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A GENERAL NONCONVEX LARGE DEVIATION RESULT II

BY A. DE ACOSTA

Case Western Reserve University

We refine the conditions for the lower bound in an abstract large
deviation result with nonconvex rate function we had previously introduced.
We apply the results to certain stochastic recursive schemes.

1. Introduction. In the recent paper [5], we introduced an abstract scheme
designed to handle a broad class of large deviation problems in which the random
variables take values in a topological vector spaceE and the rate function is not
convex. A rough description of our scheme is as follows. LetE be as above, letE∗
be its dual space and let{Yn}n∈N beE-valued random vectors. Assume:

(i) For certain functions�n :E × E∗ → R, all n ∈ N , all ξ ∈ E∗,

E exp[〈Yn, ξ 〉 − �n(Yn, ξ)] = 1.

(ii) For a certain function� :E × E∗ → R, all x ∈ E, all ξ ∈ E∗,

lim
n

n−1�n(x,nξ) = �(x, ξ).

(iii) {L(Yn)}n∈N is exponentially tight.

Then under suitable regularity conditions on�, {L(Yn)}n∈N satisfies the large
deviation principle with rate function�∗(x, x), where forx, y ∈ E,

�∗(x, y) = sup
ξ∈E∗

[〈y, ξ 〉 − �(x, ξ)].

Precise conditions under which the scheme is valid are given in Theorems 2.1
(upper bound) and 2.2 (lower bound) of [5].

While most conditions in Theorems 2.1 and 2.2 of [5] are formulated directly
in terms of � and appear to be reasonably simple to verify in applications,
condition (11) of Theorem 2.2 of [5]—an assumption on�∗ involving sub-
differentials—is in general more difficult to check (see the beginning of the proof
of Theorem 2.2 below for a detailed statement of this condition). As is well known,
a change of measure in some form is crucial in many proofs of large deviation
lower bounds. The purpose of the condition is to ensure that for every pointx
in the domain of the rate function, there exists a nearby “smooth point”y such
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that the function values are close and there exists a suitable change of measure
centered aty. If E is a Banach space and� does not depend onx, the abundance
of “smooth points” can be obtained from the Brondsted–Rockafellar theorem (see,
e.g., [1]) and has been used, for example, in [4] in the proof of lower bounds with
the convex rate function�∗. Condition (11) of Theorem 2.2 in [5] may be regarded
as a “nonconvex” version of the conclusion of the Brondsted–Rockafellar theorem.

The main objective of the present paper is to refine the abstract lower
bound resultin [5] by providing sufficient conditions for the subdifferentiability
assumption in [5] which do not involve subdifferentials and are substantially easier
to verify. What we prove in this context may be regarded as a “nonconvex” version
of the Brondsted–Rockafellar theorem, guaranteeing the existence of an abundance
of “smooth points.” The tools used in the proof are a result of Zabell [17] on
Mosco convergence of convex functions in locally convex spaces, the Schauder–
Tychonoff fixed point theorem (see, e.g., [14]) and our recent result on dominating
points of convex open sets in the context of general convex functions [6]. This
objective is pursued in Section 2, Theorem 2.2. In Theorem 2.1 we present a simple
improvement of the upper bound result in [5] in the framework of the present paper.

In Section 3 we present some applications of Theorems 2.1 and 2.2. In
Theorem 3.1 we give a new approach to the study of large deviations for a recursive
scheme based on an i.i.d. sequence of random vector fields, a question considered
by Dupuis and Ellis [7] [see part 1 of Remark 3.2 ]. In Theorem 3.11 we consider
the case when the recursive scheme is a stochastic Euler-type polygonal scheme
for a dynamical system (see Remark 3.13).

We close this introduction with some remarks about the connection of our
abstract scheme to certain items in the literature. A number of results on large
deviations for trajectories of Markov processes [7, 9, 16, 15] involve nonconvex
rate functions which are in fact of the form�∗(x, x) described above, although this
aspect is not mentioned and� is not introduced. We showed in [5], Theorem 3.1,
how our scheme applies to large deviations for the trajectories of a broad class of
Markov processes, with the rate function initially given in the form�∗(x, x) and
subsequently identified in a classical integral form. (Incidentally, the proof of that
theorem can be simplified using the results of the present paper.) Our scheme is
also related to ideas developed for the study of large deviations for semimartingales
in [11] and [13], which present a general framework for the problem. However, the
full details of the technical connection between this development and our scheme
have yet to be elucidated; this remark applies as well to the Markov case mentioned
above.

2. The general large deviation results. Throughout the section we assume

E is a Banach space,E is theσ -algebra generated by the balls,F is
a subspace ofE∗ such that〈 · , ξ 〉 is E -measurable for everyξ ∈ F .
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We have adopted this framework, which is less general than that in [5], in order
to maintain some consistency in the presentation; in fact, it is only the proof
of the lower bound that requires it. Two important cases are covered by these
assumptions:

1. E = C([0,1],Rd),E = Borelσ -algebra,F = M([0,1],Rd), the space of finite
Rd -valued vector measures on[0,1].

2. E = D([0,1],Rd) endowed with the uniform norm,E = σ -algebra generated
by the evaluation maps,F = M([0,1],Rd).

The setting 2 was used in the application to stochastic equations in [5], and
previously in [4].

For a function� :E × F → R, we define, forx, y ∈ E,

�∗(x, y) = sup
ξ∈F

[〈y, ξ 〉 − �(x, ξ)].

In what follows,{an}n∈N is a positive sequence with limn an = ∞.

THEOREM 2.1. Let �n,� :E × F → R be such that:

1. For all ξ ∈ F,�n(·, ξ) is E -measurable.
2. For all ξ ∈ F,�(·, ξ) is E -measurable, continuous and satisfies �(x,0) = 0

for all x ∈ E.
3. For all ξ ∈ F , all compact sets K ⊂ E,

bn(K, ξ) � sup
x∈K

|a−1
n �n(x, anξ) − �(x, ξ)| → 0 as n → ∞.

For each n ∈ N, let Yn be an E-valued, E -random vector defined on
(�n,An,Pn) and assume:

4. For all n ∈ N, ξ ∈ F ,

En exp[〈Yn, ξ 〉 − �n(Yn, ξ)] = 1.

5. {LPn(Yn)}n∈N is exponentially tight.

Then if 1–4 are satisfied, for every compact set K ⊂ E,

lim sup
n

a−1
n logP{Yn ∈ K} ≤ − inf

x∈K
�∗(x, x),

and if 1–5 are satisfied, for every A ∈ E ,

lim sup
n

a−1
n logP{Yn ∈ A} ≤ − inf

x∈	A
�∗(x, x).

We omit the proof, which involves an easy modification of the proof of
Theorem 2.1 of [5]. Note that condition 3 improves the corresponding assumption
in Theorem 2.1 of [5]: for allξ ∈ F ,

sup
x∈E

|a−1
n �n(x, anξ) − �(x, ξ)| → 0 asn → ∞.
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Moreover, compared to Theorem 2.1 of [5], we are taking hereZn = Yn and
assumption 7 there is unnecessary.

For the main result, the large deviation lower bound, we further specify the
framework as follows:

F = E∗
0 whereE0 is a closed separable subspace ofE.

We need this assumption to ensure the applicability of the result on Mosco
convergence in [17]. Note that the cases 1 and 2 mentioned above are still covered;
in case 2, we takeE0 = C([0,1],Rd).

Recall that a functionφ :F → R is E0-Gâteaux differentiable at ξ ∈ F if there
exists a point�φ(ξ) ∈ E0 such that, for allη ∈ F ,

〈�φ(ξ), η〉 = lim
t→0

t−1[φ(ξ + tη) − φ(ξ)].
Throughout the paper, when the gradient operator is applied to a function of two
variables, it will refer to differentiation with respect to the second variable.

We use the notation∂�∗(x, y) for the subdifferential of the convex function
�∗(x, ·) aty ∈ E (for the definition of subdifferential, see, e.g., [8]).

Forg :E → R+, a ≥ 0, let L(g, a) = {x ∈ E :g(x) ≤ a}.

THEOREM 2.2. Assume that the hypotheses of Theorem 2.1 hold, and
furthermore:

6. For all ξ ∈ F ,

lim sup
n

sup
x∈E

|a−1
n �n(x, anξ)| < ∞.

7. For every x ∈ E such that �∗(x, x) < ∞, there exists a neighborhood U of x

such that, for all a ≥ 0,⋃
y∈U

L
(
�∗(y, ·), a) is a relatively compact subset of E0.

8. If xn → x in E0 and ξn →
w∗ ξ in F , then

�(x, ξ) ≤ lim inf
n

�(xn, ξn).

9. For all x ∈ E,�(x, ·) is convex and E0-Gâteaux differentiable on F .
Moreover, for all ξ ∈ F,x ∈ E0, φ

′
x,ξ is continuous, where for t ∈ R,

φx,ξ (t) � �(x, tξ).

10. For all ξ ∈ F , the equation x = ��(x, ξ) has at most one solution in E0.
11. For all x0 such that �∗(x0, x0) < ∞, for every ε > 0, there exists y0 ∈ B(x0, ε)

such that:
(a) �∗(·, y0) is upper semicontinuous at y0 on E0.
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(b) �∗(y0, y0) ≤ �∗(x0, x0) + ε.
Then for every A ∈ E ,

lim inf
n

a−1
n logP{Yn ∈ A} ≥ − inf

x∈A◦ �∗(x, x).

Moreover, the level sets {x ∈ E :�∗(x, x) ≤ l}, l ≥ 0, are compact.

REMARK 2.3. It is easily shown that, in the presence of the first part of
assumption 9, the condition “xn → x in E0 implies�(xn, ·) converges to�(x, ·)
uniformly over the balls inF ” suffices for 8.

We will need the following two preliminary results.

LEMMA 2.4. Let V be a separable Banach space. Let {φj }j∈N,φ be proper
w∗-lower semicontinuous convex functions on V ∗, and assume:

(i) φj(0) = φ(0) = 0 for all j .
(ii) If ξj →

w∗ ξ , then φ(ξ) ≤ lim inf j φj (ξj ).

Then, for every x ∈ V , there exists a sequence {xj }j∈N ⊂ V,xj → x such that
lim supj φ∗

j (xj ) ≤ φ∗(x).

This is a particular case of Theorem 1.2 of [17] (the spacesE andF of [17] are
hereE = V ∗,F = V ).

Let us recall the definition of dominating point [6]. We state it here in our present
Banach space framework.

DEFINITION 2.5. LetV be a Banach space and letφ :V ∗ → 	R be a convex
function. LetD be an open convex subset ofV such thatD ∩ domφ∗ is nonempty.
A point x0 ∈ E is a dominating point for(D,φ) if:

1. x0 ∈ ∂D.
2. φ∗(x0) = infx∈D φ∗(x).
3. There existsξ0 ∈ E∗ such thatD ⊂ {x : 〈x, ξ0〉 > 〈x0, ξ0〉} and φ∗(x0) =

〈x0, ξ0〉 − φ(ξ0).

LEMMA 2.6. Let V,φ be as in Definition 2.5.Assume:

(i) φ(0) = 0.
(ii) For all a ≥ 0, L(φ∗, a) is compact.
(iii) φ is V -Gâteaux differentiable on V ∗ and, for all ξ ∈ V ∗, φ′

ξ is continuous,
where for t ∈ R,

φξ (t) � φ(tξ).
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Let D be an open convex subset of V such that D ∩ domφ∗ is nonempty and
infx∈D φ∗(x) > 0. Then:

(a) There is a unique point x0 satisfying 1 and 2 of Definition 2.5.
(b) There exists ξ0 ∈ V ∗ such that ξ0 satisfies 3 of Definition 2.5and

�φ(ξ0) = x0.

This is a particular case of Theorem 2.3 of [6]. A point that should be
emphasized is that under the assumptions of Lemma 2.6, the unique pointx0 in (a)
is automatically a dominating point.

PROOF OFTHEOREM 2.2(a). The key part of the proof is to show that under
the present hypotheses, condition (11) of Theorem 2.2 of [5] holds. Letx0 ∈ E

be such that�∗(x0, x0) < ∞. We must show: for everyε > 0, there existsx1 ∈ E

such thatx1 ∈ B(x0, ε), ∂�∗(x1, x1) �= φ and

�∗(x1, x1) < �∗(x0, x0) + ε.(2.1)

Let y0 be as in assumption 11 of the present theorem. Then by assumptions
7 and 11, there existsδ0 > 0 such that

�∗(x, y0) ≤ �∗(y0, y0) + 1 for x ∈ B(y0, δ0),(2.2)

⋃{L(�∗(y, ·), a) :y ∈ B(y0, δ0)}(2.3)

is a relatively compact subset ofE0 for all a ≥ 0.
For 0< δ < δ0, x ∈ B(y0, δ0), let

α(x, δ) = inf{�∗(x, y) :y ∈ B(y0, δ)},
β(δ) = sup{α(x, δ) :x ∈ B(y0, δ)}.

It follows from (2.2) thatβ(δ) ≤ �∗(y0, y0) + 1. For 0< δ < δ0, let

Kδ = co
(⋃{

L
(
�∗(x, ·), β(δ)

) ∩ B(y0, δ) :x ∈ B(y0, δ)
})

,

where coA is the closed convex hull ofA ⊂ E. Then by (2.3) and the fact that
E0 is a Banach space,Kδ is a compact convex subset ofE0. We define the map
ρδ :Kδ → Kδ by

ρδ(x) =
{

dominating point for
(
B(y0, δ),�(x, ·)), if α(x, δ) > 0,

��(x,0), if α(x, δ) = 0.

Then for allx ∈ Kδ, z ∈ B(y0, δ),

ρδ(x) ∈ Kδ and �∗(x,ρδ(x)
)≤ �∗(x, z).(2.4)
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In the first caseρδ(x) exists and is unique on account of Lemma 2.6, assumption 9
and (2.3), and (2.4) follows from Definition 2.5 and the definition ofKδ.

In the second case, note first that�∗(x,��(x,0)) = 0. Also, by the com-
pactness ofL(�∗(x, ·),1), there existsy ∈ B(y0, δ) such that�∗(x, y) = 0. By
assumption 9 and Lemma 2.4 of [6], we must havey = ��(x,0), and there-
fore ρδ(x) satisfies (2.4).

We claim now:

ρδ is continuous.(2.5)

Let x(n)(n ∈ N), x ∈ Kδ,x(n) → x. Given a subsequence{nk, k ∈ N} of N, by the
compactness ofKδ there is a subsequence{x(nkj

), j ∈ N} of {x(nk), k ∈ N} and a
pointy ∈ Kδ such that

ρδ

(
x
(
nkj

))→ y.

Since�∗ is jointly semicontinuous, we have

�∗(x, y) ≤ lim inf
j

�∗(x(nkj

)
, ρδ

(
x
(
nkj

)))
.(2.6)

Let z ∈ B(y0, δ). By Lemma 2.4 withV = E0,V
∗ = F,φj = �(x(nkj

), ·),
φ = �(x, ·) and by assumptions 8 and 9 (note that the latter implies thew∗-lower
semicontinuity ofφj andφ), there exists a sequence{zj , j ∈ N} which converges
to z and satisfies

lim sup
j

�∗(x(nkj

)
, zj

)≤ �∗(x, z).(2.7)

Sincezj ∈ B(y0, δ) for sufficiently largej , we have by (2.4), (2.6) and (2.7),

�∗(x, y) ≤ �∗(x, z) for all z ∈ B(y0, δ).

If �∗(x, y) > 0, then�∗(x(nkj
), ρδ(x(nkj

))) > 0 for sufficiently largej and
ρδ(x(nkj

)) ∈ ∂B(y0, δ) (see Remark 2.2(2) of [6]), and it follows that
y ∈ ∂B(y0, δ). Thereforey is the dominating point for(B(y0, δ),�(x, ·)); that
is, y = ρδ(x). If �∗(x, y) = 0, theny = ��(x,0) = ρδ(x) by Lemma 2.4 of [6].
We have shown: for every subsequence{nk, k ∈ N} of N, there exists a subse-
quence{ρδ(x(nkj

)), j ∈ N} of {ρδ(x(nk)), k ∈ N} such thatρδ(x(nkj
)) → ρδ(x).

This proves (2.5).
By the Schauder–Tychonoff fixed point theorem (see, e.g., [14], page 143), there

existsyδ ∈ Kδ such thatρδ(yδ) = yδ. By Lemma 2.6, there existsξδ ∈ F such that

��(yδ, ξδ) = yδ,

which impliesξδ ∈ ∂�∗(yδ, yδ). Sinceyδ = ρδ(yδ) ∈ B(y0, δ), we haveyδ → y0
asδ → 0, and by assumption 11,

lim sup
δ

�∗(yδ, yδ) ≤ lim sup
δ

�∗(yδ, y0) ≤ �∗(y0, y0).

Taking nowx1 = yδ for sufficiently smallδ, (2.1) is satisfied.
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(b) We will now show that under (2.1) and assumptions 1–6, 9 and 10, the proof
of Theorem 2.2 of [5] goes through. Proceeding as in [5], page 490, we have: forK

compact,

sup
y∈V ∩K

[〈y, anξ 〉 − �n(y, anξ)] ≤ an

(
bn(K, ξ) + �∗(x0, x0) + ε

)
.

Therefore,

Pn{Yn ∈ A} ≥ Pn{Yn ∈ V ∩ K}
≥ exp[−an(bn(K, ξ) + �∗(x0, x0) + ε)]

×
∫

IV ∩K(Yn)exp[〈Yn, anξ 〉 − �n(Yn, anξ)]dPn.

As in [5], in order to obtain the lower bound, it is enough to show that
limn supPn,ξ {Yn ∈ (V ∩ K)c} = 0, or

lim sup
n

Pn,ξ {Yn ∈ V c ∩ K} = 0,(2.8)

lim sup
n

Pn,ξ {Yn ∈ Kc} = 0.(2.9)

Fory ∈ E,η ∈ F , let

�n,ξ (y, η) = �n(y, anξ + η) − �n(y, anξ),

�ξ (y, η) = �(x, ξ + η) − �(x, ξ).

Then by assumption 4, for allη ∈ F ,

En,ξ exp[〈Yn, η〉 − �n,ξ (Yn, η)] = 1.(2.10)

From assumption 3, it easily follows that for every compact setK ⊂ E,η ∈ F ,

lim
n

sup
x∈K

|a−1
n �n,ξ (x, anη) − �ξ(x, η)| = 0.

By Theorem 2.1, for any compact setK ⊂ E,

lim sup
n

a−1
n logPn,ξ {Yn ∈ V c ∩ K} ≤ − inf{�∗

ξ (x, x) :x ∈ V c ∩ K}.(2.11)

As in [5], condition 10 implies that the expression in the right-hand side of (2.11)
is strictly negative, which proves (2.8). Therefore the proof will be complete if
we show that (2.9) holds for a suitable choice ofK . In fact, {LPn,ξ

(Yn)}n∈N is
exponentially tight, to wit

Pn,ξ {Yn ∈ Kc}
=
∫

IKc(Yn)exp[〈Yn, anξ 〉 − �n(Yn, anξ)]dPn

≤ (Pn{Yn ∈ Kc})1/2
(∫

exp[〈Yn,2anξ 〉 − 2�n(Yn, anξ)]dPn

)1/2

≤ (Pn{Yn ∈ Kc})1/2 exp
[

sup
x∈E

|�n(x,2anξ)| + 2 sup
x∈E

|�n(x, anξ)|
]
,

(2.12)
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and it follows from (2.12) and assumptions 5 and 6 that, givenb > 0, K may be
chosen so that

lim sup
n

a−1
n logPn,ξ {Yn ∈ Kc} < −b.

The compactness of the level sets of the rate function follows from exponential
tightness and the lower bound by a well-known argument.�

3. Application to a stochastic recursive scheme. Let µ : Rd × B(Rd) →
[0,1] be a Markov kernel. We will consider an i.i.d. sequence of random vector
fields with Markov kernelµ; that is, letFj : Rd × � → Rd, j ∈ N, be a sequence
of measurable maps such that:

(3.1) For allj ∈ N, x ∈ Rd,L(Fj (x)) = µ(x, ·)[hereFj (x) ≡ Fj (x, ·)].
(3.2) If j, k ∈ N, j �= k, then{Fj (x) :x ∈ Rd} and{Fk(x) :x ∈ Rd} are indepen-

dent and have the same distribution.

Forα ∈ Rd, x ∈ Rd , let G : Rd × Rd → R be defined by

G(x,α) = log
∫

exp(〈y,α〉)µ(x, dy).

We shall consider the following conditions:

(3.3) For eachα ∈ Rd , supx∈Rd G(x,α) < ∞.
(3.4) G is continuous.
(3.5) For eachr > 0, the family of functions{�G(·, α) :α ∈ 	B(0, r)} satisfies

a uniform Lipschitz condition on	B(0, r). That is, there exists a constant
D(r) > 0 such that, for allα,x, y ∈ 	B(0, r),

‖ � G(y,α) − �G(x,α)‖ ≤ D(r)‖y − x‖,
where ‖ · ‖ is the Euclidean norm onRd, 	B(0, r) = {x ∈ Rd :‖x‖ ≤ r}
and�G(y,α) is the gradient ofG(y, ·), evaluated atα [�G(y,α) exists
by (3.3)].

(3.6) For everyα ∈ Rd , everyb > 0, there existsτ > 0 such that

sup{E exp[τ (‖y−z‖)−1〈F1(y)−F1(z), α〉] :y �= z,‖y‖ ≤ b,‖z‖ ≤ b} < ∞.

For fixedx ∈ Rd, n ∈ N, we define recursively, for 0≤ k ≤ n, the Rd -valued
r.v.’s

Xx
n,0 = x,

Xx
n,k = Xx

n,k−1 + n−1Fk(X
x
n,k−1), k ≥ 1,

(3.7)

so that

Xx
n,k = x + n−1

k∑
j=1

Fj (X
x
n,j−1), k ≥ 1.(3.8)
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Let T = [0,1], and let{Y x
n }n∈N be theC(T,Rd)-valued random vectors given by

Y x
n (t) =




Xx
n,k, if t = k/n, k = 0, . . . , n,

defined by linear interpolation on
[
k − 1

n
,
k

n

]
, k = 1, . . . , n

= Xx
n,[nt] + (nt − [nt])(n−1F[nt]+1

(
Xx

n,[nt]
))

,

where[·] is the integer part function.
Fory, z ∈ Rd , let

G∗(y, z) = sup
α∈Rd

[〈z,α〉 − G(y,α)].

Let C be the Borelσ -algebra ofC(T,Rd).

THEOREM 3.1. Assume (3.3)–(3.6). Then {L(Y x
n )}n∈N satisfies the large

deviation principle on C(T,Rd) with rate function

I x(f ) =




∫
T

G∗(f (s), f ′(s)
)
ds, if f (0) = x

and f is absolutely continuous,

∞, otherwise.

More specifically, under conditions (3.3)and (3.4), the upper bound holds:

for all A ∈ C, lim sup
n

n−1 logP{Y x
n ∈ A} ≤ − inf{I x(f ) :f ∈ 	A },

and under conditions (3.3)–(3.6) the lower bound holds:

for all A ∈ C, lim inf
n

n−1 logP{Y x
n ∈ A} ≥ − inf{I x(f ) :f ∈ A0}.

Moreover, under conditions (3.3)and (3.4),the level sets

L(Ix, �) � {f ∈ C(T,Rd ) : I x(f ) ≤ �}(� ≥ 0) are compact.

REMARK 3.2. 1. The large deviation principle for{L(Y x
n )}n∈N is presented

in [7], Theorem 6.3.3, by a different approach, under condition (3.3), an
assumption that together with (3.3) implies (3.4), and either (i) an assumption on
the supports of the measuresµ(x, ·) or (ii) a special Lipschitz-type assumption
on G∗. The relation between (i) or (ii) and conditions (3.5), (3.6) is not
immediately clear.

2. Conditions (3.3)–(3.6) are hypotheses on the data of the problem—in the
sense that (3.3)–(3.5) are assumptions on the Laplace transforms of{F(y) :
y ∈ Rd} and (3.6) is an assumption on the Laplace transforms of{F(y) −
F(z) :y, z ∈ Rd}—and not on G∗. Condition (3.5) is used only to verify
condition 10 of Theorem 2.2. Condition (3.6) is used only in Lemma 3.7.
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3. In the broad class of cases presented later in Theorem 3.11, conditions
(3.3)–(3.6) are quite easy to verify.

For the proof of Theorem 3.1, we need several lemmas. The first one, which
is elementary, gives a useful expression for functions onT defined by linear
interpolation.

LEMMA 3.3. For n ∈ N, i = 1, . . . , n, let

ϕni(t) = (nt − (i − 1)
)
I[(i−1)/n,i/n)(t) + I[i/n,1](t), t ∈ T .

Given ai ∈ Rd, i = 0, . . . , n, let

f (t) =



ai, for t = i/n, i = 0, . . . , n,

defined by linear interpolation on
[
i − 1

n
,

i

n

]
, i = 1, . . . , n.

Then for all t ∈ T ,

f (t) = a0 +
n∑

i=1

(ai − ai−1)ϕni(t).(3.9)

PROOF. For t ∈ [ j−1
n

,
j
n
), j = 1, . . . , n, we have

ϕni(t) =



1, if i < j ,(
nt − (j − 1)

)
, if i = j ,

0, if i > j .

Therefore, ifg(t) is the right-hand side of (3.9), we have fort ∈ [ j−1
n

,
j
n
), j = 1,

. . . , n,

g(t) = a0 +
j−1∑
i=1

(ai − ai−1) + (aj − aj−1)
(
nt − (j − 1)

)

= aj−1 + (aj − aj−1)
(
nt − (j − 1)

)
andg(1) = an. But this is precisely the definition off . �

It will be convenient for the proof of the lower bound to introduce a perturbation
of {Y x

n }, as follows. Leta ≥ 0 and let{Gj }j∈N be an independent sequence of
Rd -valued r.v.’s withL(Gj) = γd(j ∈ N), whereγd is the canonical Gaussian
measure onRd . We assume also that{Gj }j∈N and {Fj(x) : j ∈ N, x ∈ Rd} are
independent.

For fixedx ∈ Rd, n ∈ N, define recursively for 0≤ k ≤ n theRd -valued r.v.’s

X
x,a
n,0 = x,

X
x,a
n,k = X

x,a
n,k−1 + n−1(Fk(X

x,a
n,k−1) + aGk

)
, k ≥ 1,
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so that

X
x,a
n,k = x + n−1

(
k∑

j=1

[Fj (X
x,a
n,j−1) + aGj ]

)
, k ≥ 1.

Let Y x,a
n , n ∈ N, be theC(T,Rd)-valued random vectors given by

Y x,a
n (t) =




X
x,a
n,k , if t = k/n, k = 0, . . . , n,

defined by linear interpolation on
[
k − 1

n
,
k

n

]
, k = 1, . . . , n,

= X
x,a
n,[nt] + (nt − [nt])(n−1[F[nt]+1

(
X

x,a
n,[nt]
)+ aG[nt]+1

])
.

Let M(T,Rd) be the space ofRd -valued vector measures defined on the Borel
σ -algebra ofT . Forf ∈ C(T,Rd), λ ∈ M(T,Rd), let

〈f,λ〉 �
∫
T
〈f,dλ〉.

LEMMA 3.4. For x ∈ Rd, f ∈ C(T,Rd), λ ∈ M(T,Rd), let

�x,a
n (f,λ) = 〈x,λ(T )〉 +

n∑
i=1

Ga

(
f

(
i − 1

n

)
, n−1
∫

ϕni dλ

)
,

where {ϕni} are as in Lemma 3.3and for y,α ∈ Rd ,

Ga(y,α) = G(y,α) + a2

2
‖α‖2.(3.10)

Then for all n ∈ N, λ ∈ M(T,Rd), a ≥ 0,

E exp[〈Y x,a
n , λ〉 − �x,a

n (Y x,a
n , λ)] = 1.

PROOF. By Lemma 3.3, we can write, fort ∈ T ,

Y x,a
n (t) = x +

n∑
i=1

Zniϕni(t),(3.11)

whereZni = n−1[Fi(X
x,a
n,i−1) + aGi].

Therefore

〈Y x,a
n , λ〉 = 〈x,λ(T )〉 +

n∑
i=1

〈
Zni,

∫
ϕni dλ

〉
.

Let

Uk =
k∑

i=1

〈
Zni,

∫
ϕni dλ

〉
,

Vk =
k∑

i=1

Ga

(
X

x,a
n,i−1, n

−1
∫

ϕni dλ

)
;
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then

〈Y x,a
n , λ〉 − �x,a

n (Y x,a
n , λ) = Un − Vn.

Let Fk = σ({Fj(y) : j ≤ k, y ∈ Rd} ∪ {Gj : j ≤ k}), k ≥ 1. Then

E exp[Un − Vn]
= EE(exp[Un − Vn]|Fn−1)

= E
{

exp
(
Un−1 − Vn−1 − Ga

(
X

x,a
n,n−1, n

−1
∫

ϕnn dλ

))

× E
[
exp
〈
Znn,

∫
ϕnn dλ

〉∣∣∣Fn−1

]}
,

(3.12)

sinceUn−1,Vn−1 andX
x,a
n,n−1 areFn−1-measurable. Next, since{Fn(y) :y ∈ Rd}∪

{Gn} is independent ofFn−1 and{Fn(y) :y ∈ Rd} is independent ofGn, we have

E
[
exp
〈
Znn,

∫
ϕnn dλ

〉∣∣∣Fn−1

]

= g(X
x,a
n,n−1)

= exp
[
G

(
X

x,a
n,n−1, n

−1
∫

ϕnn dλ

)
+ a2n−2

2

∥∥∥∥
∫

ϕnn dλ

∥∥∥∥
2]

= exp
[
Ga

(
X

x,a
n,n−1, n

−1
∫

ϕnn dλ

)]
,

(3.13)

where

g(y) = E exp
〈
Fn(y) + aGn,n

−1
∫

ϕnn dλ

〉
.

By (3.12) and (3.13),

E exp[Un − Vn] = E exp[Un−1 − Vn−1].
Iterating this procedure, we obtain

E exp[Un − Vn]
= E exp[U1 − V1]
= exp

[
−Ga

(
x,n−1

∫
ϕn1 dλ

)]
E exp
〈
F1(x) + aG1, n

−1
∫

ϕn1 dλ

〉

= 1. �

LEMMA 3.5. For x ∈ Rd, f ∈ C(T,Rd), λ ∈ M(T,Rd), let

�x,a(f,λ) = 〈x,λ(T )〉 +
∫
T

Ga(f (s), λ([s,1]))ds,
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where Ga is given by (3.10). Then for every compact set K ⊂ C(T,Rd), every
λ ∈ M(T,Rd),

lim
n

sup
f ∈K

|n−1�x,a
n (f,nλ) − �x,a(f,λ)| = 0.

PROOF. For allf ∈ C(T,Rd), λ ∈ M(T,Rd),∣∣n−1�x,a
n (f,nλ) − �x,a(f,λ)

∣∣
=
∣∣∣∣∣n−1

n∑
j=1

Ga

(
f

(
j − 1

n

)
,

∫
ϕnj dλ

)
−
∫
T

Ga(f (s), λ([s,1]))ds

∣∣∣∣∣
≤
∫
T

∣∣Ga
(
fn(s), ϕn(s)

)− Ga
(
f (s), ϕ(s)

)∣∣ds,

(3.14)

where

fn(s) =
n∑

j=1

f

(
j − 1

n

)
I[(j−1)/n,j/n)(s) + f (i) I{i}(s),

ϕn(s) =
n∑

j=1

(∫
ϕnj dλ

)
I[(j−1)/n,j/n)(s),

andϕ(s) = λ([s,1]). Clearly,

‖fn − f ‖∞ ≤ w(f,n−1),(3.15)

wherew is the usual modulus of continuity: forg ∈ C(T,Rd), δ > 0,

w(g, δ) = sup{‖g(t) − g(s)‖ : s, t ∈ T, |t − s| ≤ δ}.(3.16)

Sinceϕn(s) → ϕ(s) except possibly at countably many points ofT , by Egoroff’s
theorem there exists a measurable setA ⊂ T such thatm(A) < (4c2)

−1ε andϕn

converges toϕ uniformly onAc, where

c2 = sup{|Ga(y,α)| :‖y‖ ≤ c1,‖α‖ ≤ ‖λ‖v},
c1 = sup{‖f ‖∞ :f ∈ K},

and‖ · ‖v is the total variation norm onM(T,Rd).
By condition (3.4),G is uniformly continuous on	B(0, c1) × 	B(0,‖λ‖v).

Therefore there existsδ > 0 such thaty, z ∈ 	B(0, c1), α,β ∈ 	B(0,‖λ‖v), ‖y −
z‖ ≤ δ,‖α − β‖ ≤ δ imply

|Ga(y,α) − Ga(z,β)| < ε/2.(3.17)

Let n0 ∈ N be such that:

(i) supf ∈K w(f,n−1
0 ) < δ,
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(ii) sups∈Ac ‖ϕn(s) − ϕ(s)‖ < δ for n ≥ n0.

Then by (3.14), (3.15), (3.17), (i) and (ii), forn ≥ n0, f ∈ K , we have

sup
s∈Ac

∣∣Ga
(
fn(s), ϕn(s)

)− Ga
(
f (s), ϕ(s)

)∣∣≤ ε/2,

and therefore

sup
f ∈K

|n−1�x,a
n (f,nλ) − �x,a(f,λ)| ≤ 2c2m(A) + ε/2

= ε. �

LEMMA 3.6. {L(Y x,a
n )}n∈N is exponentially tight.

PROOF. We first observe that it is enough to show: for everyb > 0, ε > 0,
there existδ > 0, n0 ∈ N, such that

P{w(Y x,a
n , δ) > ε} ≤ e−bn for n ≥ n0.(3.18)

To justify this claim, we start by noting that in (3.18) one can taken0 = 1.
Suppose (3.18) holds. Since for anyf ∈ C(T,Rd) we have

lim
ρ→0

w(f,ρ) = 0,

one can chooseρ > 0 so that

P{w(Y x,a
n , ρ) > ε} ≤ e−bn for n < n0.

Replacingδ by min{δ, ρ}, (3.18) is now valid forn ≥ 1.
Next, givenb > 0, choosebj > b(j ≥ 1) such that

∞∑
j=1

exp[−(bj − b)] < 1

and letεj ↓ 0. Forδj associated tobj , εj as in (3.18), let

K = {f ∈ C(T,Rd) :f (0) = x and for allj ∈ N,w(f, δj ) ≤ εj }.
By the Arzelá–Ascoli theorem (see, e.g., [2], page 221),K is compact. For all
n ≥ 1,

P{Y x,a
n ∈ Kc} ≤

∞∑
j=1

P{w(Y x,a
n , δj ) > εj }

≤
∞∑

j=1

e−bjn

≤ e−bn,
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which proves that (3.18) implies that{L(Y x,a
n )}n∈N is exponentially tight.

Let B = {α1, . . . , αd} be a basis ofRd such that, for allv ∈ Rd ,

‖v‖ ≤ sup
1≤j≤d

|〈v,αj 〉|.

Then, for allv ∈ Rd ,

exp(‖v‖) ≤
d∑

j=1

[exp(〈v,αj 〉) + exp(〈v,−αj 〉)].

Therefore, for ally ∈ Rd, τ > 0,

E exp
(
τ‖F1(y)‖) ≤ d∑

j=1

[
exp
(
G(y, ταj )

)+ exp
(
G(y,−ταj )

)]

≤ 2d max
{
exp
(
G(y, τα)

)
:α ∈ B ∪ (−B)

}
.

(3.19)

Using condition (3.3), it follows that

c1 = c1(τ ) = sup
y∈Rd

E exp
(
τ‖F1(y)‖)< ∞.

We claim next that ifc2 = c2(τ ) = E exp(τa‖G1‖), then forp,q ∈ N,1 ≤ p <

q ≤ n,

E exp

( q∑
j=p+1

τ‖Fj (X
x,a
n,j−1) + aGj‖

)
≤ (c1c2)

q−p.(3.20)

Arguing similarly to the proof of Lemma 3.4,

E

( q∑
j=p+1

τ‖Fj(X
x,a
n,j−1) + aGj‖

)

= E

(
exp

( q−1∑
j=p+1

τ‖Fj(X
x,a
n,j−1) + aGj‖

)

× E
[
exp
(
τ‖Fq(X

x,a
n,q−1) + aGq‖)∣∣Fq−1

])
.

But

E
[
exp
(
τ‖Fq(X

x,a
n,q−1) + aGq‖)∣∣Fq−1

]
≤ E
[
exp
(
τ‖Fq(X

x,a
n,q−1)‖

)∣∣Fq−1
]
E exp(τa‖Gq‖)

= g(X
x,a
n,q−1) · c2(τ )

≤ c1(τ )c2(τ ),
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whereg(y) = E exp(τ‖Fq(y)‖). Now (3.20) follows by iteration.
The next step is to show that, form ∈ N,m ≤ n,

w(Y x,a
n ,m−1) ≤ 3 sup

0≤i≤m−1

[(n(i+1))/m]+1∑
j=[(ni)/m]+1

‖Znj‖,(3.21)

whereZnj is as in Lemma 3.4. First we note that by the triangle inequality, for any
f ∈ C(T,Rd),

w(f,m−1) ≤ 3 sup
0≤i≤m−1

sup
t∈[i/m,(i+1)/m]

∥∥∥∥f (t) − f

(
i

m

)∥∥∥∥.(3.22)

For t ∈ [ i
m

, i+1
m

],∥∥∥∥Y x,a
n (t) − Y x,a

n

(
i

m

)∥∥∥∥
=
∥∥∥∥∥
(
x +

[nt]∑
j=1

Znj + (nt − [nt])Zn,[nt]+1

)

−
(
x +

[(ni)/m]∑
j=1

Znj +
(

ni

m
−
[
ni

m

])
Zn,[(ni)/m]+1

)∥∥∥∥∥
≤

[(n(i+1))/m]+1∑
j=[(ni)/m]+1

‖Znj‖.

(3.23)

Now (3.21) follows from (3.22) and (3.23). Forε > 0, τ > 0, by (3.20) and (3.21),

P{w(Y x,a
n ,m−1) > ε}

≤
m−1∑
i=0

P

{[(n(i+1))/m]+1∑
j=[(ni)/m]+1

‖Znj‖ >
ε

3

}

≤
m−1∑
i=0

e−τnε/3E exp

[
τ

[(n(i+1))/m]+1∑
j=[(ni)/m]+1

‖Fj(X
x,a
n,j−1) + aGj‖

]

≤ me−τnε/3(c1(τ )c2(τ )
)(n/m)+2

< exp
[
−n

(
τε/3− m

n
−
(

1

m
+ 2

n

)
log
(
c1(τ )c2(τ )

)]
.

Givenb > 1, chooseτ > 6bε−1,m ≥ log(c1(τ )c2(τ )). Then

lim sup
n

n−1 log P{w(Y x,a
n ,m−1) > ε} ≤ −τε/3+ 1

< −b,
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which establishes (3.18).�

In the next lemma we show that{Y x
n }n∈N and{Y x,a

n }n∈N are superexponentially
close in probability asa → 0.

LEMMA 3.7. For every ε > 0,

lim
a↓0

lim sup
n

n−1 logP{‖Y x,a
n − Y x

n ‖∞ > ε} = −∞.

PROOF. We will use the following estimate: for alln ∈ N,

sup
k≤n

‖Xx,a
n,k − Xx

n,k‖

≤ n−1a

n∑
j=1

[
‖Gj‖

n∏
i=j+1

(
1+ n−1Hi(X

x,a
n,i−1,X

x
n,i−1)

)]
,

(3.24)

where, fory, z ∈ Rd ,

Hj(y, z) =
{

(‖y − z‖)−1‖Fj (y) − Fj(z)‖, if y �= z,

0, if y = z.

To prove (3.24), we use the following elementary inequality, which is obtained
at once by induction: If{ak}k∈N, {bk}k∈N, {ck}k∈N are nonnegative real numbers
such that

a1 ≤ c1, ak ≤ ak−1bk + ck for k ≥ 2,

then for allk ≥ 2,

ak ≤
k−1∑
j=1

cj

(
k∏

i=j+1

bi

)
+ ck.(3.25)

We have, for 1≤ k ≤ n,

X
x,a
n,k − Xx

n,k

= (X
x,a
n,k−1 − Xx

n,k−1) + n−1(Fk(X
x,a
n,k−1) − Fk(X

x
n,k−1)

)+ n−1aGk,

and therefore,

‖Xx,a
n,k − Xx

n,k‖
≤ ‖Xx,a

n,k−1 − Xx
n,k−1‖

(
1+ n−1Hk(X

x,a
n,k−1,X

x
n,k−1)

)+ n−1a‖Gk‖.
(3.26)

Also,

X
x,a
n,1 − Xx

n,1 = (x + n−1F1(x) + n−1aG1
)− (x + n−1F1(x)

)
= n−1aG1.
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Settingak = ‖Xx,a
n,k − Xx

n,k‖, bk = 1 + n−1Hk(X
x,a
n,k−1,X

x
n,k−1), ck = n−1a‖Gk‖,

(3.24) follows from (3.25) and (3.26).
Using the elementary inequality 1+ x ≤ ex(x ∈ R), (3.24) implies

‖Y x,a
n − Y x

n ‖∞ = sup
k≤n

‖Xx,a
n,k − Xx

n,k‖

≤ n−1a

(
n∑

j=1

‖Gj‖
)

exp

(
n−1

n∑
i=1

Hi(X
x,a
n,i−1,X

x
n,i−1)

)
.

(3.27)

For τ > 0, b > 0, letc(τ, b) = sup{E exp(τH1(y, z)) :‖y‖ ≤ b,‖z‖ ≤ b}.
Forα ∈ Rd , let

c(α, τ, b) = sup
{
E exp
(
τ (‖y − z‖)−1〈F1(y) − F1(z),α〉) :‖y‖ ≤ b,‖z‖ ≤ b

}
,

and let

c̄(τ, b) = 2d max{c(α, τ, b) :α ∈ B ∪ (−B)},
whereB is as in the proof of Lemma 3.6.

By conditioning as in Lemma 3.4 and iterating, we have

E

{
I

(
sup

k≤n−1
‖Xx,a

n,k ‖ ≤ b, sup
k≤n−1

‖Xx
n,k‖ ≤ b

)

× exp

[
τ

n∑
i=1

Hi(X
x,a
n,i−1,X

x
n,i−1)

]}

≤ E

{
I

(
sup

k≤n−2
‖Xx,a

n,k ‖ ≤ b, sup
k≤n−2

‖Xx
n,k‖ ≤ b

)

× exp

[
τ

n−1∑
i=1

Hi(X
x,a
n,i−1,X

x
n,i−1)

]}
c(τ, b)

≤ (c(τ, b)
)n

≤ c̄(τ, b)n;

(3.28)

the last inequality is proved similarly to (3.19).
For ε > 0, b > 0,

P{‖Y x,a
n − Y x

n ‖∞ > ε}
≤ P{‖Y x,a

n ‖∞ > b} + P{‖Y x
n ‖∞ > b}

+ P
{
sup
k≤n

‖Xx,a
n,k ‖ ≤ b,sup

k≤n

‖Xx
n,k‖ ≤ b,‖Y x,a

n − Y x
n ‖∞ > ε

}
.

(3.29)
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By (3.27), Markov’s inequality and (3.28),

P
{

supk≤n ‖Xx,a
n,k ‖ ≤ b,supk≤n ‖Xx

n,k‖ ≤ b,‖Y x,a
n − Y x

n ‖∞ > ε

}

≤ P

{
sup
k≤n

‖Xx,a
n,k ‖ ≤ b,sup

k≤n

‖Xx
n,k‖ ≤ b,

n−1
n∑

i=1

Hi(X
x,a
n,i−1,X

x
n,i−1) > r

}

+ P

{
n−1a

n∑
j=1

‖Gj‖ > εe−r

}

≤ e−nτr
(
c̄(τ, b)

)n + exp(−na−1εe−r)
(
E exp(‖G1‖))n.

(3.30)

Next, using (3.11) and (3.20), we have

‖Y x,a
n ‖∞ ≤ ‖x‖ +

n∑
i=1

n−1‖Fi(X
x,a
n,i−1) + aGi‖,

sup
0≤a≤1

E exp(n‖Y x,a
n ‖∞) ≤ en‖x‖(c1(1)c2(1)

)n
,

sup
0≤a≤1

P{‖Y x,a
n ‖∞ > b} ≤ e−nben‖x‖(c1(1)c2(1)

)n
.

(3.31)

By (3.29),

lim sup
n

n−1 logP{‖Y x,a
n − Y x

n ‖∞ > ε}

≤ max
{
lim sup

n
n−1 log sup

0≤a≤1
P{‖Y x,a

n ‖∞ > b},−(τ r − log c̄(τ, b)
)
,

− (a−1εe−r − logE exp(‖G1‖))
}
.

Given� > 0, by (3.31) there existsb > 0 such that

lim sup
n

n−1 log sup
0≤a≤1

P{‖Y x,a
n ‖∞ > b} < −�.

By condition (3.6), there existsτ > 0 such that̄c(τ, b) < ∞. Let r > 0 be such
thatτ r − log c̄(τ, b) > �. Then

lim sup
a↓0

lim sup
n

n−1 logP{‖Y x,a
n − Y x

n ‖∞ > ε} < −�.

Since� is arbitrary, this completes the proof.�
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LEMMA 3.8. Let Ga be given by (3.10). Then (Ga)∗ is continuous on
Rd × Rd , where

(Ga)∗(y, z) = sup
α∈Rd

[〈z,α〉 − Ga(y,α)].

PROOF. We include for completeness the following argument, which is a
slight variant of one to be found, for example, in [3], pages 958 and 959.

By Jensen’s inequality, for ally ∈ Rd, α ∈ Rd ,

Ga(y,α) ≥
∫

〈z,α〉µ(y, dz)+ a2

2
‖α‖2

≥ q(α),

(3.32)

where q(α) = −D‖α‖ + a2

2 ‖α‖2, for a suitable constantD which exists by
condition (3.3). Therefore, by an elementary calculation (see, e.g., [3], page 955),

(Ga)∗(y, z) ≤ q∗(z) = (2a2)−1(‖z‖ + D)2,(3.33)

so(Ga)∗ is everywhere finite. Suppose(y(n), z(n)) → (y, z) in Rd × Rd . For any
positive sequenceεk ↓ 0 and any subsequence{nk} of {n}, there exists{αk} in Rd

such that

0 ≤ (Ga)∗
(
y(nk), z(nk)

)≤ 〈z(nk),αk〉 − Ga
(
y(nk),αk

)+ εk

≤ (‖z(nk)‖ + D
)‖αk‖ − a2

2
‖αk‖2 + εk,

and hence{αk} is bounded. Therefore, there exist a subsequence{αkj
} of {αk} and

β ∈ Rd such that limj αkj
= β. Then

lim sup
j

(Ga)∗
(
y
(
nkj

)
, z
(
nkj

))
≤ lim sup

j

[〈
z
(
nkj

)
, αkj

〉− Ga
(
y
(
nkj

)
, αkj

)]
= 〈z,β〉 − Ga(y,β)

≤ (Ga)∗(y, z).

By the lower semicontinuity of(Ga)∗,

lim inf
j

(Ga)∗
(
y
(
nkj

)
, z
(
nkj

))≥ (Ga)∗(y, z),

and therefore

lim
j

(Ga)∗
(
y
(
nkj

)
, z
(
nkj

))= (Ga)∗(y, z).

This proves the continuity of(Ga)∗ at (y, z). �
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PROOF OFTHEOREM 3.1. (I) Upper bounds. In the context of Theorem 2.1,
let an = n,E = C(T,Rd),F = M(T,Rd) and let E = C. Also let Yn = Y x

n ,

�n = �x
n,� = �x , where forf ∈ C(T,Rd), λ ∈ M(T,Rd),

�x
n(f,λ) = 〈x,λ(T )〉 +

n∑
i=1

G

(
f

(
i − 1

n

)
, n−1
∫

ϕni dλ

)
,

�x(f,λ) = 〈x,λ(T )〉 +
∫
T

G
(
f (s), λ([s,1]))ds.

Assume (3.3) and (3.4). It is immediate that conditions 1 and 2 of Theorem 2.1
hold. Conditions 3–5 of Theorem 2.1 hold, respectively, by Lemmas 3.5,
3.4 and 3.6 witha = 0. Applying Theorem 2.1, for allA ∈ C,

lim sup
n

n−1 logP{Y x
n ∈ A} ≤ − inf

f ∈	A
(�x)∗(f, f ).

But (�x)∗(f, f ) = I x(f ) for all f ∈ E by the argument in Theorem 6.1 of [5],
which applies easily to the present situation. This completes the proof of the upper
bound.

(II) Compactness of the level sets. Assume (3.3) and (3.4). We will frame
the argument so that it is useful in the proof of the lower bound. Let	G(α) =
supy∈Rd G(y,α), and forλ ∈ F,f ∈ E, let

ψ(λ) = ‖λ(T )‖‖x‖ +
∫
T

	G(λ([s,1]))ds,

ψ∗(f ) = sup
λ∈F

[〈f,λ〉 − ψ(λ)].

Then for allh ≥ 0:

(i) L(ψ∗, h) is compact.
(ii)
⋃

f ∈E L((�x)∗(f, ·), h) ⊂ L(ψ∗, h).

SinceL(ψ∗, h) is closed, by the Arzelá–Ascoli theorem (see, e.g, [2], page 221),
to prove (i) it is enough to show:

(a) sup{‖f (0)‖ :f ∈ L(ψ∗, h)} < ∞,

(b) limδ↓0 sup{w(f, δ) :f ∈ L(ψ∗, h)} = 0,

wherew is given by (3.16). We prove only (b); the proof of (a) is similar but
simpler. Iff ∈ L(ψ∗, h), then for allλ ∈ F ,∫

T
〈f,dλ〉 ≤ ψ(λ) + h.(3.34)

Let s, t ∈ T, s < t, ρ > 0, α ∈ Rd , and letλ = ρα(δt − δs). Then by (3.34) we have

ρ〈f (t) − f (s),α〉 ≤ ψ
(
ρα(δt − δs)

)+ h

= 	G(ρα)(t − s) + h,
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‖f (t) − f (s)‖ = sup{〈f (t) − f (s),α〉 :‖α‖ ≤ 1}
≤ ρ−1 sup{	G(ρα) :‖α‖ ≤ 1}(t − s) + ρ−1h,

and therefore

sup{w(f, δ) :f ∈ L(ψ∗, h)} ≤ ρ−1 sup{	G(ρα) :‖α‖ ≤ 1}δ + ρ−1h.(3.35)

Since 	G is a finite convex function by (3.3), hence continuous, (b) follows
from (3.35).

To prove (ii): for allf ∈ E,λ ∈ F,g ∈ E,

�x(f,λ) ≤ ψ(λ),

(�x)∗(f, g) ≥ ψ∗(g),

and therefore for allh ≥ 0,

L
(
(�x)∗(f, ·), h)⊂ L(ψ∗, h).(3.36)

Finally note that (3.36) implies: for allh ≥ 0,

{f ∈ E : (�x)∗(f, f ) ≤ h} ⊂ L(ψ∗, h),

which proves the compactness of the level sets ofI x . (Of course, this property also
follows from Theorem 2.2 once the lower bound has been established.)

(III) Lower bounds. First we prove the lower bound for{L(Y x,a
n )}n∈N . We

takeE0 = E,�n = �x,a
n ,� = �x,a. Conditions 1–5 of Theorem 2.1 are proved

as in (I). Letλ ∈ F . Then for alln ∈ N, f ∈ E,

n−1�x,a
n (f,nλ)

= 〈x,λ(T )〉 + n−1
n∑

i=1

Ga

(
f

(
i − 1

n

)
,

∫
ϕni dλ

)

≤ 〈x,λ(T )〉 + n−1
n∑

i=1

[
	G
(∫

ϕni dλ

)
+ a2

2

∥∥∥∥
∫

ϕni dλ

∥∥∥∥
2]

≤ |〈x,λ(T )〉| + sup
{∣∣∣∣	G(α) + a2

2
‖α‖2
∣∣∣∣ :‖α‖ ≤ ‖λ‖v

}

� C,

which is finite by the continuity of	G, and therefore

sup
n

sup
f ∈E

|n−1�x,a
n (f,nλ)| ≤ C < ∞.

This establishes condition 6 of Theorem 2.2. Condition 7 of Theorem 2.2 for�x,a

is proved as in (II) above. It is readily seen that for allf ∈ E,�x,a(f, ·) is convex.
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The fact that�x,a(f, ·) is E-Gâteaux differentiable, withE-Gâteaux derivative at
λ ∈ F given by��x,a(f,λ) = fλ, where

fλ(t) = x +
∫ t

0
�Ga
(
f (s), λ([s,1]))ds, t ∈ T,

is proved as in Lemma 7.4 of [5]. Moreover, if

φ(t) = �x,a(f, tλ),

then

φ′(t) = 〈��x,a(f, tλ), λ〉
= 〈x,λ(T )〉 +

∫
T

〈∫ u

0
�Ga(f (s), tλ([s,1]))ds, dλ(u)

〉
,

and thereforeφ′ is continuous. This shows that condition 9 of Theorem 2.2 holds.
Next, since

|�x,a(f,λ) − �x,a(g,λ)| ≤
∫
T

∣∣G(f (s), λ([s,1]))− G
(
g(s), λ([s,1]))∣∣ds,

it follows from condition (3.4) and Remark 2.3 that condition 8 of Theorem 2.2
holds. Using condition (3.5), the fact that condition 10 of Theorem 2.2 holds
for �x,a is proved by showing that

f = ��x,a(f,λ), g = ��x,a(g,λ)

imply f = g as in [5], page 518.
Let (�x,a)∗(f0, f0) < ∞, ε > 0. By the proof of Lemma 7.6 of [5], which

applies to the present situation by (3.32), we have: there existsg0 ∈ E such thatg0
is absolutely continuous,g0(0) = x,g′

0 ∈ L∞(T ) and:

(i) g0 ∈ B(f0, ε),
(ii) (�x,a)∗(g0, g0) ≤ (�x,a)∗(f0, f0) + ε.

Supposefn → g0 in E. Since by (3.33), for almost everys ∈ T ,

(Ga)∗
(
fn(s), g

′
0(s)
)≤ (2a2)−1(‖g′

0(s)‖ + D
)2

,

by Lemma 3.8 and the dominated convergence theorem we have

(�x,a)∗(fn, g0) =
∫
T
(Ga)∗

(
fn(s), g

′
0(s)
)
ds

→
∫
T
(Ga)∗

(
g0(s), g

′
0(s)
)
ds

= (�x,a)∗(g0, g0).

This shows that condition 11 of Theorem 2.2 holds. Applying this result to
{L(Y x,a

n )}n∈N , we have: for every setA ∈ C,

lim inf
n

n−1 logP{Y x,a
n ∈ A} ≥ − inf

f ∈A0
(�x,a)∗(f, f ).(3.37)
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Finally, by a well-known argument (see [5], pages 518 and 519) based on (3.37),
Lemma 3.7 and the fact that, for allf ∈ E,

lim
a↓0

(�x,a)∗(f, f ) = (�x)∗(f, f ) = I x(f ),

we have

lim inf
n

n−1 logP{Y x
n ∈ A} ≥ − inf

f ∈A0
I x(f ).

This completes the proof of the lower bound, and hence the proof of Theorem 3.1.
�

COROLLARY 3.9. Assume (3.3) and (3.4). Furthermore, assume that the
initial value problem in Rd ,

f (0) = x, f ′(t) = �G
(
f (t),0

)
, t ∈ T,

has a unique solution fx . Then {Y x
n }n∈N converges in probability to fx exponen-

tially fast: for every ε > 0, there exists b > 0 such that

lim
n

ebnP{‖Y x
n − fx‖∞ ≥ ε} = 0.

REMARK 3.10. As is well known (see, e.g., [12], page 270), a sufficient
condition for the existence and uniqueness offx is that the functionH(y) =
�G(y,0) satisfy a global Lipschitz condition onRd . This is closely related to
condition (3.5).

PROOF OFCOROLLARY 3.9. We claim first that

I x(f ) = 0 if and only iff = fx.(3.38)

For, it is easily seen thatG∗(y, z) = 0 if and only if z = �G(y,0). The fact that
I x(fx) = 0 is then clear. On the other hand, if

Ix(f ) =
∫
T

G∗(f (t), f ′(t)
)
dt = 0,

thenG∗(f (t), f ′(t)) = 0 a.e. [m], and thereforef ′(t) = �G(f (t),0) a.e. [m].
This implies that, for allt ∈ T ,

f (t) = x +
∫ t

0
�G
(
f (s),0

)
ds,

and thereforef = fx . This proves (3.38).
Let ε > 0. By the upper bound statement of Theorem 3.1,

lim sup
n

n−1 logP{‖Y x
n − fx‖∞ ≥ ε} ≤ −�(ε),
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where�(ε) = inf{I x(f ) :f ∈ (B(fx,ε))
c}. By the compactness of the level sets

of I x , there existsg ∈ (B(fx, ε))
c such thatI x(g) = �(ε). Sinceg �= fx , (3.38)

impliesI x(g) > 0. This establishes the conclusion.�

Letµ be a probability measure onRd such thatµ̂(α) < ∞ for all α ∈ Rd , where

µ̂(α) =
∫

e〈y,α〉µ(dy).

Let {Zk}k∈N be a sequence of i.i.d. random vectors inRd with L(Z1) = µ.
Let b : Rd → Rd andσ : Rd → Rd×d be bounded and uniformly Lipschitz. An
interesting class of cases of the recursive scheme of Theorem 3.1 is obtained by
taking

Fk(y) = b(y) + σ(y)Zk, k ∈ N.

Then we have, forn ∈ N,0 ≤ k ≤ n,

Xx
n,0 = x,

Xx
n,k = Xx

n,k−1 + n−1b(Xx
n,k−1) + n−1σ(Xx

n,k−1)Zk, k ≥ 1,

and {Y x
n }n∈N may be regarded as a stochastic Euler polygonal scheme for the

dynamical system

f ′(t) = b(f (t))(3.39)

with initial conditionf (0) = x.

THEOREM 3.11. (i) If µ,b and σ are as above, then {L(Y x
n )}n∈N satisfies

the large deviation principle on C(T,Rd) with rate function

I x(f ) =




∫
T

G∗(f (t), f ′(t)
)
dt, if f (0) = x

and f is absolutely continuous,

∞, otherwise,

where

G∗(y, z) = sup
α∈Rd

[〈z,α〉 − G(y,α)]

and

G(y,α) = 〈b(y),α〉 + logµ̂
(
σ t(y)α

)
,(3.40)

σ t(y) being the transpose of σ(y).
Moreover, the level sets L(Ix,h) are compact.
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(ii) {Y x
n } converges in probability to the unique solution of the initial value

problem

f ′(t) = b(f (t)) + σ(f (t))z1, f (0) = x,

exponentially fast (in the sense of Corollary 3.9),where z1 = E(Z1).

REMARK 3.12. It is easily seen that ifσ(y) is invertible for ally ∈ Rd , then

G∗(y, z) = (logµ̂)∗
(
σ−1(y)

(
z − b(y)

))
,

and therefore

I x(f ) =




∫
T
(logµ̂)∗

(
σ−1(f (t))

(
f ′(t) − b(f (t))

))
dt,

if f (0) = x,andf is absolutely continuous,
∞, otherwise.

PROOF OFTHEOREM 3.11. (i) We apply Theorem 3.1. Since in the present
case ∫

exp(〈z,α〉)µ(y, dz) = E exp〈F1(y),α〉
= E exp[〈b(y),α〉 + 〈σ(y)Z1, α〉]
= exp[〈b(y),α〉]µ̂(σ t (y)α),

G is indeed given by (3.40). Conditions (3.3) and (3.4) of Theorem 3.1 clearly
hold. Since

�G(y,α) = b(y) + (µ̂(σ t(y)α
))−1
∫

σ(y)zexp
(〈z, σ t(y)α〉)µ(dz),(3.41)

condition (3.5) follows from the assumptions onµ,b andσ . Finally,∣∣〈F1(y) − F1(z),α〉∣∣= ∣∣〈b(y) − b(z),α〉 + 〈(σ(y) − σ(z)
)
Z1, α
〉∣∣

≤ C‖y − z‖‖α‖(1+ ‖Z1‖)
for some constantC > 0 and therefore, for anyy, z ∈ Rd, y �= z, τ > 0,

E exp[τ (‖y − z‖)−1〈F1(y) − F1(z),α〉] ≤ E exp
(
τC‖α‖(1 + ‖Z1‖)).

This shows that condition (3.6) holds. By Theorem 3.1, statement (i) holds.
(ii) By (3.41),

�G(y,0) = b(y) +
∫

σ(y)zµ(dz)

= b(y) + σ(y)z1.

The statement follows now from Corollary 3.9.�
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REMARK 3.13. 1. The particular case of (i) of Theorem 3.11 when
d = 1, σ (y) �= 0 for all y ∈ R andµ satisfies the additional assumptionsz1 = 0
and

lim|α|→∞|α|−1 logµ̂(α) = ∞

is presented in Theorem 2.1 of [10] by methods different from ours (actually,
in [10] a more general dependence scheme is considered). However, the proof
is incomplete: a convergence property of the rate function is used without
justification ([10], pages 65 and 66).

2. The particular case of (i) of Theorem 3.11 whenσ(y) is invertible for all
y ∈ Rd is implicitly covered by the presentation in [7], Proposition 6.3.4.
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