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THE SHATTERING DIMENSION OF SETS OF
LINEAR FUNCTIONALS

BY SHAHAR MENDELSON1 AND GIDEON SCHECHTMAN2

Australian National University and Weizmann Institute

We evaluate the shattering dimension of various classes of linear
functionals on various symmetric convex sets. The proofs here relay mostly
on methods from the local theory of normed spaces and include volume
estimates, factorization techniques and tail estimates of norms, viewed
as random variables on Euclidean spheres. The estimates of shattering
dimensions can be applied to obtain error bounds for certain classes of
functions, a fact which was the original motivation of this study. Although this
can probably be done in a more traditional manner, we also use the approach
presented here to determine whether several classes of linear functionals
satisfy the uniform law of large numbers and the uniform central limit
theorem.

1. Introduction. Combinatorial dimensions, such as the Vapnik–Chervo-
nenkis dimension, and the shattering dimension, are parameters which measure
the richness of a given class of functions. The Vapnik–Chervonenkis dimension
(VC dimension) of a class of{0,1}-valued functions is the largest dimension of a
combinatorial cube that can be found in a coordinate projection of the class, that is,
in a restriction of the class to a finite subset of the domain. In this article we focus
on a real valued analog of the VC dimension, called the shattering dimension; it
is a scale sensitive parameter that measures the largest dimension of a “cube” of a
given side length that can be found in a coordinate projection of the class.

DEFINITION 1.1. For everyε > 0, a setσ = {x1, . . . , xn} ⊂ � is said to be
ε-shattered by a setF of functions on� if there is some functions :σ → R, such
that for everyI ⊂ {1, . . . , n}, there is somefI ∈ F for whichfI (xi) ≥ s(xi) + ε if
i ∈ I , andfI (xi) ≤ s(xi)−ε if i /∈ I . The shattering dimension ofF is the function

VC(ε,F,�) = sup{|σ |σ ⊂ �, σ is ε-shattered byF }.
fI is called the shattering function of the setI and the set{s(xi)|xi ∈ σ } is called a
witness to theε-shattering. In cases where the underlying space is clear we denote
the shattering dimension by VC(ε,F ).
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In this article we evaluate the shattering dimension of various classes of linear
functionals on various symmetric convex sets. Before describing the actual results
obtained, we would like to describe the way one applies such estimates to obtain
results concerning the uniform law of large numbers and the uniform central limit
theorem (CLT), as well as error bounds in statistical learning theory.

Combinatorial dimensions have been frequently used in the theory of empirical
processes, mostly in the context of the uniform law of large numbers and the
uniform CLT. Recall the definition of the uniform law of large numbers, also
known as the uniform Glivenko–Cantelli condition.

DEFINITION 1.2. LetF be a class of functions. We say thatF is a uniform
Glivenko Cantelli class (uGC class) if for everyε > 0,

lim
n→∞ sup

µ
Pr

{
sup
f ∈F

∣∣∣∣∣Eµf − 1

n

n∑
i=1

f (Xi)

∣∣∣∣∣ ≥ ε

}
= 0,(1.1)

where(Xi)
∞
i=1 are independent random variables distributed according toµ.

Let us remark that in this article we ignore the question of measurability, since
only mild assumptions on the class, such as admissibility, are required to resolve
this issue (see [6] for further details). Moreover, in all the cases we explore,
it suffices to consider the supremum over a countable dense set, and, thus, the
measurability issue does not arise.

Vapnik and Chervonenkis proved that (under mild measurability assumptions)
a class of binary-value functions is a uGC class if and only if it has a finite VC
dimension [23], and this result was extended in [1] to the real-valued case, where it
was shown that a class of uniformly bounded functions is a uGC class if and only if
VC(ε,F ) is finite for everyε > 0 (see also [7] for a related earlier characterization
of uGC classes of functions).

The shattering dimension can be used to obtain the tail bounds needed in (1.1),
using the following line of argumentation. The starting point is a version of
Talagrand’s inequality (originally proved in [20]) due to Bousquet.

THEOREM 1.3 ([5]). Let F be a class of functions defined on a probability
space (�,µ) such that supf ∈F ‖f ‖∞ ≤ 1. Let (Xi)

n
i=1 be independent random

variables distributed according to µ, put σ 2 ≥ supf ∈F Var[f (X1)] and set Z =
supf ∈F |∑n

i=1(f (Xi) − Eµf )|. Then, for every x > 0,

Pr{Z ≥ EZ + x} ≤ exp
(
−vh

(
x

v

))
,(1.2)

where v = nσ 2 + 2EZ and h(x) = (1 + x) log(1 + x) − x. Moreover, for every
x > 0,

Pr
{
Z ≥ EZ + √

2xv + x

3

}
≤ e−x.(1.3)
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In order to apply this result and obtain uniform deviation estimates one needs to
boundEZ. By symmetrization,

EµZ ≤ 2Eµ×ε sup
f ∈F

∣∣∣∣∣
n∑

i=1

εif (Xi)

∣∣∣∣∣,(1.4)

where (εi)
n
i=1 are independent Rademacher random variables (i.e., take the

values±1 with probability 1/2 each). It turns out that the Rademacher averages
on the right-hand side of (1.4) can be estimated in terms of theempirical covering
numbers.

If (Y, d) is a metric space andF ⊂ Y , then for everyε > 0, N(ε,F, d) denotes
the minimal number of open balls (with respect to the metricd) needed to coverF .

DEFINITION 1.4. For every classF let the empirical covering numbers be

N(ε,F,n) = sup
µn

N
(
ε,F,L2(µn)

)
,

where the supremum is taken with respect to all empirical measuresn−1 ∑n
i=1 δxi

supported onn points. logN(ε,F ) = supn logN(ε,F,n) is called the uniformL2
entropy ofF .

The following result shows that the uniform entropy can be bounded via the
combinatorial parameters.

THEOREM 1.5 ([16]). There are absolute constants K and c such that for any
class F which consists of functions bounded by 1 and every 0 < ε < 1,

N(ε,F ) ≤
(

2

ε

)K·VC(cε,F )

.

Combining Theorem 1.5 with a chaining argument, one can bound the
Rademacher averages of (1.4) and, thus,EZ and obtain the necessary deviation
estimates. In all the examples presented in the sequel we will establish upper
bounds on the shattering dimension which are polynomial in 1/ε, and in that case,
the following holds.

THEOREM 1.6 ([15]). Let F be a class of functions bounded by 1, and set Z

to be as in Theorem 1.3.Assume that there are γ ≥ 1 and 0 < p < ∞ such that
VC(ε,F ) ≤ γ ε−p. Then

EZ ≤ Cpγ 1/2




√
n, if 0 < p < 2,√
n log3/2n, if p = 2,

n1−1/p log1/p n, if p > 2,

where Cp are constants which depend only on p.
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We now turn to the description of the connection between bounds on the
shattering dimension and error bounds used in the analysis of regression problems
in nonparametric statistics and, more recently, in Learning Theory. In both
applications, combinatorial parameters have played an important role. In the
context of Learning Theory, they were used to estimate the size of a random
sample needed to construct an almost optimal approximation of an unknown target
function by an element in a fixed class of functions, where the given data are a
sample(Xi)

n
i=1 and the values of the target on the sample [2, 15]. Such an error

bound which is based on the shattering dimension is presented in the next theorem,
which was adapted from [4].

THEOREM 1.7. Let (�,µ) be a probability space, let F be a class of
measurable functions on � with ranges in [−1,1] and assume that there is
a constant B ≥ 1 such that for every f ∈ F , Eµf 2 ≤ BEµf . If (Xi)

n
i=1 are

independent random variables distributed according to µ, then for any x > 0,
there is a set of probability larger than 1− 2e−x , on which for any f ∈ F ,

Eµf ≤ 2

n

n∑
i=1

f (Xi) + C

(
I√
n

+ Bx

n

)
,

where C is an absolute constant and

I =
∫ 1

0

√
VC(ε,F, {X1, . . . ,Xn}) log

(
1

ε

)
dε.(1.5)

Let us mention that it is possible to obtain error bounds even in some cases
whenI = ∞ [14], and that in [4], error bounds with faster rates of convergence
than 1/

√
n were established in the same setup.

The analysis of the shattering dimension of classes of linear functionals we
present is based on methods from the local theory of normed spaces. We show
that for such classes the shattering dimension is determined by the geometry of
the class and the domain, which is expressed by the ability to factor a certain
operator through�n

1. First, we investigate in Section 3 the case when� is the unit
ball of some Banach space andF is the dual unit ball. We show that ifX is infinite
dimensional andBX is the unit ball ofX, the shattering dimension VC(ε,BX∗ ,BX)

is determined by theRademacher type of X. In Section 4, which contain the main
new results of this article, we use a volumetric argument and establish estimates on
the shattering dimension when both the class and the domain are finite-dimensional
convex and symmetric sets. We then compute the shattering dimension of the unit
ball in �n

q when considered as functions on the unit ball of�n
p, 1 ≤ p,q ≤ ∞,

and show that in many cases the volumetric approach yields sharp bounds. For
example, we prove in Theorem 4.12 that for 1≤ p < q ≤ ∞ and forF = Bq ′ , the
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unit ball of�q ′ (q ′ is the conjugate index toq), and� = Bp, VC(ε,F,�) is given,
up to constants depending only onp andq, by the following expressions:

VC(ε,F,�) ∼p,q

{
ε−q/(q−1), if 1 ≤ p ≤ 2,

ε−1/(1/2+1/p−1/q), if 2 < p ≤ ∞.

Section 5 is devoted to computation of the shattering dimension of the image of
the unit ball of�n

1 under a linear transformation.
The applications of the estimates of the shattering dimensions to the determi-

nation of whether some classes of functionals satisfy the uniform law of large
numbers or the uniform CLT are scattered through Sections 3 and 4. In Section 3
we give, among other things, a new proof for a result from [7] giving a necessary
and sufficient condition for the unit ballBX∗ of a dual Banach space to be uGC
class onBX. In Section 4 our results are used to investigate the following problem:
consider the unit ball of�q , denoted byBq , as functions on the unit ball of�p.
Does this class of functions satisfy the uniform CLT on this domain? In general,
one can show that for any infinite-dimensional Banach spaceX, F = BX∗ , does
not satisfy the uniform CLT on the domain� = BX. Although this can probably
be deduced from earlier contributions, we show, as an application of the methods
presented here, that wheneverp < q, F = Bq ′ satisfies the uniform CLT on the
domain� = Bp.

2. Preliminaries. Throughout all absolute constants are denoted byc, C

or K . Their values may change from line to line or even within the same line.
cϕ , Cϕ denote constants which depend only on the parameterϕ (which is usually
a real numberp or a couple of real numbersp,q), and a ∼ϕ b means that
cϕb ≤ a ≤ Cϕb. If the constants are absolute, we use the notationa ∼ b. Given a
real Banach spaceX, letBX or B(X) be the unit ball ofX. The dual ofX, denoted
by X∗, consists of all the bounded linear functionals onX, endowed with the norm
‖x∗‖ = sup‖x‖=1 |x∗(x)|. For every integern, we fix the Euclidean structure〈·, ·〉
onRn with an orthonormal basis denoted by(ei)

n
i=1.

A set K is called symmetric if the fact thatx ∈ K implies that−x ∈ K .
The symmetric convex hull ofK , denoted by absconv(K), is the convex hull of
K ∪ −K .

If K ⊂ R
n is bounded, convex and symmetric with a nonempty interior, then

K is a unit ball of a norm denoted by‖ · ‖K . It is possible to show that thepolar
of K , defined by

Ko =
{
x ∈ R

n
∣∣∣ sup
k∈K

〈k, x〉 ≤ 1
}
,

is the unit ball of the dual space of(Rn,‖ · ‖K). In the sequel we shall abuse
notation and denote byK the normed space whose unit ball isK . From here on,
a ball will be a bounded, convex and symmetric subset ofRn, with a nonempty
interior.
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If 1 ≤ p < ∞, let �n
p be Rn endowed with the norm‖∑n

i=1 aiei‖p =
(
∑n

i=1 |ai |p)1/p. �n∞ is Rn endowed with the norm‖∑n
i=1 aiei‖∞ = supi |ai|.

Bn
p is the unit ball of �n

p, and for every 1≤ p ≤ ∞, (Bn
p)o = Bn

p′ , where
1/p + 1/p′ = 1. In this case,p′ is called the conjugate index ofp.

2.1. Volume estimates. As stated above, we can identify�n
2 with Rn. Hence,

�n
2 is endowed with then-dimensional Lebesgue measure, denoted by| · |. LetGLn

be the set of invertible operatorsT :Rn → Rn, and note that for every measurable
setA ⊂ Rn and everyT ∈ GLn, |T A| = |det(T )||A|. We say that a setA ⊂ Rn is
an ellipsoid if there is someT ∈ GLn, such thatA = T Bn

2 .
It will be useful to determine the volume of the ballsBn

p and the volume of their
sections. First, let us mention the following well-known fact.

THEOREM 2.1 ([19]). There are absolute constants C and c such that for
every integer n and every 1≤ p ≤ ∞,

cn−1/p ≤ |Bn
p|1/n ≤ Cn−1/p.

Unlike the clear structure of sections ofBn
2 , the geometry of sections ofBn

p is
far less obvious. The following result, due to Meyer and Pajor [17], bounds the
volume ofk-dimensional sections ofBn

p.

THEOREM2.2. For every k-dimensional subspace E ⊂ Rn and every 1 ≤ p ≤
q ≤ ∞,

|Bn
p ∩ E|
|Bk

p| ≤ |Bn
q ∩ E|
|Bk

q | .

By selecting q = 2, it follows that for 1≤ p ≤ 2, the volume of any
k-dimensional section ofBn

p is smaller than the volume ofBk
p. Similarly, by taking

p = 2, the volume of anyk-dimensional section ofBn
q for 2≤ q ≤ ∞ is larger than

the volume ofBk
q .

REMARK 2.3. A similar result holds in the infinite-dimensional case. In
particular, it follows that for any 1≤ p ≤ q ≤ ∞ and for anyn-dimensional
subspaceE, ( |Bp ∩ E|

|Bq ∩ E|
)1/n

≤ Cp,qn
1/q−1/p.(2.1)

An important fact about the volume of balls are the Santaló and inverse Santaló
inequalities.
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THEOREM 2.4. There is an absolute constant c such that for every integer n

and every ball K ⊂ Rn,

c ≤
( |K||Ko|

|Bn
2 |2

)1/n

≤ 1.

The upper bound was established by Santaló, while the lower bound is due to
Bourgain and Milman. The proof of both results can be found in [19].

One of the tools used in modern convex geometry is the notion of volume ratios.
The idea is to compare the volume of a given ball with the “best” possible volume
of an ellipsoid contained in it, since this may be used to understand “how close”
the norm induced by the ball is to a Euclidean structure.

DEFINITION 2.5. For every ballK ⊂ Rn, the volume ratio ofK is

vr(K) = inf
( |K|

|T Bn
2 |

)1/n

,

where the infimum is taken with respect to allT ∈ GLn such thatT Bn
2 ⊂ K .

The external volume ratio is defined as

evr(K) = inf
( |T Bn

2 |
|K|

)1/n

,

where the infimum is with respect to allT ∈ GLn such thatK ⊂ T Bn
2 .

It is possible to show [19] that both infimums in the definition above are
uniquely attained. Hence, for every ballK ⊂ Rn, there is an ellipsoid of maximal
volume contained inK and an ellipsoid of minimal volume containingK . The
ellipsoid of maximal volume contained inK is denoted byEK , and the ellipsoid
of minimal volume containingK is denoted byẼK . Note that for every ballK ,
Eo

K = ẼKo .
It follows from the definitions that ifK is an ellipsoid, then vr(K) = evr(K) = 1.

Moreover, it is known that for every ballK ⊂ R
n, vr(K) ≤ √

n. More precisely,
the volume ratio of�n∞, which is of the order of

√
n, is the worst possible.

THEOREM 2.6 ([3]). For every integer n,

vr(K) ≤ vr(Bn∞) = 4

|Bn
2 |1/n

.

Another result we require is an estimate on the volume ratios of projections
of �p.
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THEOREM 2.7 ([12]). For every integer n,

sup
E⊂Rn

vr(PEBp)∼
p

{
1, 1 < p ≤ 2,

n1/2−1/p, 2 < p ≤ ∞,

where the supremum is taken with respect to all the projections onto n dimensional
subspaces of �p.

A different notion of volume ratios is thecubic ratios which was introduced by
Ball [3]. For every ballK ⊂ Rn, let

cr(K) = inf
T ∈GLn,K⊂T Bn∞

( |T Bn∞|
|K|

)1/n

.

LEMMA 2.8 ([3]). There are absolute constants c and C such that for every
integer n and every ball K ⊂ Rn,

c
√

n ≤ vr(K)cr(K) ≤ C
√

n.

Finally, we can define the volume numbers of an operator. We follow the
definition used by Gordon and Junge [11, 12].

DEFINITION 2.9. Given Banach spacesX andY , an operatorT :X → Y and
an integern, let thenth volume number ofT be

vn(T ) = sup
{( |T (BX ∩ E)|

|BY ∩ F |
)1/n∣∣∣∣E ⊂ X, T (E) ⊂ F ⊂ Y, dimE = dimF = n

}
.

Note that ifT is of rank smaller thann, vn(T ) = 0. Also, it is clear that the
volume numbers are submultiplicative, that is,vn(T1T2) ≤ vn(T1)vn(T2). If T is
an operator between Hilbert spaces, then the volume numbers may be calculated
using the eigenvalues(λi) of

√
T ∗T (which are arranged in a nonincreasing order).

In that case, for every integern, vn(T ) = (
∏n

i=1 λi)
1/n.

Another example in which the volume numbers may be estimated is for the
formal identity operatorid :�m

p → �m
q . By Theorem 2.2 it is evident that for every

n ≤ m and any 1≤ p ≤ q ≤ ∞,

vn

(
id�m

p →�m
q

) = sup
dimE=n

|Bm
p ∩ E|1/n

|Bm
q ∩ E|1/n

≤ |Bn
p|1/n

|Bn
q |1/n

≤ Cp,qn1/q−1/p(2.2)

and clearly also

vn

(
id�m

p →�m
q

) ≥ |Bn
p|1/n

|Bn
q |1/n

.(2.3)
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In general, ifp ≥ q, then

vn

(
id�m

p →�m
q

) ≤ ‖id‖�m
p →�m

q
= m1/q−1/p,(2.4)

and this estimate is optimal, at least in cases wheren divides m. To see this,
let k = m/n and forj = 1, . . . , n, let vj = ∑k

i=1 ej+k(i−1). Note that for eachr ,
span{v1, . . . , vn} ∩ Bm

r = E ∩ Bm
r has volume(m/n)1/2−1/r |Bn

r |. Thus,

|Bm
p ∩ E|1/n

|Bm
q ∩ E|1/n

=
(

m

n

)1/q−1/p

· |Bn
p|1/n

|Bn
q |1/n

= Cp,qm1/q−1/p,

proving that the bound on the volume numbers is tight.

2.2. The uniform CLT. The fact that the shattering dimension can be used to
bound the uniform entropy will enable us to show that some classes of functionals
satisfy theuniform CLT. Recall that a sequence of measuresνn converges toν
in law in �∞(F ) if for every bounded and continuous functionH :�∞(F ) → R,
E∗H(νn) → E∗H(ν), whereE∗ denotes the outer expectation.

DEFINITION 2.10 [6]. LetF ⊂ B(L∞(�)), setP to be a probability measure
on � and assumeGP to be a Gaussian process indexed byF , which has mean 0
and covariance

EGP (f )GP (g) =
∫

fg dP −
∫

f dP

∫
g dP.

F is called a universal Donsker class if for any probability measureP , the law
GP is tight in �∞(F ) andνP

n = n1/2(Pn − P ) ∈ �∞(F ) converges in law toGP

in �∞(F ), wherePn is a random empirical measure selected according toP , that
is, Pn = 1

n

∑n
i=1 δXi

, where(Xi)
n
i=1 are independent random variables distributed

according toP .

Stronger than the universal Donsker property is the uniform Donsker property,
which is the uniform version of the CLT. For such classes,νP

n converges to GP

uniformly in P in some sense (see [6, 22] for more details). The following result
of Giné and Zinn [8] is a relatively simple characterization of uniform Donsker
classes.

For every probability measureP on�, let ρ2
P (f, g) = EP (f − g)2 − (EP (f −

g))2, and for everyδ > 0, setFδ = {f − g|f,g ∈ F, ρP (f, g) ≤ δ}.

THEOREM 2.11 ([8]). F is a uniform Donsker class if and only if the
following holds: for every probability measure P on �, GP has a version with
bounded, ρP -uniformly continuous sample paths, and for these versions,

sup
P

E sup
f ∈F

|GP (f )| < ∞, lim
δ→0

sup
P

E sup
h∈Fδ

|GP (h)| = 0.
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The main tool in the analysis of uniform Donsker classes is the Koltchinskii–
Pollard entropy integral.

THEOREM 2.12 ([8]). If F ⊂ B(L∞(�)) satisfies that∫ ∞
0

sup
n

sup
µn

√
logN

(
ε,F,L2(µn)

)
dε < ∞,

then it is a uniform Donsker class.

3. Shattering by BX∗ . The goal of this section is to bound the shattering
dimension of the dual unit ball of a given Banach space. To that end, we present the
geometric interpretation of the shattering dimension when� ⊂ X andF = BX∗ .

LEMMA 3.1. Let X be a Banach space. Assume that {x1, . . . , xn} is ε-shattered
by BX∗ and set E = span{x1, . . . , xn}. If A is the symmetric convex hull of
{x1, . . . , xn}, then ε(BX ∩ E) ⊂ A.

PROOF. Let {x1, . . . , xn} be ε-shattered byBX∗ and let{s1, . . . , sn} to be a
witness to the shattering. Put(ai)

n
i=1 ⊂ R, setI = {i|ai ≥ 0} and letx∗

I be the
functional shattering the setI . For every suchI and everyi ∈ I ,

x∗
I (xi) − x∗

I c (xi) ≥ si + ε − (si − ε) = 2ε,

and if i /∈ I ,

x∗
I (xi) − x∗

I c(xi) ≤ si − ε − (si + ε) = −2ε.

Thus, ∥∥∥∥∥
n∑

i=1

aixi

∥∥∥∥∥ = sup
x∗∈BX∗

∣∣∣∣∣x∗
(

n∑
i=1

aixi

)∣∣∣∣∣
≥ 1

2 sup
x∗,x̃∗∈BX∗

∣∣∣∣∣x∗
(

n∑
i=1

aixi

)
− x̃∗

(
n∑

i=1

aixi

)∣∣∣∣∣ = (∗).

Selectingx∗ = x∗
I andx̃∗ = x∗

I c ,

(∗) ≥ 1
2

∣∣∣∣∣x∗
I

(∑
i∈I

aixi + ∑
i∈I c

aixi

)
− x∗

I c

(∑
i∈I

aixi + ∑
i∈I c

aixi

)∣∣∣∣∣
= 1

2

∣∣∣∣∣
∑
i∈I

ai

(
x∗
I (xi) − x∗

I c (xi)
) + ∑

i∈I c

(−ai)
(
x∗
I c (xi) − x∗

I (xi)
)∣∣∣∣∣

≥ ε

n∑
i=1

|ai|.

Since every pointx on the boundary ofA is given by x = ∑n
i=1 aixi , where∑n

i=1 |ai | = 1, then‖x‖ = |∑n
i=1 aixi| ≥ ε, which proves our claim. �
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COROLLARY 3.2. The set {x1, . . . , xn} ⊂ BX is ε-shattered by BX∗ if and only
if (xi)

n
i=1 are linearly independent and ε-dominate the �n

1 unit-vector basis; that
is, for every a1, . . . , an ∈ R, ε

∑n
i=1 |ai| ≤ ‖∑n

i=1 aixi‖.

PROOF. Let E = span{x1, . . . , xn} for some linearly independent elements
of BX, defineT :�n

1 → �n
2 by T ei = xi and setA to be the symmetric convex

hull of {x1, . . . , xn}. For everyI ⊂ {1, . . . , n}, there is somev ∈ Bn∞ such that
〈v, ei〉 = 1 if i ∈ I and〈v, ej 〉 = −1 otherwise. Note that〈v, ei〉 = 〈v,T −1T ei〉 =
〈T −1∗

v,T ei〉 and thatAo = (T Bn
1 )o = T −1∗

Bn∞, implying that T −1∗
v ∈ Ao.

If {x1, . . . , xn} ε-dominate the�n
1 unit-vector basis, thenε(BX ∩ E) ⊂ A and

Ao ⊂ ε−1(BX ∩E)o = ε−1PEBX∗ , wherePE is the orthogonal projection ontoE.
Thus, there is somex∗ ∈ BX∗ such thatT −1∗

v = tPEx∗ for some 0< t ≤ ε−1.
Hence,〈x∗, xi〉 = 〈x∗, T ei〉 = 〈PEx∗, T ei〉 = t−1〈T −1∗

v,T ei〉 ≥ ε if i ∈ I . By
a similar argument,〈x∗, T ej 〉 ≤ −ε if j /∈ I , which shows that{x1, . . . , xn} is
ε-shattered byBX∗ .

Conversely, if{x1, . . . , xn} ⊂ BX is ε-shattered, then for everya1, . . . , an ∈ R,

ε

n∑
i=1

|ai| ≤
∥∥∥∥∥

n∑
i=1

aixi

∥∥∥∥∥.
Hence,(xi)

n
i=1 are independent andε-dominate the�n

1 unit-vector basis. �

This result enables us to estimate the shattering dimension of the dual unit ball
of an infinite-dimensional Banach spaceX when considered as a class of functions
onBX. It turns out that the shattering dimension is determined by thetype of X.

DEFINITION 3.3. A Banach spaceX has typep if there is some constantC
such that for every integern and everyx1, . . . , xn ∈ X,

E

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥ ≤ C

(
n∑

i=1

‖xi‖p

)1/p

,(3.1)

where (εi)
n
i=1 are independent Rademacher random variables. The smallest

constant for which (3.1) holds is called the typep constant ofX and is denoted
by Tp(X).

The basic facts concerning the concept of type may be found, for example,
in [18]. Clearly, for every Banach space (3.1) holds in the casep = 1 with
T1(X) = 1. If p∗ = sup{p|X has typep}, then 1≤ p∗ ≤ 2, and if p∗ = 1, then
X is said to have a trivial type.

Recall that the distance between two isomorphic Banach spacesX andY is
defined asd(X,Y ) = inf ‖T ‖ · ‖T −1‖, where the infimum is taken with respect
to all isomorphisms betweenX andY . It is easy to see that ifX, Y andZ are
isomorphic, thend(X,Z) ≤ d(X,Y ) · d(Y,Z).



SHATTERING DIMENSION 1757

THEOREM 3.4. Let X be an infinite-dimensional Banach space. Then
VC(ε,BX∗,BX) is finite for every ε > 0 if and only if X has a nontrivial type.
If X has type p, then(

1

ε

)p∗/(p∗−1)

− 1 ≤ VC(ε,BX∗ ,BX) ≤
(

Tp(X)

ε

)p/(p−1)

+ 1.

The lower bound and a weaker version of the upper one were established in [13].
We repeat the proof of the lower bound for the sake of completeness.

PROOF OFTHEOREM 3.4. If {x1, . . . , xn} is ε-shattered, then itε-dominates
the �n

1 unit-vector basis. By selectingai = εi , εn ≤ ‖∑n
i=1 εixi‖. On the other

hand, taking the expectation with respect to the Rademacher variables,

E

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥
X

≤ Tp(X)

(
n∑

i=1

‖xi‖p
X

)1/p

≤ Tp(X)n1/p.

Thus, there is a realization(εi)
n
i=1 such that‖∑n

i=1 εixi‖ ≤ Tp(X)n1/p. Combin-
ing the two inequalities,n ≤ (Tp(X)/ε)p/(p−1).

Conversely, for everyλ > 0 and every integern, there is a subspaceXn ⊂ X

such that dimXn = n andd(�n
p∗,Xn) ≤ 1+ λ (see [18]). Recall thatd(�n

1, �
n
p∗) =

n1−1/p∗
(see [21]), hence,d(Xn, �

n
1) ≤ (1+λ)n1−1/p∗

, and, in particular, there are
x1, . . . , xn ⊂ BX such that for every(ai)

n
i=1 ⊂ R,

1

(1+ λ)n1−1/p∗
n∑

i=1

|ai| ≤
∥∥∥∥∥

n∑
i=1

aixi

∥∥∥∥∥.
Therefore,{x1, . . . , xn} is n(1−p∗)/p∗

(1 + λ)−1-shattered byBX∗ , and the claim
follows by takingλ → 0.

The assertion in the casep∗ = 1 follows in a similar manner. �

The uGC part of the next corollary was first proved in [7], and the second part
may also be known to experts; the proof presented below is new, as far as we know.

COROLLARY 3.5. Let X be an infinite-dimensional Banach space. Then,
F = BX∗ is a uGC class on � = BX if and only if X has a nontrivial type. Also,
for any infinite-dimensional X, F is not a uniform Donsker class on �.

PROOF. The fact that the pair is a uGC class if and only ifX has a nontrivial
type follows from Theorem 3.4 and the characterization of uGC classes as classes
with a finite shattering dimension at every scaleε (see [1]).

As for the second part, in [8], Example 3.3, it was shown that ifX = �2, then
F = B2 is not a uniform Donsker class on� = B2. Moreover, an easy modification
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of the proof reveals the following: if there is a constantC such that for every
integern there are spacesXn ⊂ X of dimensionn for which d(Xn, �

n
2) ≤ C, then

F = BX∗ is not a uniform Donsker class on� = BX. By Dvoretzky’s theorem [18],
every infinite-dimensional Banach space has such subspacesXn (with a constantC
arbitrarily close to 1). �

Unlike the infinite-dimensional case, in which the growth of VC(ε,BX∗,BX)

is determined by the type ofX, it is not clear whether the same holds for finite-
dimensional spaces; indeed, the lower bound in Theorem 3.4 is based on the fact
thatX contains spaces which are arbitrarily close to�n

p∗ for every integern, which
is only true for infinite-dimensional spaces.

4. The shattering dimension of finite-dimensional bodies. It turns out that
some applications require that the set of functionalsF is not the dual of the domain
but some other convex symmetric set; thus, in the finite-dimensional context it is
natural to investigate the following question.

QUESTION 4.1. LetK andL be two convex symmetric bodies inRd and view
the elements ofL◦ as functions onK using the fixed inner product inRd . What is
VC(ε,L◦,K)?

We have shown that VC(ε,L◦,K) = n if and only if n is the largest such that
there aren points {x1, . . . , xn} ⊂ K for which ε(L ∩ E) ⊂ absconv(x1, . . . , xn),
whereE = span{x1, . . . , xn}.

The next theorem provides a general upper bound on VC(ε,L◦,K) based on a
volumetric argument. The result is presented for finite-dimensional bodies but can
be easily extended to the infinite-dimensional case.

THEOREM 4.2. There is an absolute constant C such that for every two
integers n ≤ m and every two balls K,L ⊂ R

m the following holds: if {x1, ..., xn} ⊂
K is ε-shattered by L◦, then

√
n ≤ C

ε
vr

(
(K ∩ E)o

) |K ∩ E|1/n

|L ∩ E|1/n
,

where E = span{x1, . . . , xn}.
PROOF. Assume that{x1, . . . , xn} ⊂ K is ε-shattered byLo. By Lemma 3.1,

ε(L ∩ E) ⊂ A ⊂ K ∩ E, whereA is the symmetric convex hull of{x1, . . . , xn},
and, thus,(K ∩ E)o ⊂ Ao. By Lemma 2.8,

c
√

n ≤ vr
(
(K ∩ E)o

)
cr

(
(K ∩ E)o

) ≤ vr
(
(K ∩ E)o

)( |Ao|
|(K ∩ E)o|

)1/n

≤ 1

ε
vr

(
(K ∩ E)o

)( |(L ∩ E)o|
|(K ∩ E)o|

)1/n

≤ C

ε
vr

(
(K ∩ E)o

)( |K ∩ E|
|L ∩ E|

)1/n

,



SHATTERING DIMENSION 1759

where the last inequality follows from the Santalò and inverse Santalò inequalities.
�

Combining this theorem with Remark 2.3 on the ratio|Bp ∩ E|/|Bq ∩ E| and
Theorem 2.7 on the volume ratio of projections of�p, the following is evident:

COROLLARY 4.3. For every 1 ≤ p ≤ q < ∞ there is a constant Cp,q for
which the following holds: if {x1, . . . , xn} ⊂ Bp is ε-shattered by Bq ′ , then

ε ≤ Cp,q

{
n1/q−1, if 1 ≤ p ≤ 2,

n1/q−1/p−1/2, if 2 < p < ∞.

In the sequel we will show that this estimate is sharp. Since a similar argument
is used in the proof of Theorem 4.10, we shall not present the proof of the corollary
here.

Let us mention the following observations: first, using Santalò’s inequality,
vr((K ∩ E)o)|K ∩ E|1/n ≤ |ẼK∩E|1/n. Therefore, from the volumetric point of
view, all that matters is the ratio between the volume of the ellipsoid of minimal
volume containing the section ofK spanned by{x1, . . . , xn} and the volume of
L ∩ E.

Second, estimating the shattering dimension is equivalent to understanding
the behavior of its formal inverse, which, for a given linearly independent set
{x1, . . . , xn} ⊂ K , is the largestε > 0 such thatε(L ∩ E) ⊂ absconv(x1, . . . , xn),
whereE = span{x1, . . . , xn}. Thus, one can takeK = T Bn

1 , whereT :�n
1 → �2 is

defined byT ei = xi , and the volume of the ellipsoid of minimal volume containing
T Bn

1 is the significant quantity.
Finally, if (λi)

n
i=1 are the singular values of the operatorT , that is, the

eigenvalues of
√

T ∗T , then|ẼT Bn
1
|1/n is equivalent ton−1/2(

∏n
i=1 λi)

1/n.

4.1. Shattering and factorization through �n
1. An alternative way to formulate

the problem of estimating the shattering dimension is as a factorization problem.

DEFINITION 4.4. For every two ballsK andL in Rm and every integern ≤ m,
let

�n(K,L) = inf ‖A‖‖B‖;
the infimum is taken with respect to all subspaces ofE ⊂ Rm of dimensionn,
and all operatorsB : (E,‖ · ‖L∩E) → �n

1, A :�n
1 → (E,‖ · ‖K∩E) such thatAB =

id :L ∩ E → K ∩ E.

The following lemma shows that 1/�n(K,L) is the formal inverse of the
shattering dimension.
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LEMMA 4.5. For every integer n and any balls K and L,

1

�n(K,L)
= sup

{
ε|∃{x1, . . . , xn} ⊂ K, ε(L ∩ E) ⊂ absconv(x1, . . . , xn)

}
(4.1)

= sup{ε|VC(ε,L◦,K) ≥ n},(4.2)

where E = span{x1, . . . , xn}.

PROOF. If the identity admits an optimal factorizationid = AB, setA′ =
A/‖A‖�n

1→K∩E and observe that the set{A′e1, . . . ,A
′en} ⊂ K ∩ E satisfies that

for anya1, . . . , an ∈ R,

‖A‖�n
1→K∩E · ‖B‖L∩E→�n

1
·
∥∥∥∥∥

n∑
i=1

aiA
′ei

∥∥∥∥∥
L

≥
∥∥∥∥∥B

(
n∑

i=1

aiAei

)∥∥∥∥∥
�n

1

≥
∥∥∥∥∥

n∑
i=1

aiei

∥∥∥∥∥
�n

1

=
n∑

i=1

|ai |.

Hence, absconv(A′e1, . . . ,A
′en) ⊂ K ∩ E contains(‖A‖‖B‖)−1(L ∩ E) and

1

�n(K,L)
≤ sup

{
ε|∃{x1, . . . , xn} ⊂ K, ε(L ∩ E) ⊂ absconv(x1, . . . , xn)

}
.

For the reverse inequality, if{x1, . . . , xn} ⊂ K are such thatε(L ∩ E) ⊂
absconv(x1, . . . , xn), defineT :Rn → R

n by T ei = xi . Clearly,‖T ‖�n
1→K∩E ≤ 1

and

‖T −1‖L∩E→�n
1
= sup

x∈L∩E

‖T −1x‖�n
1
= sup

x∈L∩E

‖x‖T �n
1
≤ 1

ε
.

Thus,‖T ‖�n
1→K∩E · ‖T −1‖L∩E→�n

1
≤ 1/ε and 1/�n(K,L) ≥ ε. �

Combining Theorem 4.2 and Lemma 4.5, we obtain the following:

COROLLARY 4.6. There is an absolute constant c > 0 such that for any two
integers n ≤ m and any two balls K,L ⊂ R

m,

�n(K,L) ≥ c

√
n

vn(id :K → L)supE vr(PEK◦)
,

where dim(E) = n.

4.2. Factorization constants of �m
p . The goal of the next section is to

investigate the shattering dimension of the class of linear functionalsF = Bm
q ′ on

� = Bm
p for 1 ≤ p,q ≤ ∞. First, in Theorems 4.9 and 4.10 below we present a

tight estimate on the factorization constant ofid :�n
q → �n

p through�n
1. Then, we
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use this result to estimate�n(B
m
p ,Bm

q ) and, thus, bound VC(ε,Bm
q ′ ,Bm

p ); finally,
we show that if 1≤ p < q ≤ ∞, thenF = Bq ′ is a uniform Donsker class on
� = Bp.

We begin with two lemmas needed for the proof of Theorem 4.9.

LEMMA 4.7. Let µ be the Haar measure on the n dimensional sphere Sn−1.
Set K and L to be balls in Rn and put α to be such that

µ

(
x ∈ Sn−1

∣∣∣‖x‖K >
1

α

)
<

1

2n
.

If ε satisfies that

µ

(
x ∈ Sn−1

∣∣∣‖x‖L◦ >
α

ε
√

n

)
< 2−(n+1),

then �n(K,L) ≤ 1/ε.

PROOF. Denote byOn the orthogonal group and letPOn be the Haar measure
onOn. SetU ∈ On and definexi = αUei . Using the standard connection between
POn andµ onSn−1,

POn(xi ∈ K) = µ

(
x ∈ Sn−1

∣∣∣‖x‖K ≤ 1

α

)
,

hence,

POn(xi ∈ K for all i) ≥ 1− nµ

(
x ∈ Sn−1

∣∣∣‖x‖K >
1

α

)
>

1

2
.

Moreover,

POn

(
conv(±αUei) ⊃ εL

) = POn

(
sup

(σi)
n
i=1∈{−1,1}n

∥∥∥∥∥ 1

α

n∑
i=1

σiUei

∥∥∥∥∥
L◦

≤ 1

ε

)
.

For every vector(σ1, . . . , σn) ∈ {−1,1}n,

POn

(∥∥∥∥∥ 1

α

n∑
i=1

σiUei

∥∥∥∥∥
L◦

>
1

ε

)
= POn

(∥∥∥∥∥U
(

1√
n

n∑
i=1

ei

)∥∥∥∥∥
L◦

>
α

ε
√

n

)

= µ

(
x ∈ Sn−1

∣∣∣‖x‖L◦ >
α

ε
√

n

)
.

Thus,

POn

(
conv(±αUei) ⊃ εL

) ≥ 1− 2nµ

(
x ∈ Sn−1

∣∣∣‖x‖L◦ ≥ α

ε
√

n

)
>

1

2
,

and there is some orthogonal operator which belongs to both events. The operator
T = αU satisfies that‖T ‖�n

1→K∩E ≤ 1 and‖T −1‖L∩E→�n
1
≤ 1/ε, as claimed. �
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LEMMA 4.8. There are constants Cp for which the following holds: for every
integer n,

µ
(
x ∈ Sn−1∣∣‖x‖�n

p
≥ Cpn1/p−1/2) ≤ 2−(n+1),

if 1≤ p ≤ 2 and if 2≤ p < ∞, then

µ
(
x ∈ Sn−1∣∣‖x‖�n

p
≥ Cpn1/p−1/2) ≤ e−n2/p

.

PROOF. Denote byM(Bn
p) the median of‖x‖p on Sn−1. By Lévy’s inequal-

ity [18],

µ
(
x ∈ Sn−1∣∣‖x‖p ≥ (1+ t)M(Bn

p)
) ≤ exp

{
− t2nM2(Bn

p)

2‖id‖2
�n

2→�n
p

}
.

Recall that M(Bn
p) ∼p n1/p−1/2 (see, e.g., [18]) and that‖id‖�n

2→�n
p

=
max{n1/p−1/2,1}. It follows that for 1≤ p ≤ 2 andC large enough, depending
only onp,

µ
(
x ∈ Sn−1∣∣‖x‖�n

p
≥ Cn1/p−1/2) ≤ e−cpC2n ≤ 2−(n+1),

while for 2≤ p < ∞ andC depending only onp,

µ
(
x ∈ Sn−1∣∣‖x‖�n

p
≥ Cn1/2−1/p

) ≤ e−n2/p

. �

The above results will play an important role in the proof of the following
theorem, in which we construct factorizations ofid :�n

q → �n
p through�n

1.

THEOREM 4.9. Let K = Bn
p and L = Bn

q . Then, �n(K,L) satisfies that

�n(K,L) ≤ Cp,q




n1/2+1/p−1/q, if 2 ≤ p,q ≤ ∞,

n1−1/q, if 1 ≤ p ≤ 2,

n1−1/q, if 1 ≤ q ≤ 2≤ p ≤ ∞ and p′ > q,

n1/p, if 1 ≤ q ≤ 2≤ p ≤ ∞ and p′ ≤ q.

PROOF. First, assume that 2≤ p < ∞ and 2≤ q ≤ ∞. By Lemmas
4.8 and 4.7 it suffices to choose 1/α = Cpn1/p−1/2 and selectε which satisfies

that Cqn1/q ′−1/2 = Cqn1/2−1/q = Cqα/ε
√

n, that is, 1
ε

∼q
n1−1/q

α
. Therefore,

�n(B
n
p,Bn

q ) ≤ Cp,qn1/2+1/p−1/q.
Next, if 1≤ p ≤ 2, then

�n(K,L) ≤ ‖id‖�n
q→�n

1
‖id‖�n

1→�n
p

= n1−1/q.
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If 2 ≤ p < ∞ and 1≤ q ≤ 2, one has to treat two cases; if 1≤ q ≤ p′, then
using the identity operator as above,�n(B

n
p,Bn

q ) ≤ n1−1/q . On the other hand, if
p′ ≤ q ≤ 2, then by the first part of our claim,

�n(B
n
p,Bn

q ) ≤ ‖id‖�n
q→�n

2
�n(B

n
p,Bn

2 ) ≤ Cpn1/p.

Finally, one has to address the situation whenp is infinity. If p = q = ∞, then
�n(B

n∞,Bn∞) = d(�n
1, �

n∞) ≤ Cn1/2 [21].
For p = ∞ we first examine the caseq = 2. Let �n

p(C) to be Cn endowed
with the �p norm and setT = (n−1/2e2πijk/n)nj,k=1. It is easy to check that

‖T ‖�n
1(C)→�n∞(C) ≤ n−1/2 and that‖T ‖�n∞(C)→�n

2(C) ≤ n1/2. For our purpose,�n
p(C)

can be considered as the�n
p sum of two-dimensional Euclidean spaces,�2

2, over

the reals, and since for any 1≤ p ≤ ∞, ‖id‖�n
p(C)→�2n

p
· ‖id‖�2n

p →�n
p(C) ≤ √

2, then

�2n(�
2n
2 , �2n∞) ≤ 2. The case wheren is odd is easily reduced to the even case.

Finally, for a generalq,

�n(B
n∞,Bn

q ) ≤ ‖id‖�n
q→�n

2
�n(B

n∞,Bn
2) ≤ C‖id‖�n

q →�n
2
,

as claimed. �

The next step in our analysis is to show that the bounds in Theorem 4.9 are
tight. The proof uses the notion ofr-summing operators. Recall that an operator
T :X → Y is r-summing for 1≤ r < ∞, if there is aC < ∞ such that

n∑
i=1

‖T xi‖r ≤ Cr sup
x∗∈BX∗

n∑
i=1

|x∗(xi)|r(4.3)

for all integersn and allx1, . . . , xn ∈ X. The smallestC for which (4.3) holds is
denoted byπr(T ) and is called ther-summing norm ofT .

THEOREM 4.10. There exist cp,q such that if K = Bn
p and L = Bn

q , then
�n(K,L) satisfies that

�n(K,L) ≥ cp,q




n1/2+1/p−1/q, if 2≤ p,q ≤ ∞,

n1−1/q, if 1≤ p ≤ 2.

Also, there are cp,q,r such that if 1< q ≤ 2≤ p < ∞ and r > max{p,q ′}, then

�n(K,L) ≥ cp,q,rn
1/r.

PROOF. The first two cases follow from the volumetric estimate as in
Corollary 4.3. Indeed, if{x1, . . . , xn} ⊂ K is ε-shattered byL◦, then

ε
√

n ≤ C vr(K◦)
( |K|

|L|
)1/n
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for some absolute constantC. SinceK = Bn
p andL = Bn

q , then(|K|/|L|)1/n ∼p,q

n1/q−1/p and vr(K◦) ∼ n1/p−1/2 for 1 ≤ p ≤ 2 and∼ 1 for 2≤ p ≤ ∞. Hence,

ε ≤ Cp,q

{
n1/q−1/p−1/2, if 2 ≤ p ≤ ∞,

n1/q−1, if 1 ≤ p ≤ 2,

and the lower estimate on�n is evident from Lemma 4.5.
For 1≤ q < 2 < p ≤ ∞ we can get a better estimate than what the volumetric

estimates provide. We first investigateid :�n
q → �n

q ′ . Observe that ifAB is a
factorization of the identity through�n

1, then B∗A∗ is a factorization ofid
through �n∞. A theorem of Maurey (see [21], Theorem 21.4(ii)) asserts that,
for every r > q ′, B∗ is r-summing withπr(B

∗) ≤ Cq,r‖B∗‖ and, thus, by the
properties ofπr , πr(id) ≤ ‖A∗‖πr(B

∗) ≤ Cq,r�n(Bq ′,Bq).
The behavior of theπr norm of the identity between�n

p and other spaces was
investigated in [9] and [10]. In particular, in the range we are interested in, it is
proved in [9] thatπr(id :�n

q → �n
q ′) ≥ cq,rn

1/r . (For the interested reader, we found
that the best way to understand this is to apply Theorem 1 there to our setup. This
is rather easy, as is the proof of Theorem 1.)

This settles the casep = q ′. Turning to the general case, assume first that 2≤
q ′ ≤ p < r < ∞. For any factorizationAB = idq→p, idp→q ′AB is a factorization
of idq→q ′ . Therefore, for anys > q ′,

Cq,rn
1/s ≤ ‖B‖‖idp→q ′A‖ ≤ ‖A‖‖B‖‖idp→q ′ ‖ ≤ ‖A‖‖B‖n1/q ′−1/p,

hence,

‖A‖‖B‖ ≥ Cq,rn
1/p+1/s−1/q ′

.

Choosings such that 1/r = 1/p + 1/s − 1/q ′ gives the result in this case.
A similar argument may be used to handle the caseq ′ > p. �

Next we estimate�n(B
m
p ,Bm

q ) whenn ≤ m. Note that the results we obtain are
not for the full range ofp andq.

THEOREM 4.11. For every integers n ≤ m the following holds:

1. If 2 ≤ q ≤ p < ∞ then �n(B
m
p ,Bm

q ) ∼p,q n1/2m1/p−1/q .
2. If q ≤ p ≤ 2 then �n(B

m
p ,Bm

q ) ∼p,q n1−1/pm1/p−1/q .
3. If p ≤ q and 1 ≤ p ≤ 2 then �n(B

m
p ,Bm

q ) ∼p,q n1−1/q .
4. If p ≤ q and 2 < p < ∞ then �n(B

m
p ,Bm

q ) ∼p,q n1/2+1/p−1/q.

PROOF. In all cases, the lower bound follows from Corollary 4.6 combined
with the estimate on the volume numbers ofidp→q in (2.2) and (2.4), and the
volume ratios of quotients of�n

p from Theorem 2.7.
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As for the upper bound, the optimal choice in (1) and (2) (at least whenn divides
m) is the sectionE spanned by

vj =
k∑

i=1

ej+k(i−1), j = 1, . . . , n.

ThenBm
p ∩ E = (m/n)1/2−1/pBn

p. Clearly,�n(B
m
p ,Bm

q ) ≤ �n(B
m
p ∩ E,Bm

q ∩ E)

and when 2≤ q ≤ p the latter can be approximated using the probabilistic
argument from Lemmas 4.8 and 4.7. Indeed, a straightforward computation shows
that one can takeα = m1/2−1/p and thatε needs to satisfy thatm1/2−1/q =
α/n1/2ε = m1/2−1/p/n1/2ε. Thus, 1/ε ≤ n1/2m1/p−1/q , which proves the bound
is tight.

When q ≤ p ≤ 2 one uses the identity operator as the factorizing operator
between(m/n)1/2−1/qBn

q and(m/n)1/2−1/pBn
p to obtain the required result.

The upper bound in(3) is obtained by taking the canonical section
span{e1, . . . , en} and applying Theorem 4.9.�

Some of the information one can obtain from these estimates is summarized in
the following:

THEOREM 4.12. Let 1≤ p < q ≤ ∞, set F = Bq ′ and � = Bp. Then:

1.

VC(ε,F,�)
p,q∼

{
ε−q/(q−1), if 1≤ p ≤ 2,

ε−1/(1/2+1/p−1/q), if 2< p ≤ ∞.

2. F is a uniform Donsker class on �.
3. There are constants Cp,q such that for any probability measure µ on Bp, every

integer n and every t > 0,

P r

{
sup

x∗∈Bq′

∣∣∣∣∣Eµx∗ − 1

n

n∑
i=1

x∗(Xi)

∣∣∣∣∣ ≥ Cp,q

(
1√
n

+ t

n

)}
≤ e−t ,

where (Xi)
n
i=1 are independent and distributed according to µ.

Before presenting the proof, we require an additional lemma which follows
from Theorem 1.5. Although the first equality is not needed in the sequel, it might
be useful in other applications.

LEMMA 4.13. For any 1 ≤ p < q ≤ ∞ there is a constant Cp,q for which
the following holds: if x1, . . . , xn ∈ Bp and T :�q ′ → �n

2 is given by T x∗ =
n−1/2 ∑n

i=1 x∗(xi)ei , then, for every ε > 0,

logN(ε,T Bq ′, �n
2) = logN

(
ε,Bq ′ ,L2(µn)

) ≤ Cp,q VC(ε,Bq ′ ,Bp) · log
2

ε
,

where µn is the empirical measure supported on {x1, . . . , xn}.
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PROOF OF THEOREM 4.12. The first part of the claim follows from
Corollary 4.3 which yields the upper bound, while the lower one follows
immediately from Theorem 4.11.

The second part is evident because, by Lemma 4.13, the class has a converging
entropy integral, which by Theorem 2.12 suffices to ensure thatF is a uniform
Donsker class.

Finally, the last part follows from the first, combined with Talagrand’s inequality
(Theorem 1.3) and the estimate on the expected deviation in terms of the shattering
dimension (Theorem 1.6).�

5. The shattering dimension of images of Bm
1 . Although the volumetric

approach yields sharp results in some cases, and, in particular, for�n(B
n
p,Bn

q )

for a certain range ofp and q, an exact estimate on the factorization constant
�n(T Bn

1 ,Bn
q ) does not follow from the volumetric argument, since the position of

Bn
1 is significant, and not only the volume of the ellipsoid of minimal volume

containing T Bn
1 . Indeed, we show that spectral information does not suffice

for sharp estimates on the shattering dimension. To demonstrate this, given a
set of (nonnegative) singular values (arranged in a nonincreasing order)� =
(λ1, . . . , λn), let T� be the subset ofGLn consisting of the matrices which have
� as singular values.

THEOREM 5.1. For every set � of singular values,

sup
T ∈T�

�n(T Bn
1 ,Bn

q ) = 1

λn

{
n1−1/q, if q ≥ 2,

n1/2, if q < 2,

and

inf
T ∈T�

�n(T Bn
1 ,Bn

q )
q∼

(
n∑

i=1

λ−2
i

)1/2 {
1, if q ≥ 2,

n1/2−1/q, if q < 2.

To compare this result to the one obtained via the volumetric approach
(Theorem 4.2), takeq = 2, and recall that Theorem 4.2 implies that

�n(T Bn
1 ,Bn

2 ) ≥ cn1/2

(
n∏

i=1

λ−2
i

)1/2n

,

which, by the means inequality, is weaker than the conclusion of Theorem 5.1.

PROOF OTTHEOREM 5.1. By Lemma 3.1, for everyT ∈ GLn,

�n(T Bn
1 ,Bn

q ) = (sup{ε|εBn
q ⊂ T Bn

1})−1 = max‖x‖q=1
‖x‖T Bn

1
.
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Since(T Bn
1)o = T −1∗

Bn∞, then for everyx,

‖x‖T Bn
1

= sup
y∈(T Bn

1 )o
〈x, y〉

= sup
y∈Bn∞

〈x,T −1∗
y〉

= sup
(εi )

n
i=1∈{−1,1}n

〈
T −1x,

n∑
i=1

εiei

〉

and

max‖x‖q=1
‖x‖T Bn

1
= sup

(εi)
n
i=1∈{−1,1}n

sup
‖x‖q=1

〈
T −1x,

n∑
i=1

εiei

〉
.

By the polar decomposition,T −1 = ODU, whereV andO are orthogonal and
D is the diagonal matrix with eigenvaluesλ−1

i . Thus

inf
T ∈T�

max‖x‖q=1
‖x‖T Bn

1

= inf
O,V ∈On

sup
(εi)

n
i=1∈{−1,1}n

sup
‖x‖q=1

〈
ODVx,

n∑
i=1

εiei

〉

and

sup
T ∈T�

max‖x‖q=1
‖x‖T Bn

1

= sup
O,V ∈On

sup
(εi)

n
i=1∈{−1,1}n

sup
‖x‖q=1

〈
ODVx,

n∑
i=1

εiei

〉
,

whereOn denotes the set of orthogonal matrices onRn. Set (µi)
n
i=1 to be the

eigenvalues ofD arranged in a nonincreasing order, that is,µ1 = λ−1
n ≥ · · · ≥

µn = λ−1
1 .

Let

f (O,V ) = max
(εi)

n
i=1∈{−1,1}n

max‖x‖q=1

〈
ODVx,

n∑
i=1

εiei

〉
,

and observe that

f (O,V ) = max‖x‖q=1
max
(εi )

n
i=1

〈
x,

n∑
k=1

(
n∑

j=1

Vjkµj

n∑
i=1

εiOij

)
ek

〉

= max
(εi )

n
i=1

(
n∑

k=1

∣∣∣∣∣
n∑

j=1

µj

(
n∑

i=1

εiOij

)
Vjk

∣∣∣∣∣
q ′)1/q ′

.
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Clearly,

max
O,V

f (O,V ) = max
O,V

max
(εi )

n
i=1

(
n∑

k=1

∣∣∣∣∣
n∑

j=1

µj

(
n∑

i=1

εiOij

)
Vjk

∣∣∣∣∣
q ′)1/q ′

= max
V

max
‖z‖2=√

n

(
n∑

k=1

∣∣∣∣∣
n∑

j=1

µjzjVjk

∣∣∣∣∣
q ′)1/q ′

= max
V

max
‖x‖2=µ1

√
n
‖xV ‖q ′

= µ1
√

nmax
x �=0

‖x‖q ′

‖x‖2
,

from which the first part of the claim follows.
To prove the second part, note that

min
O,V

(
f (O,V )

)q ′ ≥ min
O,V

Eε

n∑
k=1

∣∣∣∣∣
n∑

j=1

µj

(
n∑

i=1

εiOij

)
Vjk

∣∣∣∣∣
q ′

= min
O,V

n∑
k=1

Eε

∣∣∣∣∣
n∑

i=1

εi

n∑
j=1

µjVjkOij

∣∣∣∣∣
q ′

= (∗),

where (εi)
n
i=1 are independent Rademacher random variables. Therefore, by

Khintchine’s inequality,

(∗) ≥ min
O,V

Cq

n∑
k=1

(
n∑

i=1

(
n∑

j=1

µjVjkOij

)2)q ′/2

.

Denotinghk = (µjVjk)
n
j=1,

(
n∑

i=1

(
n∑

j=1

µjVjkOij

)2)1/2

= ‖hkO‖2 = ‖hk‖2 =
(

n∑
j=1

µ2
jV

2
jk

)1/2

,

and applying Khintchine’s inequality again,

(
n∑

j=1

µ2
jV

2
jk

)q ′/2

≥ CqEε

∣∣∣∣∣
n∑

j=1

εjµjVjk

∣∣∣∣∣
q ′/2

.

By Jensen’s inequality and since the matrix(εjVjk)
n
j,k=1 is also orthogonal for any
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realization of the Rademacher variables,

min
O,V

f (O,V ) ≥ Cq min
V

(
Eε

n∑
k=1

∣∣∣∣∣
n∑

j=1

εjµjVjk

∣∣∣∣∣
q ′)1/q ′

≥ CqEε min
V

(
n∑

k=1

∣∣∣∣∣
n∑

j=1

εjµjVjk

∣∣∣∣∣
q ′)1/q ′

= Cq min
V

‖µV ‖q ′

and

min
V

‖µV ‖q ′ = ‖µ‖2

{
1, if q ′ ≤ 2,

n1/q ′−1/2, if q ′ > 2.

Finally, to see that the lower bound is tight, setO = id , and, thus,

f (id,V ) = max
(εi)

n
i=1

∥∥∥∥∥
n∑

i=1

εi(V
∗µ)iei

∥∥∥∥∥
q ′

= ‖V ∗µ‖q ′ .

The sharpness is evident by optimizing with respect toV . �
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