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Université Paul Sabatier and Universidad de la Habana

We consider the setMn of all n-truncated power moment sequences
of probability measures on[0,1]. We endow this set with the uniform
probability. Picking randomly a point inMn, we show that the upper
canonical measure associated with this point satisfies a large deviation
principle. Moderate deviation are also studied completing earlier results
on asymptotic normality given by Chang, Kemperman and Studden [Ann.
Probab. 21 (1993) 1295–1309]. Surprisingly, our large deviations results
allow us to compute explicitly the(n + 1)th moment range size of the set
of all probability measures having the samen first moments. The main tool
to obtain these results is the representation ofMn on canonical moments [see
the book of Dette and Studden].

1. Introduction. In this work we will study the asymptotic behavior in large
deviations of random power moment problem. LetP([0,1]) denote the set of all
probability measures (p.m.s) on the interval[0,1]. In the whole paper this set will
be endowed with the weak topology [see Billingsley (1999)]. For anyµ in P([0,1])
thekth (power) moment ofµ will be denoted byck(µ):

ck(µ) =
∫
[0,1]

xk dµ(x).

In this paper we focus on some asymptotic properties of the finite moment
spaceMn:

Mn = {c(n)(µ) = (c1(µ), . . . , cn(µ)
)T :µ ∈ P([0,1])}, n ∈ N

∗.

Mn is the closed convex hull of the curve

{(x, x2, . . . , xn)T :x ∈ [0,1]}
[see Karlin and Studden (1966) and Kreı̆n and Nudelman (1977)]. AsMn is
a compact subset ofRn having nonvoid interior, we may define the uniform
probabilityPn onMn. Mn is a very “small” set. Indeed, its volume has order 2−n2

for largen. Moreover, this set “concentrates” (in some sense) on a single point.
More precisely, Chang, Kemperman and Studden (1993) have shown that for any
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fixed k ∈ N∗ and under the probabilityPn, the k first components ofc(n) ∈ Mn

converge in probability to thek first moments of the arcsine law. That is,

lim
n→∞Pn


∥∥∥∥∥∥∥
 c

(n)
1
...

c
(n)
k

−
 c̄1

...

c̄k


∥∥∥∥∥∥∥≥ ξ

= 0, ξ > 0,(1)

wherec̄j = cj (ν), j ∈ N∗, and

ν(dx) = dx

π
√

x(1− x)
.(2)

Hence,Mn is concentrated around thenth first moments of the arcsine law.
Moreover, Chang, Kemperman and Studden (1993) have studied the fluctuation
limit law in (1). They have shown that the limit distribution of the fluctuations is
Gaussian:

√
n
(
Z(k)

n − c̄(k))L−Pn−→
n→∞Nk(0,�k),(3)

whereZ(k)
n denotes the random vector built with thek first coordinates ofZn = c(n)

(drawn randomly with distributionPn). c̄(k) = (c̄1, c̄2, . . . , c̄k)
T is the vector of

thek first moment ofν. The covariance matrix�k will be described in Section 2.5.
The main result of this paper is a functional large deviations principle for the
sequence(Z(k)

n ). This means thatZ(k)
n “concentrates” exponentially fast. More

precisely, for anyc(n) ∈ Mn, there exists a unique measureσ+
n (c(n)) whosen first

moments arec(n) and maximizing the(n + 1)th moment [see Section 2.3, Karlin
and Studden (1966), Kreı̆n and Nudelman (1977) and Dette and Studden (1997)].
In Section 2.4 we show thatσ+

n (Zn) satisfies a large deviations principle (LDP).
Roughly speaking, this means thatσ+

n (Zn) concentrates exponentially fast onν.
In other words, for largen,

Pn

(
σ+

n (Zn) ∈ A
)≈ exp

(
−n inf

µ∈A
I (µ)

)
,(4)

whereA is a Borel-measurable set ofP([0,1]) andI is the rate function of the
LDP (see Sections 2.1 and 2.4 for the more precise statement). Although we
prove this main result using a limit projective approach [see Dembo and Zeitouni
(1998)] we manage to compute precisely the rate functionI . This is performed
using Szegö asymptotic theory on orthogonal polynomials [Grenander and Szegö
(1958)]. Surprisingly,I is the reversed Kullback information (or cross entropy)
with respect toν. Moreover, this computation gives quantitative evaluations of the
(n+1)th moment range size of the set of all probability measures having the same
prescribedn first moments in term of the reversed Kullback information. To our
knowledge these results on power moment problem are new, they are developed in
Section 3.
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In Section 2.5, we give large and moderate deviation principles for the
random vectorZ(k)

n . Hence, we study exponential rates of convergence, between
(3) and (4), for this vector. All the proofs are postponed to Section 4. This last
section begin with a section on canonical moments [Dette and Studden (1997)]
which are the main tool to prove our results.

2. Main results.

2.1. Large deviations. Let us first recall what is a LDP [see, e.g., Dembo and
Zeitouni (1998)]. Let(un) be a decreasing positive sequence of real numbers.

DEFINITION 2.1. We say that a sequence(Rn) of probability measures on a
measurable Hausdorff space(U,B(U)) satisfies a LDP with rate functionI and
speed(un) if:

(i) I is lower semicontinuous (l.s.c.), with values inR+ ∪ {+∞}.
(ii) For any measurable setA of U ,

−I (intA) ≤ lim inf
n→∞ un logRn(A) ≤ lim sup

n→∞
un logRn(A) ≤ −I (cloA),

whereI (A) = infξ∈A I (ξ) and intA (resp. cloA) is the interior (resp. the closure)
of A.

We say that the rate functionI is good if its level set{x ∈ U : I (x) ≤ a} is compact
for anya ≥ 0. More generally, a sequence ofU -valued random variables is said to
satisfy a LDP if their distributions satisfy a LDP.

To be self-contained let us recall some facts and tools on large deviations which
will be useful in the paper [we refer to Dembo and Zeitouni (1998) for more on
large deviations]:

• Contraction principle. Assume that(Rn) satisfies a LDP on(U,B(U)) with
good rate functionI and speed(un). Let T be a continuous mapping fromU
to another spaceV . Then,(Rn ◦ T −1) satisfies a LDP on(V,B(V )) with good
rate function

I ′(y) = inf
x : T (x)=y

I (x), y ∈ V,

and speed(un).
• Exponential approximation. Assume thatU is a metric space and letd denote

the distance onU . Let (Xn) be aU -valued random sequence satisfying a LDP
with good rate functionI and speedun. Let (Yn) be anotherU -valued random
sequence. If for anyξ > 0,

lim sup
n→∞

un logP
(
d(Xn,Yn) > ξ

)= −∞,

then(Yn) shares the same LDP as(Xn).
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In the sequel, talking about large deviations, if we omit the sequence(un) it
means thatun = 1

n
(n ∈ N∗). Following Section 3.7 of Dembo and Zeitouni (1998),

when the sequence(un) satisfiesn−1 = o(un) we will say moderate deviations
rather than large deviations with speed(un).

2.2. Kullback and reversed Kullback information.Let (U,B(U)) be a mea-
surable space andP and Q be p.m.s. on(U,B(U)). Recall that theKullback
informationor cross entropy ofP with respect toQ is defined by

K(P,Q) =

∫
U

log
dP

dQ
dP, if P � Q and log

dP

dQ
∈ L1(P ),

+∞, otherwise.
Properties ofK as a function ofP may be found in Bretagnolle (1979).K is the
rate function for Sanov large deviations theorem [see Dembo and Zeitouni (1998)].
The rate function involved in this paper is the reversed Kullback information with
respect toν, that is,

I (µ) = K(ν,µ), µ ∈ P([0,1]),
whereν is the arcsine law (2). Observe thatI is l.s.c. [Theorem 2.7 of Borwein
and Lewis (1993)]. Moreover, it is obviously a good rate function [P([0,1]) is a
compact set].

The following property may be found in Theorem 2.1 of Gamboa and Gassiat
(1997) and in Section 3 of Borwein and Lewis (1993):

PROPOSITION2.2. (i) For µ ∈ P([0,1]),
I (µ) = sup

f ∈C[0,1]

(∫ 1

0
f (x) dµ(x) +

∫ 1

0
ln
(
1− f (x)

)
dν(x)

)
,

whereC[0,1] is the set of all continuous functions on[0,1]. (In the whole of the
paper we take the conventionln τ = −∞ wheneverτ ≤ 0.)

(ii) Let� = (�1, . . . ,�k)
T ∈ (C[0,1])k and forc ∈ Rk ,

S�(c) =
{
µ ∈ P([0,1]) :

∫ 1

0
�j(x) dµ(x) = cj , j = 1, . . . , k

}
.

Then,

inf
µ∈S�(c)

I (µ) = sup
(λ0,λ)∈Rk+1

{
λ0 + 〈λ, c〉 +

∫ 1

0
ln
(
1− λ0 − 〈λ,�(x)〉)dν(x)

}
,

where〈·, ·〉 denotes the usual scalar product onRk .

We will come back on the second point in Section 2.5. This property will be
helpful to show the results of Section 3.

For x ∈ [0,1] and k ∈ N∗, let φk(x) = (x, x2, . . . , xk)T . For c ∈ Rk , we set
Sk(c) = Sφk

(c). In the next section we briefly recall some known facts onSk(c).
In Section 3 we give new results onSk(c).
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2.3. Power moment problem.Let M denote the set of all infinite moment
sequences, that is,

M = {c(∞)(µ) = (ci(µ)
)
i∈N

:µ ∈ P([0,1])}.
For n ∈ N∗, let 
n :M → Mn denote the natural projection map. So, we have
Mn = 
n(M).

Let recall some useful facts on the power moments problems [see Karlin and
Studden (1966) and Kreı̆n and Nudelman (1977) for an exhaustive overview on this
problem]. Because[0,1] is a compact interval, the relation between the elements
of M andP([0,1]) is bijective. In general, forc(n) ∈ Mn, there exists an infinite
number of probability measures such thatc(n) = c(n)(µ). More precisely, for any
n ∈ N∗ andc(n) ∈ Rn:

(i) #Sn(c
(n)) = +∞ ⇔ c(n) ∈ intMn,

(ii) #Sn(c
(n)) = 1 ⇔ c(n) ∈ ∂Mn (the boundary ofMn),

(iii) #Sn(c
(n)) = 0 ⇔ c(n) /∈ Mn,

where #A is the number of elements lying inA. These results come from the
fact that(φn) is a Tchebycheff system [see Karlin and Studden (1966) and Kreı̆n
and Nudelman (1977)]. The elements of∂Mn satisfy an extremal property. For
c(k) ∈ Mk, let c+, c− :Mk → R be defined by

c+(c(k)
)= max{c ∈ R : (c1, c2, . . . , ck, c)

T ∈ Mk+1},
c−(c(k)

)= min{c ∈ R : (c1, c2, . . . , ck, c)
T ∈ Mk+1}.

Then, c(k+1) = ((c(k))T , ck+1)
T ∈ ∂Mk+1 if, and only if, ck+1 = c+(c(k)) [or

c−(c(k))].
Let d(n) ∈ Mn. We will denote byσ+

n (d(n)) the measureµ such thatc(n)(µ) =
d(n) and cn+1(µ) = c+(d(n)). This measure is the so-called upper canonical
representation of the finite moments sequenced(n) [see Karlin and Studden (1966)
and Krĕın and Nudelman (1977)]. In the next section we will study large deviations
properties ofσ+

n (Zn).

2.4. Large deviations forσ+
n (Zn). Recall thatPn denotes the normalized

Lebesgue probability measure onMn and Zn denotes a random vector having
distributionPn. For k ≤ n, let 
n

k :Mn → Mk be the projection map taking thek

first coordinates of an element ofMn. Let Z(k)
n denote the random vector
n

k(Zn)

andµn be the random measureσ+
n (Zn). LetQn be the law ofµn. Our main result

is the large deviations principle for(µn).

THEOREM 2.3. (µn) satisfies a LDP with convex good rate functionI .

COROLLARY 2.4. (µn) converges in probability toν.
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We can also study the LDP associated to the so called tilted measures. Changing
a little the measuresQn on P([0,1]), we obtain the new limit law for the
sequence of random probability measuresµn. Namely, consider onP([0,1]) the
new probability measurẽQn defined by

Q̃n(B) = EQn(exp(nF (µn))1B(µn))

EQn exp(nF (µn))
,(5)

whereB runs over the Borelian sets ofP([0,1]) and F :P([0,1]) → R is the
continuous functional defined by

F(µ) =
∫
[0,1]

f0(x) dµ(x),

wheref0 ∈ C([0,1]).
We have the following results.

THEOREM 2.5. (Q̃n)n∈N satisfies a LDP onP([0,1]) with good rate function

IF (µ) = I (µ) − F(µ) + KF ,

whereKF := supµ′∈P([0,1]){F(µ′) − I (µ′)}.

REMARK 2.1. Letµ̃n denote a random measure ofP([0,1]) having distribu-
tion Q̃n. The existence of an unique minimum point forIF implies the convergence
(in probability) ofµ̃n toward this minimum point. Under certain conditions overf0
we can characterize the minimum points ofIF . Let µ ∈ P([0,1]) be a minimum
point of IF . Let µ = µ

a
+ µ

s
be the Lebesgue decomposition ofµ with respect

to ν (µ
a

� ν). Then, from Theorem 3.5 of Borwein and Lewis (1993) there exists
λ∗ ∈ R with:

(i) gλ∗ = dµ
a

dν
= 1

λ∗−f0
a.s.,

(ii) suppµ
s
⊂ {x ∈ [0,1] :f0(x) = λ∗}.

We now give two particular cases where the sequence(µ̃n) has a limit.
Let λ̄ := maxx∈[0,1] f0(x) andχ0 := ∫[0,1](λ̄ − f0)

−1 dν.

(i) Assumeχ0 ≥ 1, then there existλ∗ ≥ λ̄ such that∫
[0,1]

gλ∗(x) dν(x) =
∫
[0,1]

dν(x)

λ∗ − f0(x)
= 1

and(µ̃n) converges in probability togλ∗ν.
(ii) If χ0 < 1 and{x ∈ [0,1] :f0 = λ̄} reduces to the singleton{x0}, then(µ̃n)

converges in probability to

gλ̄ν + (1− χ0)δx0.
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2.5. Large and moderate deviations for finite moments sequence.Although
we may obtain a LDP for(Z(k)

n ) using Theorem 2.3 and the contraction principle,
we will show the following theorem.

THEOREM 2.6. (Z
(k)
n ) satisfies a LDP with convex good rate function

Ik(c
(k)) =

{
− ln
(
c+(c(k)

)− c−(c(k)
))− k ln 4, if c(k) ∈ intMk,

+∞, otherwise.
(6)

Theorem 2.3 will be shown by first proving Theorem 2.6 and a projective limit
argument [see Section 4.6 in Dembo and Zeitouni (1998)].

REMARK 2.2. Ik achieves the value 0 only atc̄(k). Hence, using Borel Cantelli
lemma, that yields to the almost sure convergence ofZ

(k)
n to c̄(k).

We now turn on moderate deviation properties of(Z
(k)
n ). For i, j ∈ N∗, define

aij =
2−2i+1

(
2i

i − j

)
, if 1 ≤ j ≤ i,

0, if j > i.
(7)

Fork ∈ N∗, let Ak = (aij )
k
i,j=1 and set

�k = 1
2AkA

T
k

and

Jk(x̄) = 1
2x̄T �−1

k x̄, x̄ ∈ R
k.

THEOREM 2.7. Let(un) be a sequence decreasing to0 such thatn−1 = o(un)

and let Z̃(k)
n := √

nun(Z
(k)
n − c̄(k)). Then(Z̃

(k)
n ) satisfies a moderate deviations

principle with good rate functionJk .

3. On the (n + 1)th moment range size of the probability measures having
the same n first moments. In this section, forc(k) ∈ Mk (k ∈ N∗), we set

rk+1
(
c(k)
)= sup

µ1,µ2∈Sk(c
(k))

{∫ 1

0
xk+1 dµ1(x) −

∫ 1

0
xk+1 dµ2(x)

}
.

Using the large deviations properties of the previous section and the contraction
principle, we obviously obtain the following:

THEOREM 3.1. Let c(k) ∈ Mk . Then:



2826 F. GAMBOA AND L.-V. LOZADA-CHANG

(i)

rk+1
(
c(k)
)= exp

(
− inf

µ∈Sk(c
(k))

I (µ) − k ln 4
)
.(8)

(ii) Letµ ∈ P([0,1]) andc(k) = c(k)(µ), then

lim
k→∞

1

k
ln
[
4krk+1

(
c(k))]= −I (µ).

REMARK 3.1. (i) Using Proposition 2.2, (8) may be expressed as the
supremum of a concave function. Indeed, we have

rk+1
(
c(k)
)= exp

(
−k ln4− sup

(λ0,λ)∈Rn+1
Hk

(
λ0, λ, c(k)

))
,

where for(λ0, λ) ∈ Rk+1,

Hk

(
λ0, λ, c(k))= λ0 + 〈λ, c(k)〉+ ∫ 1

0
ln
(
1− λ0 − 〈λ,φk(x)〉)dν(x).

So for all(λ0, λ) ∈ Rk+1,

rk+1
(
c(k))≤ exp

[−k ln 4− Hk

(
λ0, λ, c(k))].

This last inequality is helpful to study the superresolution rate in the power moment
problem. This will be done in a forthcoming paper of Gamboa and Lozada.
Superresolution occurs forc(k) ∈ ∂Mk . In this case as we saw in Section 2.3,
Sk(c

(k)) reduces to a single p.m. Superresolution rate is the concentration rate of
the setSk(c

(k) + η) whenη ∈ Rk is a small perturbation [see Gamboa and Gassiat
(1996) and Doukhan and Gamboa (1996) for more on this problem].

(ii) Let P be a polynomial having degreek ∈ N∗. Assume thatP is positive
on [0,1] and satisfies the normalizing condition∫ 1

0

dν(x)

P (x)
= 1.

Set, for j ∈ N∗, dj = cj (
ν
P

) and, as usual,d(j) = (di)i=1,...,j . Then, using
optimization results developed in Theorem 2.1 of Gamboa and Gassiat (1997) or
Theorem 4.1 of Borwein and Lewis (1993) we have, forj ≥ k,

I

(
ν

P

)
= inf

µ∈Sj (d
(j))

I (µ)

(see also Section 2.5 for related results). Therefore, in this frame Theorem 3.1
gives

rj+1
(
d(j)
)= exp

(
−j ln4−

∫ 1

0
lnP (x) dν(x)

)
, j ≥ k.
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(iii) Obviously, using the contraction principle and Theorem 2.6, we obtain that

the sequence(rk+1(Z
(k)
n )) satisfies a LDP with good rate function,

R(r) =
{− ln(4kr), if r ∈]0,4−k[,

+∞, otherwise.

4. Proofs.

4.1. Canonical moments.This section is devoted to canonical moments which
are the basic tool for our results [as those obtained in Chang, Kemperman and
Studden (1993)]. We will present few properties of canonical moments. An
exhaustive study of canonical moments and their applications can be found in
the very nice book of Dette and Studden (1997). Letpi denote theith canonical
moments defined in intMk , k ∈ N

∗, by

pi

(
c(k)
)= pi

(
c(i)
)

= ci − c−(c(i−1))

c+(c(i−1)) − c−(c(i−1))
, 1≤ i ≤ k,

wherec+ andc− have been defined in Section 2.3. Fork ∈ N
∗, we will denote

by pk the map from intMk to ]0,1[k ,

c(k) �→ p(k)
(
c(k)
)= (p1(c1), . . . , p2

(
c(2)
)
, . . . , pk

(
c(k)
))T

.

The mappk is a continuous one-to-one onto correspondence between the interior
of thekth moment space and]0,1[k [see, Skibinsky (1968) and Dette and Studden
(1997)]. Obviously, the sequence(pk) induces a one-to-one correspondencep∞
between intM and]0,1[N. A very interesting property of the canonical moments
is that they are invariants under linear transformations of the interval. Therefore,
as the reader will easily check, all the results obtained on[0,1] are also valid for
any other bounded closed interval of the real line. The canonical moments of the
arcsine lawν are all equal to12 [see Skibinsky (1969)]. We will denote them byp̄j .

In Lemma 1.4 of Chang, Kemperman and Studden (1993) the first Taylor
expansion ofpk aroundp̄(k) is given,

cm = c̄m + 2
m∑

j=1

amj

(
pj − 1

2

)+ O

(
m∑

j=1

∣∣pj − 1
2

∣∣2),(9)

where, for m,j ∈ N
∗, c(m) = (c1, . . . , cm)T ∈ intMm, p(m)(c(m)) = (p1, . . . ,

pm) ∈]0,1[m andamj has been defined in Section 2.5.
We recall that the beta distribution(β(a, b)) of parametersa, b > 0, has density

with respect to the Lebesgue measure on[0,1],
[B(a, b)]−1xa−1(1− x)b−1,

whereB(a, b) = ∫[0,1] xa−1(1− x)b−1 dx.
We have the following lemma.
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LEMMA 4.1 [Theorem 1.3 of Chang, Kemperman and Studden (1993)].If Mn

is endowed withPn, then the random vectorp(n) = (p1,p2, . . . , pn)
T satisfies:

(i) (pi)
n
i=1 are independent random variables,

(ii) pi ∼ β(n − i + 1, n − i + 1), i = 1, . . . , n.

Now, we display an equation linking canonical and ordinary power moments
given in Skibinsky (1967), forc(n) ∈ intMn,

rn+1
(
c(n))= c+(c(n))− c−(c(n))= n∏

i=1

pi

(
c(n))(1− pi

(
c(n))).(10)

In (15) we will expressrn+1(c
(n)) as a function of Hankel determinants.

4.2. Proof of Theorem2.6.

LEMMA 4.2 [Exercise 4.2.7 of Dembo and Zeitouni (1998)].Let(Xn,1) [resp.
(Xn,2)] be a sequence of random variables taking its values in a regular spaceX1
(resp. X2) satisfying a LDP with good rate functionI1 (resp. I2). If Xn,1 andXn,2
are independent, thenXn = (Xn,1,Xn,2) satisfies a LDP inX1 × X2 with good
rate functionI (x1, x2) = I1(x1) + I2(x2).

LEMMA 4.3. The sequence of p.m.s (β(n,n))n∈N satisfies on[0,1] a LDP
with good rate function

Î (x) = − ln(x − x2) − ln 4.

PROOF. LetXn be a random variable havingβ(n,n) distribution, then we may
write

Xn
L=
∑n

i=1 Yi∑2n
i=1 Yi

,

where the random variables(Yi) are independent with standard exponential
distribution [see, e.g., Bartoli and Del Moral (2001), page 71]. Consider the
bidimensional random vector

Vn =
(

1

n

n∑
i=1

Yi,
1

n

2n∑
i=n+1

Yi

)T

.

From Lemma 4.2 and Cramér’s theorem [Theorem 2.2.3 in Dembo and Zeitouni
(1998)], we obtain a LDP for(Vn) with good rate function

IV (x, y) = x + y − 2+ logxy, x > 0, y > 0.

Hence, the LDP for(Xn) follows from the one for(Vn) and the contraction
principle with the continuous map(x, y) �→ x/(x + y). �
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From Lemmas 4.3 and 4.1, we have that, forj ∈ N∗, (pj (Zn))n∈N (j ∈ N, fixed)
satisfies a LDP with good rate functionÎ . Thanks to Lemma 4.2, fork ∈ N, we also
have a LDP for(p(k)(Zn))n∈N with good rate function

Îk

(
p(k))= −

k∑
i=1

ln(pi − p2
i ) − k ln 4,

wherep(k) = (p1,p2, . . . , pk)
T ∈]0,1[k .

We haveZ
(k)
n = p−1

k (p(k)(Zn)). The contraction principle yields the LDP for

(Z
(k)
n )n∈N with good rate function,

Ik

(
c(k)
)= Îk

(
p(k)
(
c(k)
))

.

Using (10), we may writeIk as in (6).
It is obvious that the function̂Ik achieves its minimum value 0 at̄p(k) (and

only at this point). Indeed, remember thatp̄j = 1
2 for 1 ≤ j ≤ k. Consequently, the

functionIk achieves its minimum value atc̄(k).

4.3. Proof of Theorem2.7.

LEMMA 4.4. Let (un) be a sequence decreasing to0 andn−1 = o(un). LetYn

be a random variable havingβ(n − l, n − l) distribution(n ∈ N∗, l ∈ N). Set

Xn := √
nun

(
Yn − 1

2

)
,

then(Xn) satisfies a LDP with good rate functionJ1(x) = 4x2 and speed(un).

PROOF. It is well known thatBn = ((n − 1)!)2/(2n − 1)!. Using Stirling’s
formula forn!, we have

Bn = 4−n

(
π

n

)1/2

(2+ ξn)(11)

with ξn → 0 asn → ∞. Therefore, limn
1
n

lnBn = − ln4.
Let A := {]a, b[ :a < b}. A is a base of the usual topology onR. Let ]a, b[∈ A.

Forn large enough,

P(Xn ∈]a, b[) = P

(
Yn ∈

]
1

2
+ a√

nun

,
1

2
+ b√

nun

[)

= B−1
n−l−1

∫ 1/2+b/
√

nun

1/2+a/
√

nun

xn−l−1(1− x)n−l−1 dx

≤ B−1
n−l−1m

+
(

1

2
+ a√

nun

,
1

2
+ b√

nun

)n−l−1 b − a√
nun

,
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wherem+(a, b) := sup{t − t2 : t ∈]a, b[} andm−(a, b) := inf{t − t2 : t ∈]a, b[}.
The functiont �→ t2 − t is strictly convex in]0,1[ with minimum value at12, so

m+
(

1

2
+ a√

nun

,
1

2
+ b√

nun

)
=



1

4
− a2

nun

, if a > 0,

1

4
− b2

nun

, if b < 0,

0, if a < 0 < b.

Using (11),

lim sup
n

un ln P(Xn ∈]a, b[) ≤
−4a2, if a > 0,

−4b2, if b < 0,
0, if a < 0 < b.

This leads to

sup
{A∈A : x∈A}

{
− lim sup

n
un ln P(Xn ∈ A)

}
≥ 4x2.(12)

Now, analogously, we have

P(Xn ∈ A) ≥ m−
(

1

2
+ a√

nun

,
1

2
+ b√

nun

)n−l−1 b − a√
nun

1

Bn−l−1
.

But,

m−
(

1

2
+ a√

nun

,
1

2
+ b√

nun

)
=



1

4
− b2

nun

, if a > 0,

1

4
− a2

nun

, if b < 0,

1

4
− max{a2, b2}

nun

, if a < 0 < b.

So, using (11), we obtain

lim sup
n

un ln P(Xn ∈]a, b[) ≤
−4b2, if a > 0,

−4a2, if b < 0,
−4 max{a2, b2}, if a < 0 < b.

Consequently,

sup
{A∈A : x∈A}

{
− lim inf

n
un ln P(Xn ∈ A)

}
≤ 4x2.(13)

Using Theorem 4.1.11 of Dembo and Zeitouni (1998), (12) and (13), we get a
weak LDP forXn with rate functionJ1. The full LDP is then a consequence of the
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exponential tightness of the laws ofYn. Indeed, forK > 0 andn large enough, we
have

P(Xn ∈ [−K,K]c) = 2P

(
Yn ∈

]
1

2
+ K√

nun

,1
[)

= 2B−1
n−l−1

∫ 1

1/2+K/
√

nun

xn−l−1(1− x)n−l−1 dx

≤ B−1
n−l−1

(
1

4
− K2

nun

)n−l−1(1

2
− K√

nun

)
.

Thus, using (11) and the expansion

ln
(

1

4
− K2

nun

)
= − ln 4+ 1− 4K2

nun

+ o

(
1

nun

)
,

we obtain

lim sup
n

un ln P(Xn ∈ [−K,K]c) ≤ −4K2,

which implies the exponential tightness.�

LEMMA 4.5. For every sequence(un) decreasing to0 with n−1 = o(un) and
k ∈ N∗, the sequence of random vectorsZ′

n := 2
√

nunAk(p
(k)(Zn)−p̄(k)) satisfies

a LDP with good rate functionJk and speed(un).

PROOF. Using the two previous lemmas, we can state a LDP for the random
vectorsWn := √

nun(p
(k)(Zn) − p̄(k))) with good rate function

J ′
k(x̄) = 4x̄T x̄.

So, using the contraction principle, we obtain a LDP forZ′
n = 2AkWn with good

rate function

Jk(x̄) = inf{J ′
k(ȳ) : x̄ = 2Akȳ} = 1

4x̄T (A−1
k )T A−1

k x̄

= 1
2x̄T �−1

k x̄. �

LEMMA 4.6. The random vector sequences(Z̃
(k)
n ) and(Z′

n) are exponentially
equivalent.

PROOF. It is obvious that there exists a constantC0 such that∣∣O(∣∣p(k) − p̄(k)
∣∣2)∣∣≤ C0

∣∣p(k) − p̄(k)
∣∣2,

whereO(|p(k) − p̄(k)|2) is the function which appears in (9). So,{∣∣Z̃(k)
n − Z′

n

∣∣> ε
}= {√nun

∣∣O(∣∣p(k) − p̄(k)
∣∣2)∣∣> ε

}
⊂
{√

nun

∣∣p(k) − p̄(k)
∣∣2 >

ε

C0

}
.
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Let C1 > 0. For
√

nun > C1,{√
nun

∣∣p(k) − p̄(k)
∣∣2 >

ε

kC0

}
⊂
{√

nun

∣∣p(k) − p̄(k)
∣∣> (εC1

kC0

)1/2}
.

This leads to

lim sup
n

un ln P
(∣∣Z̃(k)

n − Z′
n

∣∣> ε
)

≤ lim sup
n

un ln P

(√
nun

∣∣p(k) − p̄(k)
∣∣> (εC1

kC0

)1/2)
≤ −4

εC1

kC0
,

where the last inequality follows from the LDP for the random vectorsWn

(Lemma 4.5). Therefore, takingC1 → ∞, we obtain

lim sup
n

un ln P
(∣∣Z̃(k)

n − Z′
n

∣∣> ε
)= −∞.

Then(Z̃
(k)
n ) and(Z′

n) are exponentially equivalent.�

Theorem 2.7 is obtained directly using the two previous lemmas.

4.4. Proof of Theorem2.3.

4.4.1. Statement of the LDP.Consider onM the product topology and the
product algebra. LetM+

n be the subset ofM defined by

M+
n = {c(∞) ∈ M : cn+1 = c+(c(n))}.

We define onM the following sequence of p.m.s(�Pn)n∈N:

�Pn(B) = Pn

(

n(B ∩ M+

n )
)
, B measurable set ofM.

THEOREM 4.7. (�Pn)n∈N satisfies a LDP with rate function

IM

(
c(∞))= lim

n
− ln
(
4n(c+(c(n))− c−(c(n)))).

PROOF. Let k ∈ N andBk be a measurable set ofMk . We have, forn ≥ k,

�Pn ◦ 
−1
k (Bk) = �Pn(Bk × R

N) = Pn

(

n(Bk × R

N ∩ M+
n )
)= Pn(Bk × R

n−k)

= P
(
Z(k)

n ∈ Bk

)
.

Therefore, the family{�Pn ◦ 
−1
k }n∈N satisfies a LDP with rate functionIk . The

Dawson–Gärtner theorem [Theorem 4.6.1 of Dembo and Zeitouni (1998)] leads
to a LDP for �Pn on the projective limit of the spacesMn which is M . The
good rate function isIM(c(∞)) = supn In(
nc

(∞)). For c(∞) ∈ M , In(
nc
(∞))

is nonincreasing inn, thus, supn In = limn In [see (10)]. �
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LetG denote the one-to-one correspondence betweenM andP([0,1]). It is easy
to see that it is continuous. Therefore, using the contraction principle, we obtain
a LDP for the probability measure family{�Pn ◦ G−1}n∈N. But, for B Borelian of
P([0,1]),

Qn(B) = (�Pn ◦ G−1)(B) = �Pn

(
G−1(B)

)
.

We havec(∞) ∈ G−1(B) ∩ M+
n if, and only if,G(c(∞)) = σ+

n (c(n)) ∈ B. So,

(�Pn ◦ G−1)(B) = P
(
Zn ∈ 
n(G

−1(B) ∩ M+
n )
)

= P
(
σ+

n (Zn) ∈ B
)
.

Therefore, the contraction principle gives the LDP for(Qn)n∈N with good rate
function

Ĩ (µ) = lim
n

− ln
[
4n−1(c+

n (µ) − c−
n (µ)

)]
,(14)

wherec+
n (µ) andc−

n (µ) denotec+(c(n−1)(µ)) andc−(c(n−1)(µ)), respectively.
Obviously, from (10), we may conclude thatĨ achieves the value 0 only atν.

LEMMA 4.8. The functionĨ in (14) is convex.

PROOF. Let µ = αµ1 + βµ2 with µ,µ1,µ2 ∈ P([0,1]) andα,β positive real
numbers such thatα + β = 1. Thus,

c(n)(µ) = αc(n)(µ1) + βc(n)(µ2).

Thanks to convexity ofMn+1,

αc+(c(n)(µ1)
)+ βc+(c(n)(µ2)

) ∈ {c :
(
c(n)(µ), c

) ∈ Mn+1
}

and by the definition ofc+, we have

c+(c(n)(µ)
)≥ αc+(c(n)(µ1)

)+ βc+(c(n)(µ2)
)
.

Analogously, we obtain thatc−(c(n)(µ)) ≤ αc−(c(n)(µ1))+βc−(c(n)(µ2)). Thus,

c+
n (µ) − c−

n (µ) ≥ α
(
c+
n (µ1) − c−

n (µ1)
)+ β

(
c+
n (µ2) − c−

n (µ2)
)
.

Sincet �→ − ln 4nt is a nonincreasing convex function int > 0 for all n ∈ N∗, we
obtain thatĨ is convex as the supremum of convex functions.�

4.4.2. Identification of the rate function.From Corollary 1.4.6 of Dette and
Studden (1997), we may write the following equation:

rn
(
c(n−1))= Hn−1

�Hn−1

Hn−2
�Hn−2

, c(n−1) = (c1, . . . , cn−1)
T ∈ Mn−1,(15)
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where, forc(2m+1) ∈ M2m+1 (m ∈ N∗),

H2m =
∣∣∣∣∣∣∣
c0 · · · cm
...

...

cm · · · c2m

∣∣∣∣∣∣∣ ,

�H2m =
∣∣∣∣∣∣∣

c1 − c2 · · · cm − cm+1
...

...

cm − cm+1 · · · c2m−1 − c2m

∣∣∣∣∣∣∣ ,

H2m+1 =
∣∣∣∣∣∣∣

c1 · · · cm+1
...

...

cm+1 · · · c2m+1

∣∣∣∣∣∣∣ ,

�H2m+1 =
∣∣∣∣∣∣∣

c0 − c1 · · · cm − cm+1
...

...

cm − cm+1 · · · c2m − c2m+1

∣∣∣∣∣∣∣ .
These determinants are calledHankel determinants. Within the moment problem
they play an important role. The conditions under which a sequence is a moment
sequence can be expressed on these Hankel determinants [see Karlin and Studden
(1966), Krĕın and Nudelman (1977) and Dette and Studden (1997)].

We have the following relations between Hankel determinants. Letµ ∈
P([0,1]). Let µ′ ∈ P([0,1]) be defined by

µ′(dx) = x − x2

c1(µ) − c2(µ)
µ(dx).

Obviously,µ′ verifies

ck(µ
′) = ck+1(µ) − ck+2(µ)

c1(µ) − c2(µ)
.

Hence,

�H2m(µ) = (c1(µ) − c2(µ)
)mH2(m−1)(µ

′).
Moreover,

�H2m(µ)

�H2(m−1)(µ)
= (c1(µ) − c2(µ)

)H2(m−1)(µ
′)

H2(m−2)(µ
′) .

In what follows we setc(n) = c(n)(µ), c+
n = c+(c(n−1)), andc−

n = c−(c(n−1)).
The Hankel matrices depending onµ′ are tagged with a prime. We have

(c+
n+1 − c−

n+1)(c
+
n − c−

n ) = �HnHn

�Hn−2Hn−2

= (c1 − c2)
H′

n−2

H′
n−4

Hn

Hn−2
,
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where the last equality is only true ifn is even.
As the limit in (14) exists, we can calculate it takingn even,

lim
m

ln
(
42m−1(c+

2m − c−
2m)
)

= 1

2
lim
m

ln
(
42m(c+

2m+1 − c−
2m+1)

)
+ 1

2
lim
m

ln
(
42m−1(c+

2m − c−
2m)
)

= 1

2
lim
m

ln
(
44m−1(c+

2m+1 − c−
2m+1)(c

+
2m − c−

2m)
)

= 1

2
lim
m

ln
(

44m−1(c1 − c2)
H′

2(m−1)

H′
2(m−2)

H2m

H2(m−1)

)
.

Grenander and Szegö (1958) have showed a general limit theorem for the quotient
of Hankel determinants (see Theorem in Section 5.2 and Section 6.3 of this book).
In our framework it can be written in the following way.

THEOREM 4.9. Let µ ∈ P([0,1]). Call f (x) its Radon–Nikodym derivative
with respect to the Lebesgue measure, then

lim
n

42n+1 H2n(µ)

H2n−2(µ)
= 2π exp

(∫ 1

0
lnf (x) dν(x)

)
.

Now we may write

lim
m

ln
(
42m−1(c+

2m − c−
2m)
)

= 1

2
lim
m

ln
(

42m+1 H2m

H2(m−1)

)
+ 1

2
lim
m

ln
(

42m−1
H′

2(m−1)

H′
2(m−2)

)

+ 1

2
lim
m

ln
(
4−1(c1 − c2)

)
= 1

2

∫ 1

0
lnf (x) dν(x) + 1

2

∫ 1

0
ln

(x − x2)f (x)

c1 − c2
dν(x)

+ 1

2
ln(c1 − c2) + 1

2
ln(π)

= 1

2

∫ 1

0
ln[π(x − x2)f 2(x)]dν(x) = −I (µ).

�
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4.5. Proof of Theorem2.5. The LDP for(Q̃n) is a direct consequence of The-
orem III.17 ofden Hollander (2000). The rate function which controls the LDP is

IF (µ) = I (µ) − F(µ) + KF ,

whereKF := supµ′∈P([0,1]){F(µ′)−I (µ′)}. �
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