
The Annals of Probability
2004, Vol. 32, No. 3A, 1902–1933
DOI 10.1214/009117904000000397
© Institute of Mathematical Statistics, 2004

SELF-NORMALIZED PROCESSES: EXPONENTIAL INEQUALITIES,
MOMENT BOUNDS AND ITERATED LOGARITHM LAWS

BY VICTOR H. DE LA PEÑA,1 MICHAEL J. KLASS2 AND TZE LEUNG LAI3

Columbia University, University of California at Berkeley
and Stanford University

Self-normalized processes arise naturally in statistical applications.
Being unit free, they are not affected by scale changes. Moreover, self-
normalization often eliminates or weakens moment assumptions. In this
paper we present several exponential and moment inequalities, particularly
those related to laws of the iterated logarithm, for self-normalized random
variables including martingales. Tail probability bounds are also derived. For
random variablesBt > 0 andAt , let Yt (λ) = exp{λAt − λ2B2

t /2}. We de-
velop inequalities for the moments ofAt/Bt or supt≥0At/{Bt (log logBt)

1/2}
and variants thereof, whenEYt(λ) ≤ 1 or whenYt (λ) is a supermartin-
gale, for allλ belonging to some interval. Our results are valid for a wide
class of random processes including continuous martingales withAt = Mt

and Bt = √〈M〉t , and sums of conditionally symmetric variablesdi with

At = ∑t
i=1 di and Bt =

√∑t
i=1 d2

i . A sharp maximal inequality for con-
ditionally symmetric random variables and for continuous local martingales
with values inRm, m ≥ 1, is also established. Another development in this
paper is a bounded law of the iterated logarithm for general adapted se-
quences that are centered at certain truncated conditional expectations and
self-normalized by the square root of the sum of squares. The key ingredient
in this development is a new exponential supermartingale involving

∑t
i=1 di

and
∑t

i=1 d2
i . A compact law of the iterated logarithm for self-normalized

martingales is also derived in this connection.

1. Introduction. A prototypical example of self-normalized random vari-
ables is Student’st-statistic which replaces the population standard deviationσ

in the standardized sample mean
√

n(X̄n − µ)/σ by the sample standard devia-
tion. More generally, a self-normalized process is of the formAt/Bt , in which
Bt is a random variable that estimates some dispersion measure ofAt . An impor-
tant aspect of the theory of self-normalized processes is that we can often dispense
with the moment conditions that are needed ifAt is normalized by nonrandombt

instead, as evidenced by Shao’s (1997) large deviation theory for self-normalized
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sums of i.i.d. random variables without moment conditions. The problem of mo-
ment inequalities for self-normalized processes was suggested to the first author in
1990 by J. L. Doob, who pointed out that a key open problem in martingale theory
was the development of inequalities for martingales that are analogous to known
results in harmonic analysis [see Bañuelos and Moore (1999) for results in this
direction].

In recent years, there has been increasing interest in limit theorems and moment
bounds for self-normalized sums of i.i.d. zero-mean random variablesXi . In
particular, Bentkus and Götze (1996) derive a Berry–Esseen bound for Student’s
t-statistic, and Giné, Götze and Mason (1997) prove that thet-statistic has a
limiting standard normal distribution if and only ifX1 is in the domain of attraction
of a normal law, by making use of exponential andLp-bounds for the self-
normalized sumsUn = Sn/Vn, whereSn = ∑n

i=1 Xi andV 2
n = ∑n

i=1 X2
i . Egorov

(1998) gives exponential inequalities for a centered variant ofUn. To see the
connection between thet-statisticTn and the self-normalized sumUn, observe
that

Tn = Sn/Vn√
{n − (Sn/Vn)

2}/(n − 1)
.(1.1)

A recent paper of Caballero, Fernandez and Nualart (1998) contains moment
inequalities for a continuous martingale over its quadratic variation and uses these
results to show that if{Mt, t ≥ 0} is a continuous martingale null at zero, then for
each 1≤ p < q, there exists a universal constantC = C(p,q) such that∥∥∥∥ Mt

〈M〉t
∥∥∥∥
p

≤ C

∥∥∥∥ 1

〈M〉1/2
t

∥∥∥∥
q

.(1.2)

Related work in Revuz and Yor [(1999), page 168] for continuous local martingales
establishes for allp > q > 0 the existence of a constantCpq such that

E
(sups<∞ |Ms |)p

〈M〉q/2∞
≤ CpqE

(
sup
s<∞

|Ms |
)p−q

.(1.3)

It is important to point out that neither (1.2) nor (1.3) provide bounds for what
is arguably the most important case of inequalities of this type, namelyp = q.
Bounds onE(|Mt |p/〈M〉p/2

t ) are of particular interest because of their connection
with the central limit theorem, as noted earlier in the case of self-normalized
sums of i.i.d. random variables. For discrete-time martingales{∑n

i=1 di,Fn,

n ≥ 1}, de la Peña (1999) provides exponential bounds for the tail probabilities of∑n
i=1 di/(α + βV 2

n ), whereV 2
n = ∑n

i=1 E(d2
i |Fi−1) andβ > 0, α ≥ 0. In view of

the law of the iterated logarithm (LIL), it is of interest to useVn or Vn

√
2 log logVn

(instead ofV 2
n ) to self-normalize

∑n
i=1 di .

Motivated by these developments, we establish in this paper analogous
exponential andLp-bounds for a martingale divided by the square root of its
quadratic variation or its conditional variance. We start by considering two random
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variablesA andB with B > 0 such that

E exp
{
λA − λ2

2
B2

}
≤ 1 for all λ ∈ R.(1.4)

Note that if we were allowed to maximize overλ inside the expectation, then the
maximizing valueλ = A/B2 would give usE exp(A2/2B2) ≤ 1, which in turn
would imply thatP (A/B ≥ x) ≤ exp(−x2/2). Although we cannot interchange
the order of maxλ andE, we can integrate overλ with respect to a probability
measureF and interchange the order of integration with respect toP andF . This
approach is used in Section 2 to derive not only tail probability bounds forA/B but
alsoLp and exponential bounds forA/

√
B2 + (EB)2, and in Section 3 to obtain

iterated logarithm bounds for the moments ofA+/B. Section 3 further extends the
results to the case where (1.4) is replaced by

E exp{λA − �(λB)} ≤ c for all 0< λ < λ0,(1.5)

in which � is assumed to be any nonnegative, strictly convex function on[0,∞)

such that�(0) = 0, limx→∞ �(x) = ∞ and lim supx→∞ �′′(x) < ∞. Important
special cases of such� are�r(x) = xr/r with 1< r ≤ 2.

We next replace the random variablesA andB by random processesAt andBt

and, accordingly, replace (1.5) by{
exp

(
λAt − �r(λBt )

)
, t ∈ T

}
is a supermartingale for all 0< λ < λ0,(1.6)

in which T is either {0,1,2, . . . } or [0,∞). Section 4 proves an expectation
form of the LIL (Theorem 4.1) and develops maximal inequalities under this as-
sumption. Moreover, the caser = 2 andλ0 = ∞ in (1.6) with “supermartingale”
replaced by “martingale” yields a formula for certain boundary crossing probabili-
ties of continuous local martingales taking values inRm, as shown in Corollary 4.3.
Motivated by the LILs for self-normalized sums of certain classes of i.i.d. random
variables due to Griffin and Kuelbs (1989, 1991), Shao (1997) and Gine and Ma-
son (1998) and extensions by Jing, Shao and Wang (2003) to sums of independent
zero-mean random variables satisfying a Lindeberg-type condition, we study al-
most sure LILs for self-normalized (discrete-time) processes in Sections 5 and 6.

When a partial sum of random variablesX1,X2, . . . is centered and normalized
by a sequence of constants, only under rather special conditions does the usual LIL
hold even if the variables are i.i.d. In contrast, we show in Section 5 that there is a
universal upper bound of LIL type for the almost sure rate at which such sums can
grow after centering by a sum of conditional expectations of suitably truncated
variables and normalizing by the square root of the sum of squares of theXj ’s.
Specifically, letSn = X1+· · ·+Xn andV 2

n = X2
1+· · ·+X2

n, where{Xi} is adapted
to an increasing sequence{Fi} of σ -fields. In Section 5 we prove that given any
λ > 0, there exist positive constantsaλ andbλ such that limλ→0 bλ = √

2 and

lim sup
n→∞

{
Sn −

n∑
i=1

µi(−λvn, aλvn)

}/
{Vn(log logVn)

1/2} ≤ bλ a.s.(1.7)
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on {lim Vn = ∞}, where vn = Vn(log logVn)
−1/2 and µi(c, d) = E{Xi1(c ≤

Xi < d)|Fi−1} for c < d . Note that (1.7) is “universal” in the sense that it is
applicable toany adapted sequence{Xi}. In particular, suppose{Sn,Fn, n ≥ 1}
is a supermartingale such thatXn ≥ −mn a.s. for someFn−1-measurable random
variablemn satisfyingP {0≤ mn ≤ λvn for all largen} = 1. Then (1.7) yields

lim supSn/{Vn(log logVn)
1/2} ≤ bλ a.s. on{lim Vn = ∞}.(1.8)

We derive in Section 6 the lower half counterpart of (1.8) for the case where
{Sn,Fn, n ≥ 1} is a martingale such that|Xn| ≤ mn a.s. for someFn−1-measurable
mn with vn → ∞ and mn/vn → 0 a.s. Combining this with (1.8) (with
limλ→0 bλ = √

2) then yields

lim supSn/{Vn(log logVn)
1/2} = √

2 a.s.(1.9)

We end this section with various lemmas identifying a large class of random
variables satisfying (1.4), (1.5) or (1.6).

LEMMA 1.1. Let Wt be a standard Brownian motion. Assume that T is a
stopping time such that T < ∞ a.s. Then E exp{λWT − λ2T/2} ≤ 1 for all λ ∈ R.

LEMMA 1.2. Let Mt be a continuous, square-integrable martingale, with
M0 = 0. Then

exp{λMt − λ2〈M〉t/2}, t ≥ 0, is a supermartingale for all λ ∈ R.(1.10)

If Mt is only assumed to be a continuous local martingale, then (1.10)is also valid
(by application of Fatou’s lemma).

LEMMA 1.3. Let {Mt : t ≥ 0} be a locally square-integrable martingale,
with M0 = 0. Let {Vt} be an increasing process, which is adapted, purely
discontinuous and locally integrable; let V (p) be its dual predictable projection.

Set Xt = Mt + Vt , Ct = ∑
s≤t ((�Xs)

+)2, Dt = {∑s≤t ((�Xs)
−)2}(p)

t , Ht =
〈M〉ct + Ct + Dt. Then exp{Xt − V

(p)
t − 1

2Ht } is a supermartingale and, hence,

E exp
{
λ
(
Xt − V

(p)
t

) − λ2Ht/2
} ≤ 1 for all λ ∈ R.(1.11)

Lemma 1.3 is taken from Proposition 4.2.1 of Barlow, Jacka and Yor (1986).
A related bound can be found in Lemma 1.5, due to Stout (1973), in which
At is a discrete-time martingale with bounded increments andB2

t is a multiple
of its conditional variance; see also Kubilius and Mémin (1994). The following
lemma holds without any integrability conditions on the variables involved. It is a
generalization of the fact that ifX is any symmetric random variable, thenA = X

andB = X2 satisfy condition (1.4). It has a long history, including Wang (1989)
and Hitczenko (1990). Hitczenko (1990) proved it for conditionally symmetric
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martingale difference sequences, and de la Peña (1999) pointed out that the same
result still holds without the martingale difference assumption and, hence, without
any integrability assumptions.

LEMMA 1.4. Let {di} be a sequence of variables adapted to an increasing
sequence of σ -fields {Fi}. Assume that the di ’s are conditionally symmetric [i.e.,
L(di |Fi−1) = L(−di |Fi−1)]. Then exp{λ∑n

i=1 di − λ2 ∑n
i=1 d2

i /2}, n ≥ 1, is a
supermartingale with mean ≤ 1, for all λ ∈ R.

Note that any sequence of real-valued random variablesXi can be “sym-
metrized” to produce an exponential supermartingale satisfying (1.8) by
introducing random variablesX′

i such that

L(X′
n|X1,X

′
1, . . . ,Xn−1,X

′
n−1,Xn) = L(Xn|X1, . . . ,Xn−1)

and settingdn = Xn −X′
n; see Section 6.1 of de la Peña and Giné (1999). The next

two lemmas are related to (1.6).

LEMMA 1.5. Let {dn} be a sequence of random variables adapted to an
increasing sequence of σ -fields {Fn} such that E(dn|Fn−1) ≤ 0 and dn ≤ M a.s.
for all n and some nonrandom positive constant M . Let 0 < λ0 ≤ M−1, An =∑n

i=1 di , B2
n = (1 + 1

2λ0M)
∑n

i=1 E(d2
i |Fi−1), A0 = B0 = 0. Then {exp(λAn −

1
2λ2B2

n), Fn, n ≥ 0} is a supermartingale for every 0≤ λ ≤ λ0.

LEMMA 1.6. Let {dn} be a sequence of random variables adapted to an
increasing sequence of σ -fields {Fn} such that E(dn|Fn−1) = 0 and σ 2

n =
E(d2

n|Fn−1) < ∞. Assume that there exists a positive constant M such that
E(|dn|k|Fn−1) ≤ (k!/2)σ 2

nMk−2 a.s. or P (|dn| ≤ M|Fn−1) = 1 a.s. for all
n ≥ 1, k > 2. Let An = ∑n

i=1 di , V 2
n = ∑n

i=1 E(d2
i |Fi−1), A0 = V0 = 0. Then

{exp(λAn − 1
2(1−Mλ)

λ2V 2
n ), Fn, n ≥ 0} is a supermartingale for every 0 ≤ λ ≤

1/M .

Fix any 0< ρ < 1. Then Lemma 1.6 implies that (1.4) holds withA = An and
B = Vn/

√
ρ for every 0≤ λ ≤ (1− ρ)/M . The supermartingale in Lemma 1.6 is

closely related to martingale extensions of the classical inequalities of Bernstein
and Bennett; see Section 8.3 of de la Peña and Giné (1999) for a unified
approach to developing such inequalities from corresponding results for sums of
independent random variables via decoupling.

2. Some exponential inequalities. In this section we present a simple method
to derive exponential andLp-bounds forA/

√
B2 + (EB)2 under assumption (1.4).
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THEOREM 2.1. Let B ≥ 0 and A be two random variables satisfying (1.4) for
all λ ∈ R. Then for all y > 0,

E
y√

B2 + y2
exp

{
A2

2(B2 + y2)

}
≤ 1.(2.1)

Consequently, if EB > 0, then E exp(A2/[4(B2 + (EB)2]) ≤ √
2 and

E exp
(
xA/

√
B2 + (EB)2 ) ≤ √

2 exp(x2) for all x > 0.(2.2)

Moreover, for all p > 0,

E
(|A|/

√
B2 + (EB)2 )p ≤ 2p−1/2p�(p/2).(2.3)

PROOF. Multiplying both sides of (1.4) by(2π)−1/2y exp(−λ2y2/2) (with
y > 0) and integrating overλ, we obtain by using Fubini’s theorem that

1 ≥
∫ ∞
−∞

E
y√
2π

exp
(
λA − λ2

2
B2

)
exp

(
−λ2y2

2

)
dλ

= E

[
y√

B2 + y2
exp

{
A2

2(B2 + y2)

}

×
∫ ∞
−∞

√
B2 + y2

√
2π

exp
{
−B2 + y2

2

(
λ2 − 2

A

B2 + y2λ + A2

(B2 + y2)2

)}
dλ

]

= E

[
y√

B2 + y2
exp

{
A2

2(B2 + y2)

}]
,

proving (2.1). By Schwarz’s inequality and (2.1),

E exp
{

A2

4(B2 + y2)

}

≤
{(

E
y exp{A2/(2(B2 + y2))}√

B2 + y2

)(
E

√
B2 + y2

y2

)}1/2

≤
(
E

√
B2

y2 + 1

)1/2

≤
(
E

(
B

y
+ 1

))1/2

≤ √
2 for y = EB.

To prove (2.2) and (2.3), we assume without loss of generality thatEB < ∞.
Using the inequality|ab| ≤ a2+b2

2 , with a = √
2cA/

√
B2 + (EB)2 and b =

x/
√

2c, we getxA/
√

B2 + (EB)2 ≤ cA2

B2+(EB)2 + x2

4c
, which in the casec = 1/4

yields

E exp
{

xA√
B2 + (EB)2

}
≤ E exp

{
cA2

B2 + (EB)2
+ x2

4c

}
≤ √

2exp(x2),
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proving (2.2). Moreover, by Markov’s inequality,P (|A|/√
B2 + (EB)2 ≥

x) ≤ √
2 exp(−x2/4) for all x > 0. Combining this with the formulaEUp =∫ ∞

0 pxp−1P (U > x)dx for anyU ≥ 0, we obtain

E
(|A|/

√
B2 + (EB)2 )p ≤ √

2
∫ ∞

0
pxp−1 exp(−x2/4) dx = 2p−1/2p�(p/2).

�

Another application of the basic inequality (2.1) is the following.

COROLLARY 2.2. Let B ≥ 0 and A be two random variables satisfying (1.4)
for all λ ∈ R. Then for all x ≥ √

2, y > 0 and p > 0,

P

(
|A|

/√
(B2 + y)

(
1+ 1

2
log

(
B2

y
+ 1

))
≥ x

)
≤ exp

(
−x2

2

)
,(2.4)

E

(
|A|

/√
(B2 + y)

(
1+ 1

2
log

(
B2

y
+ 1

)))p

≤ 2p/2 + 2(p−2)/2p�

(
p

2

)
.(2.5)

PROOF. Note that forx ≥ √
2 andy > 0,

P

{
A2

2(B2 + y)
≥ x2

2

(
1+ 1

2
log

(
B2

y
+ 1

))}

≤ P

{
A2

2(B2 + y)
≥ x2

2
+ 1

2
log

(
B2

y
+ 1

)}

≤ exp
(
−x2

2

)
E

√
y exp{A2/(2(B2 + y))}√

B2 + y
≤ exp

(
−x2

2

)
,

in which the last inequality follows from (2.1). The proof of (2.5) makes use
of (2.4) and is similar to that of (2.3).�

3. Iterated logarithm bounds for moments of self-normalized variables and
their generalizations. In this section we present bounds forEh(A+/B) in terms
of E{H(B)}, whereH is a function that depends onh. The basic results are
Theorems 3.3 and 3.6. Applications of these results are given in Examples 3.4,
3.5 and 3.8, which relate, in particular, thepth absolute moment ofA+/B to that
of the iterated logarithm

√
log log(B ∨ B−1 ∨ e2). A variant of Theorem 3.3 has

been derived by a different argument in Theorem 1 of de la Peña, Klass and Lai
(2000) and Lemmas 3.1 and 3.2 below provide the proofs of Lemmas 2 and 3 of
that paper. The main objective of this section is to develop an analogous result
that requires (1.4) to hold only for the restricted range 0< λ < λ0, thereby widely
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expanding the applicability of our approach. In particular, this extension (given in
Theorem 3.6), together with Lemma 1.5, provides moment bounds for a wide class
of discrete-time martingales self-normalized by the square root of the conditional
variance, thereby connecting our results to LILs. Stout (1973) and Einmahl and
Mason (1989) have used this type of self-normalization for LILs of martingales.

Let L : (0,∞) → (0,∞) be a nondecreasing function such that

L(cy) ≤ 3cL(y) for all c ≥ 1 andy > 0,(3.1)

L(y2) ≤ 3L(y) for all y ≥ 1,(3.2) ∫ ∞
1

dx

xL(x)
= 1

2
.(3.3)

An example satisfying (3.1)–(3.3) is the function

L(y) = β{log(y + α)}{log log(y + α)}{log log log(y + α)}1+δ,(3.4)

where δ > 0, α is chosen sufficiently large to ensure (3.1), (3.2) andβ is a
normalizing constant so that (3.3) holds.

LEMMA 3.1. Let γ ≥ 1.Then yL(y/B ∨B/y) ≤ 3γ {L(γ )∨L(B∨B−1)} for
any 0 < y ≤ γ and B > 0.Consequently, for any A ≥ B > 0 and any −A

B
< x ≤ 0,(

x + A

B

)
L

(
x + A/B

B
∨ B

x + A/B

)
≤ 3

A

B

{
L

(
A

B

)
∨ L

(
B ∨ 1

B

)}
.(3.5)

PROOF. First consider the casey ≤ 1. From (3.1) and the fact thatL is
nondecreasing, it follows that

yL

(
y

B
∨ B

y

)
≤ yL

(
1

y

(
1

B
∨ B

))
≤ 3L

(
B ∨ 1

B

)
.

For the remaining case 1< y ≤ γ , sinceL is nondecreasing, we have

yL

(
y

B
∨ B

y

)
≤ γL

(
γ

(
1

B
∨ B

))
(3.6)

≤ γ

{
L(γ 2) ∨ L

((
B ∨ 1

B

)2)}
≤ 3γ

{
L(γ ) ∨ L

(
B ∨ 1

B

)}
,

where the last inequality follows from (3.2).�

LEMMA 3.2. Let B > 0 and A be random variables satisfying (1.4) for all
λ > 0. Define

g(x) = exp{x2/2}
x

1(x ≥ 1).(3.7)

Then

E
g(A/B)

L(A/B) ∨ L(B ∨ 1/B)
≤ 3∫ 1

0 exp(−x2/2) dx
.
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PROOF. By a change of variables,
∫ 1
0 (λL(1/λ))−1dλ = ∫ ∞

1 (λL(λ))−1dλ = 1
2.

Let

f (λ) = 1

λL(max{λ,1/λ}) , λ > 0.(3.8)

Then
∫ ∞
0 f (λ) dλ = ∫ 1

0 f (λ) dλ + ∫ ∞
1 f (λ) dλ = 1, sof is a density function on

(0,∞). Therefore, integrating (1.4) with respect to this probability measure yields

1 ≥ E

∫ ∞
0

exp{Ax − (B2x2/2)}
xL(x ∨ 1/x)

dx

= E

∫ ∞
0

exp{Ay/B − (y2/2)}
yL(y/B ∨ B/y)

dy (lettingy = Bx)

≥ E

{
exp

(
A2

2B2

)}

×
∫ ∞
−A/B

exp{−(x2/2)}
(x + A/B)L({(x + A/B)/B} ∨ {B(x + A/B)})1

(
A

B
≥ 1

)
dx(

lettingx = y − A

B

)

≥ E

{
exp

(
A2

2B2

)}∫ 0

−1

exp{−(x2/2)}dx

3(A/B)(L(A/B) ∨ L(B ∨ 1/B))
1
(

A

B
≥ 1

)
[by (3.5)]

=
{

1

3

∫ 1

0
exp

(
−x2

2

)
dx

}
E

g(A/B)

L(A/B) ∨ L(B ∨ 1/B)
. �

We next derive a bound onEh(A+/B) by making use of Lemma 3.2 for
nondecreasing functionsh that do not grow faster thang/L.

THEOREM 3.3. Let L : (0,∞) → (0,∞) be a nondecreasing function satis-
fying (3.1)–(3.3).Define g by (3.7).Let h be a nondecreasing function on [0,∞)

such that for some x0 ≥ 1 and c > 0,

0 < h(x) ≤ cg(x)/L(x) for all x ≥ x0.(3.9)

Let q be a strictly increasing, continuous function on [0,∞) such that for some
c̄ ≥ c,

L(x) ≤ q(x) ≤ c̄g(x)

h(x)
for all x ≥ x0.(3.10)

Let B > 0 and A be random variables satisfying (1.4) for all λ > 0. Then

Eh(A+/B) ≤ 4c̄ + h(x0) + Eh
(
q−1(L(B ∨ B−1)

))
.(3.11)

Consequently, Eh(A+/B) < ∞ if Eh(q−1(L(B ∨ B−1))) < ∞.
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PROOF. By Lemma 3.2,

E
g(A+/B)

L(A/B) ∨ L(B ∨ 1/B)
≤ 4.

Let Q = {L(B ∨ 1
B

) ≤ q(A
B

)}. Then,Eh(A+/B) is majorized by

h(x0) + E
h(A+/B)1(Q)1(A/B ≥ x0)

g(A/B)/(L(A/B) ∨ L(B ∨ 1/B))

×
(

g(A/B)

L(A/B) ∨ L(B ∨ 1/B)

)
+ Eh

(
A+

B

)
1(Qc)1

(
A

B
≥ x0

)

≤ h(x0) + sup
y≥x0

h(y)(L(y) ∨ q(y))

g(y)

× E

(
g(A/B)

L(A/B) ∨ L(B ∨ 1/B)

)
+ Eh

(
q−1

(
L

(
B ∨ 1

B

)))

≤ h(x0) + 4 sup
y≥x0

h(y)q(y)

g(y)
+ Eh

(
q−1

(
L

(
B ∨ 1

B

)))
. �

To apply Theorem 3.3, one can takeL as given by (3.4) and chooseq−1 that
grows as slowly as possible (or equivalently,q that grows as rapidly as possible)
subject to the constraint (3.10).

EXAMPLE 3.4. DefineL by (3.4) and leth(x) = xp for x ≥ 0, with p > 0.
Then (3.9) clearly holds withc = 1 andx0 sufficiently large, for which (3.10) also
holds withq(x) = g(x)/h(x) = exp(x2/2)/xp+1. In this case,

q−1(y) = {
2 logy + (

p + 1+ o(1)
)
log logy

}1/2 asy → ∞.

SinceL(x) ∼ β(logx)(log logx)(log log logx)1+δ asx → ∞, Theorem 3.3 yields

E(A+/B)p < ∞ if E
{
log

(| log(B ∨ B−1)| ∨ e
)}p/2

< ∞,(3.12)

for random variablesB > 0 andA satisfying (1.4) for allλ > 0.

EXAMPLE 3.5. Let 0< θ < 1 andh(x) = exp(θx2/2) for x ≥ 0. Define
L by (3.4). Then (3.9) holds withc = 1 and x0 sufficiently large, for which
(3.10) also holds withq(x) = g(x)/h(x) = x−1 exp{(1 − θ)x2/2}. In this case,
h(q−1(y)) = O({y(logy)1/2}θ/(1−θ)). Therefore, ifB > 0 and (1.4) holds for all
λ > 0, then by Theorem 3.3,

E exp
(

θ

2

(
A+

B

)2)
< ∞

(3.13)
if E{(logB̃)(log logB̃)3/2(log log logB̃)1+δ}θ/(1−θ) < ∞
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for someδ > 0, whereB̃ = B ∨ B−1 ∨ e3.
The following theorem modifies and broadly extends Theorem 3.3 by requiring

(1.4) to hold only for the restricted range 0≤ λ ≤ λ0. An example where this
appears naturally can be found in Lemma 1.5, whereA is a martingale and
B2 is a multiple of its conditional variance.Theorem 3.6 also generalizes (1.4)
by replacing the quadratic functionλ2B2/2 and the upper bound 1 in (1.4) by a
convex function�(λB) and a finite positive constantc. Unlike Theorem 3.3 that
involves a single functionq to give the bound (3.11), Theorem 3.6 uses a family
of functionsqb. The wider range of applications that will be explored in Section 4
justifies the additional technical work required for the theorem. The proof employs
different analyses ofA/B for small and largeB, incorporating a Taylor expansion
of � for largeB. In addition, as before, Fubini’s theorem allows us to treat the
random variables involved as though they were constants.

THEOREM 3.6. Suppose that �(·) is a continuous function with �′(x) strictly
increasing, continuous and positive for x > 0, with limx→∞ �(x) = ∞ and
supx>0 �′′(x) < ∞. Suppose B > 0 and A are random variables such that there
exists c > 0 for which

E exp{λA − �(λB)} ≤ c for all 0< λ < λ0.(3.14)

For w > �′(1), define yw by the equation �′(yw) = w, and let

g�(w) = y−1
w exp{wyw − �(yw)}.(3.15)

Let η > η̃ > 0. Let h : [0,∞) → (0,∞) be a nondecreasing function. For b ≥ η,
let qb be a strictly increasing, continuous function on (0,∞) such that for some
c̃ > 0 and w0 > �′(2),

qb(w) ≤ c̃{g�(w)1(yw ≤ λ0b) + eλ0η̃w1(yw > λ0b)}/h(w)
(3.16)

for all w ≥ w0.

Let L : (0,∞) → (0,∞) be a nondecreasing function satisfying (3.1)–(3.3).Then
there exists a constant C depending only on λ0, η, η̃, c, c̃ and � such that

Eh
(
A+/(B ∨ η)

) ≤ C + h(w0) + Eh
(
q−1
B∨η

(
L(B ∨ η)

))
.(3.17)

PROOF. Note that Lemma 3.2 transforms the inequality constraints (1.4) for
all λ > 0 into a single expectation inequality primarily involving a rather rapidly
growing function ofA/B and a slowly varying functionL of B ∨ 1

B
. This result is

employed in the proof of Theorem 3.3 to bound a quantity of the formEh(A+/B)

by a constant plusEh(q−1(L(B∨ 1
B

)). To duplicate this approach when (1.4) holds
only for 0< λ < λ0, we first derive an analog of Lemma 3.2 by splittingA/B ≥ w0
into two cases:yA/B > λ0B andyA/B ≤ λ0B. Moreover, we need to replaceB
by B ∨ η. Since�(x) is increasing inx > 0, (3.14) also holds withB replaced
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by B ∨ η and, therefore, we shall assume without loss of generality thatB ≥ η.
Integrating (3.14) with respect to the probability measure defined by the density
function (3.8) yields

c ≥ E

∫ λ0

0

exp{λA − �(λB)}
λL(λ ∨ λ−1)

dλ = E

∫ λ0B

0

exp{xA/B − �(x)}
xL(x/B ∨ B/x)

dx.(3.18)

Our first variant of Lemma 3.2, given in (3.19), provides an exponential bound
for A/B when λ0B < yA/B . Observe that using the definition ofyw, we have
that x A

B
− �(x) increases inx for x ≤ yA/B , and decreases inx for x ≥ yA/B .

Take any 0< η̃ < η, and letλ1 = λ0 ∨ λ−1
0 ∨ η̃. SinceB ≥ η > η̃, it follows from

(3.18) and (3.1) that

c ≥ E

∫ λ0η

λ0η̃

exp{xA/B − �(x)}
xL(x/B ∨ B/x)

dx1
(

A

B
≥ w0

)
1(yA/B > λ0B)

≥ E

∫ λ0η

λ0η̃

exp{λ0η̃A/B − �(λ0η)}
L(λ0 ∨ B/(λ0η̃))

dx

x
1
(

A

B
≥ w0

)
1(yA/B > λ0B)(3.19)

≥ e−�(λ0η̃)

3λ1/η̃
log

(
η

η̃

)
E

eλ0η̃A/B

L(B)
1
(

A

B
≥ w0

)
1(yA/B > λ0B).

Our second variant of Lemma 3.2, given in (3.21), boundsA/B whenλ0B ≥
yA/B . Sincew0 > �′(2), yw0 > 2. Define

a∗ = sup
{
a ≤ 1 :a2�′′(x) ≤ 1 for all x > yw0 − a

}
.(3.20)

Note thata∗ > 0 andyw0 − a∗ > 1. Since�′(yw) − w = 0, a two-term Taylor
expansion forw ≥ w0 andx ∈ (yw − a∗, yw) yields

wx − �(x) = wyw − �(yw) − (x − yw)2

2
�′′(ξ∗)

≥ wyw − �(yw) − (x − yw)2

2a2∗
,

in which ξ∗ lies betweenx and yw. The last inequality follows from (3.16)
and (3.20), noting thatξ∗ > x > yw − a∗ ≥ yw0 − a∗. It then follows from (3.18)
that

c ≥ E

[
1
(
yA/B ≤ λ0B,

A

B
≥ w0

)

×
∫ yA/B

yA/B−a∗

exp{(A/B)yA/B − �(yA/B) − (x − yA/B)2/(2a2∗)}
xL(x/B ∨ B/x)

dx

]

≥ E

[
1
(
yA/B ≤ λ0B,

A

B
≥ w0

)

× exp{(A/B)yA/B − �(yA/B)}
yA/B{L(λ0 ∨ B)}

∫ yA/B

yA/B−a∗
exp

{
−(x − yA/B)2

2a2∗

}
dx

]
,
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usingx > yA/B − a∗ ≥ yw0 − a∗ > 1 so thatB
x

< B. From Lemma 3.1 and the fact

thatB ≥ η, we haveL(λ0 ∨ B) ≤ 3(1∨ λ0
η

)L(B). Hence,

c ≥ E

[
1
(
yA/B ≤ λ0B,

A

B
≥ w0

)

× exp{(A/B)yA/B − �(yA/B)}
3yA/B(1∨ (λ0/η))L(B)

a∗
∫ 1

0
exp

(
−z2

2

)
dz

]
(3.21)

≥ a∗
4(1∨ (λ0/η))

E
g�(yA/B)1(yA/B ≤ λ0B,A/B ≥ w0)

L(B)
.

Let Q = {L(B) ≤ qB(A/B)}. Then rewriting (3.16) as an upper bound forh and
using the definition ofQ, we can majorizeEh(A+/B) by

h(w0) + c̃E

[
1(Q)

{
g�(A/B)

L(B)
1
(

A

B
≥ w0, yA/B ≤ λ0B

)

+ eλ0η̃A/B

L(B)
1
(

A

B
≥ w0, yA/B > λ0B

)}]

+ Eh

(
A

B

)
1
(
Qc ∩

{
A

B
≥ w0

})
≤ h(w0) + C + Eh

(
q−1
B (L(B))

)
,

in which the inequality follows from (3.16), (3.21) and (3.19).�

REMARK 3.7. In the caseλ0 = ∞ [as in Theorem 3.3 for which�(x) =
x2/2], the bounds (3.18) and (3.19) are not needed and the result for general� is
similar to (3.11) in Theorem 3.3. The main difference between (3.11) and (3.17)
lies in q−1 in (3.11) versus the more elaborateq−1

B∨η in (3.17) to incorporate both
(3.19) and (3.21).

The next example is designed to exploit the form ofqb(w) of Theorem 3.6 [see
(3.16)].

EXAMPLE 3.8. Lemmas 1.5 and 1.6 give examples of(A,B) satisfying (1.4)
only for 0≤ λ ≤ λ0. Thus, (3.14) holds with�(x) = x2/2 andg� reduces to the
function g defined by (3.7) in this case, noting thatyw = w. DefineL by (3.4).
First leth(x) = xp for x ≥ 0, with p > 0. Forb ≥ η > η̃ > 0, let qb be a strictly
increasing function on(0,∞) such that for all largeb,

qb(w) = ew2/2/wp+1 if w ≤ λ0(η̃b)1/2,

≤ ew2/2/wp+1 if λ0(η̃b)1/2 < w ≤ λ0b,

= eλ0η̃w/wp if w > λ0b.

(3.22)
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Then (3.16) holds with̃c = 1. From (3.4) and (3.22), it follows thatq−1
b (L(b)) ∼

(2 log logb)1/2 asb → ∞. Therefore, (3.12) still holds withB replaced byB ∨ η

even though (1.4) holds only for 0≤ λ ≤ λ0. Similarly, lettingh(x) = eζx with
0 < ζ < λ0η̃, it follows from Theorem 3.6 that

E exp
(
ζA+/(B ∨ η)

)
< ∞

(3.23)
if E exp{ζ [2(log logB̃)(log log logB̃)1+δ]1/2}

for someδ > 0, whereB̃ = B ∨ e3. One such choice ofqb that satisfies (3.22) for
sufficiently largeb is to let qb(w) = w−p exp(f 2(w)) for λ0(η̃b)1/2 < w ≤ λ0b,
wheref is linear on[λ0(η̃b)1/2, λ0b] and is uniquely determined by requiring
qb to be continuous. In this case, it can be shown thatf 2(w) ≤ w2/2 − logw

for λ0(η̃b)1/2 ≤ w ≤ λ0b if b is sufficiently large, noting that the slope off is
{1 + o(1) − 1/

√
2}√η̃/b and, therefore,12w2 − logw − f 2(w) is an increasing

function ofw ∈ [λ0(η̃b)1/2, λ0b] for all largeb.
Another application of Theorem 3.6 involves the more general case of�(x) =

xr/r (1 < r ≤ 2), for which

yw = w1/(r−1), g�(w) = w−1/(r−1) exp
{
(1− r−1)wr/(r−1)}.(3.24)

In view of (3.24), it follows from Theorem 3.6, by arguments similar to
Example 3.8, that under (3.14) with�(x) = xr/r , we have for anyp > 0,

E
(
A+/(B ∨ η)

)p
< ∞ if E

{
log+(

log(B ∨ η)
)}p(r−1)/r

< ∞.(3.25)

Moreover, (3.23) still holds if we replace 2 and 1/2 there byr/(r − 1) and its
reciprocal, respectively. The following lemma, which provides an analogue of
Lemma 1.5 for more general 1< r ≤ 2 and which self-normalizesAn by the square
root of the square function

∑n
i=1 d2

i , gives an exponential supermartingale when
the summandsdi of An are bounded from below rather than from above.

LEMMA 3.9. Let 0 < γ < 1 < r ≤ 2. Define cγ,r = max{cr, c
(γ )
r }, where

cr = inf{c > 0 :exp(x − cxr) ≤ 1+ x for all x ≥ 0},
c(γ )
r = inf{c > 0 :exp(x − c|x|r ) ≤ 1+ x for all − γ ≤ x ≤ 0}.

(i) For all x ≥ −γ, exp{x − cγ,r |x|r} ≤ 1+ x. Moreover, cr ≤ (r − 1)r−1(2−
r)2−r/r and

c(γ )
r = −{γ + log(1− γ )}/γ r =

∞∑
j=2

γ j−r
/

j.
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(ii) Let {dn} be a sequence of random variables adapted to an increasing
sequence of σ -fields {Fn} such that E(dn|Fn−1) ≤ 0 and dn ≥ −M a.s. for
all n and some nonrandom positive constant M . Let An = ∑n

i=1 di , Br
n =

rcγ,r

∑n
i=1 |di |r , A0 = B0 = 0. Then {exp(λAn − (λBn)

r/r),Fn, n ≥ 0} is a
supermartingale for every 0 ≤ λ ≤ γM−1.

PROOF. The first assertion of (i) follows from the definition ofcγ,r . Forc > 0,
definegc(x) = log(1+x)−x +c|x|r for x > −1. Theng′

c(x) = |x|r−1{|x|2−r(1−
|x|)−1 − cr} for −1 < x < 0. Since|x|2−r/(1− |x|) is decreasing in−1 < x < 0,
g′

c has at most one zero belonging to(−1,0). Let c∗ = −{γ + log(1 − γ )}/γ r .
Then gc∗(−γ ) = 0 = gc∗(0). It then follows thatgc∗(x) > 0 for all −γ <

x < 0 and, therefore,c∗ ≥ c
(γ )
r . If c∗ > c

(γ )
r , then g

c
(γ )
r

(−γ ) < gc∗(−γ ) = 0,

contradicting the definition ofc(γ )
r . Hence,c(γ )

r = c∗. Take anyc ≥ (r −1)r−1(2−
r)2−r/r . Then for allx > 0,

g′
c(x) = 1

1+ x
− 1+ crxr−1 ≥ x

1+ x

{
−1+ cr inf

y>0
(yr−2 + yr−1)

}

= x

1+ x

{
−1+ cr

(r − 1)r−1(2− r)2−r

}
≥ 0.

Since gc(0) = 0, it then follows thatgc(x) ≥ 0 for all x ≥ 0. Hence,cr ≤
(r − 1)r−1(2− r)2−r/r .

To prove (ii), note that sinceλdn ≥ −λM ≥ −γ a.s. for 0≤ λ ≤ γM−1,
(i) yields

E[exp{λdn − cγ,r |λdn|r}|Fn−1] ≤ E[1+ λdn|Fn−1] ≤ 1 a.s. �

4. An expectation version of the LIL and maximal inequalities for self-
normalized martingales. In this section we first prove a theorem that provides
an expectation form of the upper LIL under the assumption{

exp
(
λAt − �r(λBt )

)
, t ∈ T

}
(4.1)

is a supermartingale with mean≤ 1 for 0< λ < λ0,

whereT is either {0,1,2, . . . } (discrete-time case) or[0,∞) (continuous-time
case) and�r(x) = xr/r for 1 < r ≤ 2. Applications of the theorem will be given
in (4.9)–(4.12). Important special cases of (4.1) have been given in Lemmas 1.5,
1.6 and 3.9. We then develop maximal inequalities for self-normalized processes
under (4.1), yielding an almost sure upper LIL in Corollary 4.2 that generalizes
a corresponding result of Giné and Mason (1998) for i.i.d. symmetric random
variables.
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THEOREM 4.1. Let T = {0,1,2, . . . } or T = [0,∞), 1< r ≤ 2, and �r(x) =
xr/r for x > 0. Let At,Bt be stochastic processes (on the same probability
space) satisfying (4.1) and such that Bt is positive and nondecreasing in t > 0,
with A0 = 0. In the case T = [0,∞), assume furthermore that At and Bt are
right-continuous. Let L : [1,∞) → (0,∞) be a nondecreasing function satisfying
(3.1)–(3.3).Let η > 0, λ0η > ε > 0, and h : [0,∞) → [0,∞) be a nondecreasing
function such that h(x) ≤ eεx for all large x. Then there exists a constant C

depending only on λ0, η, r, ε, h and L such that

Eh

(
sup
t≥0

{
At(Bt ∨ η)−1[1∨ log+ L(Bt ∨ η)]−(r−1)/r

}) ≤ C.(4.2)

PROOF. It suffices to prove (4.2) with supt≥0 replaced by sups≥t≥0 for every
s > 0. Given anys > 0, there exists a sequence of nonnegative random timesτn ≤ s

(in general, not stopping times) such that

lim
n→∞

A+
τn

(Bτn ∨ η){1∨ log+ L(Bτn ∨ η)}(r−1)/r

(4.3)

= sup
0≤t≤s

At

(Bt ∨ η){1∨ log+ L(Bt ∨ η)}(r−1)/r
,

sinceA0 = 0. As in the proof of Theorem 3.6, we shall assume without loss of
generality thatBt ≥ η. Take anyq < 1 such thatqλ0η > ε.

It follows from Lemma 1 of Shao (2000) and Fatou’s lemma that for any
nonnegative supermartingale{Yt, t ∈ T } (with right-continuousYt in the case
T = [0,∞)), E(supt∈T Yt )

q ≤ (1− q)−1(EY0)
q . Applying this result to (4.1) and

noting thatA0 = 0, we obtain that for 0≤ λ ≤ λ0,

(1− q)−1 ≥ E

(
sup
t∈T

exp{λAt − �r(λBt )}
)q

(4.4) ≥ E exp
{
q
[
λAτn − �r

(
λBτn

)]}
= E exp

{
qλAτn − �r

(
qλBτn

)}
,

where�r(x) = q1−rxr/r .
Let fr(w) = exp{q(1 − r−1)wr/(r−1)} for w > 0. Note that in the notation of

Theorem 3.6,g�r (w) = y−1
w fr(w) with yw = qw1/(r−1). Letting A = Aτn and

B = Bτn , it follows from (4.4) and (3.3) that

(1− q)−1 ≥
∫ λ0

0
E exp{qλA − �r(qλB)} dλ

λL(λ ∨ λ−1)
,
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which in turn yields the following analogues of (3.19) and (3.21), withη > η̃:

(1− q)−1 ≥ e−�r(qλ0η)

3λ1(η̃−1 ∨ η̃)
log

(
η

η̃

)
E

eqλ0η̃A/B

L(B ∨ 1)
,(4.5)

(1− q)−1 ≥ E

∫ qλ0B

0

exp{xA/B − �r(x)}
xL(x/(qB) ∨ (qB)/x)

dx

(4.6)

≥ c(λ0, q, η, r)E
fr(A/B)

(A/B)1/(r−1)L(B)
1
((

A

B

)1/(r−1)

≤ λ0B

)
,

with qλ0η̃ > ε, λ1 = λ0 ∨ λ−1
0 and the constantc(λ0, q, η, r) depending only on

λ0, q, η andr . For (4.6), recall thatyw = qw1/(r−1) andg�r (w) = y−1
w fr(w).

Take anyδ < 1 such thatr(1 − δ)/(r − 1) > 1. Sinceqλ0η̃ > ε, there exists
x0 > λr−1

0 ∨ 1 such that

h(x) ≤ eqλ0η̃x/L(x) < f 1−δ
r (x)/x1/(r−1) for all x ≥ x0,(4.7)

noting thatL(x) ≤ 3xL(1) by (3.1). Let

F = {f δ
r (A/B) ≤ L(B) ∨ e}

= {
A+/B ≤ [(

1∨ logL(B)
)
/
(
δq(1− r−1)

)](r−1)/r}
.

Let k be the smallest integer such that 2k(r − 1) ≥ 1. On{A/B ≥ x0 ∨ (λ0B)r−1},
L(A/B) ≥ L

(
x0 ∨ (λ0B)r−1) ≥ 1

3(λ0 ∧ 1)r−1L(1∨ Br−1)

≥ 3−(k+1)(λ0 ∧ 1)r−1L(1∨ B),

where the last two inequalities follow from (3.1) and (3.2), respectively. From (4.7),
it then follows that

Eh

(
A+

B{1∨ log+ L(B)}(r−1)/r

)
≤ h(x0) + h

(
1/[δq(1− r−1)](r−1)/r)P (F )

+ E1
(
F c ∩

{
A

B
≥ x0

})
(4.8) ×

{
eqλ0η̃A/B

3−(k+1)(λ0 ∧ 1)r−1L(B ∨ 1)
1
((

A

B

)1/(r−1)

≥ λ0B

)

+
(

sup
x≥x0

h(x)x1/(r−1)

f 1−δ
r (x)

)
fr(A/B)

(A/B)1/(r−1)L(B)

× 1
((

A

B

)1/(r−1)

< λ0B

)}
,
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noting that f δ
r (A/B) > L(B) and, therefore,f 1−δ

r (A/B) < fr(A/B)/L(B)

onF c. The desired conclusion follows from (4.5), (4.6) and (4.8).�

Consider the case of continuous local martingalesAt . We can apply Theo-
rem 4.1 withr = 2 andBt = √〈A〉t , in view of Lemma 1.2. Puttingh(x) = xp

in (4.2), with L(x) given by (3.4) in this case, yields the following extension
of (1.3) to the caseq = p: There exists for everyp > 0 an absolute constantCp

such that

E

(
sup
t≥0

A+
t

{〈A〉t log log(〈A〉t ∨ e2)}1/2

)p

≤ Cp.(4.9)

Since (4.1) holds for allλ0 > 0 by Lemma 1.2, we can, in fact, setλ0 = ∞ in (4.8)
with r = 2 to replace it by

Eh

(
A+

B{1∨ log+ L(B)}1/2

)
≤ h(x0) + h([2/δq]1/2)P (F )

+ sup
x≥x0

h(x)x1/2

exp{(q/2)(1− δ)x2}E1
(
F c ∩

{
A

B
≥ x0

})
exp{(q/2)(A/B)2}

(A/B)L(B)
,

so we only requireh(x) ≤ exp(εx2) for someε < 1
2 and all largex in this case.

Puttingh(x) = exp(αx2), with 0< α < 1
2, in the preceding argument then yields

an absolute constantC(α) such that

E

[
sup
t≥0

exp
(

αA2
t

〈A〉t log log(〈A〉t ∨ e2)

)]
≤ C(α),(4.10)

which can be regarded as an extension top = 0 of the following result of Kikuchi
(1991): For everyp > 0 and 0< α < 1

2, there exists an absolute constantCα,p

such that

E[A∗p∞ exp(αA∗2∞/〈A〉∞)] ≤ Cα,pE(A∗p∞ ),

whereA∗∞ = supt≥0 |At |.
By Lemma 1.5 or 1.6, (4.9) (witht ≥ 0 replaced byn ≥ 1) also holds for

discrete-time supermartingales or martingalesAn whose difference sequences
satisfy the assumptions in these lemmas. Similarly, for conditionally symmetric
random variablesdi , it follows from Lemma 1.4 and Theorem 4.1 that for every
p > 0, there exists an absolute constantCp such that

E

(
sup
n≥1

(
∑n

i=1 di)
+

{(∑n
i=1 d2

i ) log log(
∑n

i=1 d2
i ∨ e2)}1/2

)p

≤ Cp.(4.11)

In view of Lemma 3.9(iii), Theorem 4.1 can be applied also when{dn,Fn, n ≥ 1}
is a supermartingale difference sequence such thatdn ≥ −M a.s. for alln and
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some nonrandomM > 0. In this case, we have more generally that forp > 0 and
1 < r ≤ 2, there existsCp,r such that

E

(
sup
n≥1

(
∑n

i=1 di)
+

{(∑n
i=1 |di|r ∨ 1)[log log(

∑n
i=1 |di|r ∨ e2)]r−1}1/r

)p

≤ Cp,r .(4.12)

The remainder of this section considers maximal inequalities for self-normalized
processes under condition (4.1) by using an extension of the method of mixtures
introduced by Robbins and Siegmund (1970) for Brownian motion. LetF be any
finite measure on(0, λ0) with F(0, λ0) > 0 and define the function

ψ(u, v) =
∫ λ0

0
exp{λu − λrv/r}dF (λ).(4.13)

Given anyc > 0 and v > 0, the equationψ(u, v) = c has a unique solution
u = βF (v, c). For the caser = 2, the functionv → βF (v, c) is called aRobbins–
Siegmund boundary in Lai (1976), in which such boundaries are shown to have the
following properties:

(a) βF (v, c) is a concave function ofv.
(b) limv→∞ βF (v, c)/v = bF /2, where bF = sup{y > 0 :F(0, b) = 0}

(sup∅ = 0).

(c) If dF (λ) = f (λ) dλ for 0 < λ < λ0 and inf0<λ<λ0 f (λ) > 0 while
sup0<λ<λ0

f (λ) < ∞, thenβF (v, c) ∼ (v logv)1/2 asv → ∞.
(d) If dF (λ) = f (λ) dλ for 0 < λ < e−2, and= 0 elsewhere, where

f (λ) = 1/{λ(logλ−1)(log logλ−1)1+δ},(4.14)

for someδ > 0, then asv → ∞,

βF (v, c) =
{

2v

[
log2 v +

(
3

2
+ δ

)
log3 v + log

(
c

2
√

π

)
+ o(1)

]}1/2

.(4.15)

As in Robbins and Siegmund (1970), we write logk v = log(logk−1 v) for k ≥ 2,

log1v = logv. For general 1< r ≤ 2, (a) still holds, (b) holds withbF/2
replaced bybr−1

F /r and (c) can be generalized toβF (v, c) ∼ v1/r{(logv)/(r −
1)}(r−1)/r asv → ∞. Moreover, iff is given by (4.14) as in (d), then

βF (v, c) ∼ v1/r{r(log logv)/(r − 1)}(r−1)/r asv → ∞,(4.15)

as can be shown by a modification of the arguments in Section 5 of Robbins and
Siegmund (1970) for the caser = 2.

It follows from (4.1) that{ψ(At ,B
r
t ), t ≥ 0} is a nonnegative supermartingale

with mean≤ F(0, λ0) and, therefore,

P {At ≥ βF (Br
t , c) for somet ≥ 0}

(4.16)
= P {ψ(At,B

r
t ) ≥ c for somet ≥ 0} ≤ F(0, λ0)/c,

for everyc > 0. In particular, by choosingc in (4.16) arbitrarily large, we obtain
from (4.15) and (4.16) the following:
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COROLLARY 4.2. Let 1 < r ≤ 2, �r(x) = xr/r for x ≥ 0 and suppose that
(4.1)holds for the process (At,Bt ), t ∈ T . Then

lim sup
t→∞

At

Bt (log logBt)
(r−1)/r

≤
{

r

r − 1

}(r−1)/r

(4.17)

a.s. on
{

lim
t→∞ Bt = ∞

}
.

Note that Theorem 4.1 already implies the a.s. finiteness of the above lim sup
on {lim Bt = ∞}, but (4.17) gives a sharp nonrandom upper bound that reduces
to the familiar

√
2 when r = 2. In view of Lemma 1.4, Corollary 4.2 with

r = 2 is applicable to conditionally symmetric random variablesdi , yielding
(4.17) withAt = ∑t

i=1 di andBt = (
∑t

i=1 d2
i )1/2. The special case of this result

for independent symmetricdi has been derived via an independent Rademacher
sequence{εi} by Griffin and Kuelbs (1991) and also by Giné and Mason (1998),
who show that log logBt in (4.17) (withr = 2) can be replaced by log logt when
thedi are i.i.d. symmetric.

We next extend the preceding method of mixtures to derive maximal inequalities
for conditionally symmetricm × 1 vectors. An adapted sequence of random
vectors{di} is calledconditionally symmetric if {λ′di} is an adapted sequence
of conditionally symmetric random variables for everyλ ∈ Rm. By Lemma 1.4,
if {di} is a sequence of conditionally symmetric random vectors, then for any
probability distributionF on Rm, the sequence∫

Rm
exp

{
λ′

n∑
i=1

di − 1
2λ′

n∑
i=1

did
′
iλ

}
dF (λ), n ≥ 1,(4.18)

forms a nonnegative supermartingale with mean≤ 1, noting that (λ′di)
2 =

λ′did
′
iλ. In particular, if we chooseF to be the multivariate normal distribution

with mean 0 and covariance matrixV −1, then (4.18) reduces to

|V |1/2

∣∣∣∣∣V +
n∑

i=1

did
′
i

∣∣∣∣∣
−1/2

exp

{(
n∑

i=1

di

)′(
V +

n∑
i=1

did
′
i

)−1( n∑
i=1

di

)/
2

}
,(4.19)

where| · | denotes the determinant of a square matrix. Hence, for anyc > 0 and
any positive definitem × m matrix V ,

P

{
(
∑n

i=1 d ′
i )(V + ∑n

i=1 did
′
i )

−1(
∑n

i=1 di)

log |V + ∑n
i=1 did

′
i | + 2 log(c/

√|V | ) ≥ 1 for somen ≥ 1
}

≤ c−1.(4.20)

As another application of the method of mixtures, we derive a simple formula
for certain boundary crossing probabilities of multivariate continuous local
martingales. Letλmin(·) denote the minimum eigenvalue of a nonnegative definite
matrix.
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COROLLARY 4.3. Let Mt be a continuous local martingale taking val-
ues in Rm such that M0 = 0, limt→∞ λmin(〈M〉t ) = ∞ a.s., and such that
E exp(λ′〈M〉tλ) < ∞ for all λ ∈ Rm and t > 0. Then for any c > 1 and any posi-
tive definite m × m matrix V ,

P

{
M ′

t (V + 〈M〉t )−1Mt

log|V + 〈M〉t | + 2 log(c/
√|V | ) ≥ 1 for some t ≥ 0

}
= c−1,(4.21)

PROOF. First note that an expression similar to (4.19) is equal to the integral∫
Rm

exp
{
λ′Mt − 1

2
λ′〈M〉tλ

}
dF (λ),(4.22)

where F is the m-variate normal distribution with mean 0 and covariance
matrix V −1. Given anyλ ∈ Rm with λ �= 0, λ′Mt is a univariate local martingale
and 〈λ′M〉t = λ′〈M〉tλ → ∞ a.s. sinceλmin(〈M〉t ) → ∞ a.s. Hence, by the
martingale strong law,λ′Mt/λ

′〈M〉tλ → 0 a.s. and, therefore, exp{λ′Mt −
〈λ′M〉t /2} → 0 a.s. ast → ∞, for everyλ �= 0.

SinceE exp(〈λ′M〉t /2) < ∞, it follows from Novikov’s criterion [cf. Revuz
and Yor (1999), page 332] that{exp(λ′Mt − 〈λ′M〉t /2, t ≥ 0} is a martingale.
Therefore,

∫
exp{λ′Mt −〈λ′M〉t /2}dF (λ) is a nonnegative continuous martingale,

and by Doob’s inequality, the probability in (4.21) is≤ c−1, similar to (4.20).
Equality actually holds in (4.21), by Lemma 1 of Robbins and Siegmund (1970),
if it can be shown that (4.22) converges to 0 a.s. ast → ∞. Since exp{λ′Mt −
〈λ′M〉t} → 0 a.s. for everyλ �= 0, we need only apply the dominated convergence
theorem and note that by Doob’s inequality,

P

{∫
‖λ‖≥a

exp(λ′Mt − 〈λ′M〉t /2) dF (λ) ≥ c for somet ≥ 0
}

≤ c−1
∫
‖λ‖≥a

dF (λ). �

5. A universal upper LIL. To derive (1.7) for any adapted sequence{Xi},
one basic technique pertains to upper-bounding the probability of an event of
the form Ek = {tk−1 ≤ τk < tk} in which tj and τj are stopping times defined
in (5.3). Sandwichingτk betweentk−1 and tk enables us to replace both the
random exceedance and truncation levels in (5.3) by constants. Then the event
Ek can be re-expressed in terms of two simultaneous inequalities, one involving
centered sums and the other involving a sum of squares. Using these inequalities,
we derive a supermartingale that is then used to boundP (Ek). Apart from finite
mean constraints, Lemma 5.1 gives the basic idea underlying the construction of
this supermartingale. It will be refined in Corollary 5.3 to enable us to remove the
assumptions in Lemma 5.1 concerning both the integrability of theYn’s and the
restrictions on the negative part of their support.



SELF-NORMALIZED PROCESSES 1923

LEMMA 5.1. Let 0 ≤ γ < 1 and define

Cγ = −{γ + log(1− γ )}/γ 2 =
∞∑

j=2

γ j−2
/

j.(5.1)

Then Cγ = c
(γ )
2 = cγ,2, where cγ,r and c

(γ )
r are the same as in Lemma 3.9.

Moreover, if Y is a random variable such that Y ≥ −γ and E|Y | < ∞, then
E exp{Y − EY − Cγ Y 2} ≤ 1.

PROOF. As shown in Lemma 3.9(i), exp(y − Cγ y2) ≤ 1 + y for all y ≥ −γ .
Hence,E exp{Y − Cγ Y 2} ≤ 1+ EY ≤ exp(EY ). �

COROLLARY 5.2. Fix any 0 ≤ γ < 1. Let {Fn} be an increasing sequence
of σ -fields. Suppose Yn is Fn-measurable, E|Yn| < ∞ and Yn ≥ −γ a.s. Let
µn = E(Yn|Fn−1). Then exp{∑n

i=1(Yi −µi −Cγ Y 2
i )} is a supermartingale whose

expectation is ≤ 1.

COROLLARY 5.3. Let {Fn} be an increasing sequence of σ -fields and Yn

be Fn-measurable random variables. Let 0 ≤ γn < 1 and 0 < λn ≤ 1/Cγn

be Fn−1-measurable random variables, where Cγ is defined in (5.1). Let
µn = E{Yn1(−γn ≤ Yn < λn)|Fn−1}. Then exp{∑n

i=1(Yi − µi − λ−1
i Y 2

i )} is a
supermartingale whose expectation is ≤ 1.

PROOF. Observe that exp{y − y2/λi} ≤ 1 if y ≥ λi or if y < −γi . Let Xi =
Yi1(−γi ≤ Yi < λi). Then

E{exp(Yi − µi − λ−1
i Y 2

i )|Fi−1}
≤ E{exp(Xi − µi − λ−1

i X2
i )|Fi−1}

≤ E{(1+ Xi)e
−µi |Fi−1} = (1+ µi)e

−µi ;
see the proof of Lemma 5.1 for the last inequality, recalling thatµi = E(Xi|Fi−1).
Since(1+ x)e−x ≤ 1 for all x, the desired conclusion follows.�

The centering constants in (1.7) involve sums of expectations conditioned on
the past which are computed as functions of the endpoints of the interval on which
the associated random variable is truncated. The actual endpoints used, however,
are neither knowable nor determined until the future. Thus the centered sums
that result are not a martingale. Nevertheless, by using certain stopping times, the
random truncation levels can be replaced by non-random ones, thereby yielding a
supermartingale structure for which Corollary 5.5 applies, enabling us to establish
the following result.
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THEOREM 5.4. Let Xn be measurable with respect to Fn, an increasing
sequence of σ -fields. Let λ > 0 and h(λ) be the positive solution of

h − log(1+ h) = λ2.(5.2)

Let bλ = h(λ)/λ, γ = h(λ)/{1 + h(λ)} and aλ = λ/(γCγ ), where Cγ is defined
by (5.1).Then (1.7)holds on {limn→∞ Vn = ∞} and limλ→0bλ = √

2.

PROOF. Recall thatV 2
n = X2

1 + · · · + X2
n and vn = Vn(log logVn)

−1/2. Let
ek = exp(k/ logk). Define

tj = inf{n :Vn ≥ ej },
(5.3)

τj = inf

{
n ≥ tj :Sn −

n∑
i=1

µi(−λvn, aλvn) ≥ (1+ 3ε)bλVn(log logVn)
1/2

}
,

letting inf∅ = ∞. To prove (1.7), it suffices to show that for all sufficiently small
ε > 0,

lim
K→∞

∞∑
k=K

P {τk < tk+1} = 0.(5.4)

Note thatτk ≥ tk and thattk may equaltk+1, in which case{τk < tk+1} becomes
the empty set. Moreover, on{limn→∞ Vn = ∞}, tj < ∞ for every j and
limj→∞ tj = ∞. Since y(log logy)−1/2 is increasing iny ≥ e3, we have the
following inequalities on{tk ≤ τk < tk+1} with k ≥ 3:

ek ≤
(

τk∑
i=1

X2
i

)1/2

< ek+1,(5.5)

dk := ek(log logek)
−1/2 ≤ vtk ≤ vτk

< dk+1,(5.6)

µi

(−λvτk
, aλvτk

) ≥ µi(−λdk+1, aλdk) for 1 ≤ i ≤ τk.(5.7)

Let µi,k = µi(−λdk+1, aλdk). We shall replaceXi (for 1 ≤ i ≤ τk) by
Yi,k := (λdk+1)

−1γXi andµi,k by µ̃i,k := (λdk+1)
−1γµi(−λdk+1, aλdk). Since

λ−1γ aλ = C−1
γ ,

µ̃i,k = E{Yi,k1(−γ ≤ Yi,k < C−1
γ dk/dk+1)|Fi−1}.(5.8)

Since ek/dk = (log logek)
1/2 and dk/dk+1 → 1 as k → ∞, it follows from

(5.5)–(5.7) that for all sufficiently largek, the event {tk ≤ τk < tk+1} is a
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subset of{
τk∑

i=1

(λdk+1)
−1(Xi − µi,k) ≥ (1+ 2ε)λ−1bλ log logek, τk < ∞

}

⊂
{

τk∑
i=1

[(λdk+1)
−1γ (Xi − µi,k) − Cγ (dk+1/dk)(λdk+1)

−2γ 2X2
i ]

≥ (1+ 2ε)γ λ−1bλ log logek − Cγ (dk+1/dk)(γ /λ)2 log logek+1, τk < ∞
}

⊂
{

sup
n≥1

exp

[
n∑

i=1

(Yi,k − µ̃i,k − Cγ d−1
k dk+1Y

2
i,k)

]

≥ exp[(1+ ε)(γ λ−1bλ − Cγ γ 2λ−2)(logk)]
}
.

In view of (5.8), we can apply Corollary 5.3 to conclude that the last event
above involves the supremum of a nonnegative supermartingale with mean≤ 1.
Therefore, application of Doob’s inequality to this event yields

P {τk < tk+1} ≤ exp{−(1+ ε)(γ λ−1bλ − Cγ γ 2λ−2)(logk)},
which implies (5.4) since

γ λ−1bλ − λ−2γ 2Cγ = λ−2{γ h(λ) + γ + log(1− γ )} = 1.(5.9)

The first equality in (5.9) follows from (5.1) andbλ = h(λ)/λ, and the second
equality from γ = h(λ)/(1 + h(λ)) and (5.2). Moreover, (5.2) implies that
h2(λ) ∼ 2λ2 and, therefore,bλ → √

2 asλ → 0. �

REMARK 5.5. The choice ofγ in Theorem 5.4 actually comes from
minimizingγ λ−1bλ −λ−2γ 2Cγ over 0< γ < 1, whereasbλ is employed to make
this minimizing value equal to 1, leading to the equation (5.2) definingh(λ).

As pointed out in Section 1, an immediate consequence of Theorem 5.4 is the
upper half (1.7) of the LIL for any supermartingale whose difference sequence
Xn is bounded below by−λvn. The following example shows that we cannot
dispense with this boundedness assumption.

EXAMPLE 5.6. LetX1 = X2 = 0,X3,X4, . . . be independent random vari-
ables such that

P {Xn = −n−1/2} = 1/2− n−1/2(logn)1/2 − n−1(logn)−2,

P {Xn = −mn} = n−1(logn)−2, P {Xn = n−1/2} = 1/2+ n−1/2(logn)1/2

for n ≥ 3, wheremn ∼ 2(logn)5/2 is chosen so thatEXn = 0. ThenP {Xn =
−mn i.o.} = 0. Hence, with probability 1,V 2

n = ∑n
i=1 i−1 +O(1) = logn+O(1).
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SinceX̃i := Xi1(|Xi | ≤ 1) − EXi1(|Xi | ≤ 1) are independent bounded random
variables with zero means and Var(X̃i) ∼ i−1, Kolmogorov’s LIL yields

lim sup
n→∞

(
n∑

i=1

X̃i

)/
{2(logn)(log log logn)}1/2 = 1 a.s.(5.10)

Since
∑n

i=1 EXi1(|Xi | ≤ 1) ∼ 2
∑n

i=1 i−1(logi)1/2 ∼ 4
3(logn)3/2, this implies

that with probability 1,∑n
i=1 Xi

Vn(log logVn)
1/2 ∼

∑n
i=1 Xi1(|Xi | ≤ 1)

{(logn)(log log logn)}1/2

∼ 4(logn)3/2

3{(logn)(log log logn)}1/2 → ∞.

Note thatmn(log logVn)
1/2/Vn → ∞. This shows that without the boundedness

conditionXn ≥ −λVn(log logVn)
−1/2, the upper LIL need not hold for martin-

gales self-normalized byVn. It also shows the importance of the centering in
Theorem 5.4 because subtractingEXi1(|Xi | ≤ 1) from Xi gives the LIL in view
of (5.10).

Note that Corollary 5.3, which leads to Theorem 5.4, only uses the special case
r = 2 of Lemma 3.9(i). More generally, for 1< r ≤ 2, we can use Lemma 3.9(i)
and the same arguments as those in Lemma 5.1 and Corollary 5.3 to show that

exp

{
n∑

i=1

(
Yi − E

[
Yi1

(−γi ≤ Yi < λ
1/(r−1)
i

)∣∣Fi−1
] − λ−1

i |Yi|r )
}
,

(5.11)

n ≥ 1, is a supermartingale,

for anyFi−1-measurable random variables 0≤ γi < 1 and 0< λi ≤ 1/cγ,r , where
cγ,r is defined in Lemma 3.9. Therefore, Theorem 5.4 can be extended to the
following:

THEOREM 5.7. Let Xn be measurable with respect to Fn, an increas-
ing sequence of σ -fields. For 1 < r ≤ 2, let Vn,r = (

∑n
i=1 |Xi |r )1/r , vn,r =

Vn,r{log log(Vn,r ∨ e2)}−1/r . Then for any 0 < γ < 1, there exists a positive con-
stant bγ,r such that

lim sup
n→∞

{
Sn −

n∑
i=1

µi

(−γ vn,r , c
−1/(r−1)
γ,r vn,r

)}/{
Vn,r(log logVn,r )

(r−1)/r}
≤ bγ,r a.s.

on {limn→∞ Vn,r = ∞}, where cγ,r is given in Lemma 3.9.
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6. Compact LIL for self-normalized martingales and applications to sums
of independent random variables. Although Theorem 5.4 gives an upper LIL
for any adapted sequence{Xi}, the upper bound in (1.7) may not be attained.
A simple example isSn = ∑n

i=1 wiYi , wherewi = i! and Y1, Y2, . . . are i.i.d.
with P {Yi = 1} = 1

2 = P {Yi = −1}. HereVn = (
∑n

i=1 w2
i Y

2
i )1/2 ∼ n!, Sn/Vn =

sgn(Yn) + o(1) and
∑n

i=1 µi(−λvn, aλvn) = o(Vn) a.s. Thus, the norming term
Vn(log logVn)

1/2 is too large in this case. In this section we consider the case
of martingales{Sn,Fn, n ≥ 1} self-normalized byVn and prove the lower half
counterpart of (1.8) when the increments ofSn do not grow too fast, thereby
establishing (1.9). This is the content of Theorem 6.1, which is further strengthened
into a compact LIL in Corollary 6.2. We end this section with an application to
weighted sums (with random weights) of i.i.d. random variables, a remark on
Theorem 5.4 and an example highlighting the difference between this LIL and an
analogous LIL of Stout (1970) in whichV 2

n is replaced bys2
n = ∑n

i=1 E(X2
i |Fi−1).

THEOREM 6.1. Let {Xn} be a martingale difference sequence with re-
spect to an increasing sequence of σ -fields Fn such that |Xn| ≤ mn a.s.
for some Fn−1-measurable random variable mn, with Vn → ∞ and mn/

{Vn(log logVn)
−1/2} → 0 a.s. Then (1.9)holds.

PROOF. Take 0< b < β < β̃ <
√

2. Since 1− �(x) = exp{−(1
2 + o(1))x2}

asx → ∞, we can chooseλ sufficiently large such that{
1− �

(
β
√

λ
)}1/λ ≥ exp(−β̃2/2),(6.1)

where� is the standard normal distribution function. Takea > 1 and define for
j ≥ 2 andk = 0,1, . . . , [λ−1 logj ],

aj,k = aj + k(aj+1 − aj )/[λ−1 logj ], tj (k) = inf{n :V 2
n ≥ aj,k}.

Let tj = inf{n :V 2
n ≥ aj }, so tj (0) = tj , tj ([λ−1 logj ]) = tj+1. Since X2

n =
o(V 2

n (log logVn)
−1) a.s. andaj,k ≤ V 2

tj (k) < aj,k + X2
tj (k),

V 2
tj (k) = aj,k

{
1+ o

(
(logj)−1)}

a.s.(6.2)

It will be shown that∑
tj (k)<n≤tj (k+1)

X2
n

/ ∑
tj (k)<n≤tj (k+1)

E(X2
n|Fn−1) → 1

(6.3)

in probability underP
(·|Ftj (k)

)
asj → ∞, uniformly in 0≤ k < [λ−1 logj ].

Let Sm,n = ∑
m<i≤n Xi , V 2

m,n = ∑
m<i≤n X2

i . In view of (6.2),

V 2
tj (k),tj (k+1) ∼ aj (a − 1)/[λ−1 logj ], V 2

tj ,tj+1
∼ aj (a − 1) a.s.(6.4)
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Since X2
n is bounded by theFn−1-measurable random variablem2

n, which is
o(V 2

n (log logVn)
−1) a.s., the conditional Lindeberg condition holds and, in view of

(6.3) and (6.4), the martingale central limit theorem [cf. Durrett (1996), page 414]
can be applied to yield

P
{
Stj (k),tj (k+1) ≥ β

√
λVtj (k),tj (k+1)|Ftj (k)

} → 1− �
(
β
√

λ
)

a.s.(6.5)

asj → ∞, uniformly in 0≤ k < [λ−1 logj ]. Since

Stj ,tj+1 = ∑
0≤k<[λ−1 logj ]

Stj (k),tj (k+1)

and

Vtj ,tj+1(logj)1/2 = (√
λ + o(1)

) ∑
0≤k<[λ−1 logj ]

Vtj (k),tj (k+1) a.s.

by (6.4), it follows from (6.5) that asj → ∞,

P
{
Stj ,tj+1 ≥ bVtj ,tj+1(logj)1/2|Ftj

}
≥ P

{
Stj (k),tj (k+1) ≥ β

√
λVtj (k),tj (k+1) for all 0 ≤ k < [λ−1 logj ]|Ftj

}
= (

1− �
(
β
√

λ
) + o(1)

)[λ−1 logj ]

≥ exp
{−(

β̃2/2+ o(1)
)
logj

}
a.s.,

in view of (6.1). Sinceβ̃2/2 < 1, the conditional Borel–Cantelli lemma then yields

lim sup
j→∞

Stj ,tj+1

/{
Vtj ,tj+1(logj)1/2} ≥ b a.s.(6.6)

Recalling thatVn → ∞ and mn = o(Vn(log logVn)
−1/2) a.s., we obtain

from (1.8) that

lim sup
n→∞

Sn

/
{Vn(log logVn)

1/2} ≤ √
2 a.s.,(6.7)

and the same conclusion still holds withSn replaced by−Sn (which is a
martingale). Combining this with (6.4) and (6.6) yields

lim sup
j→∞

Stj+1

/{
Vtj+1

(
log logVtj+1

)1/2}
(6.8)

≥ ba−1/2(a − 1)1/2 − √
2a−1/2 a.s.

Sincea can be chosen arbitrarily large andb arbitrarily close to
√

2 in (6.8),

lim sup
j→∞

Stj+1

/{
Vtj+1

(
log logVtj+1

)1/2} ≥ √
2 a.s.

Combining this with the upper half result (6.7) yields (1.9).
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It remains to prove (6.3). Letαj = aj (a − 1)/[λ−1 logj ]. In view of (6.4), we
need to show that given any 0< ρ < 1

2 andδ > 0,

lim sup

[
P

{ ∑
tj (k)<n≤tj (k+1)

E(X2
n|Fn−1) ≥ (1+ ρ)αj

∣∣∣Ftj (k)

}

+ P

{ ∑
tj (k)<n≤tj (k+1)

E(X2
n|Fn−1) ≤ (1− ρ)αj

∣∣∣Ftj (k)

}]
≤ δ a.s.(6.9)

Chooseε > 0 such that 2{max[(1 + ρ)e−ρ, (1 − ρ)eρ]}1/ε < δ. Let X̃n =
Xn1(m2

n ≤ εαj ) and note that sincemn is Fn−1-measurable andX2
n ≤ m2

n,

0≤ E(X2
n|Fn−1) − E(X̃2

n|Fn−1) ≤ m2
n1(m2

n > εαj ).

Moreover,P {m2
n ≤ εαj for all tj (k) < n ≤ tj (k + 1)|Ftj (k)} → 1 a.s. Hence, it

suffices to considerE(X̃2
n|Fn−1) instead ofE(X2

n|Fn−1) in (6.9). SinceX̃2
n ≤ εαj ,

we can apply Corollary 15 of Freedman (1973) to conclude that

P

{ ∑
tj (k)<n≤tj (k+1)

E(X̃2
n|Fn−1) ≥ (1+ ρ)αj

∣∣∣Ftj (k)

}

+ P

{ ∑
tj (k)<n≤tj (k+1)

E(X̃2
n|Fn−1) ≤ (1− ρ)αj

∣∣∣Ftj (k)

}

≤ (1+ ρ)e−ρ/ε + (1− ρ)eρ/ε + o(1) < δ,

completing the proof. �

COROLLARY 6.2. With the same notation and assumptions as in Theorem 6.1,
the cluster set of the sequence {Sn/[Vn(log log(Vn ∨ e2))1/2]} is the interval
[−√

2,
√

2].

PROOF. Replacing Xn by −Xn in Theorem 6.1 yields lim infn→∞
Sn/{Vn(log logVn)

1/2} = −√
2 a.s. The desired conclusion then follows from

Proposition 2.1 of Griffin and Kuelbs (1989).�

EXAMPLE 6.3. LetY1, Y2, . . . be i.i.d. random variables with a common dis-
tribution functionF having mean 0. LetFn be theσ -field generated byY1, . . . , Yn.
Let wn beFn−1-measurable and letSn = ∑n

i=1 wiYi , V 2
n = ∑n

i=1 w2
i Y

2
i . Suppose
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Vn → ∞ a.s. and there existsFn−1-measurablemn such that with probability 1,

0 < mn = o
(
Vn(log logVn)

−1/2),(6.10)
n∑

i=1

wi

∫
|wix|≥mi

x dF (x) = o
(
Vn(log logVn)

1/2),
(6.11)

n∑
i=1

{
wi

∫
|wix|≥mi

x dF (x)

}2

= o(V 2
n ),

∞∑
n=1

{
F̄ (mn/|wn|) + F(−mn/|wn|)

}
< ∞,(6.12)

whereF̄ (x) = P (Yi ≥ x) = 1 − F(x−). Let Xn = wnYn1(|wnYn| < mn). Then
E(Xn|Fn−1) = −wn

∫
|wnx|≥mn

x dF (x). Moreover, by (6.12) and the conditional
Borel–Cantelli lemma, with probability 1,

wnYn = Xn for all largen and thereforeV 2
n =

n∑
i=1

X2
i + O(1).(6.13)

Applying Corollary 6.2 to
∑n

i=1{Xi − E(Xi|Fi−1)} (with |Xi | < mi) and
combining the result with (6.11) and (6.13), we obtain[−√

2,
√

2] as the a.s.
cluster set of the sequence{Sn/[Vn(log log(Vn ∨ e2))1/2]}. Note in this connection
that

n∑
i=1

{Xi − E(Xi |Fi−1)}2

=
n∑

i=1

X2
i − 2

n∑
i=1

{Xi − E(Xi |Fi−1)}E(Xi |Fi−1) −
n∑

i=1

E2(Xi |Fi−1)

=
n∑

i=1

X2
i −

n∑
i=1

E2(Xi |Fi−1)

+ O

((
n∑

i=1

{Xi − E(Xi |Fi−1)}2

)1/2( n∑
i=1

E2(Xi |Fi−1)

)1/2)
.

Note that Theorems 6.1 and 6.2 pertain to martingale difference sequencesXn.
This means that given an integrable sequence{Xn}, one should first consider cen-
teringXn at its conditional expectation givenFn−1 before applying the theorems
to X̃n = Xn − E(Xn|Fn−1) andVn = (

∑n
i=1 X̃2

i )
1/2. Although Theorem 6.1 re-

quiresX̃n to be bounded byFn−1-measurablemn = o(Vn(log logVn)
−1/2), we

can often dispense with such boundedness assumption via a truncation argu-
ment, as shown in Example 6.3. In the more general context of Theorem 5.4,
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the Xn may not be even integrable, so Theorem 5.4 centers theXn at certain
truncated conditional expectations. Using(

∑n
i=1 X2

i )
1/2 for the norming factor,

however, may be too large since it involves uncenteredXi ’s. To alleviate this prob-
lem, we can first centerXn at its conditional median before applying Theorem 5.4
to X̃n = Xn − med(Xn|Fn−1), as illustrated in the following:

EXAMPLE 6.4. Let 0< α < 1, d1 ≥ 0, d2 ≥ 0 with d1 + d2 > 0. Let
Y,Y1, Y2, . . . be i.i.d. random variables such that

P {Y ≥ y} = (
d1 + o(1)

)
y−α,

(6.14)
P {Y ≤ −y} = (

d2 + o(1)
)
y−α asy → ∞.

Let Ŝn = ∑n
i=1 Yi , V̂ 2

n = ∑n
i=1 Y 2

i , v̂n = V̂n(log logV̂n)
−1/2. Then by Theorem 5.1

of Shao (1997),

lim sup
n→∞

Ŝn/{V̂n(log logn)1/2} = {β(α, d1, d2)}−1/2 a.s.(6.15)

for some positive constantβ(α, d1, d2) which is given explicitly in his Theo-
rem 3.2. Moreover,E{Y1(−λy ≤ Y < aλy)} = (d1aλ −d2λ+o(1))αy1−α/(1−α)

asy → ∞ and

nv̂1−α
n /{V̂n(log logV̂n)

1/2} = n/
{
V̂ α

n (log logV̂n)
(2−α)/2} = O(1) a.s.(6.16)

since log loĝVn ∼ log logn and

lim inf
n→∞

(
n∑

i=1

Y 2
i

)/{
n1/α̃(log logn)−(1−α̃)/α̃

}
> 0 a.s. with̃α = α/2,

by the so-called delicate LIL [cf. Breiman (1968)].
Now let Xn = nr + Yn with r > 1/α and letSn = ∑n

i=1 Xi , V 2
n = ∑n

i=1 X2
i .

SinceYn = o(ns) a.s. for anys > 1/α, it follows that Sn ∼ Vn ∼ nr+1/(r + 1)

andµi(−λvn, aλvn) = ir + o(n(r+1)(1−α)) = ir + o(nr) a.s., recalling thatrα > 1.
Therefore, although (1.7) still holds in this case, it is too crude as the nonrandom
location shiftnr is the dominant term inXn causingVn to swamp the centeredSn.
Centering theXn first at its median will remove this problem. Specifically, if we
apply (1.7) toX̃n = Xn − med(Xn) andṼ 2

n = ∑n
i=1 X̃2

i , thenX̃n = Yn − med(Y )

and (6.15) still holds witĥSn replaced bỹSn.
The following example shows that one cannot dispense with the assumptions of

Theorem 6.1 and highlights the difference between our result and the LIL of Stout
(1970), where the martingaleSn is normalized by the square root of the conditional
variance

∑n
i=1 E(X2

i |Fi−1).
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EXAMPLE 6.5. TakingX1 = 0,X2,X3, . . . and mn as in Example 5.5, let
Yn = Xn1(|Xn| ≤ 1). ThenP {Yn �= Xn i.o.} = P {Yn = −mn i.o.} = 0. As shown
in Example 5.5, with probability 1,V 2

n = ∑n
i=1 Y 2

i + O(1) = logn + O(1) and∑n
i=1 Xi

Vn(log logVn)
1/2 ∼ 4(logn)3/2

3{(logn)(log log logn)}1/2 → ∞.(6.17)

Note thatmn(log logVn)
1/2/Vn → ∞. This shows that without the condition

mn/{Vn(log logVn)
−1/2} → 0, the LIL need not hold for martingales self-

normalized byVn. On the other hand,Xn is clearly bounded above and,
therefore, satisfies the boundedness condition of Stout (1970). Note that Var(Xi) ∼
4(logi)3/i and, therefore,s2

n := ∑n
i=1 E(X2

i |Fi−1) ∼ (logn)4, yielding∑n
i=1 Xi

sn(log logsn)
1/2 ∼ 4(logn)3/2

3(logn)2(log log logn)1/2 → 0 a.s.,(6.18)

which is consistent with Stout’s (1970) upper LIL. Contrasting (6.18) with (6.17)
shows the difference between Stout’s result and ours. Notice that what is being
investigated in (6.17) is the maximal a.s. growth rate ofSn. To assess it we
employed a norming sequence based on the square root of its sum of squares.
This technique works properly only whenSn is adequately centered, as in (1.7).
By contrast, in the approach of Stout, a norming sequence is generated from the
square root of the sum of conditional expectations of these squares. However,
in the absence of a suitable truncation of the random variables this quantity is
also inappropriate for investigating almost sure behavior whenever expectations
overinflate the impact of large values of the squares which occur too infrequently
to be relevant with respect to almost sure behavior.
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