ € R¥, we set
Sk(c) =S¢, (c). In the next section we briefly recall some known factsSp(tr).
In Section 3 we give new results §a(c).
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2.3. Power moment problem.Let M denote the set of all infinite moment
sequences, that is,

M = {c (W) = (ci(w) e 1 € PO, 1)}

Forn € N*, let I1,: M — M, denote the natural projection map. So, we have
M, =T1,(M).

Let recall some useful facts on the power moments problems [see Karlin and
Studden (1966) and Kne and Nudelman (1977) for an exhaustive overview on this
problem]. Becausg0, 1] is a compact interval, the relation between the elements
of M andP([0, 1)) is bijective. In general, for™ e M, there exists an infinite
number of probability measures such th& = ¢ (). More precisely, for any
n € N* andc®™ e R":

() #Sp(c™) =400 < ™ eintM,,
(i) #S,(c™)=1% ™ € M, (the boundary oM,,),
(iii) #S,(c™) =0 c™ ¢ M,,

where # is the number of elements lying iA. These results come from the

fact that(¢,) is a Tchebycheff system [see Karlin and Studden (1966) anthKre
and Nudelman (1977)]. The elementsa¥,, satisfy an extremal property. For

c® e My, letet, ¢~ : My — R be defined by

c+(c(k)) =maxceR:(c1,c2,...,ck, ) € My,
c (™) =min{c eR:(c1, ¢, ..., cr, 0)T € Myya).

Then, c®D = (™) ¢;11)T € My, if, and only if, cip1 = ¢ (c®) [or
¢ (™).

Letd™ e M,,. We will denote byo " (d"™) the measurgx such that™ (u) =
d™ and ¢,41(n) = ¢t(d™). This measure is the so-called upper canonical
representation of the finite moments sequetiég[see Karlin and Studden (1966)
and Kran and Nudelman (1977)]. In the next section we will study large deviations
properties ob,(Z,).

2.4. Large deviations foro,"(Z,). Recall thatP, denotes the normalized
Lebesgue probability measure @, and Z,, denotes a random vector having
distributionP,,. Fork < n, letIT} : M,, — M; be the projection map taking the

first coordinates of an element #f,,. Let Z,ﬁk) denote the random vectdr; (Z,)
andu, be the random measusg” (Z,). Let O, be the law ofw,,. Our main result
is the large deviations principle f@y,,).

THEOREM2.3. (u,) satisfies a LDP with convex good rate functibn

COROLLARY 2.4. (uy) converges in probability to.
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We can also study the LDP associated to the so called tilted measures. Changing
a little the measure®, on P([0, 1]), we obtain the new limit law for the
sequence of random probability measumgs Namely, consider oiiP([0, 1]) the
new probability measur@,, defined by

Eg, (expnF (1,))1p(nn))
Eo, expnF (1,))

where B runs over the Borelian sets &[0, 1]) and F:P([0, 1]) — R is the
continuous functional defined by

(5) 0,(B) =

’

F(u) = / Folx) dpu(x),
[0,1]

where fo € C([0, 1]).
We have the following results.

THEOREM2.5. (Qn)neN satisfies a LDP ofP([0, 1]) with good rate function
Ip(uw)y=1(n) — F(n) + KF,
wherekK r := sup, cp(o.1p {F (1) — I (1)}

REMARK 2.1. Letf, denote a random measurel{0, 1]) having distribu-
tion 0,,. The existence of an unique minimum point ferimplies the convergence
(in probability) of fi,, toward this minimum point. Under certain conditions oygr
we can characterize the minimum pointsief Let 1 € P([0, 1]) be a minimum
point of /r. Let u = K, T, be the Lebesgue de_composition@i/vith respect
tov (u, < v). Then, from Theorem 3.5 of Borwein and Lewis (1993) there exists
A* e R with:

. du 1
() gir=—71= Ty &-Se

(i) suppu, C{x €[0,1]: fo(x) = A*}.
We now give two particular cases where the sequéfigghas a limit.
Let A := maX.e[0,1) fo(x) andxo := fjo1y(A — fo) *dv.

(i) Assumeyg > 1, then there exist* > X such that
dv(x)
[ aewaw=[ o1
[0,1] [0,1] A* — fo(x)

and(ji,) converges in probability tg;«v.
(i) If xo<1and{x €[0,1]: fo = A} reduces to the singletdng}, then(i,)
converges in probability to

g v + (1= x0)dx,.
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2.5. Large and moderate deviations for finite moments sequerfdéiough

we may obtain a LDP fo(Z,(,k)) using Theorem 2.3 and the contraction principle,
we will show the following theorem.

THEOREM2.6. (Z,Sk)) satisfies a LDP with convex good rate function

—In(ct(c®) — (™)) —kIn4, if ¢® eintMy,

6) I(c®)= .
+00, otherwise

Theorem 2.3 will be shown by first proving Theorem 2.6 and a projective limit
argument [see Section 4.6 in Dembo and Zeitouni (1998)].

REMARK 2.2. I achievesthe value 0 only&t). Hence, using Borel Cantelli
lemma, that yields to the almost sure convergencgfto ¢®.

We now turn on moderate deviation propertieﬂ)ﬁk)). Fori, j € N*, define

: 2i )

2—2’+1<. ) if 1<j<i,
() aij = [ i~ =7=

0, if j>i.
Fork e N*, let Ay = (a,-j)fﬁjzl and set

Y= %AkA]Z
and
h@=3x"Te %, xerh

THEOREM2.7. Let(u,) be a sequence decreasingtsuch that: 1 = o(u,,)
and let Z® .= m,z® — 0y, Then(ZP) satisfies a moderate deviations
principle with good rate functiody.

3. Onthe (n + 1)th moment range size of the probability measures having
the samer first moments. In this section, for® € My (k € N*), we set

1 1
resa(c®) =" sup {/ xk”dm(X)—/ xk“duz(X)}-
0 0

w1, 12€Sk (c®)

Using the large deviations properties of the previous section and the contraction
principle, we obviously obtain the following:

THEOREM3.1. Lete® e M. Then
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0)
(8) reg1(c®) = exp(— inf  I(u)—kIn 4).
wESK(c®)
(i) Letu e P([0,1]) andc® = c® (u), then
1
lim ZIn[4r,1(c®)] = =1 (w).

k—o00 k

REMARK 3.1. (i) Using Proposition 2.2, (8) may be expressed as the
supremum of a concave function. Indeed, we have

Fk+1(c(k))=exp<—kln4— sup Hk(ko,k,c(k))>,
(0,1 eRn+1

where for(ig, 1) € RF+1,
1
Hi(ho, 2, c®) =20+ (1, c®)+ / IN(1— ko — (%, g (x))) dv(x).
0

So for all (rg, A) € R+,
re+1(c®) < exg—kIn4 — Hy (20, 2, )],

This lastinequality is helpful to study the superresolution rate in the power moment
problem. This will be done in a forthcoming paper of Gamboa and Lozada.
Superresolution occurs far®) € 9My. In this case as we saw in Section 2.3,
Sk(c®) reduces to a single p.m. Superresolution rate is the concentration rate of
the se;(c® + 1) whenn e R¥ is a small perturbation [see Gamboa and Gassiat
(1996) and Doukhan and Gamboa (1996) for more on this problem].

(ii) Let P be a polynomial having degréec N*. Assume thatP is positive
on [0, 1] and satisfies the normalizing condition

Ydv(x)
0o P(x)

Set, for j € N*, d; = cj($) and, as usuald") = (d;);=1,....;. Then, using
optimization results developed in Theorem 2.1 of Gamboa and Gassiat (1997) or
Theorem 4.1 of Borwein and Lewis (1993) we have, for k,

v
I(—) = inf I(w)
P neS;di) "

(see also Section 2.5 for related results). Therefore, in this frame Theorem 3.1
gives

, 1
rj+1(d(f)):exp(—j In4—/O In P(x)dv(x)), Jj=k.
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(iif) Obviously, using the contraction principle and Theorem 2.6, we obtain that
the sequencerk+1(Z,(,k))) satisfies a LDP with good rate function,

R(r):{—ln(4kr), if r 10,474,
+o0, otherwise.

4. Proofs.

4.1. Canonical moments.This section is devoted to canonical moments which
are the basic tool for our results [as those obtained in Chang, Kemperman and
Studden (1993)]. We will present few properties of canonical moments. An
exhaustive study of canonical moments and their applications can be found in
the very nice book of Dette and Studden (1997). betlenote theth canonical
moments defined in iify,, k € N*, by

pile®) = pi(c?)

o (=D
I S G N P
C+(C(z—l)) _ C—(c(z—l))

wherec™ andc~ have been defined in Section 2.3. Foe N*, we will denote
by px the map from ini; to 10, 1[*,

c® s p® (c(k)) = (p1(c1), ..., pz(c(z)), e pk(c(k)))T.

The mapp; is a continuous one-to-one onto correspondence between the interior
of thekth moment space ani@, 1[* [see, Skibinsky (1968) and Dette and Studden
(1997)]. Obviously, the sequengpy) induces a one-to-one correspondepgge
between inf/ and]0, 1[". A very interesting property of the canonical moments
is that they are invariants under linear transformations of the interval. Therefore,
as the reader will easily check, all the results obtainefOpt] are also valid for
any other bounded closed interval of the real line. The canonical moments of the
arcsine law are all equal tc% [see Skibinsky (1969)]. We will denote them py.

In Lemma 1.4 of Chang, Kemperman and Studden (1993) the first Taylor
expansion opy aroundp™® is given,

m m
©) cm=5m+220mj(l?j—%)+O<Z|P4/—%2>’
=1

j=1

where, form, j € N*, ¢™ = (cq,...,cpn)T € intM,,, p™ (™) = (p1,...,
pm) €10, 1[™ anda,,; has been defined in Section 2.5.

We recall that the beta distributia@ (a, b)) of parameters, b > 0, has density
with respect to the Lebesgue measurd@ri],

[B(a, b)) 1x* 11— x)P7L,

whereB(a, b) = [[0’1] x4 11— x)b-1ax.
We have the following lemma.
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LEMMA 4.1 [Theorem 1.3 of Chang, Kemperman and Studden (199%)]\1,,
is endowed witfP,, then the random vectgr™ = (p1, po, ..., p,)! satisfies

(i) (p))?_, are independent random variables
@iy pi~Bn—i+1ln—i+1),i=1...,n

Now, we display an equation linking canonical and ordinary power moments
given in Skibinsky (1967), foe™ e int M,,,

(10) rn+1(c(n)) ( (n) (n) HP (n) ( (n))).

In (15) we will express,1(c™) as a function of Hankel determinants.
4.2. Proof of Theoren2.6.

LEMMA 4.2 [Exercise 4.2.7 of Dembo and Zeitouni (1998)L.et(X,, 1) [resp
(X».2)] be a sequence of random variables taking its values in a regular sgace
(resp X2) satisfying a LDP with good rate functiai (resp I2). If X, 1 andX,, 2
are independenthen X, = (X,,.1, X, 2) satisfies a LDP inX; x X> with good
rate function! (x1, x2) = I1(x1) + I2(x2).

LEMMA 4.3. The sequence of.p.s (8(n, n)),cn satisfies o0, 1] a LDP
with good rate function

[(x)=—In(x —x% —In4.

PROOF LetX, be arandom variable havim(n, n) distribution, then we may
write

X £ Z?:l Y;
n— ’
Y2 Y
where the random variableg’;) are independent with standard exponential

distribution [see, e.g., Bartoli and Del Moral (2001), page 71]. Consider the
bidimensional random vector

1 1 2n T
( ZY,, > Y) :
i=n+1

From Lemma 4.2 and Cramér’s theorem [Theorem 2.2.3 in Dembo and Zeitouni
(1998)], we obtain a LDP fo¢V,,) with good rate function

Iy(x,y)=x+y—2+logxy, x>0,y>0.

Hence, the LDP for(X,) follows from the one for(V,) and the contraction
principle with the continuous mag@, y) — x/(x +y). O
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From Lemmas 4.3 and 4.1, we have that, far N*, (p;(Z,))nen (J € N, fixed)

satisfies a LDP with good rate functidnThanks to Lemma 4.2, fdre N, we also
have a LDP for(p® (Z,,)),en With good rate function

p™®) Zlnm pD) —kina,

wherep® = (p1, pa, ..., p)" €10, 1[*.
We havez” = p;1(p®(Z,)). The contraction principle yields the LDP for
(Z,Sk)),,eN with good rate function,
Ii(c®) = L (p© ().

Using (10), we may writdy as in (6).

It is obvious that the functiod; achieves |ts minimum value 0 @® (and
only at this point). Indeed, rememberttpj:)t_ for 1 < j < k. Consequently, the
function /; achieves its minimum value a©.

4.3. Proof of Theoren2.7.

LEMMA 4.4. Let(u,) be a sequence decreasingtandn—1 = o(u,). LetY,
be a random variable having(n — I, n — I) distribution (n € N*, [ € N). Set

Xy i= /nuty (Y, — 3),

then(X,) satisfies a LDP with good rate functioh(x) = 4x2 and speedu,,).

PROOF It is well known thatB, = ((n — 1)!)2/(2n — 1)!. Using Stirling’s
formula forn!, we have

(11) By = 4—"(%)1/2<2+sn>

with &, — 0 asn — occ. Therefore, lim 2 In B, = —In4.
LetA :={la, b[.a < b}. A is a base of the usual topology &1 Let]a, b[e A.
Forn large enough,

1 a 1 b
P(Xne]a,b[):IP’(Yne]§+ g D

N 2 Jnuy
1/2+b//nu,
— n__ll_]_/ xn—l—l(l_ x)"_l_ldx
1/24a/ /nu,
g1 +<1+ a 1+ b )”_l_lb—a
m by T~ ’
- n-i-l 2 Jnu, 2 . J/nu, nu,
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wherem*(a, b) := suplt — 1%:t €la, b[} andm~(a, b) :=inf{t — t?:t €a, b[}.
The functions — 12 — ¢ is strictly convex in]0, 1[ with minimum value a%, o)

1 2
Z_“, if a>0,
+(1+ a 1, b ) "
m p— ’— p—v
2 Jnu, 2 . /nu, }—b, if b<0,
4  nu,
0, if a<0<b.

Using (11),

—442,  if a>0,
limsupu, INP(X,, €la, b)) < { —4b2, if b<0,
" 0, if a<0<b.

This leads to

(12) sup {— lim supu, INP(X,, € A)} > 4x2.
{AcA xcA) n

Now, analogously, we have

a 1 b )”_l_lb—a 1

1
P(X,cA)>m | = - .
(Xn € A)zm <2+ Jn, 2+4/nu,, S, By_1_1
But,
1 b?
- — , if a>0,
4  nu,
_(1+a1+b) 1 a? f b0
m D) T —5 = A ) I ’
2 Jnu, 2 . J/nu, 4 nu, =
1  maxa?, b?
N M, if a<0<b.
4 nuy,
So, using (11), we obtain
—4p2, if a>0,
limsupu, INP(X,, €la, b[) < { —4ad?, if b<O,
" —4maxa?, b3}, if a<0<b.
Consequently,
(13) sup {— liminf u, INP(X, € A)} < 4x?.
{AcA:xeA) n

Using Theorem 4.1.11 of Dembo and Zeitouni (1998), (12) and (13), we get a
weak LDP forX,, with rate function/1. The full LDP is then a consequence of the
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exponential tightness of the laws Bf. Indeed, forK > 0 andn large enough, we
have

P(X, € [-K,K]) = ZIP(Y,, ei|1- + L, 1[)
2 nu,

1
= 2Bn__11_1/ Rl S (L 7 P
1/2+K ] /ity

I (1 K_Z)""‘l(} K)
= n==1\4 0 g, 2 nu,)

Thus, using (11) and the expansion
1 K? 4K? 1
In(—— ):—In4+1— +0< )
4  nu, nuy, nuy,

limsupu, INP(X, € [-K, KI°) < —4K?,
n

we obtain

which implies the exponential tightnesd.]

LEMMA 4.5. For every sequencg:,) decreasing t® with n~1 = o(u,) and
k € N*, the sequence of random vectd's:= 2, /nu, Ax(p®(Z,) — p*) satisfies
a LDP with good rate functiod; and speedu,,).

PROOF Using the two previous lemmas, we can state a LDP for the random
vectorsW,, := /nu, (p®(Z,) — p®)) with good rate function
J (%) =4x" x.
So, using the contraction principle, we obtain a LDP fjr= 24, W,, with good
rate function

Je@) =inf{J{(3): % =245} = 35T (A HT A %
= 3xT O

LEMMA 4.6. The random vector sequende k)) and(Z,) are exponentially
equivalent

PrROOE It is obvious that there exists a constaitsuch that
—(5)12 _(k) |2

0(1p® = 5] = Col p™ = pPL,

whereO(|p® — 5®)|2) is the function which appears in (9). So,

(1Z9 = z,| > e} = [Vaua|O(|p® = V)| > e}
&

c {vmmlp® - 597> £}
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LetCq1 > 0. For /nu, > Cq,

} {W|P(k) —(k)| - (SCl)l/z}.

{Mlp(k) P> — e

This leads to

kCo

limsupu, INP(|ZX — 7! | > &)
n

. _ C1 1/2 eC1
< limsupu, InP( «/ &) _ 5% (—8 ) ) <-4t
= lim Stpss ( nian| P = ] kCo ="y’

where the last inequality follows from the LDP for the random vectdfs
(Lemma 4.5). Therefore, taking; — oo, we obtain

lim supu, In P(|Z& — 7! | > &) = —o0.
Then(Z(lk)) and(Z)) are exponentially equivalent]
Theorem 2.7 is obtained directly using the two previous lemmas.
4.4. Proof of Theoren2.3.

4.4.1. Statement of the LDP.Consider onM the product topology and the
product algebra. Le¥; be the subset aif defined by
M= {C(OO) EMicpi1= c+(c("))}.
We define on the following sequence of p.m(®,),en:

P,(B) = P,(T1, (BN M), B measurable set o

THEOREM4.7. (P,).en Satisfies a LDP with rate function
(09)\ — i — n(.+(.m)y _ .— (-0
Iy (c )_Illrin IN(@4"(c™(c") — ¢ (c'™))).

PrROOFR Letk € N andB; be a measurable set of,. We have, fom > k,
P, o T1; 1 (By) = Po(Bi x RY) = P, (I, (Bx x RY N M;1)) = Py(Br x R"F)
=Pz e By).

Therefore, the family{ P, o H,:l},,eN satisfies a LDP with rate functiofy.. The
Dawson—Gartner theorem [Theorem 4.6.1 of Dembo and Zeitouni (1998)] leads
to a LDP for P, on the projective limit of the spacei, which is M. The
good rate function iy () = sup, I, (11,,c*). For ¢* e M, I,(1,,c*)

IS nonincreasing im, thus, sup, =lim, I, [see (10)]. O
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Let G denote the one-to-one correspondence betwgandP ([0, 1]). Itis easy
to see that it is continuous. Therefore, using the contraction principle, we obtain
a LDP for the probability measure familyP, o G ~1},cn. But, for B Borelian of
([0, 1]),

Qu(B) = (P, 0 G~ H(B) = P,(G™1(B)).
We haver™ e G=1(B) N M} if, and only if, G(c™) = 5,7 (c™) € B. So,
(PpoG™H(B)=P(Z, e 1,(G"XB) N M)
=P(0, (Z,) € B).

Therefore, the contraction principle gives the LDP {@,),n With good rate
function

(14) () = lim —In[4" " (c;7 (10) — ¢ (W)

wherec; (n) andc; (1) denotect ¢~V (w)) andc(c"~V(w)), respectively.
Obviously, from (10), we may conclude thagchieves the value 0 only at

LEMMA 4.8. The function/ in (14)is convex

PROOE Letu =auy+ Bu2 with u, u1, u2 € P([0, 1]) andw, 8 positive real
numbers such that + 8 = 1. Thus,

™M () = ac™ (u1) + ™ (12).
Thanks to convexity oM, 1,
act (e (up) + Bt (™ (n2) € fe: (™ (w). ¢) € Myy1}
and by the definition of ™, we have
ct (™ (W) = ac™ (™ (1) + Bet (™ (2).
Analogously, we obtain that (¢™ (1)) < ac™ (c¢™ (1)) + Be~ (¢ (u2)). Thus,
e () — ey (W) = ale) (n1) — ¢ (L) + Bof (u2) — ¢ (n2)).

Sincet — —In4"¢ is a nonincreasing convex functionsn- 0 for all n € N*, we
obtain that/ is convex as the supremum of convex functionsl

4.4.2. Identification of the rate function.From Corollary 1.4.6 of Dette and
Studden (1997), we may write the following equation:

H,_1Hn—
(15) rn(c(n_l)) = Ma c(n_l) = (Cl, R Cn—l)T € Mn—la
ﬂn—ZHn—Z
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where, forc@"+D ¢ My, 11 (m € N¥),

co - Cm
Hop =1 : E
Cm ~ C2m
c1—C2 v Cm— Cmtl
HZm = : s
Cm —Cm+1 "+ C2m—1—C2m
c1 ot Cml
ﬂ2m+1 = )
Cm+1 - C2m+1
CO—C1  t+ Cm —Cm+l
H2m+l = : :
Cm —Cm+1l - C2m — C2m+1

These determinants are callednkel determinant3Vithin the moment problem
they play an important role. The conditions under which a sequence is a moment
sequence can be expressed on these Hankel determinants [see Karlin and Studden
(1966), Kren and Nudelman (1977) and Dette and Studden (1997)].
We have the following relations between Hankel determinants. /Let
P([0, 1]). Let 1’ € P([0, 1]) be defined by
2

w (dx) (dx).

~ ) — e
Obviously,u” verifies

k() — cxg2(p)

) =" (0 —e2)
Hence,
Hom (1) = (Cl(M) - CZ(M))mﬂz(m_l) ().
Moreover,
Hom () 3 Hogn—1y (1)
Hom-1(0) (eai) czw))ﬂz(m—a ()

In what follows we set™ = c¢™(n), ¢ = ct(c® V), andc; == (c" D).
The Hankel matrices depending phare tagged with a prime. We have
H,H

+ - + — —n
(e e — )= ="
mt mt Hn—2ﬂn—2

H _, H

1

/ 9
ﬂn—4 ﬂn—2

= (c1—c2)
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where the last equality is only truersifis even.
As the limit in (14) exists, we can calculate it takingven,

lim In(42"~4(c3,, — ¢3,,))

1. on —
D )

42m—1

1. —
+ 5 lim In( 3y — o))

1. 4m—1 — =
=3 I|nr1n IN(4*" (e300 — ch+1)(Cz+m — o))

ﬂ/z(m -1 ﬂZm )
Hon—2) Ham—1)

1
=3 lim |n<44m—1(c1 — )

Grenander and Szeg6 (1958) have showed a general limit theorem for the quotient
of Hankel determinants (see Theorem in Section 5.2 and Section 6.3 of this book).
In our framework it can be written in the following way.

THEOREM 4.9. Let u € P([0, 1]). Call f(x) its Radon—Nikodym derivative
with respect to the Lebesgue meastien

1
im 42"+1% =27 exp(/o In £ (x) dv(x)).

Now we may write

lim In(42"~*(c,, = ¢3,,))

1 H 1. ﬂ/ -
= lim |n(42m+1i) + = lim |n(42m—1w)
2 —2(m—1) 2m Hom—2)

1. _
+ > IInrp In(4 Y1 — c2))

)
(x x)f(x)dv

c1—cC2

1 1 1t
:5/0 Inf(x)dv(x)+§/0 In (x)

+1In( )+1In()
> c1—C2 > b4

it _ 2 g2 _
_2/0 In[7 (x — x2) F2(x)]dv(x) = —1 ().
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4.5. Proof of Theoren2.5. The LDP for(Q,) is a direct consequence of The-
orem 111.17 ofden Hollander (2000). The rate function which controls the LDP is

Ir(u)=1(un)— F(u) + Kp,

wherek r := sup, cpo, it F (1) —1(n)}. O
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