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A STOCHASTIC LOG-LAPLACE EQUATION!

By JE XIONG
University of Tennessee

We study a nonlinear stochastic partial differential equation whose
solution is the conditional log-Laplace functional of a superprocess in
a random environment. We establish its existence and uniqueness by
smoothing out the nonlinear term and making use of the particle system
representation developed by Kurtz and Xiospghastic Process. Appl. 83
(1999) 103-126]. We also derive the Wong—Zakai type approximation for this
equation. As an application, we give a direct proof of the moment formulas
of Skoulakis and AdlerAnn. Appl. Probab. 11 (2001) 488-543].

1. Introduction and main results.

1.1. Introduction. We study the behavior of a branching interacting particle
system in a random environment. For simplicity of notation, we assume that
the particles move in the one-dimensional sp&ceThe branching is critical
binary; that is, at independent exponential times, each particle will die or splitinto
two with equal probabilities. Between branchings, the motion ofitheparticle
is governed by an individual Brownian motiay () and a common Brownian
motion W (¢) which applies to all particles in the system:

(1.1)  dni=b@)dt+c)dW () +en)dBi(t), i=12,...,

whereb, c, e are real functions ofR (c,e > 0), W, B1, Bo, ... are independent
(standard) Brownian motions angd is the position of theth particle at timer.
Let Mr(R) denote the set of all finite Borel measures Rnlt is established
by Skoulakis and Adler [18] that the high-density link} of this system is the
uniqueM ¢ (R)-valued solution to the followingnartingale problem (MP): X, is a
continuous process with initidlg = 1 € Mg (R) such that, for any € CZ(R),

t
M, () = (X, ) — (1. b) — /0 (X, b’ +ad") ds

is a continuous martingale with quadratic variation process

t
(M (@), = /O (X5, %) + [(Xs. cd')P) ds,
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wherea(x) = %(e(x)2 + ¢(x)?). Moment formulas are derived in [18]. A related
model is studied by Wang [19] and Dawson, Li and Wang [4].

The log-Laplace equation has been used by many authors in deriving various
properties for superprocesses (cf. [2, 5]). It is natural, as indicated in [18], to
derive properties ok, by making use of the corresponding backward stochastic
log-Laplace equation (LLE):

t
Vo) = f(x) + f (BB e (1) + @ () 82y () — Y (1)2) dr
(1.2) '

t A
+ f C(0) By yrr (1) AW
S

where f is the test function for the Laplace transform [cf. (1.8)], 83 are
the first and second partial derivatives with respect tand the last integral is
the backward It6 integral. Since a solution to (1.2) is not established in [18], the
moment formulas fo¥X, are derived based on other techniques. The establishment
of a unique solution to (1.2) is posed by [18] as an interesting challenge.

In this paper, we study the LLE (1.2). The main result is Theorem 1.2 in which
we prove that the log-Laplace transform ¥f is indeed given by the solution
to (1.2). For simplicity of notation, we consider the forward version of the LLE:

t
W) = @)+ / (BB yr (6) + a(0)82y, (x) — y, (1)) dr
(1.3) 0

t
+ / () 35y (x) AW,
0

The stochastic partial differential equation (SPDE) is an important field of
current research. We refer the reader to [1, 11] and [17] for an introduction
to this topic. Many authors studied linear SPDEs. Here we only mention two
recent papers: [9] and [14]. Fine properties of the solutions are established.
Nonlinear SPDEs have also been studied. Here we mention a sequence of papers
by Kotelenez [12, 13] which are the closest to the present setting. In this case,
the derivative of the solution is not involved in the noise term. To the best of our
knowledge, the LLE (1.3) does not fit into the setups of existing theory of SPDE.

1.2. Mainresults. First we study the existence and uniqueness for the solution
to (1.3). We also establish its particle system representation in the spirit of Kurtz
and Xiong [15].

To begin with, we introduce some notation needed in this paperHget

L?(R) be the set of all square integrable functionskrand IetHgr consist of all
the nonnegative functions iHp. Let H,, = {¢ € Ho: ¢/, ..., $"™ € Hp}. Define
the Sobolev norm o, by

1912 =" [ 1890 dx.
=1
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Use (-, -) to denote the inner product iHy or the integral of a function with
respect to a measure.

DEFINITION 1.1. AnHJ-vaIued (measurable) processs a solutionto (1.3)
if, for any ¢ € C3°(R),

t
(yi,¢) = <f,¢>+/o (yr, —(b®) + (ag)" — y,¢) dr
t
+ [ Or—eoryaw,. =0
Throughout this paper, we assume the following

BOUNDEDNESS CONDITION(BC). f >0,b, c, e are bounded functions with
bounded first and second derivatives. Denote a bourki.tiyurther,e is bounded
away from O,c has third continuous and bounded derivative gnid of compact
support.

THEOREM 1.2. Supposethat Condition (BC) holds. Then:

(i) ThelLLE (1.3)hasa unique solution y,(x).
(i) y; is the unique solution of the following infinite particle system: i = 1,
2,...,

(1.4) del = e(£))dB;i(t) + (2a' — b — cc)(E}) dt — c(&])dW;,
(1.5) dm} =mi((a" —b' —y)(E)dt — &) dW,),

LAy
(1.6) Y, = lim_ - Z;mf‘séf as.
=

where, for any r > 0, Y; isabsolutely continuous with respect to Lebesgue measure
and y; isthe Radon—Nikodym derivative.

Next, we consider the Wong—Zakai type approximation to LLE (1.3):

o
V) = £+ [ (B () + (025 () — ¥ @P) dr
(1.7) 0

t .
+ [ enyrowg dr,
0

where b(x) = b(x) — 3c(x)c'(x), a(x) = 3e(x)? and, forke < r < (k + e,
We = e X(Wig1e — Wee).
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THEOREM1.3. Supposethat Condition (BC) holds. Then for any r > 0,

E [ 1y;(0) = yi(fPdx 0
ase — 0.
Now we consider the Wong—Zakai approximation to the measure-valued
processX. Let PV be the conditional probability measure givéh Let X¢ be

the solution to the followingconditional martingale problem (CMP): X¢ is a
continuousM g (R)-valued process such that, for apye CE(]R{),

t —_ .
M @)= (X7 9) — (X5.0) — [ (X0, (B + W' + g ds
is a continuou®" -martingale with quadratic variation process
t
(M* @)= [ (X5 4% ds.

LetR =R U {3} be the one-point compactification &f Denote byM ¢ (R) the
space of all finite measures @hwith the weak convergence topology. Note that
Mg (R) can be regarded as a subsettof (R) by extending the measureags 0.

THEOREM 1.4. As ¢ — 0, if X§ — u in Mp(R), then X* — X in

C ([0, 00), M (R)) in conditional law P for almost all W. As a conseguence,
we have

(1.8) EY exp(—(X;, f)) = exp(— (i, yo,))  as.

Finally, we derive the moment formulas of;. Note that these formu-
las have been obtained in [18] by a different method. Ip€t, x,y) and
q(t, (x1, x2), (y1, y2)) be the transition density functions of the Markov processes
with generators

L1 (x) =b(x)$' (x) + a(x)p” (x)
and
L2F (x1,x2) = b(x1)dy, F + b(x2)dy, F
(B F 4+ a(e)9%, F -+ c(x1)e(2)du, i F.

respectively.

THEOREM1.5. Suppose that Condition (BC) holds. For any bounded contin-
uous function f, we have

(1.9) E((X,. f)) = f f FOIp(t.x, y) dyp(dx)



2366 J. XIONG

and
E(X;, )2

- / FODF D4t (1. x2), (1. y2)) dyr dyzue(dxy) e (dico)

(1.10)
+2// /p(t—s x,y)

x / / £ f (s, (v, y). (21, 22)) dzr dzady dsu(dx).

We shall usekK with a subscript to denote a constant. If it will be quoted, the
subscript will be the equation where it is defined. Otherwise, we shallkijse
K>, ... inthe proof of a proposition and the sequence starts over again in the proof
of a new proposition. For exampl&; may appear in the proofs of two different
propositions to represent different constants.

Note that the Wong—Zakai approximation is not really needed to obtain the
results in Theorems 1.4 and 1.5. An easier approach in deriving (1.8) is available.
We refer the reader to [16] for the treatment of a related model which adds
immigration structure to a branching interacting system studied in [4] and [19].
In this paper, we use the Wong—Zakai approximation because this is part of the
conjecture in [18] and the main purpose of the current paper is to solve that
conjecture. Furthermore, the Wong—Zakai approximation is of interest on its own.

2. Stochastic log-L aplace equation. In this section, we prove Theorem 1.2.

2.1. Approximation. To establish the existence of a nonnegative solution
to (1.3), we smooth and truncate its nonlinear term and consider

syt(x) = f(x)
t
(2.1) +/0 (B(x) 3y (x) 4+ a(x)d%y, (x) — (TyE (1)) Sy, (x)) dr

t
+ [ enty 0 dw,,
0
where T,h(x) = [ pe(x — 2)h(z) dz, pe(x) = (2me) V2 exp(—2xx2), éye(x) =
%,y (x) and

A [ey(u)dunet
Ir= [ ey, (u)du

with the convention tha§ = 0.
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LEMMA 2.1. Equation (2.1) has a unique solution.

PrROOF Consider the following infinite particle systein=1, 2, .. .,
dt} = e(E))dBi(1) + (2a' — b — ) () dt — c(E)) d W,
(2.2) dm® =mE (@ — b — T.2YS)(ED) dt — ¢/ (E)) dW,),

12 .
Y, = lim = mf’IS%.ri a.s.,

n—oo
21

whereV v € My (R)v* € M4 (R) is defined by® = %U
Now we show that the conditions of [15] are satisfied by the coefficients of the

system (2.2). We only check those for
de(x,v) = —(Tv") (x).

The verification for other coefficients is trivial.
Note thatp, (x) < (v2re)~t and

3 pe ()] < e supe— /22 ML 4
e T 2me x Ve 2mes
Then
|de (x,v)| = Upe(x —ye(dy)| < (V2re )_1.
Let
Bi={geCR): g =1 [gx) =g =I|x—ylVx,y e R}
and

p(v1,v2) = supf(vy1 —v2, g)|.
geBy

For g € B1, we have

Ry AeL

[(v] — V5, 8)| < —————[(v1 — 2, 8)]
1 2:8 ) 8

B Ael R Ae?
2ol = ® T w®

< p(v1,v2) + [(v1 — v2, ] + [1(R) A g™ —1a(R) A&7

< 3p(v1, v2).
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Then
|de (x1, v1) — de(x2, v2)|

/(pe (x1—y) — pelx2 — y))Vi(dy)’

=<

+ ’/ps(xz—y)VE(dy) —/ps(xz—y)vi(dy)‘

< (V2mee?) Hx1 — xa| + (V2me ) Hes A D)o (5, v5)

< K1V |x1 — x2[2 4 p(v1, v2)2.

By [15], ¢Y; is the unique solution to

t t
(8Yz,¢>=<f,¢>+/ <€Yr,(a¢)”—(b</))/—(T88Y5)¢)dr—f Yy, (cp)) dW,.
0 0
Further,fY; has densityy, which belongs taHy. O

2.2. Boundedness. In this section, we establish a comparison result for SPDEs
of the form (2.1). As a consequence, we obtain the boundednégs of

LEMMA 2.2. For all r, x, we have

8yr(x) < flloo as,

where || f ||« is the supremumof f.

PROOF Letm! be given by
dm! =m!((a" —b)Edt — (& dW,)
and let
. 10
Y, :n[)moo;;mt(sg a.s.

e,

Thenm{" <m! and hence, fop > 0,

(2.3) ((Y,, ) < (Y7, ).
Similarly to Lemma 2.1, it is easy to show that

- r . r .

(2.4) (Yz,¢>=<f,¢>+/ (Yr, (ag)" — (b)) dr—/ (Yr, (c)) dW,.
0 0

Let ¢, be given by

t t -
@25)  (f.d)=(fd)+ fo af" +bf, ¢y dr + /O (ef, ¢,) AW,
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whereW is an independent copy &F . The existence of a solution to (2.5) follows
from [15]. By It6’s formula, we see that

. ! - N - al .
e Yn.d) _ /0 e Y5 9) (a(aYs” + DY, ¢) + ?(CYS/, ¢)2) ds

and

1 2
emett0) — [ ettt (atag” + b ) + G ef 02 ) ds
0
are martingales. By a duality argument (cf. [6], page 188), we have
Ee—¥d) — gp—a(fdn)

This implies that(Y,, #) and (f, #;) have the same distribution. Taking= 1
in (2.5), itis clear that

/¢t(x)dX=/¢>(x)dx a.s.
Then
(o) < 11 flloo f smdx  as.

and hence

(7. ) < ||f||oof¢<x>dx as.

This implies the conclusion of the lemmal]
From the proof of Lemma 2.2 , we have the following:

COROLLARY 2.3.

sup ¢y, =1 -0  as.
0<t<T

ase — 0.

PROOE From (2.4) and Condition (BC), it is easy to see that

sup (¥;,1) <oco  a.s.
O<t<T

The conclusion then follows from (2.3)
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2.3. Estimates on Sobolev norm. Now we give an estimate for the Sobolev
norm oféy;,.

LEMMA 2.4.

(2.6) E sup [I¥¥1 < K2e.
O<r<T

PrROOF We freeze the nonlinear term and considerx) as the unique
solution to the following linear equation:

t
() = F@) + /O (b(x)3x25 (1) + a(x)8228 (x) — (To¥yE ()25 (x)) dr
2.7

t
+/0 c(X)3x 25 (x) dWy.

By [17], the solution has derivatives and their estimates depend on the bounds of
b,a, T;°yZ, c and their derivatives. Since the bound of the derivativé.6f. may
depend oz, we cannot apply Rozovskii’'s estimate directly. Instead, we derive our
estimate here. Note that

t
(25, ) = (f. ) + /0 (bde2f + a2z — (T.5)2, ) dr

t
+ [ teoztgyaw
By Ité’s formula, we have
t
(€02 = (10024 [ 205 @) 60,2t + 002 — (T3 @) dr
t t
+/o 2(zf,¢)(c8xzf,¢>)dW,+/0 (cdyzt, ¢)2dr
Adding over¢ in a complete orthonormal system (CONS) of Hp, we have
t
1518 = 113+ [ 2(e5.bz] + vzt — (155D dr
t t
+f0 2(zf,c8xzf)dWr+/o ledyz2 2 dr.
Applying Itd6’s formula, we have

t
IzEN3 = £+ | AllzEN3(z8, bdezE + ad?zf — (T.5y8)z8) dr
0

t t
(2.8) + / 412813025, cd,25) AW, + /O 2018 1R llcdy 2t 2 dr

+/4z 0,2
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Note that the only coefficient in (2.8) which dependssas —(7,°y?). Since this
term is negative, it can be discarded. The other terms in (2.8) can be estimated as
follows: By (3.4) in [15], we have

(2.9) (28, bdyz8)| < K1llz5 13 and [(zf, ca,z8)| < Kallz5 113
By (3.8) in [15] (withs = O there), we have

2(z8, ad?zt) + llcdezE 113 < KsllzE 113,
Therefore,

t t
Iz 116 < ||f||61+K4/0 IIZfllgdr+fo A\ II52E . cOxzl) d W,

By the Burkholder—Davis—Gundy inequality and (2.9), we then have

t t 1/2
BsuplzsI§ < 1713+ Ka [ zp i + KsB( [ 1igier. canz)?ar
S=

4 ! 4 2 1 4 \Y?
s||f||o+1<4/o ||zf||odr+KeE(sgpnzino(fo ||zf||odr) )
S=

t
4 4 1 4
< ||f||o+1<7fo 12614 dr + LE suplz2 14,
s<t

Therefore
(2.10) BSuplct 1§ < 21/ 1§+ Kzao || Bl I3
whereKs 1gis a consjtant. Gronwall’'s inequality implies that
(2.11) E sup [z I§ < K211.

O<r<T

Letu? = d,z;. Note that
eyr(x)ax (Ts()sfyf)(x)) = eyr(x))?f Tsuf = 8yf(x)Tsuf-
Then

t
W) = £+ [ (@)t () + ¢ ul (x) dW,
0

1
+/0 (b1(x)dyus(x) + a(x)afuf(x) + i ()ub(x) =y (x) Teus (x)) dr,
whereby =b+a’, ci =0 —T,°yf. So

en2_ o2 [ e 1 ey2
lu; lo=11f HO+./0 lcoxu, + c'u, llgdr
t
+/ 20uf, b1dyu + ad?u’ + cut — *yETub) dr
0

'
+/0 2(ut, cocu; + c'ul) dW,.



2372 J. XIONG

Note thatc] is bounded by a constant which does not depend.dBimilar to
arguments leading to (2.11), we have

(2.12) E sup |luf|§ < K212
O<r<T

The conclusion then follows from (2.11) and (2.12[)]

2.4. Existence and uniqueness. In this section, we prove the first part of
Theorem 1.2. Let

() = 27" (x) =y, (x) — Ty, (x).
Then

t
z;(X)=/O (b(x)3y 2, (x) + a(x)82z, (x) — (T.5yE (x)y, (x) — T,y () Ty, (x))) dr

+ /Ozc(x)axzr(x)dWr.
Note that
Ty oy — Ty = 9, (Tey0)zr + €3, (Tez) 'y,
+ Y, = )Ty Ty + 1y, (T = Ty"y) Ty
Similarly to (2.10), we have

t
E sup |z li4 < K213 /o Elz |3dr

O<s<t
t 2
(2.13) +3ISILE [ ( / |Te"yr<x>—Tn"yr<x>|2dx) dr

t A A
+K2.13E/ |8yr_nyr|4dl".
0
As
T, yr(x) n yr(x)
—// 8.7y, (x + (05/E + (1— 0)/7)a) (V& — /T)a dOp(a) da,
we have, when, n — 0,
(2.14) / 1Ty, () — T,y (0 dx < 118y, [3(VE — o/i7)% = O,

where p(a) is the standard normal density. By Corollary 2.3 and the dominated
convergence theorem, we have

t A A
(2.15) IE/ &y, — iy [*dr — 0,
0
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It follows from Gronwall’s inequality, (2.13)—(2.15) that

E sup [fy, —"ylg—0  ase,n—O0.
0<t<T

Hence, there existg s.t.°y, — y; in Hp.
Note that

t
Evind) = (f. ) + /O Eyr. — (b)Y + (@) — (TeY5)) dr

t
+ [ = eoryaw,.

We consider the limit of the nonlinear term only, since the other terms clearly
converge to the counterpart with replaced byy:

t
= Efo / T (°y® — ¥l (x)ey, (0] (x) | dx dr
t
*E/o / IToyr — vl ()%, ()| ()| dx dr

t
+Ef0 /| e — 3l )y (0 ()] dx dr
— 0.

It is then easy to show that solves (1.2).
To prove the uniqueness, we assume thaand y, are two solution to (1.3).
Similar to (2.13), we have

t
(2.16) Esuply, — 51§ < Kaas || Ellyr = 5l
s<t
The uniqueness then follows from Gronwall’s inequality.

LEMMA 2.5.

4
E sup [[9xyrllp < K2.12.
0<t<T

PRoOOFE Note that

2
E sup ||3xyz||é=E< sup Z(axyz,qbi)z)

0<t<T 0<t<T

0<t<T

2
=E< sup Z<y,,¢>;>2)



2374 J. XIONG

2
_IE< sup > I|m Eyr, @1 )

O<t<T 5 €0

2
<I|m|r3fE< sup > (v, ¢ )

0<t<T

_I|m|anE sup ||y y;llo
-0 o<s<T

< K212,
where{¢;} is a CONS ofHy. 0O

2.5. Particle representation. In this section, we verify Theorem 1.2(ii). Let
y: be the solution to (1.3) and let (dx) = y,(x)dx. Let (§/,m!) be given by
(1.4) and (1.5). Denote the process given by the right-hand side of (1.8).by
Now we only need to verify that; coincides withY,. Applying It6’s formula to
mig(£D), itis easy to show that

~ t ~
(Y, 0) = ([, ¢) +/ Yy, (a9)" — (bp)' — y-p)dr
(2.17) 0

t ~
+ [ = eoryaw
By (1.3), we see that (2.17) holds with replaced by¥;. Similar to last section,

we have uniqueness for the solution of (2.17). This prdges ¥; and henceY;
has the particle representation given in Theorem 1.2.

3. Wong-Zakai approximation. In this section, we prove Theorem 1.3.

3.1. Some estimates on y;. For the convenience of the reader, we state a
definition and a theorem which are simplified versions of a definition on page 141
and Theorem 4.6 on page 142 in [8]. Let

Lu= &Bfu + bdyu + Cu.
DerFINITION 3.1. Afundamental solution of the parabolic operatat — 9/0¢
inR x [0, T]isafunctionl"(x, ; &, T) defined for all(x, r) and(¢, ) in R x [0, T,

t > 1, satisfying the following condition: For any continuous functip(x) with
compact support, the function

u(x,m:/Rr(x,r;s,r)ws)ds
satisfies

LM—E—O fxeR,t<t<T,

u(x,t) = ¢(x) ift —>1+.
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To state the next theorem, we need the following conditions:
(Al) There is a positive constait such that
alx,t)>K forall x e R andr € [0, T].

(A2) The coefficients of. are bounded continuous functionsinx [0, T].
(A3) The coefficients ofL. are Holder continuous i, uniformly with respect
to (x, t) in compact subsets & x [0, T].

THEOREM 3.2. Let (A1)—(A3) hold. Let g(x,r) be a bounded continuous
function in R x [0, T'], Holder continuous in x uniformly with respect to (x, )
in compact subsets, and let ¢ (x) be a bounded continuous function in R. Then
there exists a solution of the Cauchy problem

ou(x,t)

(3.1) Mu=Lu(x,t)— a7

=g(x,1) inR x [0, T]

with the initial condition
(3.2) u(x,0)=¢(x) onRR.
The solution is given by

t
ue.n= [ Terg0s@ds— [ [ Teongngenagdr

Now we come back to our equation (1.7). We shall take
L=ad%+ (b +cW®),.

LEMMA 3.3.
(3.3) Elly; 1 < Kas.

PrROOF Given W, let ¢%(y,1;x,s) be the fundamental solution of the
parabolic operatoE — 9;. Then, by Theorem 3.2 and (1.7),

t
yf(x)=fqW<x,r;y,0>f<y>dy—fo fqW<x,r;u,s>y§<u>2duds

E/qw(x,t;y,o)f(y)dy,

IyeNd < (/(/q%c,r; y,0>dx)f<y>2dy)2
=//(qu(x1,r;y1, O)dxlqu<xz,r;yz,0>dxz)

x f(y)2f (v2)2dyrdys.

SO
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Note thatg" (x,;v,0) = ¢*V(y,0; x,1), ¢*V is the fundamental solution of
L* + 9, where

L*¢=—((b+cW¢) + @¢)"
=—b —a"+ WP — (b—2a+ cWo¢' +ag”.
Let
def = e(£F)dB, — (b —2a + cWF)dt.

By the Feymann—Kac formula,
t —_ .
/q*w(y, 0;x,t)dx = E;Yoexp(—/o (b —a" + ' WE)ED) dr)

t .
§e2K’E}‘,”0exp<— f ¢ (EHWE dr),
’ 0

WhereEV,,V0 denotes the conditional distribution gf given W and&§ = y. Hence
[assume = (k + 1)¢],

2
e_4KtIE</ gV (y,0;x,1) dx)

k
< E<exp<_22C/(gies)(W(i-&-l)s - W; ))

i=0
(i+1s

k
x exp(—ZZf
i—o’ie

f r((za —b)" +ac")(EE)dsWE dr)

(i+1Ds

k r
x exp(—ZZ f f (&) (e(&)) dBy — c(ED) W ds) Wy dr))
i—0 ie i€

< (213194,

where

k
L= EeXp(—SZC/(EiSE)(W(i+1)8 - Wie)) ’

i=0
i€

k o ri4+De pr _ .
I, =Eex —82/ / (2a — b)c" +ac") (&) dsw; dr |,
i=0 e

e

k — i+le pr .
Iz =FEexp|l —8 c"(Ee(EEYdB,WE dr
X ie K s r
i=0 !
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and

ko ci+De pr . .
I4=E exp<82 / / " (EEYC(EDYWE dsW? a’r).
i=0 1 e

&

Definec,(s) = —8¢/(§f,) foris <s < (i + De. Let P be the probability measure

given by
dﬁ—exp(/t (s)dW, 1/I ()2d>
1P = chs S 20|c8s| s .

Then, by the Girsanov formula,
B t

I = Eexp(%/ |c5(s)|2a’s> < exp(32||c'|1%,0),
0

whereE denotes the expectation under the meagursote that fors small, more
precisely, for

e <min((4)1(2a — b)e" +ac” lloo) %, Bllec”llo) 7Y,
we have

k
I < Eexp(4||<2a — B +ac" oo Y | Wesye — Wl-g|)
i=0

k
< Eexp(zn(za —b)c" +ac" |l (z +e) [Witne — Wi |2>)
i=0

< exp(2]|(22 — b)c” +ac” lloot) (1= 4112 — B)e” + ac" | ooe?) ™/
< exp(10]/(2a — b)c” + ac” | sot),

k (i+1s
Is=EEY exp(—SZ f ¢ (E5)e(gf)e ™t
i=0""¢
X ((l + e — S)(W(i+1)s - Wis)st)
k (i+De 2
< Eexp(322 / " (£)%e(EE)? (Wi snye — Wie) ds)
i=0""¢

k
2
< Eexp(32||ec”||§o > (Witye — Wie) e)
i=0

k
< []@—64lec”Ze?) Y2
i=0

< exp32|lec” |2, et)
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and
a 2
Is < Eexp(BZ llec" oo (Wiit+1)e — Wie) )
i=0
< exp(32|cc”|lsot)-

The conclusion then follows easily[]

We now turn to the estimation on the normayfy; .

LEMMA 3.4. Supposethat {N(x):x € R} isarandomfield suchthat 3« > 0O,
p>1,

E(IN(x) = N(»)IP) < K|x — y|*+*.

Then for any A > 0,

E sup(|N (x)|Pe ™) < 00,
xeR

ProoF It follows from Theorem 4 in [10] that, for any, = [n, n + 1],

) 1/p 1 gyud+o)/p
E sup |[IN(x) — N ) SC/ ———du
( SUP NG N s

- CKp

= K1.
o

Note that
IN(x) — N(0)|Pe "]
p
< (Z sup [N (y) — N<z>|e—“/l’>
n Y.2€ly

< (2(1_ e—A/P))(l—P)/PZ sup |N(y) _ N(Z)|pe—)»|n|/p.

n Y.z2€ly
Hence
E sup(N (x) — N(0)|7e )
xeR
< (2A—e 7)) TPIPITE sup IN(y) = N(2)Pe /P

n v,2€ly

< (2(1 . e—x/p))(l—p)/p Z Kfe—x\n\/p
n

<KP(2—e P2 g

The conclusion of the lemma then follows easil{]
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LEMMA 3.5.
(3.4) Ellaxyf 1§ < K3.a.

PROOF Note that

o = 11+ [ (@ =258+ W
+ (b +a + W)y +aosyf) dr.
Letg,” be the fundamental solution & — 9, where
Lip=a¢" + (b+a +cWHo' + (b — 2y¢ + ' Wo)g.
Then
2ot = [l .13, 0 .
Note that
Lip = @p) — ((b+a +cWoHg) + (B — 2y + /W)
=ag" + @ —b—cW)¢' —2y/¢.

Similarly to Lemma 3.3, we have, for anyandp > 1,
(3.5) E(/ Mgl (x, 1,0 dx)p <Kj
and

t - .
/qlw(x, t;y,0)dy =Ey, exp(/o (b —2y% + c/Wf)(nf’x)dr>

W7l w k (i+De , .
<el”I~Eq, exp Z/E i) drwt, |,
i=0""

wheren;™*, with initial x, solves
dni™ = (b +a) (") di + c(nfYW?E di + e(nf™) d B,.

Note that forie <r < (i + 1)e,

)
ey = ¢ () + / ¢" (0" )e(n°) d B,
1€

r _ 2 r )
+/ (((3 +b)" + e—c”’) ds ~|—/ cc” dsWf,.
ie 2 ie
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As
£ (@+De "= i e? " "o i€ 43
Z/ (/ <(a —b)c" + Ec )ds +f cc dsz-8> drW;,
l:O e X3 123
k ) o2
<Y |@=b"+ 5" e(Wirne — Wie)
i=0 2 o0
£ 2
+ ) e oo (Wit nye — Wie)
i=0
1 T/
= ZIogM(W) — 16"l oo,
we have
4
(/ qfv(x, t;y,0) a’y) <M(W)N1(x, W)No(x, W),
where
k
Ni(x, W) =E, eXp<—4Zc/(nf§‘)(W(i+1)s - Wie))
i=0
and

(i+1Ds

k
Na(x, W) =EY, exp<—4z /
i=0""

&

r .
/ c”(n?’x)e(n?’x)dBSWfdr>.
ie
By arguments similar to Lemma 3.3, it is easy to see ta®) has finite
moments.

First takeE" and then take expectation with respectitofor ¢ € [ie, (i + 1)¢]
and even integep; we have

Elng — ' |P
t
<EnS — o) + / KaE[nS" — 0o |P ds
L&
t .
+ pE / (cOE™) — crE™)) (e — ed)P=LWe ds
1€
t
<EnS — i) + / KoE[nS" — 0o |P ds
L&
+ o= [ [ (o) = cor)?
p(p ] (c@E) — ey
1€ 1€
£,x g, y\p—2 -2 . . 2
X (nr - nr ) dr dSE (W(l+1)€ - Wl )

<1+ K3o)En: —n P

&
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By induction we have
Eln;™ — 0| < Kalx — y|”.
Therefore
EIN;(x, W) — N;(y, W)|P < Kaglx —y|P/2,  i=1,2
By Lemma 3.4 we have
Es;;pwi (x, W)|Pe M < Ky,

Therefore

4
ESU[{/ qlw(x, t;y,0) dye_)‘”)
X

< IE<M(W) SUpN1(x, W)e 2| SUPN2(x, W)e—ZAIX>

< Ks.
Note that

/ (353 (x)2dx
5/(/qfl(x,t;y,O)If’(y)Idy/q{V(x,t;y,O)dy>dXI|f’lloo
5/(/ Mgl (e, 1 y,0>dx)|f<y>|dy

x sup/ @ (. 159,00 dye ) £ 100
X

Hence

4
El0,yF 18 < ||f/||§OE</</ E y,0>dx)|f <y)|dy)

4

X E(Sup/ gy (x,1;y,0) dye_)‘l’C)

4
snf/néoE/(/ MelgW (e 1y, O)a’x)
3
x |f’<y>|2dy(f|f’<y>|2/3dy) Ks

3
< ||f’||;‘oK1||f’||%(f|f/<y>|2/3dy) Ks < oo,

This proves the conclusion of the lemma.l

2381
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COROLLARY 3.6. (i)Forany« > 0and p > 0, we have

p
(3.6) E‘ [ ousiorear| < Kas.
(il
(3.7) E[|32y¢ |14 < Ka.7.

PROOFE The proof of Lemma 3.5 can be modified to verify (i). Part (ii) follows
from the same proof as well; note that (i) impli&$(d, y*)?)I < Kzes. O

3.2. Proof of Theorem 1.3. Now we prove Theorem 1.3. In this proof, the
quantity(afzf, f) for f smooth is understood §s’, aff).

To make use of It0’s formula, we need thdtis adapted. We shall usg_, to
replacey;. However, for simplicity of notation, we still usg .

Letz; =y — y;. Then

t
(28, ) = /0 (b2 +ad?zt — (v + )25, ¢ dr
t .
+ fo (cOyyE. GYWE__dr

t t
—/o <caxy,,¢>)dW,—/o(%cc/axyf+%cza§yf,¢)dr.

By Itd’s formula, we have

t
(25, $)2 = fo 2(2%, ) (bdrzE + adZet — (5 + vt b) dr
! . !
+ /o 2025, 8) (coxyE, pYWE_, dr — /o 2025, $)(cBryr, §) AW,
t
- /O (25, d) ey + 292y, ) dr

t
+/O (coxyr, ¢)2dr.
Adding overg in a CONS ofHp, we have

t
||Zf||g:/0 2(z5, bzt +ad?zt — (v + y)zt) dr
t . t
+/o Z(Zf,caxyf)Wf_edr—/o 2<Zf, coxyr) dW;
(3.8) , -
_/o (z7, cc'dyyy +c205yy) dr

! 2
4 /O leaxy, 12 dr.
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We now estimate the second term on the right-hand side of (3.8)iFef)s <
r < ig, note that

r

(z7,8) = (2 _1)er @) + ( (b3 28 +ad?zs — (v + vy, ¢) ds

i—1)e
r .
+ <caxy§7 ¢>W§—8 ds
(i—De
r r
N /('—1)6 (cBxys, @) AW — (i_l)(;(%cc/ax)’;; + %Czaf)’f’ ¢>ds
and
g 7 -
(Caxyfa ¢> = (Caxyfi_l)(g’ ¢> + (i_l)g(cax(baxyg + a83y§ _ (y;‘)Z)’ ¢)ds
r .
+ (cdx(cdrys), PYWS_, ds.
(i—2Le

Similarly to (3.8), we have

(z, cocyy) — (Zfi—l)e’ Caxyfi—l)e)
r

=/ (cOyyE, b,z +ad’st — (¥ + yy)zt) ds
1—1)&

r

r .
[ Ned B ds = [ (cBytschun) dW,
(3 9) (i—De (i—De
| [ (coxys Lo, yE + 1292 Sds
(i—l)s Xys7 2 Xys 2 xys

r -
+ f( o a €8x (B0xy] +a00y] = 617 ds
—l)e

r .
+ (z8, cOx(coyy))We_, ds.
(i—De
Letr =ke. Then

t .
E / 225, cogy ) WP, dr
0

k=1 (i+1)e .
(310) =EY / 2022, cayyE )W, dr
i=0""%
= (i+De e e e e 7€
:EZZ/is ((z, coyys) — (z(,-_l)s,caxy(i_1)8>)W,_8 dr.
i=0

Apply (3.9) to (3.10). We only consider the second, third and sixth terms in (3.9)
since it is easy to verify that the other terms result in quantities boundéo, 4.
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Note that
(

k—1
By 2
i—0 ie

i+1e pr 2 .
/ lcoxye lGWs_ dsW;_ dr
(i—De

(

k-1
~Ey 2|
i—0 ic

i+1l)e pie . 20 e .
/, ”caxy(i—Z)s HOWS—S dSWr—e dr
(i—De

k=1 " ci+De pr ) 5 )
(3.11) +E) 2[ / lcoxy(i o) lods dre™=(Wie — Wii—1)e)
i=0 e e
k=1 ,
=Y &%E|cdeyf_y).oe e
i=0

t
~E [ fleayfI3ar
wherex ~ y means thafx — y| < K./e. Similarly,
(

k—1
By 2
i—0 ie

t
~E [z oty

i+1e pr . )
/ (z5, c0x(cOx Y)W dsW;_ dr
(i—De
(3.12)

Note that
(

k—1
EY 2 /
i=0 i€

i+1le pr .
/ (cOxys, coxys) dWsWr_ dr
(i—1)e

(

k=1 i+De pr .
(3.13) %EZZ[_E /(;_ 1)6(6'8/\?)’6'—2)8’CaxY(i—2)6>dWsWr€—e dr
i=0 -

~ ZIE/Ot(caxyf, coyyy)dr.
By (3.8) and (3.10)—(3.13), we have
Bl 13 < K [ Bl 13ds + K2
Gronwall’'s inequality then implies the conclusion of the theorem.

4. Log-Laplace transform of X;. In this section we prove Theorem 1.4.
SinceX* solves the CMP defined in Section 1.2, it is easy to show that

EsupX¢, 1)4 < K1.

s<t
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For any¢ € C.(R), it is then easy to show that
E(X{ — X, ¢)* < Kot — 52,

This implies the tightness dfx¢} in C([0, co), M (R)). It is then easy to verify
that any one of the limit points solves the MP. The uniqueness for the solution to
the MP implies the weak convergenceXf.

Now we prove (1.8). First we assume that Hp and fix Xj = u. Lety be a
bounded continuous function @([0, ¢], R). Then

E(exp(—(X:, fHY(W)) = !@OE(GXD(—(Xf, DY (W))
— !iLnOIE(exp(—(pL, Yo (W))

= E(exp(— (i, yo. ¥ (W)).

For generale, we takeu® € Hg converging tou in Mp(R). Denote the solution
of the MP with replaced by.® by X®. Then

E(exp(— (X, /)Y (W) = m E(exp(~{X;", /)y (W)
= lim E(exp(— (1", yo.))¥ (W)

= E(exp(—(u, yo. )Y (W)),
where the last equation follows singg; is bounded and continuous.

5. Moments of X,. In this section, we prove Theorem 1.5. Lgt be the
solution of

t
yi(x) =af(x) +/ (b)Y () +a(x)d2y% (x) — y*(x)?) dr
(5.1) 0

t
+ / (X)) yy (x) dW,.
0

Letz; andh, be solutions to

7 (x) = f(x) + /Ot (b(x)dyz, (x) + a(x)d2z, (x)) dr

(5.2) t
+/0 c(x)0xzr(x)dW,
and
t
he(x) = /O (b(x)dchr (x) + a(x)d2h, (x) — 22, (x)%) dr
(5.3)

t
+ / c(x)0xhy (x)dW,.
0



2386 J. XIONG
Definez® = a~1y% —z,. Then
t
z%(x) =/0 (b(x)8,2%(x) + a(x)92z%(x)) dr
t t 2
—l—/ c(x)dxzy (x) dW, _/O a_lyf‘(x) dr.
0
Similarly to arguments in previous sections, we have

Ellz¥|3—0  asa— 0.
Defineh?® = a=2(y2 — 2y%) — h,. Then

h% (x) = /Ot(b(x)axh‘r’(x) + a(x)8%h% (x)) dr
+/tc(x)8th‘(x)dW,
0

t
- [ @020 - 208 @?) - 25,2 ar.
0
Note that|y (x)| < «| flloo @and|z,(x)| < || f llo- HENCE

E | (a2 yzo‘(x)2 — Zy"‘(x)2 —27,(x)? 2 dx
[0 #(09) 25, (0?)

20 2 o 2
_ ) (3w
_E / (4( - z,(x)) 2( » m(x))

Y24 (x) — y¥(x) — am(x))z J
X
o

+ 4z, (x)
— 0.
Similarly to above, we have
E[lr%|5—0  asa— 0.

Thereforez, = 8, Y% |a=0 andh, = 32y%|y—0.
Note that

E(X:, /IW) = (1, z)
and

E(Xr, f)2IW) = (1, 2% = {1, o).
Taking expectations on both sides of (5.2), we have

Ezi(x) = f(x) +E /Ot (b(x)dyzr(x) + a(x)dZz(x)) dr,

and hence, (1.9) holds.



A STOCHASTIC LOG-LAPLACE EQUATION 2387

Applying 1t6’s formula to (5.2), we have
Ez; (x1)z¢(x2)

= f(x1) f(x2) +E / (b(x1)Bx, 2 (X1)27 (x2) + b(x2) 0,2 (x1)2, (x2)
+a(x1)0Z 2(x1)z, (x2) + a(x2) 92,2 (x1) 2, (x2)

+ c(x1)c(x2) 0y, 0x,2(x1) 21 (x2)) dr-.
Hence

(5.4) Ez(xn)z(n) = / FODLOq(t, (1. x2). (01, y2)) dyrdyz.

Taking the expectation on both sides of (5.3), we have
t
(5.5) Eh,(x) = E/ (b(x)dxh, (x) +a(x)d%h, (x) — 2z, (x)?)dr.
0

Hence, making use of (5.4) and solving (5.5), we obtain

t
Eh,(x) = —2/0 /p(t — 5, X, y)Ezs(y)zdyds

=_z/0’/p<;_s,x,y> /f F@Df(z2)

x q(s, (v, ), (z1,z2)) dzadzody ds.
This proves (1.10).
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