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HITTING TIMES FOR SPECIAL PATTERNS IN THE SYMMETRIC
EXCLUSION PROCESS ON Z

d

BY AMINE ASSELAH AND PAOLO DAI PRA

Université de Provence and Università di Padova

We consider the symmetric exclusion process{ηt , t > 0} on{0,1}Zd
. We

fix a patternA := {η :
∑

� η(i) ≥ k}, where� is a finite subset ofZd andk is
an integer, and we consider the problem of establishing sharp estimates forτ ,
the hitting time ofA. We present a novel argument based on monotonicity
which helps in some cases to obtain sharp tail asymptotics forτ in a simple
way. Also, we characterize the trajectories{ηs, s ≤ t} conditioned on{τ > t}.

1. Introduction. We consider the symmetric simple exclusion process (SSEP)
on Z

d , where particles are indistinguishable. The state space is� := {η :η(i) ∈
{0,1} for i ∈ Z

d} and a graphical construction of the process is as follows. To
bonds of the cubic latticeZd , we associate independent Poisson processes of in-
tensity 1, at whose time realizations the contents of the corresponding adjacent
sites are exchanged. We fix a local patternA ⊂ � that depends on{η(i) : i ∈ �},
where� is a finite subset ofZd , and we consider the problem of establishing sharp
estimates for the hitting time ofA, τ := inf{t :ηt ∈ A}. For a physical motivation,
see, for instance, [1]. The SSEP is a nonirreducible Markov process on an un-
countable state space with the following special properties (enounced in greater
generality than SSEP).

1. There is a partial order on the state space�, say≺.
2. The generator of the dynamics,L, is monotone, that is,etL preserves increasing

functions for anyt ≥ 0.
3. There is an invariant probability measureν which satisfies the FKG inequality.
4. The pattern of interest,A, is increasing, that is,ξ ∈ A andξ ≺ η imply that

η ∈ A.
5. The dualL∗ of L in L2(ν) is monotone.

A simple consequence of properties 1–5 is the existence of a limit (see,
e.g., [1], (2.7))

λ = − lim
t→∞

1

t
log

(
Pν(τ > t)

)
.(1.1)
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However, to obtain estimates sharper than (1.1), in the context of particle
systems satisfying 1–5 and in the caseλ is positive, is a more intricate matter. For
this purpose, it is useful to study the regularity of generalized principal Dirichlet
eigenfunctions, that is, probability measuresµ with support inAc, satisfying, for
everyϕ in the domain ofL, denoted byD(L), andϕ|A ≡ 0,∫

(Lϕ + λϕ)dµ = 0.(1.2)

Measures satisfying (1.2) are also called quasi-stationary measures, since if we
draw an initial configuration from any such measure, then, for any timet > 0,
the law of ηt conditioned on{τ > t} is time-ivariant. We denote byTt (π) the
law of this conditioned process at timet with initial probability measureπ . We
recall some works relevant to our context. First, some quasi-stationary measures
are obtained as limits of linear combination of{Tt (ν), t > 0} (see Theorem 1 of [2]
and Theorem 2.4 of [1]). Assume that such a limitµ is absolutely continuous
with respect toν, and call its densityu := dµ/dν. WhenL∗ generates a Markov
process, letµ∗ be its corresponding quasi-stationary measure and assume it has a
densityu∗ := dµ∗/dν. In [1], Corollary 2.8 and its proof, we have the following
general fact.

FACT 1.1. Assume thatλ given in (1.1) is positive andu,u∗ ∈ Lp(ν) for
p > 2. Then, for anyt ≥ 0,

exp
(−H(ν̃, ν)

) ≤ Pν(τ > t)

exp(−λt)
≤ 1(1.3)

with

dν̃ = uu∗ dν∫
uu∗ dν

and H(ν̃, ν) =
∫

log
(

dν̃

dν

)
dν̃ < ∞.

In the symmetric case, the results are stronger (see [2] or [3], Corollary 2.5).

FACT 1.2. If L is a self-adjoint Markov generator onL2(ν), λ > 0 and
u ∈ L2(ν), then

lim
t→∞

Pν(τ > t)

exp(−λt)
= (

∫
udν)2∫
u2dν

with λ = inf
f ∈D(L)

{− ∫
fLf dν∫
f 2dν

:f |A = 0
}
.(1.4)

Now, a key step in the proof of the regularity of quasi-stationary measures is to
obtain uniform estimates for{Tt (ν), t > 0}. In other words, we look for measures
ν andν such that, for anyt > 0,

ν ≺ Tt (ν) ≺ ν

(
µ ≺ ν means that

∫
f dµ ≤

∫
f dν for all increasingf

)
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and withdν/dν anddν/dν regular enough (see, e.g., [2] and [3]). In Section 2,
we present a simple method to obtain such uniform stochastic bounds. Roughly,
the main idea is to bound the principal eigenfunctionu—which satisfies onAc

thatL(u)/u is constant—by asimplefunctionψ on which we impose a weaker
assumption, namely thatL(ψ)/ψ is increasing onAc. We first apply this method,
in Section 3.3, to the SSEP onZd and the patternA1 := {η :η(0) = 1}. In this
context,ξ ≺ η when ξ(i) ≤ η(i) ∀ i ∈ Z

d . Also, we recall that the SSEP has a
one-parameter family of ergodic invariant measures{νρ :ρ ∈ [0,1]}, whereνρ is a
product of Bernoulli measures of densityρ.

Thus, our first application is a key result of [3].

PROPOSITION1.3. Consider the SSEP in dimensiond ≥ 5, with patternA1.
For any densityρ ∈]0,1[ , there is a sequence{αi, i ∈ Z

d} and a probability
densityψ with αi ≤ ρ for all i ∈ Z

d ,

∑
i∈Zd\{0}

(
1− αi

ρ

)2
< ∞,

(1.5)

ψ(η) := 1

Z

(
1− η(0)

) ∏
i∈Zd\{0}

(
αi

1− αi

1− ρ

ρ

)η(i)

(Z is a normalizing constant) such that ifdνα := ψ dνρ , then for anyt > 0,

να ≺ Tt (νρ) ≺ νρ.(1.6)

A corollary of Proposition 1.3 (see [3], Lemma 2.3) is the existence ofµρ :=
lim t→+∞ Tt (νρ) as a strong limit inL2(νρ), that is,dTt (νρ)/dνρ converges in
L2(νρ) to dµρ/dνρ . Thisµρ is a quasi-stationary measure and is referred to as a
Yaglom limit.

As a second illustration, we treat, in Section 3.4, the patternA2 := {η :η(0) =
η(0′) = 1}, where 0′ is a neighbor of the origin 0. However, for technical reasons,
we need to have an intensity rate between 0 and 0′ larger than 2d − 1.

PROPOSITION 1.4. Let T
β
t (νρ) be the law at timet of the SSEP modified

by letting β be the intensity rate between(0,0′) and conditioned on{τ > t}
with initial measureνρ . If the dimensiond ≥ 5 and β ≥ 2d − 1, then stochastic
estimates of type(1.6)hold.

REMARK 1.5. To explain the reason for speeding up the intensity of bond
(0,0′), we need to unravel a key technical assumption. The above mentioned
functionψ , which mimics the Dirichlet eigenfunction, is associated with a Markov
process that never entersA and has a formal generator

Lψ(ϕ) = L(ψϕ) − ϕL(ψ)

ψ
.
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A handy assumption onLψ is that it is monotone. This fails to be the case for
SSEP withA2 = {η :η(0) = η(0′) = 1}. In other words, there is no coupling
of two trajectories(η., ζ.) governed byLψ , with ζ0 ≺ η0, where the order is
preserved in time. Indeed, considerζ ≺ η with η(0′′) = η(0′) = 1, where 0′′ is a
neighbor of 0 different from 0′, andζ(0′′) = 1 = 1−ζ(0′). For the configurationη,
the rate intensity associated with(0,0′′) is null, whereas it is positive in the
configurationζ . Thus, if the first time realization of the Poisson process associated
with (0,0′′) in ζ occurs before realizations of the processes associated with the
other bonds adjacent to 0′′, then the order is destroyed. We show that speeding up
the intensity of the process associated with(0,0′) enables us to build a monotone
coupling.

Our method can also be used to prove regularity of invariant measures. Thus, our
final application, in Section 3.5, is to study the regularity of invariant measures for
the symmetric exclusion dynamics with birth and death of particles at the origin.
For simplicity, we consider the process where the neighbors of the origin can die
with positive ratea and be born with positive rateb. The invariant measures were
studied in [6]. We obtain here a new characterization.

PROPOSITION 1.6. Whend ≥ 5, there is a stationary measureµab
ρ , for any

ρ ∈]0,1[ such that ⊗
i �=0

ναi
≺ µab

ρ ≺ ⊗
i �=0

να̃i
and

(1.7)

1+ CabPi (H0 < ∞) = α̃i

ρ

1− ρ

1− α̃i

= ρ

αi

1− αi

1− ρ
,

wherePi (H0 < ∞) is the probability that a symmetric random walk starting at
sitei hits the origin, Cab is a positive constant depending ona andb, and

⊗
i �=0 ναi

denotes a product Bernoulli measure of densityαi at sitei of Z
d \ {0}.

REMARK 1.7. This implies by the arguments of [2] thatµab
ρ is equivalent to

νρ and thatdµab
ρ /dνρ is in Lp(νρ) for any integerp whend ≥ 5.

The problems we consider in Sections 4 and 5 are inspired by works on
conditional Brownian motion (see, e.g., [4], Theorems 1 and 2, [12], Theorem 3
and [10]). We assume the following hypotheses.

HYPOTHESES(H ). The generatorL is self-adjoint inL2(ν). The Yaglom
limit µ := lim t→+∞ Tt (ν) exists with a correspondingλ > 0 for which(1.1)holds.
Moreover, u := dµ/dν ∈ L2(ν), u is a simple eigenfunction forλ, u is positive
ν-a.s. and

dTt(ν)

dν

L2(ν)−→ u.(1.8)
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Hypotheses(H) were proved in [3] for SSEP in dimensiond ≥ 5 with A1. For
the patternA2, although the convergence in (1.8) is a corollary of Proposition 1.4,
the uniqueness ofu in L2(νρ) is open.

PROPOSITION1.8. Assume(H).

(i) For everyf,g ∈ L2(ν), we have

lim
t→∞

Eν[f (η0)g(ηt )1{τ>t}]
Pν(τ > t)

=
∫

f dµ

∫
g dµ.(1.9)

(ii) For any measureπ with dπ/dν ∈ L2(ν), we have the weak-L2(ν)

convergence

Tt (π)
t→∞−→ µ.

Finally, let dµ̂ = u2dν/
∫

u2dν and let{P u
η , η ∈ �} be the law of the Markov

process, reversible inL2(µ̂), formally generated onAc by

Luϕ = L(uϕ) − ϕL(u)

u
(see definition in Section 5).

We have the following characterization of trajectories in{τ > t}.

PROPOSITION 1.9. Assume(H). Let t → at be an increasing positive
function such thatlim t→∞ at = lim t→∞(t − at) = ∞. For any r > 0, the law of
{ηat+s , s ∈ [0, r]}, conditioned on{τ > t} with initial measureν, converges to the
restriction to the time interval[0, r] of

∫
P u

η dµ̂(η) (convergence in the topology
induced by duality against bounded measurable functions).

2. The monotone method. We consider a finite state spaceX with partial
order ≺. We recall that a dynamics is monotone when its evolution semigroup
preserves increasing functions or, equivalently, when there is a coupling of two
paths(ηt , ζt ) such that ifη0 ≺ ζ0, thenP (ηt ≺ ζt ∀ t ≥ 0) = 1.

Let {Pη(·), η ∈ X} be a Markov process onX and letL be the corresponding
infinitesimal generator.

LEMMA 2.1. Let A ⊂ X and τ = inf{t :ηt ∈ A}. Assume that there is a
functionψ satisfying(i) ψ is positive onAc and ψ|A = 0, (ii) ψ is decreasing
on Ac, (iii) L(ψ)/ψ is increasing onAc, (iv) the following Markov generator
onAc is monotone:

Lψ(ϕ) := L(ψϕ) − ϕL(ψ)

ψ
.(2.1)

Thenη → Pη(τ > t)/ψ(η) is increasing.
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PROOF. If {c(a, b), a, b ∈ X} are the rates associated withL, then after a
simple computation,

∀a ∈ Ac Lψf (a) = ∑
b∈X

c(a, b)
ψ(b)

ψ(a)

(
f (b) − f (a)

)
(2.2)

= ∑
b/∈A

c(a, b)
ψ(b)

ψ(a)

(
f (b) − f (a)

)
.

Thus,Lψ generates a Markov process onAc. By definition, for anyϕ|A ≡ 0,

1AcL(ψϕ)

ψ
= 1Ac

(
Lψ(ϕ) + L(ψ)

ψ
ϕ

)
(2.3)

�⇒ exp(t1AcL)(ψϕ)

ψ
= exp

(
t1Ac

(
Lψ + Lψ

ψ

))
ϕ.

If {P ψ
η (·), η ∈ Ac} corresponds toLψ , then (2.3) and the Feynmann–Kac formula

give, forη /∈ A,∫
ϕ(ηt )ψ(ηt )1τ>t dPη

ψ(η)
=

∫
ϕ(ηt )1τ>t exp

(∫ t

0

Lψ

ψ
(ηs) ds

)
dP ψ

η

(2.4)

=
∫

ϕ(ηt )exp
(∫ t

0

Lψ

ψ
(ηs) ds

)
dP ψ

η .

Thus, forϕ = 1/ψ ,

Pη(τ > t)

ψ(η)
=

∫ 1

ψ(ηt )
exp

(∫ t

0

Lψ

ψ
(ηs) ds

)
dP ψ

η .(2.5)

From (2.5), the lemma is proved using (ii)–(iv).�

We state a related result. Assume thatL generates an irreducible Markov
process onX and letν be a positive probability onX. Denote byL∗ the dual of
L in L2(ν). Note thatL∗ is not necessarily a Markov generator [sinceL∗(1) �= 0]
and that by the Perron–Frobenius theorem (see, e.g., [11], Theorem 9.34), there is
u > 0 with L∗(u) = 0.

LEMMA 2.2. Assume there is a functionψ satisfying (i) ψ is positive,
(ii) L∗(ψ)/ψ is increasing and(iii) the following Markov generator is monotone:

Lψ(ϕ) := L∗(ψϕ) − ϕL∗(ψ)

ψ
.(2.6)

Thenu/ψ is increasing. Similarly, if we assumeψ ′ positive, L∗(ψ ′)/ψ ′ decreas-
ing andLψ ′ monotone, then we obtain thatu/ψ ′ is decreasing.
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PROOF. We callϕ = u/ψ and look for the equation solved byϕ:

L∗(ϕψ)

ψ
= 0 �⇒ Lψ(ϕ) + L∗ψ

ψ
ϕ = 0.(2.7)

Note also thatϕ is the principal eigenfunction ofLψ +L∗(ψ)/ψ . By the Perron–
Frobenius theorem and the Feynmann–Kac formula,

ϕ(η) = lim
t→∞ exp

(
t

(
Lψ + L∗ψ

ψ

))
1(η)

(2.8)

= lim
t→∞

∫
exp

(∫ t

0

L∗ψ
ψ

(ηs) ds

)
dP ψ

η .

By hypotheses (ii) and (iii), we obtain thatϕ is increasing.
With the same reasoning,

u

ψ ′ = lim
t→∞

∫
exp

(∫ t

0

L∗ψ ′

ψ ′ (ηs) ds

)
dP ψ ′

η

is decreasing sinceL∗(ψ ′)/ψ ′ is decreasing. �

3. Three applications. We consider three applications of the lemmas of
Section 2. In Section 3.1, we introduce three particle systems. In proving
Propositions 1.3, 1.4 and 1.6, the first step, carried out in Section 3.2, is to
approximate these particle systems by finite-dimensional irreducible dynamics.
The second step is to verify the hypotheses of Lemma 2.1 or 2.2 in each of our
three cases. This is carried out, respectively, in Sections 3.3–3.5.

3.1. Models. First, we consider SSEP on� with the generator acting on local
functions as

Lseϕ(η) = ∑
i∈Zd

∑
j∼i

(
ϕ(T i,j η) − ϕ(η)

)
,

wherei ∼ j means that|i1 − j1| + · · · + |id − jd | = 1, and

T i,j η(j) = η(i), T i,j η(i) = η(j) and fork �= i, j, T i,j η(k) = η(k).

It is well known ([9], Theorem 3.9 and Example 3.1(d)) thatLse generates a Feller
process and that the following set is a core of continuous functions:

D :=
{
ϕ :

∑
i∈Zd

∇i (ϕ) < ∞
}

where∇i(ϕ) = sup{|ϕ(η) − ϕ(ξ)| :η(j) = ξ(j) ∀ j �= i}.
It is also well known that for anyρ ∈ [0,1], Lse extends to a self-adjoint operator
onL2(νρ) (see, e.g., Section 2 of [13]).
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Second, to treatA2 := {η :η(0) = η(0′) = 1}, where 0′ is a given neighbor of 0,
we need to modify the intensity between the bondb := (0,0′). Thus, we consider
the generator

Lβϕ = Lseϕ + (β − 1)(ϕ ◦ T b − ϕ) with β > 2d − 1.(3.1)

Note thatLβ is still self-adjoint inL2(νρ), for anyρ ∈]0,1[.
Finally, we consider SSEP with birth and death of particles at neighbors of

the origin. Thus, the state space is�∗ := {η(i) ∈ {0,1}, i ∈ Z
d \ {0}} and if

N0 := {i ∈ Z
d : i ∼ 0}, then the generatorLab reads as

Labϕ(η) = ∑
e/∈N0×{0}

(
ϕ(T eη) − ϕ(η)

)
(3.2)

+ ∑
k∼0

(
aη(k) + b

(
1− η(k)

))(
ϕ(σkη) − ϕ(η)

)
,

whereσk is the spin flip at sitek, σkη(k) = 1− η(k) andσkη(j) = η(j) for j �= k.

3.2. Approximation by irreducible dynamics.Let �n := [−n,n]d and A ⊂
�n := {0,1}�n . For a subsetU ⊂ Z

d , we denote byFU theσ -field generated by
{η(i), i ∈ U }. We set, forϕ on�n,

Ln,ρ
se ϕ := Eνρ

[
Lseϕ|F�n

]
and L

n,ρ
β ϕ := Eνρ

[
Lβϕ|F�n

]
.(3.3)

Forϕ on�∗
n := {0,1}�n\{0}, we set

L
n,ρ
ab ϕ := Eνρ

[
Labϕ|F�n\{0}

]
.(3.4)

An easy computation gives

Ln,ρ
se ϕ(η) = ∑

i∼j

i,j∈�n

(
ϕ(T i,j η) − ϕ(η)

)

(3.5)

+ ∑
i∈∂�n

n(i)

√
dσiνρ

dνρ

(η)
(
ϕ(σiη) − ϕ(η)

)
,

where ∂�n := {i ∈ �n :∃ j /∈ �n with j ∼ i} and n(i) = |{j /∈ �n : j ∼ i}|.
A similar formula holds forLn,ρ

β . It follows easily from their definition thatLn,ρ
se

andL
n,ρ
β are(νρ |�n)-reversible on�n. We state next the irreducibility property,

although the immediate proof is omitted.

LEMMA 3.1. The generatorLn,ρ
ab is irreducible on�∗

n.
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The dual ofLn,ρ
ab in L2(�∗

n, νρ) is obtained after the simple computation

(L
n,ρ
ab )∗f (η) = L0f (η) + ∑

k∼0

(
1− η(k)

)( aρ

1− ρ
f (σ kη) − bf (η)

)
(3.6)

+ η(k)

(
b(1− ρ)

ρ
f (σ kη) − af (η)

)
,

whereL0 is the same expression asLn,ρ
se in (3.5) but the sum overi ∼ j is

restricted toi, j ∈ �n \ {0}.
Let T n

t (νρ) be the law at timet of the process generated by eitherL
n,ρ
se or L

n,ρ
β

conditioned on{τ > t} with initial measureνρ .

LEMMA 3.2. Let { ν n} and { νn} be two sequences of measures converging,
respectively, to ν andν.

(i) Assumeν n ≺ T n
t (νρ) ≺ νn for all n. Then T n

t (νρ) converges weakly
to Tt (νρ) and

ν ≺ Tt (νρ) ≺ ν.

(ii) Let un be the unique positive principal eigenfunction of(L
n,ρ
ab )∗ with∫

un dνρ = 1. Note that(Ln,ρ
ab )∗un = 0 anddµn := un dνρ is invariant forLn,ρ

ab .
Assume that for alln, ψn = dν n/dνρ is positive and decreasing(resp. ψ ′

n =
dν n/dνρ is positive and increasing) such thatun/ψn is increasing(resp. un/ψ

′
n is

decreasing). Assume also thatν n andνn satisfy the FKG inequality. Then, there
is a subsequence{nk} such thatdµnk

:= unk
dνρ converges weakly todµρ , an

invariant measure forLab with

ν ≺ µρ ≺ ν.

PROOF. (i) We drop the subscriptsse or β from the generators to unify their
treatment. The stopped generator onA, �Ln,ρ := 1AcLn,ρ is bounded on�n and it
is obvious that

∀ϕ ∈ D ∩ {ϕ|A = 0}, ∀η ∈ � �Ln,ρϕ(η)
n→∞−→ �Lϕ(η).

Thus, by a theorem of Trotter and Kurtz (see [9], Chapter I, Theorem 2.12), we
have, for anyt ≥ 0,

P n,ρ
η (τ > t) = et �Ln,ρ

(1Ac )(η)
n→∞−→ et �L(1Ac )(η) = Pη(τ > t).(3.7)

Note now thatT n
t (νρ) is absolutely continuous with respect toνρ and

dT n
t (νρ)

dνρ

(η) = exp(t1AcLn,ρ)1Ac (η)

P
n,ρ
νρ (τ > t)

= P
n,ρ
η (τ > t)

P
n,ρ
νρ (τ > t)

.(3.8)

Thus, by (3.7), (3.8) and dominated convergence,T n
t (νρ) converges weakly

to Tt (νρ) and point (i) follows easily.
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(ii) Since un/ψn is increasing, we have by the FKG inequality that for any
increasing functionϕ,∫

ϕ dµn =
∫

ϕ
un

ψn

dν n ≥
∫

ϕ dν n

∫
un

ψn

dν n =
∫

ϕ dν n,(3.9)

so thatµn � ν n. Similarly, we obtain thatµn ≺ νn. Where as the space�∗ is
compact, there is a subsequence{nk} such thatµnk

converges to a measureµρ .
Now, for any functionϕ ∈ D , Ln,ρ

ab ϕ converges toLabϕ ∈ D . Thus, forϕ ∈ D ,

0=
∫

L
nk,ρ
ab (ϕ) dµnk

k→∞−→
∫

Lab(ϕ) dµρ.

Thus,
∫

Lab(ϕ) dµρ = 0 andµρ is an invariant measure forLab with ν ≺ µρ ≺ ν.
�

3.3. Proof of Proposition1.3. The upper boundTt (νρ) ≺ νρ is simple. Indeed,
by observing thatη → Pη(τ > t) is decreasing and by using the FKG inequality,
we get, for any increasingϕ,∫

ϕ dTt(νρ) = 1

Pνρ (τ > t)

∫
ϕ(η)Pη(τ > t) dνρ(η) ≤

∫
ϕ dνρ.

We now prove the lower boundνα ≺ Tt (νρ). First, notice that we are committing
now an abuse of notation with≺, since the monotonicity is only meant onAc.
Henceforth, byµ ≺ ν, for µ andν with support inAc, we mean that for anyϕ
increasing onAc,

∫
ϕ dµ ≺ ∫

ϕ dν.
By Lemma 3.2, we need to establish two points: (a) for any integern andt > 0,

ν n ≺ T n
t (νρ) and (b) thatν n tends toνα . Moreover, for (a), it is enough to show

that

η → P
n,ρ
η (τ > t)

ψn(η)
is increasing onAc whereψn = dν n

dνρ

.

Indeed, note that onAc the probability measureν n satisfies Holley’s condition
(see [9], Theorem 2.9, page 75) which implies thatν n satisfies the FKG inequality.
Thus, for any increasing functionϕ onAc,∫

ϕ dT n
t (νρ) =

∫
ϕ(η)

P
n,ρ
η (τ > t)

ψn(η)P
n,ρ
νρ (τ > t)

dν n(η)

≥
∫

ϕ dν n

∫
P

n,ρ
η (τ > t)

ψn(η)P
n,ρ
νρ (τ > t)

dν n(η) =
∫

ϕ dν n.

Now, we set

ψn(η) := 1

Zn

(
1− η(0)

) ∏
i∈�n\{0}

γ
η(i)
i,n ,(3.10)
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whereZn is a constant such that
∫

ψn dνρ = 1. Also, set

α
(n)
i = ργi,n

ργi,n + 1− ρ
.(3.11)

Note that (a) follows when the hypotheses of Lemma 2.1 are satisfied, whereas (b)
follows as soon as for all sitesi, α

(n)
i → αi , with

∑
(1− αi/ρ)2 < +∞.

We focus now on the four hypotheses of Lemma 2.1. Whereass theγi,n are
chosen smaller than 1,ψn is decreasing. Moreover, a simple computation shows
that Lψn , obtained byLn,ρ

se as in Lemma 2.1, generates a monotone exclusion
process since the intensity rate of any bond(i, j) depends only onη(i) andη(j).
Thus, it remains to show thatL

n,ρ
se (ψn)/ψn is increasing.

Before specifying the{γi, i ∈ Z
d}, we need some notation. Henceforth, we write

Ln for L
n,ρ
se andγi for γi,n. For eachi ∈ Z

d , let {X(i, t), t ≥ 0} be a symmetric
simple random walk trajectory starting ati; we denote byPi the average over such
trajectory. Let

H0 = inf{t :X(i, t) = 0} and Hn = inf{t :X(i, t) ∈ �c
n}.(3.12)

It is well known that fori ∼ 0, Pi(H0 < ∞) < 1/2 for d ≥ 3 (see, e.g., [5]) and
thatPi(H0 < Hn) increases toPi (H0 < ∞). Finally, note thati → Pi(H0 < Hn) is
harmonic outside 0 [see, e.g., (3.16)]. Let 0′ be a neighbor of 0 and fori ∈ �n \{0},
set

γi = 1

1+ CdPi(H0 < Hn)
whereCd = 1

1− 2P0′(H0 < ∞)
.(3.13)

Note that the correspondingα(n)
i —given through (3.11)—is

α
(n)
i = ρ

1+ (1− ρ)CdPi(H0 < Hn)
(3.14)

n→∞−→ αi := ρ

1+ (1− ρ)CdPi(H0 < +∞)
.

Thus, (b) follows as soon as
∑

i P
2
i (H0 < +∞) < +∞, that is, ford ≥ 5 (see [2]).

PROOF THATV := Lnψn/ψn IS INCREASING. Fork ∈ �n \ {0} andη(k) = 0
we show thatV (σ kη) ≥ V (η). We denoteNk := {j ∈ �n \ {0} : j ∼ k}, N 0

k :=
{j ∈ Nk :η(j) = 0} and N 1

k := {j ∈ �n \ {0} :η(j) = 1}. We treat the cases
k ∈ �n \ {∂�n,N0}, k ∈ ∂�n andk ∈ N0 separately.

Case1. k ∈ �n \ {∂�n,N0}. We assumeη(k) = 0:

V (σ kη) − V (η) = ∑
j∼k

((
γj

γk

)1−η(j)

− 1
)

− ∑
j∼k

((
γk

γj

)η(j)

− 1
)

(3.15)

=
( ∑

j∈N 0
k

γj

γk

− |N 0
k |

)
−

( ∑
j∈N 1

k

γk

γj

− |N 1
k |

)
.
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Note thati → 1/γi is harmonic atk, so that

∑
j∈Nk

1

γj

= |Nk|
γk

.(3.16)

Thus,

V (σ kη) − V (η) = ∑
j∈N 0

k

(
γj

γk

+ γk

γj

)
− 2|N 0

k | ≥ 0

(3.17)

since forx > 0, x + 1

x
≥ 2.

Case2. k ∈ ∂�n. Note that for anyη,√√√√dσ kνρ

dνρ

(η) = κ2η(k)−1 with κ :=
√(

1− ρ

ρ

)
and

(3.18)
σ kψn

ψn

= γ
1−2η(k)
k .

Thus, forη with η(k) = 0,

V (σ kη) − V (η) = ∑
j∈Nk∩�n

((
γj

γk

)1−η(j)

−
(

γk

γj

)η(j))
(3.19)

+ n(k)κ

(
1

γk

− 1
)

− n(k)
1

κ
(γk − 1).

If we extendη outside�n by 1 and recall thatγj = 1 for j /∈ �n, we can replace
the sum overNk ∩ �n by a sum overNk with an additional term−n(k)(1 − γk).
Thus,

V (σ kη) − V (η) = ∑
j∈Nk

((
γj

γk

)1−η(j)

−
(

γk

γj

)η(j))
(3.20)

+ n(k)(1− γk)

(
κ

γk

+ 1

κ
− 1

)
.

The same argument as in Case 1 implies that the sum overNk is nonnegative and
it is enough to have

κ

γk

+ 1

κ
− 1 ≥ 0 ⇐⇒ 1

γk

≥ 1

κ

(
1− 1

κ

)
,(3.21)

which is always true for anyρ ∈]0,1[ , sinceγk ≤ 1.
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Case3. k ∈ N0. Note that forη /∈ A,

T k,0ψn(η) =
{

0, if η(k) = 1,

ψ�(η), if η(k) = 0.
(3.22)

Thus, forη(k) = 0,

V (σ kη) − V (η) =
( ∑

j∈N 0
k

γj

γk

− |N 0
k |

)
− 1−

( ∑
j∈N 1

k

γk

γj

− |N 1
k |

)
.(3.23)

Now, whereasi → Pi(H0 < Hn) is harmonic (and 0/∈ Nk by definition),

∑
j∈Nk

1

γj

+ (1+ Cd) = |Nk| + 1

γk

.(3.24)

Thus, for our choice ofCd ,

V (σ kη) − V (η) ≥ 1+ Cd

1+ CdPk(H0 < Hn)
− 2≥ 0.(3.25) �

3.4. Proof of Proposition 1.4. Most of the arguments in the proof of
Proposition 1.4 follow those in Section 3.3. A new difficulty arises from the fact
that monotonicity ofLψ is not trivial anymore.

As in Section 3.3, we first need some notations to specify the{γi, i ∈ Z
d}. We

denote byPi the average over{X(i, t), t ≥ 0}, a symmetric simple random walk
trajectory starting ati. Let

H{0,0′} = inf
{
t :X(i, t) ∈ {0,0′}} and Hn = inf{t :X(i, t) ∈ �c

n}.(3.26)

We show in the Appendix that fori ∼ 0, i �= 0′, Pi (H{0,0′} < ∞) < 1/2 for d ≥ 4.
As Pi (H{0,0′} < Hn) increases toPi(H{0,0′} < ∞), we choosen large enough so
thatPi(H{0,0′} < Hn) < 1/2. Thus,

C2 := sup
k∈N0\{0′}

1

1− 2Pk(H{0,0′} < ∞)
> 0,

so that for allk ∈ N0 \ {0′},
1+ C2

1+ C2Pk(H{0,0′} < Hn)
> 2.(3.27)

We choose

∀ i ∈ Z
d γi:= 1

1+ C2Pi(H{0,0′} < Hn)
and

(3.28)
ψn(η) = 1Ac (η)

∏
i∈�n

γ
η(i)
i .
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Finally, note thati → Pi (H{0,0′} < Hn) is harmonic outside{0,0′} and that with
γ0 = γ0′ , we haveT bψn = ψn.

DefineLn,ρ
β = Ln,ρ

se + (β − 1)(T b − 1). We are now ready for the following
proof.

PROOF THAT V := Ln,ρ
β (ψn)/ψn IS INCREASING. In the case wherek is not

a neighbor of 0 or of 0′, thenV (σ kη) − V (η) has the same expression as in Case
1 or 2 of Section 3.3. We do not repeat the computations.

Case1. k ∈ N0 \ {0′}. SetN ∗
k := {j : j ∼ k, j /∈ {0,0′}}, and forη /∈ A and

η(k) = 0,

V (σ kη) − V (η) = Sk + 1{η(0)=0,η(0′)=0}
(

γ0

γk

− 1
)

(3.29)

− 1{η(0)=0,η(0′)=1} − 1{η(0)=1,η(0′)=0}
(

γk

γ0
− 1

)

with

Sk := ∑
j∈N ∗

k

((
γj

γk

)1−η(j)

− 1
)

− ∑
j∈N ∗

k

((
γk

γj

)1−η(j)

− 1
)
.(3.30)

Note that by harmonicity ∑
j∈N ∗

k

1

γj

+ 1

γ0′
= |N ∗

k | + 1

γk

.(3.31)

Now, if we setN 0
k := {j ∈ N ∗

k :η(j) = 0} andN 1
k := {j ∈ N ∗

k :η(j) = 1}, and use
(3.31), the expressionSk of (3.30) has the lower bound

Sk = ∑
j∈N 0

k

γj

γk

− |N 0
k | −

(
− ∑

j∈N 0
k

γk

γj

+ |N ∗
k | + 1− γk

γ0′

)

(3.32)

= ∑
j∈N 0

k

(
γj

γk

+ γk

γj

)
− 2|N 0

k | + γk

γ0′
− 1 ≥ γk

γ0′
− 1.

Now, in the event{η(0) = 1, η(0′) = 0}, (3.29) and (3.32) yield

V (σ kη) − V (η) ≥ γk

γ0′
− 1−

(
γk

γ0
− 1

)
= 0.(3.33)

In the event{η(0) = 0, η(0′) = 1}, we have

V (σ kη) − V (η) ≥ γk

γ0′
− 2 ≥ 0

(3.34)

since
1+ C2

1+ C2Pk(H{0,0′} < Hn)
≥ 2 [by (3.27)].
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Finally, in {η(0) = 0, η(0′) = 0}, we have

V (σ kη) − V (η) ≥ γk

γ0′
− 1+ γ0

γk

− 1 ≥ γk

γ0′
− 2≥ 0.(3.35)

Case2. k ∈ {0,0′}. We assumek = 0 andη(0) = η(0′) = 0:

V (σ kη) − V (η) = ∑
j∈N ∗

0

((
γj

γ0

)1−η(j)

− 1
)

+ (0− |N 1
0′ |)

− ∑
j∈N ∗

0

((
γ0

γj

)η(j)

− 1
)

− ∑
j∈N 1

0′

((
γ0

γj

)η(j)

− 1
)

(3.36)

= ∑
j∈N 0

0

γj

γ0
− ∑

j∈N 1
0

γ0

γj

− ∑
j∈N 1

0′

γ0

γj

+ |N 1
0 | − |N 0

0 |.

Condition (3.27) implies thatγj ≥ 2γ0 for j ∈ N ∗
0 ∪ N ∗

0′ . Thus,

V (σ kη) − V (η) ≥ 2|N 0
0 | − |N 0

0 | − (1
2|N 1

0 | − |N 1
0 |) − 1

2|N 1
0′ |

(3.37)
≥ |N 0

0 | + 1
2|N 1

0 | − 1
2(|N 0

0 | + |N 1
0 |) ≥ 0. �

PROOF THAT Lψn IS MONOTONE. We describe an order-preserving coupling
between two trajectories(ηt , η̃t ) for t ≥ 0, whenη0 � η̃0. We run the two dynamics
with the same family of Poisson processes up to the first time there is a mismatch
at 0 or 0′. Assume that this happens at the stopping timeT and thatηT (0) = 1 =
1− η̃T (0). UnderLψn , the rate for bringingη particles from any site ofN0′ to 0′ is
null. Let {τ̃i ◦ θT , i ∈ N0′ \ {0}} be the exponential times associated with the bonds
of 0′ in η̃ after timeT . Note that if η̃T (i) = 1 for the i neighbor of 0′, then the
intensity rate of(i,0′) is γ0/γi ≤ 1. Thus,

α := ∑
i∼0′
i �=0

η̃T (i)
γ0

γi

≤ 2d − 1.

Let τa be an exponential time of parameterβ − α independent of the other times.
We associate to the bondb of η at timeT the exponential time of parameterβ:

τb := min
(
τa,

{
τ̃i ◦ θT , i ∈ N0′ \ {0}, η̃T (i) = 1

})
.(3.38)

We associate to the bondb of η̃ an independent copy ofτb, but sinceη̃T (0) =
η̃T (0′) = 0, this has no effect. All remaining bonds in the two trajectories share
the same Poisson processes. Now, ifτb = τa , then there is a mismatch at 0 and
ηT +τb+ � η̃T +τb+, and we restart the same construction, with 0 and 0′ exchanging
roles. On the other hand, ifτb < τa , then the mismatch at 0 and 0′ vanishes,
ηT +τb+ � η̃T +τb+, and we proceed with the same Poisson processes on all bonds.

�
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3.5. Proof of Proposition1.6. We rely here on Lemmas 2.2 and 3.2, with
L = L

n,ρ
ab . We define

ψn(η) = 1

Zn

∏
i∈�n\{0}

γ
η(i)
i ,(3.39)

whereZn is a constant such that
∫

ψn dνρ = 1 and

γi = 1

1+ Ca,bPi (H0 < Hn)
,(3.40)

whereH0 andHn are defined in (3.12), andCa,b is a constant that will be fixed
later. We remark that

(L
n,ρ
ab )∗f = L̃f +

(
a

1− ρ
− b

ρ

) ∑
k∼0

(
ρ − η(k)

)
f,

whereL̃ is the Markov generator

L̃f = L0f +∑
k∼0

(
1−η(k)

) aρ

1− ρ
(σ kf −f )+η(k)

b(1 − ρ)

ρ
(σ kf −f ).(3.41)

Thus, as observed in [6], ifaρ = b(1−ρ), then(L
n,ρ
ab )∗ is a Markov generator and

νρ is an invariant measure (reversible ifa = b).
Sinceψ is a product function,Lψ is a monotone generator. Indeed, the intensity

rate of(i, j) depends only onη(i) andη(j), whereas the rate of spin flip at sitek
depends only onη(k). Thus, to prove the lower bound in (1.7), we are left to show
the following proof.

PROOF THAT V := (L
n,ρ
ab )∗ψn/ψn IS INCREASING. We takek ∈ �n \ {0}

with η(k) = 0 and we show thatV (σ kη) − V (η) ≥ 0. The case wherek is not
a neighbor of 0 is similar to Cases 1 or 2 in the proof of Proposition 1.3. Assume
k ∼ 0. RewritingV , we need

∑
j∈N 0

k

γj

γk

+ |N 1
k | +

(
b(1− ρ)

ρ

1

γk

− a

)

(3.42)

≥ ∑
j∈N 1

k

γk

γj

+ |N 0
k | +

(
aρ

1− ρ
γk − b

)
.

By definingγ0 = 1/(1+Ca,b), we obtain thatk → 1/γk is harmonic outside 0 and
we obtain the sufficient condition

b

(
1− ρ

ρ

1

γk

+ 1
)

− a

(
1+ ρ

1− ρ
γk

)
≥ 1− γk

γ0
.(3.43)
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For the upper bound in (1.7), we replaceψn with

ψ ′
n(η) = 1

Z′
n

∏
i∈�n\{0}

γ
−η(i)
i ,(3.44)

where Z′
n is a constant such that

∫
ψ ′

n dνρ = 1. It is easy to check that the
corresponding̃αi = (ργ −1

i )/(ργ −1
i + 1 − ρ) produces the relationship in (1.7).

In this case, the corresponding potentialV ′ should be decreasing. By the same
argument used above, we obtain the sufficient condition

a

(
1+ ρ

1− ρ

1

γk

)
− b

(
1− ρ

ρ
γk + 1

)
≥ 1− γk

γ0
.(3.45)

Now, if we setδ = b(1− ρ)/(aρ), (3.43) and (3.45) read(
δ

γk

− 1
)(

a + γk

δ
b

)
≥ − Ca,bPk(H0 > Hn)

1+ Ca,bPk(H0 < Hn)
(3.46)

and (
1

γkδ
− 1

)
(b + γkδa) ≥ − Ca,bPk(H0 > Hn)

1+ Ca,bPk(H0 < Hn)
.(3.47)

Thus, for anya andb positive, we can takeCa,b large enough so that (3.46) and
(3.47) hold. �

4. Proof of Proposition 1.8. Define�St = 1Ac exp[t1AcL]. Let us first note
that (ii) is a simple consequence of (i). Indeed, letg = dπ/dν and let f be
in L2(ν):∫ �Stf dπ

Pπ(τ > t)
=

∫ �Stf dπ

Pν(τ > t)

Pν(τ > t)∫ �Stg dν

= Eν[g(η0)f (ηt )1τ>t ]
Pν(τ > t)

(
Eν[g(ηt )1τ>t ]

Pν(τ > t)

)−1
t→∞−→

∫
f dµ

∫
g dµ∫

g dµ
.

Now, to prove (i), we first set

Ht = �Stg

Pν(τ > t)
and H = u

∫
g dµ,

and we need to show thatHt converges toH in the weak-L2(ν) topology. We
actually show that this convergence holds inL2(ν), which is equivalent to the two
facts

lim
t→∞

∫
HtH dν =

∫
H 2 dν(4.1)

and

lim
t→∞

∫
H 2

t dν =
∫

H 2dν.(4.2)
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We begin by proving (4.1). Sinceu is a simple eigenfunction inL2(ν), �St(u) =
e−λtu ν-a.s. and, by symmetry,∫

HtH dν =
∫

u�St(g) dν

∫
g dµ

Pν(τ > t)
=

∫
g�St (u) dν

∫
g dµ

Pν(τ > t)

= e−λt

Pν(τ > t)

(∫
g dµ

)2
t→∞−→

∫
u2dν

(∫
g dµ

)2

=
∫

H 2dν.

In the last step, we used (1.4). Thus, (4.1) is established.
In order now to prove (4.2), we rewrite

∫
H 2

t dν =
∫

g�S2t g dν

Pν(τ > t)2 =
∫

g�S2t g dν

(
∫ �Stg dν)2

(
∫ �Stg dν)2

Pν(τ > t)2 .

Since

lim
t→∞

∫ �Stg dν

Pν(τ > t)
=

∫
g dµ,

we are left to show that

lim
t→∞

∫
g�S2t g dν

(
∫ �Stg dν)2

=
∫

u2dν.(4.3)

Denote by(�x)x∈R the spectral projections of�L in L2
A. We know that�x = I for

x ≥ −λ. Thus, by the spectral theorem,∫
g�S2t g dν =

∫
(−∞,−λ]

e2tx d〈g,�xg〉,(4.4)

where 〈·, ·〉 in the scalar product inL2(ν). Now, we have the orthogonal
decomposition

g = 〈g, ū〉ū + ϕ with ū = u

‖u‖2

(‖ · ‖2 = ‖ · ‖L2(ν)

)
.

By assumption (H ), λ is a simple eigenvalue for�L. This implies that range(�−λ −
�−λ−) = span(u). Indeed, since the spectrum of�L is bounded from above, we
have that range(�−λ − �−λ−) ⊂ D( �L ), so that Theorem 5 on page 265 of [7]
applies andϕ = �−λ−(ϕ). In particular,ϕn := �−λ−1/nϕ, converges toϕ in
L2(ν). Define

gn = 〈g, ū〉ū + ϕn.

Since〈gn,�xgn〉 = 〈ϕn,�xϕn〉 for x < −λ and

〈gn,�−λgn〉 − 〈gn,�−λ−gn〉 = 〈gn, gn〉 − 〈ϕn,ϕn〉 = 〈g, ū〉2,
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we have ∫
(−∞,−λ]

e2tx d〈gn,�xgn〉 − e−2tλ〈g, ū〉2

(4.5)
=

∫
(−∞,−λ−1/n]

e2tx d〈ϕn,�xϕn〉 = o(e−2tλ).

Similarly,∫
�Stgn dν =

∫
(∞,−λ]

etx d〈1Ac,�xgn〉

=
∫
(∞,−λ−1/n]

etx d〈1Ac,�xϕn〉 + e−λt 〈g, ū〉〈ū,1Ac〉(4.6)

= e−λt 〈g, ū〉
‖u‖2

+ o(e−λt ).

By (4.4), (4.5) and (4.6), we have that (4.3) holds if we replaceg with gn and
therefore (1.9) holds forgn. To complete the proof, we are left to show that

lim
n→∞ sup

t

∣∣∣∣
∫

f�Stg dν

Pν(τ > t)
−

∫
f�Stgn dν

Pν(τ > t)

∣∣∣∣ = 0.(4.7)

However, ∣∣∣∣
∫

f�Stg dν

Pν(τ > t)
−

∫
f�Stgn dν

Pν(τ > t)

∣∣∣∣ ≤
∫ |(gn − g)�Stf |dν

Pν(τ > t)

≤ 1

Pν(τ > t)
‖�Stf ‖2‖gn − g‖2

≤ e−λt

Pν(τ > t)
‖f ‖2‖gn − g‖2.

The proof is concluded after recalling that

‖gn − g‖2 → 0 and sup
t

e−λt

Pν(τ > t)
< ∞ (by Fact 1.2).

5. The process P u. In this section, we study the law of the whole path
η[0,t] ≡ (ηs)s∈[0,t] under the conditional distributionPν(·|τ > t), in the limit as
t tends to infinity. Consider the stochastic process

Zt = u(η0)u(ηt )e
λt∫

u2dν
1τ>t .

Let Ft be theσ -field σ {ηs : s ∈ [0, t]}. Note that, for 0≤ s < t ,

Eν(Zt |Fs) = u(η0)e
λt1τ>s∫

u2dν
e(t−s) �Lu(ηs) = Zs, ν-a.s.,
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so that(Zt )t≥0 is a positive martingale underPν with Eν[Zt ] = 1 for anyt ≥ 0.
Thus, for anyt ≥ 0, a probability measureP u can be defined onFt by

dP u

dPν

∣∣∣∣
Ft

= Zt .

Let dµ̂ = u2dν/
∫

u2dν. For g ∈ L2(µ̂) and t ≥ s ≥ 0, we have, using
reversibility,

Eu[g(ηt )] =
∫

g(ηt )Zt dPν =
∫

eλtu�St (ug)∫
u2dν

dν =
∫

g dµ̂

and

Eu[g(ηt )|Fs] = 1

Zs

Eν[Ztg(ηt )|Fs]
(5.1)

= 1

Zs

eλtu(η0)1τ>s∫
u2dν

�St−s(ug)(ηs) = eλ(t−s)�St−s(ug)(ηs)

u(ηs)
,

where equalities are intendedP u-a.s. Therefore, underP u, the canonical process
ηt is stationary with marginal laŵµ and the transition probabilities are given by

∀ ξ ∈ Ac Eu
ξ [g(ηt )] = eλt

u(ξ)
�St(gu)(ξ).(5.2)

By the same argument in (5.1), the associated Markov family{P u
ξ , ξ ∈ �} is given

onAc by

∀ ξ ∈ Ac P u
ξ

({
η :η[0,t] ∈ �

}) = 1

u(ξ)
Eξ

[
1�

(
η[0,t]

)
u(ηt )e

λt1{τ>t}
]
,(5.3)

where� is a measurable set of paths depending only on times in[0, t]. Observe,
finally, thatP u is reversible, that is, it is invariant by time reversal.

5.1. Proof of Proposition1.9. Let ϕ = ϕ(η[0,r]) be a bounded measurable
function. By reversibility and the Markov property,

Eν

(
ϕ

(
η[at ,at+r]

)|τ > t
)

= Eν(ϕ(η[at ,at+r]1{τ>t}))
Pν(τ > t)

= Eν(Pη0(τ > at)ϕ(η[0,r])1{τ>r}Pηr (τ > t − at − r))

Pν(τ > t)

= Eν

[
dTat (ν)

dν
(η0)

dTt−at−r (ν)

dν
(ηr)ϕ

(
η[0,r]

)
1{τ>r}

]
β(t)
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with

β(t) = Pν(τ > at )Pν(τ > t − at − r)

Pν(τ > t)

= eλr Pν(τ > at )

e−λat

e−λt

Pν(τ > t)

Pν(τ > t − at − r)

e−λt−at−r
.

Now, recalling (1.4),

β(t)
t→∞−→ e−λr∫

u2dν
.(5.4)

Also, by the Cauchy–Schwarz inequality, if we setf (t, η) = (dTt (ν)/dν)(η), then∣∣∣∣
∫ (

dTat (ν)

dν
(η0)

dTt−at−r (ν)

dν
(ηr) − u(η0)u(ηr)

)
ϕ

(
η[0,r]

)
1{τ>r} dPν

∣∣∣∣
≤ |ϕ|∞

(∫
|f (at , η0) − u(η0)|u(ηr) dPν

+
∫

|f (t − at − r, ηr) − u(ηr)|u(η0) dPν

)
(5.5)

≤ |ϕ|∞
((∫

u2(ηr ) dPν

∫
|f (at , η0) − u(η0)|2 dPν

)1/2

+
(∫

u2(η0) dPν

∫
|f (t − at − r, ηr) − u(ηr)|2 dPν

)1/2)

≤ |ϕ|∞‖u‖2
(‖f (at , ·) − u‖2 + ‖f (t − at − r, ·) − u‖2

)
.

This last expression goes to 0 ast tends to infinity. Thus, gathering (5.4) and (5.5),
we obtain

Eν

(
ϕ

(
η[at ,at+r]

)|τ > t
)

t→∞−→ Eν

[
u(η0)u(ηr)1{τ>r}ϕ

(
η[0,r]

)] eλr∫
u2dν

= Eu
(
ϕ

(
η[0,r]

))
.

REMARK 5.1. By using arguments as those in Section 4, we can show that,
for

0< at < bt < t with lim
t→∞ at = lim

t→∞(bt − at) = lim
t→∞(t − bt) = ∞,

the pathsη[at ,at+r] andη[bt ,bt+r] decouple with respect toPν(·|τ > t) ast → ∞,
that is,

lim
t→∞Eν

[
ϕ

(
η[at ,at+r]

)
ψ

(
η[bt ,bt+r]

)|τ > t
] = Eu

(
ϕ

(
η[0,r]

))
Eu

(
ψ

(
η[0,r]

))
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for ϕ,ψ bounded and measurable. In particular, the following generalization
of (1.9) holds:

lim
t→∞

Eν[f (ηat )g(ηbt )1{τ>t}]
Pν(τ > t)

=
∫

f dµ̂

∫
g dµ̂.(5.6)

REMARK 5.2. Concerning the asymptotics at the boundary of[0, t], we have
the following result. Forr > 0, the distribution of{ηs, s ∈ [0, r]} with respect to
Pν(·|τ > t) converges to the restriction to the time interval[0, r] of P u

µ ≡ ∫
P u

ξ dµ,
while the distribution of{ηs, s ∈ [t − r, t]} with respect toPν(·|τ > t) converges
to the time reversal of the restriction to the time interval[0, r] of P u

µ ≡ ∫
P u

ξ dµ.
Indeed, by reversibility, the two statements above are equivalent, so we prove only
the first one. The argument is identical to that in Proposition 1.9. Forϕ = ϕ(η[0,r])
bounded and measurable, we have

Eν

[
ϕ

(
η[0,r]

)|τ > t
] = Eν[ϕ(η[0,r])1{τ>r}Pηr (τ > t − r)]

Pν(τ > t)

= Eν

[
ϕ(η[0,r])1{τ>r}

dTt−r (ν)

dν
(ηr )

]
Pν(τ > t − r)

Pν(τ > t)

t→∞−→ Eν

[
ϕ(η[0,r])1{τ>r}u(ηr)e

λr] = Eu
µ

[
ϕ

(
η[0,r]

)]
.

APPENDIX

We show in this appendix that, with the notation of Section 3.4, ifk is a neighbor
of 0, k �= 0′, then in dimensionsd ≥ 4,

Pk

(
H{0,0′} < ∞)

< 1
2, whereH� = inf{n > 0 :Sn ∈ �},

where� ⊂ Z
d and{Sn,n ∈ N} is a random walk. First, note that

Pk

(
H{0,0′} < ∞) ≤ Pk(H0 < ∞) + Pk(H0′ < ∞).

We will show that (i)Pk(H0′ < ∞) ≤ Pk(H0 < ∞) and that (ii)Pk(H0 < ∞) ≤
P0(H0 < ∞). Assume (i) and (ii) hold. IfR is the number of returns to the origin,
we have the classical equality

P0(H0 < ∞) = E0[R]
1+ E0[R]

(
where we recall thatE0[R] =

∞∑
n=2

P0(Sn = 0)

)
.

Finally, we conclude, using the computation in [8], thatE0[R] < 0.25 ford ≥ 4.
Now, we show (i). To each path starting fromk and touching 0′, we associate a

path starting fromk and touching 0. Let{Sn,n ∈ N} be a path withS0 = k, let

ν = inf{n > 0 :Sn − Sn−1 = −→
00′}
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and note thatH0′ > ν. Define {S′
n, n ∈ N} as follows: if ν = ∞, thenS′

n = Sn

for all n; otherwise, letS′
n = Sn for n < ν andS′

n = Sn+1 − −→
00′ for n ≥ ν. Let

H ′
0 = inf{n :S′

n = 0}. Note that if H0′ < ∞, then Sν−1 = 0. Thus,(Sn, S
′
n) is

a coupling whereH ′
0 ≤ H0′ , and where each marginal is a random walk. Thus,

(i) holds.
Now, point (ii). We coupleSn with a pathS̃n starting at 0 and such that ifSn = 0,

then S̃n+1 = 0. For i, j two sites that are neighbors of 0, letRi,j be the rotation
with center 0 which sends

−→
0i onto

−→
0j . Let X0 be a uniform choice of a site inN0,

and define

S̃1 = X0 and forn ≥ 1, S̃n+1 = X0 + Rk,X0(Sn).

This definition ensures that{S̃n, n ∈ N} has independent increments uniformly
in N0 and such that ifSn = 0, thenS̃n+1 = 0. Thus, (ii) follows easily.
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