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A GENERAL NONCONVEX LARGE DEVIATION RESULT II

By A. DE ACOSTA
Case Western Reserve University

We refine the conditions for the lower bound in an abstract large
deviation result with nonconvex rate function we had previously introduced.
We apply the results to certain stochastic recursive schemes.

1. Introduction. In the recent paper [5], we introduced an abstract scheme
designed to handle a broad class of large deviation problems in which the random
variables take values in a topological vector spacend the rate function is not
convex. A rough description of our scheme is as follows.Edte as above, lef™*
be its dual space and IgY, },,cy be E-valued random vectors. Assume:

() For certain functionsb,,: E x E* - R,allne N, all ¢ € E*,
Eexp(Y,,§) — @Yy, )] =1.
(i) For acertainfunctionb:E x E* - R, allx e E, all ¢ € E*,
lim n =@, (x, n8) = ®(x, ).
(i) {L(Yn)}nen is exponentially tight.

Then under suitable regularity conditions ®n{.L(Y,)},cn Satisfies the large
deviation principle with rate functio®*(x, x), where forx, y € E,

CI)*(X, y) = ESUEEH.V’ g) - (I)(X, 5)]

Precise conditions under which the scheme is valid are given in Theorems 2.1
(upper bound) and 2.2 (lower bound) of [5].

While most conditions in Theorems 2.1 and 2.2 of [5] are formulated directly
in terms of ® and appear to be reasonably simple to verify in applications,
condition (11) of Theorem 2.2 of [5]—an assumption &t involving sub-
differentials—is in general more difficult to check (see the beginning of the proof
of Theorem 2.2 below for a detailed statement of this condition). As is well known,
a change of measure in some form is crucial in many proofs of large deviation
lower bounds. The purpose did conditim is to ensure that for every point
in the domain of the rate function, there exists a nearby “smooth peistich
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that the function values are close and there exists a suitable change of measure
centered ay. If E is a Banach space arigldoes not depend on the abundance

of “smooth points” can be obtained from the Brondsted—Rockafellar theorem (see,
e.g., [1]) and has been used, for example, in [4] in the proof of lower bounds with
the convex rate functiof*. Condition (11) of Theorem 2.2 in [5] may be regarded

as a “nonconvex” version of the conclusion of the Brondsted—Rockafellar theorem.

The main objective of the present paper is to refine the abstract lower
bound resulin [5] by providing sufficient conditins for the subdifferentiability
assumption in [5] which do not involve subdifferentials and are substantially easier
to verify. What we prove in this context may be regarded as a “nonconvex” version
of the Brondsted—Rockafellar theorem, guaranteeing the existence of an abundance
of “smooth points.” The tools used in the proof are a result of Zabell [17] on
Mosco convergence of convex functions in locally convex spaces, the Schauder—
Tychonoff fixed point theorem (see, e.g., [14]) and our recent result on dominating
points of convex open sets in the context of general convex functions [6]. This
objective is pursued in Section 2, Theorem 2.2. In Theorem 2.1 we present a simple
improvement of the upper bound result in [5] in the framework of the present paper.

In Section 3 we present some applications of Theorems 2.1 and 2.2. In
Theorem 3.1 we give a new approach to the study of large deviations for a recursive
scheme based on an i.i.d. sequence of random vector fields, a question considered
by Dupuis and Ellis [7] [see part 1 of Renke3.2 ]. In Theorem 3.11 we consider
the case when the recursive scheme is a stochastic Euler-type polygonal scheme
for a dynamical system (see Remark 3.13).

We close this introduction with some remarks about the connection of our
abstract scheme to certain items in the literature. A number of results on large
deviations for trajectories of Markov processes [7, 9, 16, 15] involve nhonconvex
rate functions which are in fact of the fordi*(x, x) described above, although this
aspect is not mentioned addis not introduced. We showed in [5], Theorem 3.1,
how our scheme applies to large deviations for the trajectories of a broad class of
Markov processes, with the rate function initially given in the fobh(x, x) and
subsequently identified in a classical integral form. (Incidentally, the proof of that
theorem can be simplified using the results of the present paper.) Our scheme is
also related to ideas developed for the study of large deviations for semimartingales
in [11] and [13], which present a general framework for the problem. However, the
full details of the technical connection between this development and our scheme
have yet to be elucidated; this remark applies as well to the Markov case mentioned
above.

2. Thegeneral largedeviation results. Throughout the section we assume

E is a Banach spacé, is theo-algebra generated by the ballsjs
a subspace of* such that -, &) is &-measurable for every e F.
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We have adopted this framework, which is less general than that in [5], in order
to maintain some consistency in the presentation; in fact, it is only the proof
of the lower bound that requires it. Two important cases are covered by these
assumptions:

1. E =C([0, 1], R?), & = Borelo-algebraF = M([0, 1], R?), the space of finite
R<-valued vector measures @@, 1].

2. E = D([0, 1], R%) endowed with the uniform norng§ = o-algebra generated
by the evaluation mapg; = M ([0, 1], R%).

The setting 2 was used in the application to stochastic equations in [5], and
previously in [4].
For afunctiond: E x F — R, we define, for, y € E,

@*(x,y) = SUH(y, &) — @ (x,8)].
EeF

In what follows,{a, },cn is a positive sequence with lipa,, = oo.

THEOREM2.1. Let®,, ®:E x F — R besuch that:

1. Foral & e F,®,(-, &) is&-measurable.

2. Foral &£ e F,®(-, &) is &-measurable, continuous and satisfies ®(x,0) =0
forall x e E.

3. Forall £ € F, all compactsets K C E,

ba(K ., £) £ supla, '@, (x, an§) — ®(x,£)] >0  asn — oo.
xekK

For each n € N, let Y, be an E-valued, &-random vector defined on
(R, A,, P,) and assume:

4, ForallneN, & e F,
E,exp(Yn, &) — @ (Yn. §)]1 =1
5. {Lp,(Yn)}nen isexponentially tight.
Thenif 1-4 are satisfied, for every compact set K C E,
Iimnsupan‘llog P{Y, € K} < — inf d*(x, x),

and if 1-5 are satisfied, for every A € €,
limsupa, tlogP{Y, € A} < — inf ®*(x, x).
n

X€A

We omit the proof, which involves an easy modification of the proof of
Theorem 2.1 of [5]. Note that condition 3 improves the corresponding assumption
in Theorem 2.1 of [5]: for alk € F,

supla; 1@, (x, a,6) — ®(x,£)| >0  asn — oco.
xeE
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Moreover, compared to Theorem 2.1 of [5], we are taking h&ye= Y, and
assumption 7 there is unnecessary.

For the main result, the large deviation lower bound, we further specify the
framework as follows:

F=E; whereEj is a closed separable subspacéof

We need this assumption to ensure the applicability of the result on Mosco
convergence in [17]. Note that the cases 1 and 2 mentioned above are still covered,;
in case 2, we tak&g = C([0, 1], RY).

Recall that a functio : F — R is Eg-Gateaux differentiable at¢ € F if there
exists a poinv¢ (&) € Eg such that, foralh € F,

(Vo (E), ) = lim Hp(E +10) — (©)].

Throughout the paper, when the gradient operator is applied to a function of two
variables, it will refer to differentiation with respect to the second variable.
We use the notatiod®*(x, y) for the subdifferential of the convex function
®*(x, -) aty € E (for the definition of subdifferential, see, e.g., [8]).
Forg:E—RT,a>0,letL(g,a)={x € E:g(x) <a}.

THEOREM 2.2. Assume that the hypotheses of Theorem 2.1 hold, and
furthermore:

6. Forallé e F,

lim supsupla, 1®,(x, a,£)| < oo.
n xekE

7. For every x € E such that ®*(x, x) < oo, there exists a neighborhood U of x
such that, for all a > 0,
U L(®*(y, "), a) isarelatively compact subset of Eg.
yeU
8. Ifx, > xinEgand&, — & in F, then
w*

P(x,8) < Iimninf D(x,, ).

9. For all x € E, ®(x,-) is convex and Ep-Géateaux differentiable on F.
Moreover, for all £ € F, x € Ey, ‘P;,s is continuous, wherefor 1 € R,

brg(t) = D(x, 18).

10. For all & € F, theequation x = V& (x, £) hasat most one solution in Eq.
11. For all xg suchthat ®*(xg, xg) < oo, for every e > 0,thereexists yo € B(xg, €)
such that:
(@) ®*(-, yo) isupper semicontinuous at yg on Eq.
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(b) ®*(yo, yo) < ®*(xo, x0) + ¢.
Then for every A € €,

liminfa tlogP{Y, € A} > — inf ®*(x,x).
n xeA°
Moreover, the level sets{x € E: ®*(x, x) <I},1 > 0, are compact.

REMARK 2.3. It is easily shown that, in the presence of the first part of
assumption 9, the conditiorx,; — x in Eg implies ® (x,, -) converges tab (x, -)
uniformly over the balls inF” suffices for 8.

We will need the following two preliminary results.

LEMMA 2.4. Let V be a separable Banach space. Let {¢;};en, ¢ be proper
w*-lower semicontinuous convex functions on V*, and assume:

(i) ¢;(0) =¢(0) =0forall j.

Then, for every x € V, there exists a sequence {x;}jeny C V,x; — x such that
Iimsupj ¢}‘(xj) < ¢*(x).

This is a particular case of Theorem 1.2 of [17] (the spdtesd F of [17] are
hereE=V* F=YV).

Let us recall the definition of dominating point [6]. We state it here in our present
Banach space framework.

DEFINITION 2.5. LetV be a Banach space and {etV* — R be a convex
function. LetD be an open convex subsetWfsuch thatd N domg* is nonempty.
A point xg € E is a dominating point fo(D, ¢) if:

1. xoeoD.

2. ¢*(x0) =infrep ¢ (x).

3. There exists5p € E* such thatD C {x:(x,&0) > (x0,%0)} and ¢*(xg) =
(x0, §0) — ¢ (%0).

LEMMA 2.6. LetV, ¢ beasin Definition 2.5. Assume:

(i) ¢(0)=0.
(i) Foralla>0,L(¢*,a)iscompact.
(iii)y ¢ is V-Géateaux differentiableon V* and, for all £ € V*, ¢é is continuous,
wherefor ¢t € R,

e (1) = P (15).
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Let D be an open convex subset of V such that D N dome¢* is nonempty and
infyep @*(x) > 0. Then:

(a) Thereisa unique point xq satisfying 1 and 2 of Definition 2.5.
(b) Thereexists &y € V* such that &q satisfies 3 of Definition 2.5and

Vé (§0) = xo.

This is a particular case of Theorem 2.3 of [6]. A point that should be
emphasized is that under the assumptions of Lemma 2.6, the uniquepmiris)
is automatically a dominating point.

PROOF OFTHEOREM 2.2(a). The key part of the proof is to show that under
the present hypotheses, condition (11) of Theorem 2.2 of [5] holdsxd-etE
be such thatb*(xg, xg) < co. We must show: for every > 0, there exists1 € E
such thatxq € B(xo, €), 9®*(x1, x1) # ¢ and

(2.1) ®*(x1, x1) < ®*(x0, x0) + &.

Let yo be as in assumption 11 of the present theorem. Then by assumptions
7 and 11, there existy > 0 such that

(2.2) ®*(x, y0) < ®*(yo.yo) +1  forx € B(yo. d0).

(2.3) (JIL(@*(y. ). a):y € B(yo, 80)}

is a relatively compact subset &f, for all @ > 0.
For 0< § < 89, x € B(yo, 8p), let

a(x,8) =inf{®*(x, y):y € B(yo.d)},
B(8) = suda(x, ) 1 x € B(yo, 8)}.
It follows from (2.2) thatB(8) < ®*(yo, yo) + 1. For 0< § < &g, let
Ks = co(|J{L(®*(x,), B®) NB(o,8):x € B(y0,9) }),

where cA is the closed convex hull od ¢ E. Then by (2.3) and the fact that
Ep is a Banach spac&s is a compact convex subset Bf. We define the map
ps.Ks — Ks by

dominating point for B(yo, 8), ® (x, -)), if a(x,8) >0,

P00 = { v (x,0), it a(x,8)=0.

Then for allx € K5, z € B(yo, §),
(2.4) ps(x) € K5 and @*(x, ps(x)) < ®*(x, z).
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In the first caseys (x) exists and is unique on account of Lemma 2.6, assumption 9
and (2.3), and (2.4) follows from Definition 2.5 and the definitiorkgf

In the second case, note first that(x, v®(x,0)) = 0. Also, by the com-
pactness ofL(®*(x, -), 1), there existsy € B(yp, §) such thatd*(x, y) = 0. By
assumption 9 and Lemma 2.4 of [6], we must have V& (x, 0), and there-
fore ps(x) satisfies (2.4).

We claim now:

(2.5) ps IS continuous

Letx(n)(n € N), x € K3, x(n) — x. Given a subsequenéey, k € N} of N, by the
compactness o5 there is a subsequenfe(ny;), j € N} of {x(nx), k € N} and a
pointy € K5 such that

ps (x (ni;)) = y.
Since®* is jointly semicontinuous, we have
(2.6) d*(x,y) < Iimjinf D% (x(nk;), s (x (1))

Let z € B(yo,8). By Lemma 2.4 withV = Eo, V* = F,¢; = @ (x(ng;), ),
¢ = ®(x,-) and by assumptions 8 and 9 (note that the latter impliesthower
semicontinuity ofp; and¢), there exists a sequenfs, j € N} which converges
to z and satisfies
2.7) limsup®™*(x(ny;), z;) < ®*(x, 2).

j

Sincez; € B(yo, §) for sufficiently largej, we have by (2.4), (2.6) and (2.7),
d*(x,y) < ®*(x,2) for all z € B(yo, 9).

If ®*(x,y) > 0, then®*(x(ng;), ps(x(n;))) > 0 for sufficiently large; and
ps(x(nk;)) € dB(yo,8) (see Remark 2.2(2) of [6]), and it follows that
y € dB(yo,8). Thereforey is the dominating point foKkB(yg, §), ®(x, -)); that
is, y = ps(x). If ®*(x,y) =0, theny =vd(x,0) = ps(x) by Lemma 2.4 of [6].
We have shown: for every subsequenrgg, k € N} of N, there exists a subse-
quence{ps(x(ng;)), j € N} of {ps(x(nk)), k € N} such thatos (x(nk;)) — ps(x).
This proves (2.5).

By the Schauder—Tychonofffixed point theorem (see, e.g., [14], page 143), there
existsys € K5 such thaips(ys) = ys. By Lemma 2.6, there exist € F such that

VO (ys, &) = ys,

which impliesés € 0P*(ys, ys). Sinceys = ps(ys) € B(yo, 8), we haveys — yg
ass — 0, and by assumption 11,

|imasupd>*(ys, ys) < IimBSUIOCD*(ya, yo) < ®*(yo, y0)-

Taking nowxy = ys for sufficiently smalls, (2.1) is satisfied.
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(b) We will now show that under (2.1) and assumptions 1-6, 9 and 10, the proof
of Theorem 2.2 of [5] goes through. Proceeding as in [5], page 490, we havé: for
compact,

sup [(y,ané) — ®u(y,a,8)] < an(bn(K7 &)+ cI)*()507 xo0) + 5)-
yeVNK

Therefore,
P.{Y, e A} >P,{Y, e VN K}

> expl—ay (ba(K, §) + ®*(x0, x0) + &)]

x [ Ivnk (4) €XF(Yr, ,6) = @ (Y. 0,61 Py
As in [5], in order to obtain the lower bound, it is enough to show that
lim,, supP, ¢{Y, € (VN K)‘} =0, or
(2.8) limsupP, ¢{Y, € VN K} =0,
n

(2.9) limsupP, ¢{Y, € K} =0.
n

Forye E,neF,let
@y e (y,m) = Pu(y, an§ + 1) — Pu(y, ané),
Qe (y,n) =P(x, &+ 1) — P(x,§).
Then by assumption 4, for ajle F,
(2.10) Eneexpl(Yn, n) — Pne(Yn, n)]=1
From assumption 3, it easily follows that for every compactset E, n € F,
lim sup|an_1CI>n,§ (x,ann) — Pe(x, n)| =0.

" xek

By Theorem 2.1, for any compact s€tcC E,

(2.11)  limsupa, *logP, (Y, € VE N K} < —inf{®f(x,x)1x € VN K}

As in [5], condition 10 implies that the expression in the right-hand side of (2.11)
is strictly negative, which proves (2.8). Therefore the proof will be complete if

we show that (2.9) holds for a suitable choicefof In fact, {Lp, . (Yi)}nen IS
exponentially tight, to wit

Pp.e{Yn € K¢}

- / Txe (V) €XPU{ Y. an) — ©p Yy, an€)]dP,

2.12 1/2
(212) s(Pn{YneKC}>1/2(/ exp[<Yn,2ans>—2<1>n<Yn,ans>]dPn)

< (Po{Y, € KC})l/zexp[sup@n(x, 20,)] + 2 SUP| Py (x, ans)q,

xekE xeE
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and it follows from (2.12) and assumptions 5 and 6 that, given0, K may be
chosen so that

limsupa, *logP, ¢ {Y, € K} < —b.
n

The compactness of the level sets of the rate function follows from exponential
tightness and the lower bound by a well-known argumeit.

3. Application to a stochastic recursive scheme. Let u:R? x B(RY) —
[0, 1] be a Markov kernel. We will consider an i.i.d. sequence of random vector
fields with Markov kerne; that is, letF; :R? x @ — R, j € N, be a sequence
of measurable maps such that:

(3.1) Forallj e N,x € RY, £L(F;(x)) = u(x, -)[hereF;(x) = F;(x, -)].
(3.2) If j,keN, j#k, then{F;(x):x e RY} and{Fi(x):x € R?} are indepen-
dent and have the same distribution.

Fora e R?, x e R?, let G :R? x RY — R be defined by

G(x.a) =log [ expl(y. ahutr.dy).
We shall consider the following conditions:

(3.3) Foreach € R?, sup e G(x,a) < 0o.

(3.4) G is continuous.

(3.5) For eachr > 0, the family of functions{vG(-,«):« € B(0,r)} satisfies
a uniform Lipschitz condition orB(0, r). That is, there exists a constant
D(r) > 0 such that, for all, x, y € B(0, r),

VG, a) = VG, )| < D)y — xl|,

where || - || is the Euclidean norm oR?, B(0,r) = {x € R%: x| < r}
andvG(y,a) is the gradient ofG(y, -), evaluated atr [vG(y, o) exists
by (3.3)].

(3.6) For everyr € R?, everyb > 0, there exists > 0 such that

supEexpr(ly—zI)"HF1(0) — F1(2), )]y # 2, Iyl < b, llzll < b} < o0,

For fixedx € R%, n € N, we define recursively, for & k < n, the R?-valued
rv.’s

XFo=x,
(3.7) " .
Xox=Xp g1+ Fi(Xp 1), k>1,
so that
k
(3.8) Xpp=x+ntY Fi(Xy; ), k=1

j=1
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LetT =0, 1], and let{Y;'},cy be theC(T, R4)-valued random vectors given by

le‘vk, if t=k/n,k=0,...,n,

Yy = k

, . . . k—1
defined by linear interpolation o[n— —], k=1,...,n
n n

= X, ) T (11 — [”t])(”_lF[nt]Jrl(Xﬁ,[m]))’

where[-] is the integer part function.
Fory,z e R, let

G*(y,2) = supl{z,a) — G(y,@)].

aeRd

Let € be the Boreb-algebra ofC (T, R?).

THEOREM 3.1. Assume (3.3)«3.6). Then {L(Y;)},en satisfies the large
deviation principle on C (T, R?) with rate function

[ G r@. renas. it fO=x
(=" and f is absolutely continuous,
00, otherwise.
More specifically, under conditions (3.3) and (3.4),the upper bound holds:

forall A e e, limsupn—tlogP{Y* € A} < —inf{I*(f): f € A},

and under conditions (3.3)3.6) the lower bound holds:
forall Aee, lim inf n~tlogP(Y* € A} > —inf(I*(f): f € A%}.
Moreover, under conditions (3.3)and (3.4),the level sets
L(I*,0) 2 {f e C(T,RY) : I*(f) < £}(¢ > 0) are compact.

REMARK 3.2. 1. The large deviation principle fo&€(Y,")},.cn iS presented
in [7], Theorem 6.3.3, by a different approach, under condition (3.3), an
assumption that together with (3.3) implies (3.4), and either (i) an assumption on
the supports of the measurgsx, -) or (ii) a special Lipschitz-type assumption
on G*. The relation between (i) or (i) and conditions (3.5), (3.6) is not
immediately clear.

2. Conditions (3.3)—(3.6) are hypotheses on the data of the problem—in the
sense that (3.3)—(3.5) are assumptions on the Laplace transforrs(of:
y € R?} and (3.6) is an assumption on the Laplace transformgFRify) —
F(z):y,z € R¥—and not on G*. Condition (3.5) is used only to verify
condition 10 of Theorem 2.2. Condition (3.6) is used only in Lemma 3.7.
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3. In the broad class of cases presented later in Theorem 3.11, conditions
(3.3)—(3.6) are quite easy to verify.

For the proof of Theorem 3.1, we need several lemmas. The first one, which
is elementary, gives a useful expression for functions7odefined by linear
interpolation.

LEMMA 3.3. ForneN,i=1,...,n,let
@ni (1) = (nt — (i — D) Iii—1)/n,i/n) @) + Ljijn,13(2), teT.
Givena; €eR%,i =0,...,n,let
a;, fort=i/n,i=0,...,n,
o-|

1
defined by linear inter polation on [l ,i], i=1,...,n.
n n

ThenforalreT,

(3.9) f)=ao+ ) (@i — ai—1)eni (1)

i=1

PROOF Fort e[{2L, 1), j=1,...,n, we have

n ’n

1’ |f l<],
oni (1) =1 (nt — (j — 1)), if i=j,
0, if i>j.

Therefore, ifg(7) is the right-hand side of (3.9), we have foe [£1, 1), j =1,
..n,
j-1
g =ao+ Y (ai —ai—1) + (aj —aj_1)(nt — (j — 1))
i=1
=aj_1+(aj—aj_)(nt—(j — 1)
andg(l) = a,. But this is precisely the definition of. [

It will be convenient for the proof of the lower bound to introduce a perturbation
of {Y;}, as follows. Leta > 0 and let{G;};cy be an independent sequence of
R<-valued r.v.'s WithL(G j) = ya(j € N), wherey, is the canonical Gaussian
measure orR?. We assume also thdG};cy and{F;(x):j € N,x € R} are
independent.

For fixedx € R?, n € N, define recursively for & k < n theR?-valued r.v.’s

x,a __
Xn,O =X,

X3 = X0 FX_) +aGy), k=1,
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so that
Xyi=x+n" (Z[F(an ) +aG; ]) k> 1.

LetY*“ n e N, be theC(T, RY)-valued random vectors given by
XZZ ift=k/n,k=0,...,n

Y4 = k—1 k
0 defined by linear interpolation o[n— —}, k=1,...,n,
n

= X0+ (= ) (0 [ Finepa (X5 ) + @Glanaal)-

Let M (T, R?) be the space oR?-valued vector measures defined on the Borel
o-algebra ofl'. For f € C(T,R%), » € M(T,R%), let

(o2 [ (..
LEMMA 3.4. ForxeR?, feC(T,RY),re M(T,RY), let

OEA(f,0) = (x, M(T)) + ZG“( ( — ) —1/<pmd,\)

where {¢,;} areasin Lemma 3.3andfor y,«a € R4,
2
a
(3.10) G (y.0) = G(y, @) + S llerl.

Thenforalln eN, A € M(T,R%),a >0,
Eexp((YX9, 1) — ®X4(Y54, ))] = 1.

PrROOF By Lemma 3.3, we can write, fare T,

(3.11) Yot =x+ 2”: Znipni (1),
i=1
whereZ,; =n~[F;(X,'{ 1) +aG;].
Therefore
(Y4, 2) = (x, M(T)) + Z(z [ oni ).
Let =

k

Uk=z<zm'a/(pm’ d)\>,

i=1

ZGG< ni—11 1/%1'6”»);
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then
(Y790 — @Y 0) =Uy — V.
LetF=o0({F;(y):j<k,ye RY} U {Gj:j<k}),k=1.Then
EexpgU, — V,]
= EE(exgU, — Vul|Fn-1)

(3.12) — E{exp(Un_l —Vp1—G° (X;‘;Z_l, n‘lfqonn dk))

<fex{zun [ mmarllss] |

sinceU, 1, V,—1andX, " _, aref, j-measurable. Next, sindé, (y):y € RY}U
{G,} is independent of5,_1 and{F,(y): y € R} is independent o ,,, we have

E[exr(Z,m,/%n dA>

=8(X; 1)

2,2 2
cofo(s o o)+
:exp[G“ <Xfl:,al_1,n_1/qonn dx)},

gly) = EeXP<Fn(y) +aGn,n_1f¢Jnn a’k>.

By (3.12) and (3.13),
EexpU, — V] = EexpUy_1 — Vp_1l.

}Vn—li|

(3.13)

where

Iterating this procedure, we obtain

EexgU, — Vil
=EexgUi — V1]
:exp[—G“ <x,n_1/qon1dk>]Eex;<F1(x) +aGl,n_1f90n1dA>
=1 ]

LEMMA 3.5. Forx eR?, feC(T,R%),» e M(T,R?), let

OV(f, 3) = (x, M(T)) + /T G(f (s). (5. 1)) ds,
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where G¢ is given by (3.10). Then for every compact set K  C(T, R%), every
A€ M(T,RY),

lim sup|n =14 f,n1) — @*4(f,1)| =0.
norek

PrRoOF Forall f € C(T,R%), » e M(T,R%),
IR (f,nA) — dVA(f, 1)

n—léca<f<j7_l),/¢nj dx) —/TG“(f(s),A([s,l]))ds

< [16°(5). 029) = G*(£6). 0] ds.

(3.14) =
where
fu(s) = Z f(JT>I[(j—1)/n,j/n)(S) + () I (s),
j=1

n
@n(s) = Z(/ Pnj d/\) LiG—1)/n.j/m) (),
j=1

ando(s) = A([s, 1]). Clearly,

(3.15) 1fn = flloo Sw(fin™,
wherew is the usual modulus of continuity: fare C(T, R%), § > 0,
(3.16) w(g,8) =sudllg(t) —g)l:s,t €T, |t —s| <6}

Sinceg, (s) — @(s) except possibly at countably many pointsTafby Egoroff's
theorem there exists a measurableAet T such thatm(A) < (4c2)te andg,
converges t@ uniformly on A€, where

c2=sufd|G*(y, )|yl < c1. llell < IAlw}s
cr=Suf|l flleo: f € K},

and|| - ||, is the total variation norm oM (T, R%).

By condition (3.4),G is uniformly continuous onB(0,c1) x B(O, ||Ally).
Therefore there exists > 0 such thaty, z € B(0, c1), &, 8 € B(O, |Allv), Ily —
zll <9, ll — BIl < 5 imply

(3.17) |G (y,a) — G(z, B)| < &/2.
Letng € N be such that:
(i) suprex w(fing™ <4,
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(i) Sup,cac lgn(s) — @)l < 8 for n = no.
Then by (3.14), (3.15), (3.17), (i) and (ii), fer> ng, f € K, we have

SUP|G (£ (5), n(s)) — GA(f (5), 0(s))| < &/2,

seA¢
and therefore

sup|n1oXA(f, nr) — VA(f, A)| < 2com(A) + /2
fekK

= &. D
LEMMA 3.6. {L(Y;")},en isexponentially tight.
PROOFE We first observe that it is enough to show: for evéry 0, ¢ > 0,
there exist > 0, ng € N, such that
(3.18) Plw(YX4,8) > ¢} <e ™  forn=>n.

To justify this claim, we start by noting that in (3.18) one can take= 1.
Suppose (3.18) holds. Since for afiy= C(T, R?) we have

lim w(f, p) =0,
p—0
one can choose > 0 so that
Plw(Y*?, p) > e} <e " for n < no.

Replacings by min{s, p}, (3.18) is now valid for: > 1.
Next, givenb > 0, choose; > b(j > 1) such that

o0
Y exp—(b; —b)l<1
j=1
and lete; | 0. For$; associated td;, ¢; as in (3.18), let
K={feC(T, R"’):f(O) =xandforallj e N, w(f,5;) <e;}.
By the Arzelad—Ascoli theorem (see, e.qg., [2], page 2&l)is compact. For all

n>1,

o0
Pry® e K <Y Plw (Y, 8;) > ¢}

j=1
o0

< Z €_bjn
j=1
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which proves that (3.18) implies that (Y, ¢)},.cn is exponentially tight.
Let B ={u1, ..., oy} be a basis oR? such that, for alb € R?,

vl = sup [{v,a;)|.
1=<j=d

Then, for allv € R,

d
exp(l|vll) < > [exp((v, @;)) +exp((v, —a;))].

j=1

Therefore, for ally € R¢, t > 0,
d

Eexp(z|Fa()|) < D _[exp(G(y, ta;)) + exp(G(y, —ta;)))]
(3.19) j=1

<2d max{exp(G(y, ta)):ax € BU(—B)}.
Using condition (3.3), it follows that

c1=c1(r) = supEexp(z | F1(y)|l) < oo.
yeRd

We claim next that ifco = c2(t) = Eexp(ta|G1l), then forp,g e N, 1< p <
q =<n,

q
(3.20) E ex Z ‘L’||Fj(X:::?_1) + an ||) <(c1c2)?7P.
j=pr+1

Arguing similarly to the proof of Lemma 3.4,

q
E( Y TlF X 1)+anl|>

Jj=p+1

q—1
:E(exp( > r||Fj(X,§;j_l)+aG‘,-ll)

Jj=p+1

Lo, 03 )+ a6 1)15,1] )
But
E[exp( || Fy (an D +aGgl)|Fy-1]
< E[exp(t|| Fy (X, g D) [Fg-1]Eexp(zallG4 )
= g(anq_l) -c2(T)

= c1(r)c2(7),
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whereg(y) = Eexp(t||F,(y) ). Now (3.20) follows by iteration.
The next step is to show that, fare N, m < n,

[(n(i+1)/m]+1
(3.21) w4 m™) <3 sup S 1Zl,
Osi=m=1 j—((ni)/m]+1

whereZ,; is as in Lemma 3.4. First we note that by the triangle inequality, for any

feC(T,RY),
322  w(f,mYH<3 sup sup f@—f(%)”'

O<i<m—1teli/m,(i+1)/m]

Fort e [L, &1,

m’ m

I

o)
[nt]

= ‘ (x + Z Zyj + (nt — [nt])Zn,[m]+1>
j=1

(3.23) ( [(ni)/m]

ni ni
X+ Y Zyi+ <Z - I:;:Dzn,[(ni)/m]—l-l)

j=1
[(n(i4+1))/m]+1

< > 1 Znj |-

Jj=l(ni)/ml+1
Now (3.21) follows from (3.22) and (3.23). Fer= 0, T > 0, by (3.20) and (3.21),
Plw(Y ", m™1) > ¢}

m—1 ([(n(i+1)/m]+1 e
3L PN
=0

i j=lni)/m]+1

[(n(i4+1))/m]+1

m—1
<Y el exp[T Yo IFX 5 ) +aG, II}
i—0 Jj=l(ni)/m]+1

< me—tn€/3(cl(r)6_2(r))(n/m)+2

1 2
- exp[—n (te/3 o (Z + ;) Iog(cl(wcz(r))]

Givenb > 1, chooser > 6bc~1, m > log(c1(r)ca(t)). Then

limsupn~tlog Plw(Y**, m™Y) > ¢} < —1¢/3+1
n

< —b,
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which establishes (3.18).]

In the next lemma we show thélt;'},,cy and{Y,"“},cn are superexponentially
close in probability ag — O.
LEMMA 3.7. Foreverye > 0,

lim limsupn ~tlogP{||YX* — Y ||s > £} = —00.
al0 n

ProOOF We will use the following estimate: for adl € N,

x,a
supll X,y — X .|l

k<n

(3.24)

n

n
§n_1a2|:||Gj|| I1 (1+n—1H,-(Xj;f_1, X;;,._l))},
j=1

i=j+1
where, fory, z e R?,

. _ [y —zID7HFj () = Fj@) if y#z,
H’(y’Z)_{o, if y=z.
To prove (3.24), we use the following elementary inequality, which is obtained

at once by induction: Ifai}ren, {br}ren, {ck}reny @re nonnegative real numbers
such that

ay < c1, ar < ag-1bx + ¢k for k > 2,
then for allk > 2,
k—1 k
(3.25) ai < Zq( l_[ bi) + ck.
j=1 \i=j+1
We have, for < k <n,
Xk — Xk
=Xyt = X))+ Fe Xy — Fe(Xps 1)) +naGy,
and therefore,
(3.26) 1X, & = X e
< IX iy = X a4+ n ™ He (G X5y _p) + 0 tal| Gl
Also,
Xt = X2 = (x+n ) +n7aGr) — (x + 07 F(x))

= n_laGl.
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Settingay = || X% — Xp ¢l b = 1+ n  He (X, 01, X5 0. cx = nal| Gyl
(3.24) follows from (3.25) and (3.26).
Using the elementary inequality-lx < ¢*(x € R), (3.24) implies

1Y, =Yy oo = IiJIOIIXﬁjZ — X il
n
(3.27)

(ZHG ||)exp( ‘1ZH<Xn, X 1))

Fort >0,b> 0, lete(r,b) =sugEexpt Hi(y,2)): Iyl < b, |Iz]| < b}.
Fora e RY, let

c(a, 7, b) = supEexp(t(ly — zI) "X Fi(y) — F1(2), @) : llyll <b, |zl <5},
and let
é(t,b) =2d maXc(a, t,b) :a € BU (—B)},

whereB is as in the proof of Lemma 3.6.
By conditioning as in Lemma 3.4 and iterating, we have

E[ ( sup X" <b, sup |IX* knsb)
k<n—1 k<n—1

xexp[ Y Hi(X iy, Z,i—l{“

i=1

(3.28) sE{ ( sup [IX, ¢l <b, sup IIX,’i,kHEb)

k<n—2 k<n—2

n—1
xexp[ Y OH (X X l)i“C(r’b)

i=1
<(c(z,b))"
<c(r,b)";

the last inequality is proved similarly to (3.19).
Fore >0,b >0,

P{IY, = Y, [l > &}

320) = PUY oo > b+ PUY oo > b}

+ P{suan;‘;Zn < b, SUPIX Il < b, Y54 = ¥illoo > e}.
k<n k<n
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By (3.27), Markov'’s inequality and (3.28),

Plsupc, 151 b SRy 141 <. 175 = ¥ oo = e

< P[SUpIIX,’i,’ZII <b,supllX; ;| <b,
k<n k<n
(330) _IZH(Xnt 1 nz 1)>}’}

+P

n_laz IG ;|| >ee—’}

j=1
<e "7 (E(1,b))" + exp(—na"tee ") (Eexp(||G1|))".
Next, using (3.11) and (3.20), we have

1Y, Nloo < llx1l +Zn—1||F (X2 ) +aGil,
i=1

(3:31)  sup Eexpn[|Y o) < "N (c1(D)ea(D))",

O<ax<1

sup P{IY5 oo > b} < e "2 (1 (D)ea(D))".

O<ax<1l
By (3.29),
limsupn~tlogP{[| Y5 — Y |loo > €}
n

< max{llm supntlog sup P{||Y*%| s > b}, —(tr — logé(z, b)),

O<ax1l

— (a7 tee™ — IogEexp(||Gl||))}.
Givent > 0, by (3.31) there exists > 0 such that

lim supn—llog sup P{[|Y" |0 > b} < —L.

O<ax1l

By condition (3.6), there exists > 0 such that(zr, b) < co. Letr > 0 be such
thattr — logc(t, b) > £. Then

lim suplim supn‘llog PUIY, " =Y o > )} < —L.
al0

Since? is arbitrary, this completes the proofl]
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LEmMmmA 3.8. Let G be given by (3.10). Then (G%)* is continuous on
R x R, where

(GD*(y,2) = supl(z,a) = G“(y, a)].

acRd

PrOOF We include for completeness the following argument, which is a
slight variant of one to be found, for example, in [3], pages 958 and 959.
By Jensen’s inequality, for all e R, « € R?,

2
Gi(y, o) = /<z,a>u<y,dz)+ lal’?

(3.32)

>q(a),
where g (@) = —D| x| + §||oe||2, for a suitable constanD which exists by
condition (3.3). Therefore, by an elementary calculation (see, e.g., [3], page 955),
(3.33) (GY*(y,2) <¢*(2) = (2a°) " (lzl + D),

s0(G%)* is everywhere finite. Suppose(n), z(n)) — (v,z) in R x R?. For any
positive sequence, | 0 and any subsequenpe} of {n}, there existga;} in R¢
such that

0 < (GHY*(y(np), z(np)) < (z(ng), ax) — G*(y(np), ox) + ek

a2 2
< (lzmoll + D)llow |l — 7 llell” + e

and hencgo,} is bounded. Therefore, there exist a subsequéncé of {o} and
B € RY such that lim oy, = 8. Then

lim sup(G“)* (v (n; ), z(nk;))
J

<lim SUd<Z (”k.i)’ O‘kj) —G“(y (nkj)’ Xk j )]

= <Z’ ﬂ) - Ga(yv /3)
<(GY*(y,2).
By the lower semicontinuity ofG4)*,
Iim/_inf(G“)*(y(nkj), z(ng;)) = (G (v, 2),
and therefore

Iir/_n (G“)*(y(nkj), Z(l’lkj)) = (G (y,2).

This proves the continuity afG*)* at(y, z). O
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PrROOF OFTHEOREM 3.1. (1) Upper bounds. In the context of Theorem 2.1,
let a, =n, E = C(T,R%), F = M(T,R%) and leté = ©. Also let Y, = Y,
®, = dF, d = ¥, where forf € C(T,R?), » € M(T,RY),

®3(f, ) = (x., 1(T)) +ZG( ( - ) —1/¢mdx)

O (1) = (x. A(T)) + /T G(f(s). (5. 1)) ds

Assume (3.3) and (3.4). It is immediate that conditions 1 and 2 of Theorem 2.1
hold. Conditions 3-5 of Theorem 2.1 hold, respectively, by Lemmas 3.5,
3.4 and 3.6 withu = 0. Applying Theorem 2.1, for all € C,

limsupn~tlogP{Y;y € A} < — inf (®)*(f, f).
n feA

But (&*)*(f, f) = I*(f) for all f € E by the argument in Theorem 6.1 of [5],
which applies easily to the present situation. This completes the proof of the upper
bound.

(1) Compactness of the level sets. Assume (3.3) and (3.4). We will frame
the argument so that it is useful in the proof of the lower bound. &&t) =
SUP,cgd G(y,a),andforre F, f € E, let

v () = [IAD[x]l +_/T(_;(M[S’ 1)) ds
Y (f) = sup(f, A) — ¥y (W]

AEF
Then for allh > O:

(i) L(y¥*, h)is compact.

(i) Upee LAPY)*(f, ), h) C L™, h).
SinceL(y*, h) is closed, by the Arzela—Ascoli theorem (see, e.qg, [2], page 221),
to prove (i) it is enough to show:

(@) sugllfO)|: feL®*, h)}<oo,
(b) limsyosudw(f,8): f e L(y* h)} =0,

wherew is given by (3.16). We prove only (b); the proof of (a) is similar but
simpler. If f € L(¥*, h), then forall, € F,

(3.34) /T (frdhy < YR+ h.

Lets,reT,s <t,p>0,acR? andleth = pa(s; — 8). Then by (3.34) we have

p(f @) — f(s),a) <Y(pa(d —&))+h
=G(pa)(t —s) + 1,
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£ (0) = F()| =SUp(f@) — f(5), @) lleel| < 1)
< p7LsudG(pa) : el < 1}(r — s) + p~1h,
and therefore
(3.35) supw(f,8): f e LW* )} <p tsupGpa):la| <1}8+ p~th.

Since G is a finite convex function by (3.3), hence continuous, (b) follows
from (3.35).
To prove (ii): forall f e E, L€ F,g € E,

DY(f M) =Y (N,
(@) (f, 8) = ¥ (g),
and therefore for alt > 0,
(3.36) L((@Y)*(f,-),h) C L(Y™*, h).
Finally note that (3.36) implies: for all > 0,
{feEX(@®)"(f, /) <h} CL&™, h),

which proves the compactness of the level set&"o{Of course, this property also
follows from Theorem 2.2 once the lower bound has been established.)

(1) Lower bounds. First we prove the lower bound farL (Y, “)}nen. We
take Eg = E, &, = &3¢, & = *¢. Conditions 1-5 of Theorem 2.1 are proved
asin (). Letr e F. Thenforalln eN, f € E,

n~r@XA(f,nn)

= (x, M(T)) +n_1éG”<f<i — 1), /qom- dx)

n
/(pni dr

_ 2
< I, (T +Sup”G(Ot) + %nanz‘ el < ||k||v}

]

no- a2
< (x, A1) +n_1Z[G<f o dx) + &
i=1

£ C,
which is finite by the continuity o6, and therefore

supsup|n~1d¥4(f,nr)| < C < o0.
n fekE

This establishes condition 6 of Theorem 2.2. Condition 7 of Theorem 2 ®*fér
is proved as in (II) above. It is readily seen that for k€ E, ®*“(f, -) is convex.
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The fact thatdb™“(f, -) is E-Gateaux differentiable, witlk -Gateaux derivative at
A € F given by ®*4(f, A) = f,, where
fx(t)=x+/ot vG*(f(s), M[s, 1)) ds, teT,
is proved as in Lemma 7.4 of [5]. Moreover, if
¢ (1) = PVU(fi 1),
then
¢'(t) = (VO (£, 1h), 1)

= (x, MT)) + /T</ou vG*(f(s), ta(ls, 1D)) ds, dk(u)>,

and therefore’ is continuous. This shows that condition 9 of Theorem 2.2 holds.
Next, since

|D54(f, h) — 25 (g, M| < /T|G(f(S),)»([S, 1D) — G(g(s), A([s, 1D)| ds,

it follows from condition (3.4) and Remark 2.3 that condition 8 of Theorem 2.2
holds. Using condition (3.5), the fact that condition 10 of Theorem 2.2 holds
for ®%-¢ is proved by showing that

f=vo 4(f, 0, g=vP (g, 1)

imply f =g asin[5], page 518.

Let (%) *(fo, fo) < 0o, & > 0. By the proof of Lemma 7.6 of [5], which
applies to the present situation by (3.32), we have: there exjstsE such thagg
is absolutely continuougp(0) = x, g € L*(T) and:

(i) go € B(fo.¢),
(i) (@*9)*(go, g0) < (P *(fo, fo) +e.

Supposef,, — go in E. Since by (3.33), for almost evesye T,
(G (fa(5). 86(9)) < a®)H(lIgh()l + D),

by Lemma 3.8 and the dominated convergence theorem we have

(@5 (fi. g0) = /T (G (fa(s). gh(s)) ds

> / (GY* (50(5). gh(s)) ds
T

= (®")*(go, 80)-

This shows that condition 11 of Theorem 2.2 holds. Applying this result to
{LY,; )} nen, we have: for every set € C,

(3.37) liminf n~tlogP{Y% € A} > — inf (®“*(f, f).
n feAo
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Finally, by a well-known argument (see [5], pages 518 and 519) based on (3.37),
Lemma 3.7 and the fact that, for gile E,

g%(df"")*(ﬁ )= (@*(f, ) =T"(f),
we have
liminfn~tlogP{Y* € A} > — inf I*(f).
n feAO

This completes the proof of the lower bound, and hence the proof of Theorem 3.1.
O

COROLLARY 3.9. Assume (3.3) and (3.4). Furthermore, assume that the
initial value problemin R?,

f0)=x, ' =vG(f(»,0), teT,

has a unique solution f,. Then {Y, '}, convergesin probability to f, exponen-
tially fast: for every ¢ > 0, there exists b > 0 such that

lim " P{1Y, = filloo = €} =0.

REMARK 3.10. As is well known (see, e.g., [12], page 270), a sufficient
condition for the existence and uniquenessfofis that the functionH (y) =
vG(y, 0) satisfy a global Lipschitz condition oR?. This is closely related to
condition (3.5).

PROOF OFCOROLLARY 3.9. We claim first that
(3.38) I*(f)=0 if and only if f = f,.

For, it is easily seen that*(y, z) = 0 if and only if z = vG(y, 0). The fact that
I*(fy) =0 is then clear. On the other hand, if

L(f) = /T G*(f (). f'(1))di =0,

then G*(f (1), f'(t)) = 0 a.e. [n], and thereforef’(r) = vG(f(¢),0) a.e. jn].
This implies that, for alt € T,

t
f<r>=x+/0 vG(f(s).0)ds,

and thereforef = f,. This proves (3.38).
Lete > 0. By the upper bound statement of Theorem 3.1,

limsupn~tlogP{||Y; — filleo = &} < —L(e),
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wherel(e) = inf{I*(f): f € (B(fx,€))‘}. By the compactness of the level sets
of I*, there existg € (B(fx, €))¢ such that/*(g) = £(¢). Sinceg # f, (3.38)
impliesI*(g) > 0. This establishes the conclusior.]

Let u be a probability measure &f such thafi (o) < oo for all « € R?, where
fi(e) = / e p(dy).

Let {Zi}reny be a sequence of i.i.d. random vectorsRA with £(Z1) = pu.
Let b:R? - R? ando :R? — R¥*? pe bounded and uniformly Lipschitz. An
interesting class of cases of the recursive scheme of Theorem 3.1 is obtained by
taking
Fie(y) =b(y) + 0 (y) Z, k €N.

Then we have, fon e N,0 <k <n,

XZ,O =X,

X) e =Xe o+ (XS ) +n e (X) DZk, k=1,

and {Y;'},en may be regarded as a stochastic Euler polygonal scheme for the
dynamical system

(3.39) f'@)=b(f())
with initial condition f(0) = x.

THEOREM 3.11. (i) If u,b and o are as above, then {L(Y;))},cn Satisfies
the large deviation principle on C (T, R%) with rate function

fT G*(f(). f'()dt,  if f(O) =x

I"(f) and f is absolutely continuous,
00, otherwise,

where

G*(y,z) = supl{z,a) — G(y, )]

a€R4
and
(3.40) G(y,a) = (b(y),a)+logi(c’' (y)a),

o'(y) being the transpose of o (y).
Moreover, the level sets L(1*, h) are compact.
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(i) {Y;'} converges in probability to the unique solution of the initial value
problem

f'@)=b(f(®)+o(f1)z1, fO) =x,
exponentially fast (in the sense of Corollary 3.9),where z1 = E(Z1).

REMARK 3.12. Itis easily seen thatdf(y) is invertible for ally € R?, then
G*(y,2) = (log )* (o "t () (z — b(»)).
and therefore
L(Iogﬁ)*(a_l(f(t))(f’(t) —b(f(1)))dt,

I(f) = i i i
if £(0)=ux,andf is absolutely continuous
00, otherwise.

PROOF OFTHEOREM 3.11. (i) We apply Theorem 3.1. Since in the present
case

/exp((z,oe)),u(y,dz) = EexpiF1(y), @)
=Eexd(b(y),a)+ (o(y)Z1, a)]

= exp(b(y), @)1f1(o" ()e),

G is indeed given by (3.40). Conditions (3.3) and (3.4) of Theorem 3.1 clearly
hold. Since

(341) YG(r.@)=b() + (4o’ M) [ o mzexpl(z. o' ()2,
condition (3.5) follows from the assumptions anb ando . Finally,
[(F1(y) — F1(2), )| = [{b(y) — b(2), @) +{(0(y) — 0(2)) Z1, )|
<Clly —zlllall(X+ 1 Z11)
for some constar@ > 0 and therefore, for any, z € R4, y#z,7>0,
Eexdr(ly —zI)"HF1(y) — F1(2), @)] < Eexp(zCller]| (1 + | Z1]))).
This shows that condition (3.6) holds. By Theorem 3.1, statement (i) holds.
(i) By (3.41),
V6.0 =b() + [ ()

=b(y) +o(y)z1.

The statement follows now from Corollary 3.9
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REMARK 3.13. 1. The particular case of (i) of Theorem 3.11 when
d=10(y) #0 for all y e R and . satisfies the additional assumptians= 0
and

lim || tlogi(e) = 0o
|| — 00

is presented in Theorem 2.1 of [10] by methods different from ours (actually,
in [10] a more general dependence scheme is considered). However, the proof
is incomplete: a convergence property of the rate function is used without
justification ([10], pages 65 and 66).

2. The particular case of (i) of Theorem 3.11 whefy) is invertible for all
y € R4 is implicitly covered by the preséation in [7], Proposition 6.3.4.
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