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CHARACTERIZATION OF THE CUBIC EXPONENTIAL FAMILIES
BY ORTHOGONALITY OF POLYNOMIALS

BY ABDELHAMID HASSAIRI AND MOHAMMED ZARAI

Sfax University

This paper introduces a notion of 2-orthogonality for a sequence of
polynomials to give extended versions of the Meixner and Feinsilver char-
acterization results based on orthogonal polynomials. These new versions
subsume the Letac–Mora characterization of the real natural exponential fam-
ilies having cubic variance function.

1. Introduction. Let F = {P (m,F ),m ∈ MF } be a natural exponential
family (NEF) on the real line parameterized by its domain of the meansMF .
If VF (m) denotes the variance of the probability distributionP (m,F ), then
the mappingm �→ VF (m) is called the variance function of the familyF. The
importance of the variance function stems from the fact that it characterizes the
family F within the class of all natural exponential families. Furthermore, for
many common NEFs the variance function takes a very simple form. Morris
(1982) describes the class of real NEFs such that the variance function is a
polynomial function of degree at most 2 in the mean. Up to affine transformations
and powers of convolution, this class includes the normal, Poisson, binomial,
negative binomial, gamma and a sixth family called hyperbolic cosine and nothing
else. The Morris class of quadratic NEFs has received a deal of attention in
the statistical literature and many interesting characteristic properties have been
established. We will be concerned here only with the properties based on the
notion of orthogonal polynomials. A remarkable characteristic result is due to
Meixner (1934) [see also Letac (1992)]. It characterizes the distributionsµ for
which there exists a family ofµ-orthogonal polynomials with an exponential
generating function. These distributions generate exactly the Morris class of NEFs.
A second characterization is due to Feinsilver (1986), who shows that a certain
class of polynomials naturally associated to a NEF isµ-orthogonal if and only if
the family is in the Morris class. In the present paper, we will be concerned with
the class of real natural exponential families having cubic variance function (i.e.,
a variance function which is a polynomial of degree less than or equal to 3). In
fact, Letac and Mora (1990) have extended the work of Morris by classifying all
real cubic natural exponential families. They have added to the Morris class six
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other types of NEFs which may be obtained from the Morris class by the action
of the linear groupGL(R2) [see Hassairi (1992)]. The best known among such
families is the Inverse-Gaussian family. Our aim is then to extend to the Letac–
Mora class of cubic NEFs the different characterizations established for the Morris
class and based on orthogonal polynomials. We show in fact that the cubicity of
the variance function is characterized by a property of orthogonality which will
be called the property of 2-orthogonality. Theresult is interesting in its own right
and seems potentially very useful for asymptotic expansions and approximation. In
Section 2, after a review of exponential family theory, we specify some facts about
the Feinsilver sequence of polynomials associated to a NEF; in particular, we show
that the generating function of this sequence converges in a neighborhood of 0. In
Section 3, we state and prove our main result concerning the characterization of
the Feinsilver sequence of polynomials corresponding to a distribution generating
a cubic natural exponential family by a property similar to orthogonality. We also
show that this sequence is characterized by a four-term recurrence relation, while,
as it is well known, a sequence of orthogonal polynomials satisfies a three-term
recurrence relation. In Section 4, we first determine the families of 2-orthogonal
polynomials with exponential generating function. [The families with a formal
exponential generating function are sometimes called in the literature Sheffer
polynomials of type 0; see Sheffer (1939) and Rainville (1960).] This leads to
another characterization of the Letac–Mora class of cubic NEFs which may be
considered as the extension to this class of the Meixner characterization.

2. Exponential families and associated polynomials. We need first to
review some facts concerning natural exponential families and to introduce some
notations. Ifµ is a positive Radon measure on the real lineR, we denote by

Lµ(θ) =
∫

R

exp(θx)µ(dx) ≤ +∞
its Laplace transform, and we denote by�(µ) the interior of the convex set
D(µ) = {θ ∈ R;Lµ(θ) < ∞}. M(R) will denote the set of measuresµ such that
�(µ) is not empty andµ is not concentrated on one point. Ifµ is in M(R), we
also denote

kµ(θ) = logLµ(θ), θ ∈ �(µ),

the cumulate function ofµ.
To eachµ in M(R) and θ in �(µ), we associate the following probability

distribution onR:

P (θ,µ)(dx) = exp
(
θx − kµ(θ)

)
µ(dx).(2.1)

The set

F = F(µ) = {P (θ,µ); θ ∈ �(µ)}
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is called the NEF generated byµ. If µ andµ′ are inM(R), thenF(µ) = F(µ′)
if and only if there exists(a, b) in R2 such thatµ′(dx) = exp(ax + b)µ(dx).
Therefore, ifµ is in M(R) andF = F(µ),

BF = {µ′ ∈ M(R);F(µ′) = F }
is the set of basis ofF.

We have, for allθ in �(µ),

dn

dθn
Lµ(θ) =

∫
R

xn exp(θx)µ(dx) < +∞,(2.2)

and consequently, all the moments ofP (θ,µ) are finite. In fact,

1

Lµ(θ)

dn

dθn
Lµ(θ) =

∫
R

xnP (θ,µ)(dx) < +∞.(2.3)

The functionkµ is strictly convex and real analytic. Its first derivativek′
µ

defines a diffeomorphism between�(µ) and its imageMF . Since k′
µ(θ) =∫

R
xP (θ,µ)(dx), MF is called the domain of the means ofF . The inverse function

of k′
µ is denoted byψµ and, settingP (m,F ) = P (ψ(m),µ), the probability ofF

with meanm, we have

F = {P (m,F );m ∈ MF },
which is the parameterization ofF by the mean.

The density ofP (m,F ) with respect toµ is

fµ(x,m) = exp
{
ψµ(m)x − kµ

(
ψµ(m)

)}
.(2.4)

Form in MF , we denote

VF (m) =
∫

R

(x − m)2P (m,F )(dx).(2.5)

Then

VF (m) = k′′
µ

(
ψµ(m)

) = (
ψ ′

µ(m)
)−1

,(2.6)

and, the mapm �→ VF (m) is called the variance function ofF . It entirely
characterizes the NEF; that is, ifF andF ′ are two NEF such thatVF (m) = VF ′(m)

on a nonempty open set included inMF ∩ MF ′ , thenF = F ′.
Consider now a real natural exponential familyF and takeµ = P (mo,F )

with mo fixed in MF . The densityfµ(·,m) of P (m,F ) with respect toµ is still
given by (2.4) withfµ(·,mo) ≡ 1. It is easily verified by induction onn in N that
there exists a polynomialPn in x of degreen such that

∂n

∂mn
fµ(x,m) = Pn(x,m)fµ(x,m)(2.7)
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and

Pn+1(x,m) = ψ ′
µ(m)(x − m)Pn(x,m) + Rn+1(x,m),(2.8)

whereRn+1 is a polynomial inx of degree< n + 1. In particular, we have that

Po(x,m) = 1 and P1(x,m) = ψ ′
µ(m)(x − m).(2.9)

We now make a useful observation through the following theorem whose proof
will be given in Section 5. For the sake of simplification, we set

Pn(x) = Pn(x,mo).(2.10)

THEOREM 2.1. Let F be a NEF on R and let µ be a fixed probability in F

with mean mo. Let Pn(x) be the polynomials defined by (2.7).Then

∑
n∈N

(m − mo)
n

n! Pn(x)

is an entire series in L2(µ) of nonzero radius of convergence.

It should be remarked that there existsr > 0 such that, for allm in ]mo − r,

mo + r[ and for allx in R,

fµ(x,m) = ∑
n∈N

(m − mo)
n

n! Pn(x).(2.11)

To conclude this section, we mention that in many interesting situations,Pn can
be calculated by mean of the Faà di Bruno formula

(fog)(n)(m) = ∑ n!
k1! · · · kn!f

(k)(g(m))

(
g(1)(m)

1!
)k1

· · ·
(

g(n)(m)

n!
)kn

,

wherek = k1 + · · · + kn and the sum is taken for all integerskj ≥ 0 such that
k1 + 2k2 + · · · + nkn = n. That is, if we denote

g(k)(x) = ∂k

∂mk

[(
ψµ(m)x − kµ

(
ψµ(m)

))]
m=mo

,

then

Pn(x) = ∑
k1+2k2+···+nkn=n

n!
k1! · · ·kn!

(
g(1)(x)

1!
)k1

· · ·
(

g(n)(x)

n!
)kn

with kj in N, for 1≤ j ≤ n.
The most famous example in this topic is the inverse Gaussian distribution with

parameters 1/2 andp > 0 defined by

µ(dx) = p√
2π

x−3/2 exp
(
−p2

2x

)
1]0,+∞[(x) dx.
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The NEF generated byµ belongs to the Letac–Mora class. In fact, a standard
computation shows that�(µ) =] − ∞,0[ andkµ(θ) = −p

√−2θ . If F = F(µ),
thenMF =]0,+∞[,ψµ(m) = −p2/2m2 andVF (m) = m3/p2.

For allmo ∈ MF , we have

Pn(x) = ∑
k1+2k2+···+nkn=n

n!
k1! · · ·kn!p

2n

(
2

m3
o

x − 1

m2
o

)k1

· · ·
(

n + 1

mn+2
o

x − 1

mn+1
o

)kn

.

3. Characterization of the cubic families in the Feinsilver way. As pointed
out in the Introduction, any real cubic natural exponential family can be obtained
from a quadratic family via the action of the linear groupGL(R2). For instance,
the quadratic natural exponential families onR have been characterized by
Feinsilver (1986) as the ones for which the polynomialsPn(x) areµ-orthogonal.
In this section we show that the polynomialsPn(x) associated to a cubic natural
exponential family have also a characterizing property of orthogonality which will
be called the property of 2-orthogonality.

DEFINITION 3.1. Letµ be a measure onR such that
∫ |x|nµ(dx) < ∞ for

all n ∈ N. A family (Qn)n∈N of polynomials onR is µ − 2-orthogonal if, for alln
andq in N∗,

∫
Qn(x)Qq(x)µ(dx) = 0 whenn ≥ 2q, and

∫
Qn(x)µ(dx) = 0.

Next we give our first main result.

THEOREM 3.1. Let F be a NEF on R and let µ be an element of F

with mean mo. Consider the polynomials (Pn)n∈N defined by Pn(x) = ∂n

∂mn fµ(x,

m)|m=mo . Then the three following statements are equivalent:

(i) The polynomials (Pn)n∈N are µ − 2-orthogonal.
(ii) F is cubic.
(iii) There exist real numbers (ai)0≤i≤3 such that, for all n ≥ 2,

xPn(x) = a3A
3
nPn−2(x) + n

(
a2(n − 1) + 1

)
Pn−1(x)

+ (na1 + mo)Pn(x) + aoPn+1(x),

with A3
n = n(n − 1)(n − 2). Furthermore, in this case we have

VF (m) = a3(m − mo)
3 + a2(m − mo)

2 + a1(m − mo) + ao.

To help in the proof of this theorem, let us give in Table 1, for each of the
six types of NEF onR with polynomial variance function of degree 3 [see Letac
and Mora (1990)], the sequence ofP (mo,F ) − 2-orthogonal polynomialsPn(x)

defined by its recurrence relation formo = 1.
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TABLE 1

Type mo Induction relations

Inverse Gaussian with parameterp = 1 1 Po(x) = 1,

VF (m) = (m − mo)3 + 3mo(m − mo)2 P1(x) = (x − 1),

+ 3m2
o(m − mo) + m3

o P2(x) = x2 − 6x + 3,

Pn+1(x) = (x − 3n − 1)Pn(x)

− n(3n − 2)Pn−1(x)

− A3
nPn−2(x), n ≥ 2

Strict arcsine with parameterp = 1 1 Po(x) = 1,

VF (m) = (m − mo)3 + 3mo(m − mo)2 P1(x) = 1
2(x − 1),

+ (3m2
o + 1)(m − mo) + m3

o + mo P2(x) = 1
4(x2 − 5x + 3),

Pn+1(x) = 1
2[(x − 4n − 1)Pn(x)

− n(3n − 2)Pn−1(x),
− A3

nPn−2(x)],
n ≥ 2

Takács with parametersp = 1 anda = 1 1 Po(x) = 1,

VF (m) = 2(m − mo)3 P1(x) = 1
6(x − 1),

+ (6mo + 3)(m − mo)2 P2(x) = 1
36(x2 − 15x + 8),

+ (6m2
o + 6mo + 1)(m − mo) Pn+1(x) = 1

6[(x −13n−1)Pn(x)

× (2m3
o + 3m2

o + mo) − n(9n − 8)Pn−1(x)

− 2A3
nPn−2(x)],

n ≥ 2

Large arcsine with parametersp = 1 1 Po(x) = 1,

anda = 1 P1(x) = 1
9(x − 1),

VF (m) = 2(m − mo)3 P2(x) = 1
81(x2 − 13x + 3),

+ (6mo + 2)(m − mo)2 Pn+1(x) = 1
9[(x −11n−1)Pn(x)

+ (6m2
o + 4mo + 1)(m − mo) − n(8n − 7)Pn−1(x)

+ 6m3
o + 2m2

o + mo − 2A3
nPn−2(x)],

n ≥ 2

Ressel with parameterp = 1 1 Po(x) = 1,

VF (m) = 2(m − mo)3 + (6mo + 3)(m − mo)2 P1(x) = 1
2(x − 1),

+ (6m2
o + 6mo + 1)(m − mo) P2(x) = 1

4(x2 − 7x + 4),

× (2m3
o + 3m2

o + mo) Pn+1(x) = 1
2[(x − 5n − 1)Pn(x)

− n(4n − 3)Pn−1(x)

− A3
nPn−2(x)],

n ≥ 2

Abel with parameterp = 1 1 Po(x) = 1,

VF (m) = (m − mo)3 + (3mo + 2)(m − mo)
2 P1(x) = 1

4(x − 1),

+ (3m2
o + 4mo + 1)(m − mo) P2(x) = 1

16(x2 − 15x + 8),

× (m3
o + 2m2

o + mo) Pn+1(x) = 1
4[(x − 8n − 1)Pn(x)

− n(5n − 4)Pn−1(x)

− A3
nPn−2(x)],

n ≥ 2
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PROOF OFTHEOREM 3.1. (i) ⇒ (ii). Equation (2.11) allows us to claim the
existence ofr > 0 such that, for allm in the interval]mo − r,mo + r[ and for allx
in R,

fµ(x,m) = ∑
n∈N

(m − mo)
n

n! Pn(x).

If, for (m,m′) ∈ (]mo − r,mo + r[)2, we set

g(m,m′) = exp
{
kµ

(
ψµ(m) + ψµ(m′)

) − kµ

(
ψµ(m)

) − kµ

(
ψµ(m′)

)}
,(3.1)

then theµ − 2-orthogonality of the polynomials(Pn) and Theorem 2.1 imply that

g(m,m′) =
∫

fµ(x,m)fµ(x,m′)µ(dx)

=
∫ ∑

n,q∈N

(m − mo)
q(m′ − mo)

n

n!q! Pn(x)Pq(x)µ(dx)

= 1+ ∑
n,q∈N∗

(m − mo)
q(m′ − mo)

n

n!q!
∫

Pn(x)Pq(x)µ(dx)

= 1+ ∑
q∈N∗,n∈[(q+1)/2,2q−1]

(m − mo)
q(m′ − mo)

n

n!q!
∫

Pn(x)Pq(x)µ(dx).

Taking the derivative of (3.1) with respect tom, we get, for all(m,m′) ∈ (]mo −
r,mo + r[)2,

ψ ′
µ(m)

(
k′
µ

(
ψµ(m) + ψµ(m′)

) − k′
µ

(
ψµ(m)

))
g(m,m′)

= ∑
q≥1,n∈[(q+1)/2,2q−1]

q anq(m − mo)
q−1(m′ − mo)

n,(3.2)

with anq = 1
n!q!

∫
Pn(x)Pq(x)µ(dx).

Makingm = mo in (3.2), then, sinceψµ(mo) = 0, we get

ψ ′
µ(mo)(m

′ − mo) = a11(m
′ − mo).

This is true for allm′ ∈ ]mo − r,mo + r[; then

a11 = ψ ′
µ(mo).

Again we take the derivative of (3.2) with respect tom and we letm = mo. We get,
for all m′ in ]mo − r,mo + r[,

ψ ′′
µ(mo)(m

′ − mo) + a2
11

(
VF (m′) − VF (mo)

) + a2
11(m

′ − mo)
2

= 2a22(m
′ − mo)

2 + 2a23(m
′ − mo)

3.



2470 A. HASSAIRI AND M. ZARAI

Therefore,

VF (m′) = 2a−2
11 a23(m

′ − mo)
3 + (2a22 − a2

11)a
−2
11 (m′ − mo)

2

− a−2
11 ψ ′′

µ(mo)(m
′ − mo) + VF (mo).

This implies thatVF is cubic on]mo − r,mo + r[ and, by extension, we obtain that
F is a cubic NEF.

(ii) ⇒ (iii). From (ii), there exist real numbers(ai)0≤i≤3 such that

VF = a3(m − mo)
3 + a2(m − mo)

2 + a1(m − mo) + ao.

On the other hand, we know that there existsr > 0 such that, for allm ∈
]mo − r,mo + r[ and for allx ∈ R,

∑
n∈N

(m − mo)
n

n! Pn(x) = exp
{
ψµ(m)x − kµ

(
ψµ(m)

)}
.

Denotingθ = ψµ(m), this may be written as

exp(θx) =
( ∑

n∈N

(
k′
µ(θ) − mo

)nPn(x)

n!
)

exp{kµ(θ)}.(3.3)

Taking the derivative with respect toθ of (3.3) gives

x exp(θx) = ∑
n∈N

Pn(x)

n!
(
n(m − mo)

n−1k′′
µ(θ) + (m − mo)

nk′(θ)
)
exp{kµ(θ)},

which is equivalent to

∑
n∈N

(m − mo)
n

n! xPn(x)

= ∑
n∈N

Pn(x)

n!
(
n(m − mo)

n−1k′′
µ(θ) + (m − mo)

nm
)

= ∑
n∈N

Pn(x)

n!
(
n

3∑
k=0

ak(m − mo)
n+k−1 + (m − mo)

n+1 + mo(m − mo)
n

)
.

By identification, we get

xPn(x) = a3n(n − 1)(n − 2)Pn−2(x)

+ n
(
a2(n − 1) + 1

)
Pn−1(x) + (na1 + mo)Pn(x) + aoPn+1(x),

and (iii) is proved.
(iii) ⇒ (i). The result is easily obtained if we verify the three following facts:

(a) For alln ∈ N
∗,

∫
Pn(x)µ(dx) = 0.
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(b) There exist real numbersβs
n,q such that, for alln,q ∈ N∗ verifying n ≥ 2q,

xqPn(x) = β0
n,qPn−2q(x) + ∑

n−2q+1≤s≤n+q

βs
n,qPs(x),

whereβ0
n, q = 0 if n = 2q ∀q ∈ N

∗,
(c) There exist real numbers(αq)0≤q≤n such that

Pn(x) = αnx
n + ∑

0≤q≤n−1

αqxq.

Proof of (a). We first observe that∫
∂

∂m
fµ(x,m)µ(dx) = ψ ′

µ(m)

∫
(x − m)fµ(x,m)µ(dx)

= ψ ′
µ(m)

∫
(x − m)P (m,F )(dx)

= 0.

Since, for alln, we have∫ ∣∣∣∣ ∂n

∂mn
fµ(x,m)

∣∣∣∣µ(dx) =
∫

|Pn(x − m)|fµ(x,m)µ(dx)

=
∫

|Pn(x − m)|P (m,F )(dx) < +∞,

[see (2.3) and (2.7)], then∫
∂

∂m

{
∂n

∂mn
fµ(x,m)

}
µ(dx) = ∂

∂m

∫
∂n

∂mn
fµ(x,m)µ(dx).

Hence we obtain that, for alln ∈ N∗,
∫

∂n

∂mn fµ(x,m)µ(dx) = 0. This, form = mo,
gives

∫
Pn(x)µ(dx) = 0.

Proof of (b). We can write (iii) as

xPn(x) = β0
n,1Pn−2(x) + ∑

n−1≤s≤n+1

βs
n,1Ps(x),(3.4)

whereβ0
n,1 = a3n(n − 1)(n − 2).

For a fixedn in N∗, let us show by induction that, for allq in N∗ such that
2q ≤ n, we have

xqPn(x) = β0
n,qPn−2q(x) + ∑

n−2q+1≤s≤n+q

βs
n,qPs(x),(3.5)

whereβ0
n, q = 0 if n = 2q.

Forq = 1, it is nothing but equality (3.4).
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Suppose now that (3.5) is true forq and that 2(q + 1) ≤ n. Then we have

xq+1Pn(x) = x
(
xq Pn(x)

)
= β0

n,qxPn−2q(x) + ∑
n−2q+1≤s≤n+q

βs
n,qxPs(x)

= β0
n,q

{
β0

n,n−2qPn−2q−2(x) + ∑
n−2q−1≤s′≤n−2q+1

βs′
n−2q,1Ps′(x)

}

+ ∑
n−2q+1≤s≤n+q

βs
n,q

{
β0

s,1Ps−2(x) + ∑
s−1≤s′′≤s+1

βs′′
s,qPs′′(x)

}

= a3β
0
n,qA

3
n−2qPn−2(q+1)(x) + ∑

n−2(q+1)+1≤s≤n+q+1

βs
n,q+1Ps(x).

Hence there exist(βs
n,q+1) such that

xq+1Pn(x) = β0
n,q+1Pn−2q(x) + ∑

n−2q+1≤s≤n+q

βs
n,qPs(x),

whereβ0
n,q+1 = a3β

0
n,qA

3
n−2q andβ0

n,q+1 = 0 if n = 2(q + 1).

Proof of (c). SinceP1(x) = 1
VF (mo)

(m − mo), it is easy to show by induction
that

Pn(x) = 1

(VF (mo))n
xn + ∑

0≤q≤n−1

αqx
q,

and this concludes the proof.�

4. Characterization of the cubic families in the Meixner way. This section
is devoted to the characterization of the 2-orthogonal polynomials onR with
exponential generating function.

We say that the generating function of the sequence of polynomialsQn is
exponential if there existr > 0 and two real analytic functionsa andb defined
on ] − r, r[ such that, for allz in ] − r, r[,

∑
n∈N

Qn(x)
zn

n! = exp{a(z)x + b(z)}.(4.1)

Families (Qn/n!) satisfying (4.1) are considered in the literature under the
name of Sheffer polynomials of type 0; see Sheffer (1939) and Rainville [(1960),
Chapter 13]. Actually they are slightly more general since convergence in a
neighborhood of 0 is not required and (4.1) is considered as an identity between
formal series inz.
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THEOREM 4.1. Let F be a NEF on R and let µ be an element of F with
mean mo. Suppose that (Qn)n∈N is a family of µ−2-orthogonal polynomials such
that Qn is of degree n. Then the generating function of (Qn)n∈N is exponential if
and only if there exists t ∈ R∗ such that, for all n ∈ N,

Qn(x) = tnPn(x),

where (Pn) is defined by (2.7).
In this case, a(z) = ψµ(tz + mo) and b(z) = −kµ(ψµ(a(z)).

PROOF. Up toQ̃n = Qn/Qo, we can supposeQo = 1.

⇐ Is obvious.
⇒ There existr > 0 such that, for allz ∈] − r, r[ ,

∫ ( ∑
n∈N

Qn(x)
zn

n!
)
µ(dx) =

∫ ( ∑
n∈N

Qn(x)Qo(x)
zn

n!
)
µ(dx)

=
∫

Qo(x)2µ(dx)

= 1.

On the other hand, writing the generating function of(Qn) as in (4.1), we have

∫ ( ∑
n∈N

Qn(x)
zn

n!
)
µ(dx) =

∫
exp{a(z)x + b(z)}µ(dx)

= exp{kµ(a(z)) + b(z)}.
Hence

b(z) = −kµ(a(z)).(4.2)

Proceeding similarly, we have that

∫ ( ∑
n∈N

Qn(x)Q1(x)
zn

n!
)
µ(dx) =

(∫
Q1(x)2µ(dx)

)
z.(4.3)

ThenQ1 is a polynomial of degree 1 inx. Therefore there existsu ∈ R∗ andv ∈ R

such that

Q1 = ux + v.(4.4)

Since
∫

Q1(x)Qo(x)µ(dx) = ∫
Q1(x)µ(dx) = 0, we getb = −umo and∫

Q1(x)2µ(dx) =
∫

u2(x − mo)(x − mo)µ(dx) = u2VF (mo).
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Furthermore, using (4.2)–(4.4), we get(∫
Q1(x)2µ(dx)

)
z =

∫
exp{a(z)x + b(z)}Q1(x)µ(dx)

= u

∫
(x − mo)exp{a(z) − kµ(a(z))}µ(dx)

= u

∫
(x − mo)P

(
a(z),µ

)
(dx)

= u[k′
µ(a(z)) − mo],

and we deduce that

u2VF (mo)z = u[k′
µ(a(z)) − mo].

Therefore,k′
µ(a(z)) = uVF (mo)z + mo, that is,a(z) = ψµ(uVF (mo)z + mo) and

t = uVF (mo).

Finally, we obtain

∑
n∈N

Qn(x)
zn

n! = fµ

(
x,VF (mo)uz + mo

)
.

�

COROLLARY 4.1. Let F be a NEF on R and let µ be an element of F with
mean mo. Then there exists a family of µ − 2-orthogonal polynomials with an
exponential generating function if and only if F is cubic.

PROOF. Follows easily from Theorems 3.1. and 4.1.�

5. Proof of Theorem 2.1. This section is devoted to the proof of Theorem 2.1.
Let x be a fixed real number. The functionm �→ fµ(x,m) is real analytic

in the intervalMF . Therefore, there exist an open set� of C containingMF ,
an open setU of C containing�(µ) and analytic functionsψ1 and k1 such
that ψ1|MF

= ψµ, k1|�(µ) = kµ and ψ1(�) ⊂ U . For all x ∈ R, the function
z �→ f1(x, z) = exp{xψ1(z) − k1(ψ1(z))} is analytic on�.

Since 0∈ �(µ) andmo ∈ MF , there existα > 0 andr > 0 such that:

(i) [−α,α] ⊂ �(µ);
(ii) the open diskD(mo, r) ⊂ �;
(iii) ψ1(D(mo, r)) ⊂ D(0, α

3);
(iv) V1 = (ψ ′

1)
−1 has no zero inD(mo, r).

Let us show that the functionφ(z) = f1(·, z) is well defined and continuously
differentiable fromD(mo, r) into L2(µ).
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Since∫ +∞
−∞

|f1(x, z)|2µ(dx)

=
∫ +∞
−∞

exp
{
x
(
ψ1(z) + ψ1(z)

) − (
k1

(
ψ1(z)

) + k1(ψ1(z)
)}

µ(dx)

andθ = ψ1(z) + ψ1(z) ∈ [−2α
3 , 2α

3 ] ⊂ �(µ), then∫ +∞
−∞

|f1(x, z)|2µ(dx) < +∞,

andφ is well defined.
For the differentiability, ifzo is in D(mo, r), then( ∂

∂z
f1)(·, zo) is an element of

L2(µ) because∫ +∞
−∞

∣∣∣∣x − z

V1(z)

∣∣∣∣
2

exp
{
x
(
ψ1(z) + ψ1(z)

)}
µ(dx) < +∞.

We will verify that f1(·,zo+h)−f1(·,zo)
h

− ∂
∂z

f1(·, z) converges to 0 inL2(µ) whenh

converges to 0, that is,

lim
h→0

1

h2

∫ +∞
−∞

∣∣∣∣f1(x, zo + h) − f1(x, zo) − h

(
∂

∂z
f1

)
(x, zo)

∣∣∣∣
2

µ(dx) = 0.(5.1)

Writing the Taylor formula with integral remainder,

f (h) − f (0) − hf ′(0) = h2
∫ 1

0
(1− u)f ′′(zo + uh)du,

(5.1) is equivalent to

lim
h→0

1

h2

∫ +∞
−∞

h4
∣∣∣∣
∫ 1

0

∂2

∂z2
f1(x, zo + uh)(1− u)du

∣∣∣∣
2

µ(dx) = 0.(5.2)

But we have that

∂2

∂z2
f1(x, z) =

[(
x − z

V1(z)

)2

− V1(z) + (x − z)V ′
1(z)

V 2
1 (z)

]
f1(x, z).

Then ∂2

∂z2f1(x, zo + h)/f (x, zo + h) is a second-degree polynomial inx whose
coefficients are continuous inh. It is then bounded in all compact|h| ≤ ho. Hence∣∣∣∣ ∂2

∂z2f1(x, zo + h)

∣∣∣∣ ≤ |ax2 + bx + c|eθox with |θo| < 2α

3
.

This with the dominated convergence theorem implies that

lim
h→0

∫ +∞
−∞

∣∣∣∣
∫ 1

0
(1− u)

∂2

∂z2
f1(x, zo + uh)du

∣∣∣∣
2

µ(dx)

=
∫ +∞
−∞

∣∣∣∣
∫ 1

0
(1− u)

∂2

∂z2
f1(x, zo) du

∣∣∣∣
2

µ(dx) < +∞,
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and (5.2) follows.
Henceφ is continuously differentiable and so it is analytic onD(mo, r) and, in

particular, if

bn =
(∫ +∞

−∞
Pn(x)2µ(dx)

)1/2

= ‖Pn(x)‖L2(µ),

then
∑

n∈N bn
(m−mo)

n

n! has nonzero radius of convergence.
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