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We study the relative entropy density for generalized Gibbs measures.
We first show its existence and obtain a familiar expression in terms of
entropy and relative energy for a class of “almost Gibbsian measures” (almost
sure continuity of conditional probabilities). For quasilocal measures, we
obtain a full variational principle. For the joint measures of the random
field Ising model, we show that the weak Gibbs property holds, with
an almost surely rapidly decaying translation-invariant potential. For these
measures we show that the variational principle fails as soon as the measures
lose the almost Gibbs property. These examples suggest that the class of
weakly Gibbsian measures is too broad from the perspective of a reasonable
thermodynamic formalism.

1. Introduction. Since the discovery of the Griffiths—Pearce singularities
of renormalization group transformations [8, 28], a challenging question has
been whether the classical Gibbs formalism can be extended in such a way as
to incorporate renormalized low-temperature phases, so that renormalizing the
measure can really be viewed as a transformation on the level of Hamiltonians.
Later on, many other examples of “non-Gibbsian” measures appeared in the
context of joint measures of disordered spin systems [13], time evolution of Gibbs
measures [27] and dynamical systems [18], providing further motivation for the
construction of a generalized Gibbs formalism.

As soon as the first examples of non-Gibbsian measures appeared, Dobrushin
proposed a program of “Gibbsian restoration of non-Gibbsian fields,” arguing that
the phenomenon of non-Gibbsianness is caused by “exceptional” configurations
which are negligible in the measure-theoretic sense. He thus proposed the notion
of a “weakly Gibbsian” measure, where the existence of the finite-volume
Hamiltonian is not required uniformlyn the boundary condition, but only for
boundary conditions in a set of measureThis is clearly enough to define
the Gibbsian form of the conditional probabilities and Gibbs measures via the
DLR equations. Since Dobrushin and Shlosman [4], many articles have shown
the “weak Gibbs” property of renormalized low-temperature phases (see e.g., [3,
17, 19, 21]) and of joint measures of disordered spin systems [13, 14]. Parallel
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to this, Fernandez and Pfister [6] developed ideas about generalized regularity
properties of the conditional probabilities. They proved that the decimation of the
low-temperature plus phase of the Ising model is consistent with a monotone right-
continuous system of conditional probabilities. In the framework of investigating
the regularity of the conditional probabilities, the notion of “almost Gibbs” was
introduced [19]. A measure is called almost Gibbs if its conditional probabilities
have a version which is continuous on a setieineasure 1. If one does not insist

on absolute convergence of the sums of potentials that constitute finite-volume
Hamiltonians, then almost Gibbs implies weak Gibbs, but the converse is not true
(see [15, 19]). In [5] it was proved that the decimation of the plus phase of the
low-temperature Ising model is almost Gibbs, and the criterion to characterize
an essential point of discontinuity of the conditional probabilities given in [28]
strongly suggests that many other examples of renormalized low-temperature
phases are almost Gibbs. The investigation of generalized Gibbs properties of the
non-Gibbsian measures which appear, for example, as transformations of Gibbs
measures, is called the first part of the Dobrushin program.

The second part of the Dobrushin program then consists of building a
thermodynamic formalism within the new class of “generalized Gibbs measures.”
The question of whether, in the context of weakly Gibbsian measures, there
is a reasonable notion of “physical equivalence,” that is, if two systems of
conditional probabilities share a Gibbs measure, then they are equal, already was
raised [3]. In the classical Gibbs formalism, physical equivalence corresponds to
zero relative entropy density, or zero “information distance.” Generally speaking,
one would like to obtain a relationship between vanishing relative entropy density
and conditional probabilities. For Gibbs measures with a translation-invariant
uniformly absolutely convergent potential, a translation-invariant probability
measureu has zero relative entropy densiby(u|v) with respect to a Gibbs
measure if and only if 1 is Gibbs with the same potential. Physically speaking,
this means that the only minimizers of the free energy are the equilibrium phases.
In complete generality (i.e., without any locality requiremenkg) |v) = 0 does
not imply thatu andv have anything in common; see, for example, the example
in [31], where a measure is constructed such that for any translation-invariant
probability measurée;(u|v) = 0.

In this article we investigate the relationship betwéedin|v) = 0 and the
property of having a common system of conditional probabilities for general
gquasilocal measures, almost Gibbsian measures and weakly Gibbsian measures.
We work in the context of lattice spin systems with a single-site spin taking
afinite number of values. Let denote a translation-invariant system of conditional
probabilities and leginw (y) denote the set of all translation-invariant probability
measures havingsr as a version of their conditional probabilities. Jf is
continuous, then, for € Gin(y), we obtaimi(u|v) =0 ifand only if u € Giny(y).

If y is continuousu almost everywhere, then we obtain thafu|v) = 0
and v € Ginv(y) implies u € Ginv(y). More generally, forv € inv(y) and
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a probability measure, concentrating a set of “good configurations,” we obtain

the existence di(u|v), an explicit expression for it wheteenters only through its
conditional probabilities and the relationsltifx|v) = 0 impliesu € Ginv(y). The

good configurations here are defined such that a telescoping procedure—inspired
by the method of Sullivan [26]—converges almost surely. These results, together
with some examples of non-Gibbsian measures to which they apply, suggest that
almost Gibbsian measures exhibit a reasonable thermodynamic formalism. The
fact that some concentration properties of the measures are required is reminiscent
of the situation in unbounded spin systems [24], an analogy already pointed out
by Dobrushin.

The context of joint measures of disordered spin systems provides a good source
of examples for validity and failure of the relationship betwégn|v) = 0 and
u € Ginv(y). Here by joint measure we mean the joint distribution of both the
spins and the disorder. In these examples (especially for the random field Ising
model) there is a precise criterion that separates the almost Gibbsian case from
the weakly Gibbsian case. In particular, for the random field Ising model, the
joint measure is always weakly Gibbs, and at low temperatures we prove here
that it even admits a translation-invariant potential which decays almost surely
as a stretched exponential (so in particular convealps®lutelya.s.). If there is
no phase transition, then the joint measure for the random field Ising model is
almost Gibbs (but not Gibbs in dimension 2 at low temperature). In the almost
Gibbsian regime we obtain the validity of the relationship betwe@nv) = 0
and u € Ginv(y), whereas in the weakly but not almost Gibbsian regime we
show its invalidity. More precisely, in that case the joint measure for the minus
phase K7) is not consistent with the (weakly Gibbsian) system of conditional
probabilities of the plus phas& ("), but one easily obtains that the relative entropy
densitiesh(K~|K+) = h(KT|K~) = 0. Physically speaking, this means that we
are in the pathological situation where a minimizer of the free energy is not a phase
(in the DLR sense). At the same time, we also treat the joint measures in a very
broad sense, that is, for possibly non-i.i.d. disorder, we prove the existence of
relative entropy density, give an explicit representation in terms of the defining
potentials and discuss implications of our results for the Morita approach [22].

Our article is organized as follows: in Section 2 we introduce basic definitions
and notation, discuss the different generalized Gibbs measures and define the
variational principle. In Section 3 we prove a formula for the relative entropy
density for some class of almost Gibbsian measures using the technique of
relative energies [26]. This formula is then applied to prove the implication
“u andv Gibbs with the same specification implie&.|v) = 0” for that class of
measures. In Section 4 we prove the full variational principle in our terminology
(i.e., in the sense of Definition 2.11) for measures with a translation-invariant
continuous system of conditnal probabilities. In Section 5 we give as examples
the GriSing random field and the decimation of the low-temperature plus phase of
the Ising model. In Section 6 we discuss examples of joint measures of disordered
spin systems.
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2. Preliminaries.

2.1. Configuration space. The configuration space is an infinite product space

Q = EZ’ with E a finite set. Its Boreb-field is denoted by . We denote by
8 ={A CZ% |A| < oo} the set of the finite subsets @ and for anyA € §,
Qa = E2. We let ¥, denote ther algebra generated by (x):x € A}. For all
o, w € 2, we denoter,, wa the projections o012, and also writery wa« for the
configuration which agrees with in A and withw in A°. The set of probability
measures oK2, ) is denoted bny. A function f is said to bdocal if there
existsA € 4 such thatf is ¥x-measurable. We denote b§ the set of all local
functions. The uniform closure of is C(S2), the set of continuous functions én
On Q, translations{r, :x € Z4} are defined viat,w)(y) = w(x + y), and
similarly on functions, f (w) = f(ty®) and on measureSf dr,u = [(t, f) d .
The set of translation-invariant probability measuregis denoted byMlinnv.

We also have a partial order< ¢ if and only if for all x € Z¢, n(x) < ¢(x).
A function f:Q — R is called monotone ify < ¢ implies f(n) < f(¢). This
order induces stochastic dominationm"f: u=<vifandonlyif u(f) < v(f) for
all f monotone increasing.

2.2. Specification and quasilocality.

DEFINITION 2.1. A specification o2, ) is a familyy = {ya, A € 8} of
probability kernels fronf2,c to £ that are proper and consistent.

1. Proper. Forall B € Fpc, ya(Blw) = 1p(w).
2. Consistent If A c A’ are finite sets, thepp ya = ya'.

The notationy, ya refers to the composition of probability kernels: tbre F,
w € Q,

arya)(Alw) = /Q ya (Al yarde |w).

These kernels also act on bounded measurable funcfipns

yaf (@) = / F(@)ya(do|w),

and on measurgs,

MVA(f)E/fdMVA:/(J/Af)dM.

A specification is a strengthening of the notion of a system of proper regular
conditional probabilities.Adeed, in the former, the consistency condition (item 2)
is required to hold forevery configurationw € 2, and not only for almost
everyw € Q. This is because the notion of specification is defined without any
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reference to a particular measure. A specificajiois translation-invariant if for
alAeF, Aecd,we,

Ya+x (Alw) = YA (Tr Al Ty 0).

In this article wealwaysrestrict to the case of nonnull specifications, that is, for
any A € 4, there exist O< ap < bp < 1 such that

an <infya(o ) < Supya(oln) < ba.
N o,n

DEFINITION 2.2. A probability measurg on (€2, ) is said to be consistent
with a specificatiory (or specified byy) if the latter is a realization of its finite-
volume conditional probabilities, that is, if for ah € ¥ and A € 4, and for
u-a.e.w,

(2.1) plA|Facl(@) = ya(Alw).
Equivalently,u is consistent withy if

[onrran=[ ran

for all f € C(2). We denote by4.(y) the set of measures consistent wijth
For a translation-invariant specificatio. () is the set of translation-invariant
elements ofg(y).

DEFINITION 2.3. 1. A specificatiory is quasilocal if for eachhA € § and
eachf local,ys f € C(2).
2. A probability measurew is quasilocal if it is consistent with some
guasilocal specification.

2.3. Potentials and Gibbs measure€=xamples of quasilocal measures are
Gibbs measuregefined via potentials.

DEFINITION 2.4. 1. A potentialis a family ® = {®4:A € 4} of local
functions such that for all € 8, ® 4 is F4-measurable.
2. A potential is translation-invariant if for all € §, x € Z¢ andw € L,

Dptx(w) = Pa(Tr0).

DEFINITION 2.5. A potential is said to have the following attributes:

1. Convergenat the configuratiow if for all A € 4, the sum
(2.2) Y da(w)
ANA#D
is convergent.
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2. Uniformly convergenif convergence in (2.2) is uniform im.
3. Uniformly absolutely convergeQAC) if for all A € &,

> sup|®a(w)| < oco.
ANA#z ¢

For a general potentiafb, we define the measurable set of its points of
convergence as
Qo ={w e Q: dis convergent ab}.

To define Gibbs measures, we consider a UAC potential and defifiaifes
volume Hamiltoniarior A € 4 and boundary conditiow € 2 by

HY(olo)= Y ®a(cawac).
ANAAD

DEFINITION 2.6. Let® be UAC. TheGibbs specificationy ® with potential
@ is defined by

(o] _ 1 _g?d
Ya (0lw) = 722(0)) exp(—Hy (o|w)),

where the partition functioﬂj‘\’(a)) is the normalizing constant.
A measureu is a Gibbs measuré there exists a UAC potentiab such that

w € 4(y®). Gibbs measures are quasilocal; conversely, any nonnull quasilocal
measure can be written in a Gibbsian way (see [10] and more details in Section 4).

2.4. Generalized Gibbs measures.

DEFINITION 2.7. A measure is weakly Gibbdf there exists a potentiab
such thatv(Q2¢) =1 and

exp(—Hy (o|w))
Z2(w)

v[oa|Facl(w) =
for v-almost everyw.
REMARK 2.8. Some authors insist on the almost surely absolute convergence
of the sums defining{j\". However, for the definition of the weakly Gibbsian

specification there is no reason to prefer absolute convergence.

DEFINITION 2.9. Lety be a specification. A configuratian is said to be a
point of continuity fory if forall A € 8, f € £, ya f is continuous ab.

For a giveny, 2, denotes its measurable set of points of continuity.
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DEFINITION 2.10. A measure is called almost Gibbsif there exists a
specificationy such thab € §(y) andv(2,) =1

If vis almost Gibbs, then there exists an almost surely convergent poténtial
such that is weakly Gibbsian fo and thus almost Gibbsianness implies weak
Gibbsianness. The converse is not true: A measure can be weakly Gibbs and for
the associated potentidl, 2, » is of measure zero [15, 19]. If a measure is almost
Gibbs and translation-invariant, then the corresponding potential can be chosen to
be translation-invariant.

2.5. Relative entropy and variational principle For 11, v € M, thefinite-
volume relative entropgit volumeA € 4§ of u relative tov is defined as

dupn,  dua .
—lo dv, if KL Vp,
(2.3) ha(uiv)y=1Jo dva = dva Ha VA
+00, otherwise.

The notationu o refers to the distribution b, whenw is distributed according
to u. By Jensen’s inequalitys o (u|v) > 0. Therelative entropyof u relative to
v is the limit

(2.4) h(ulv) = lim ﬁhAn (ulv),

where A, = [n,n]? N Z¢ is a sequence of cubes (this can be replaced by a
Van Hove sequence). In what follows, if we write liyz« f(A), we mean that
the limit is taken along a Van Hove sequence. The defining limit (2.4) is known
to exist if v € <M1 inv IS @ translation-invariant Gibbs measure wittranslation-
invariant UAC potentlal angt € <M1 iny arbitrary. The Kolmogorov—Sinai entropy

h(w) is defined foru € Ml,im,

(2.5) h(w) = Zu oa,)logu(oy,).

1
< [Anl 5
We are now ready to state the variational principle for specifications and
measures, which gives a relationship between zero relative entropy and equality

of conditional probabilities.

DEFINITION 2.11 (Variational principle). Lef be a specification, € Giny(y)
and M C ‘Mllnv We say that a variational principle holds for the triple
(v, v, M) if

0. h(u|v) exists for allu € M;
1. u€ Ginv(y) N M impliesh(u|v) =0
2. h(u|v) =0andu € M impliesu € Ginv(y).
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Iltems 1 and 2 are called the first and second part of the variational principle.
The second part is true for any translation-invariant quasilocal meagitéwith
M = ,Mfinv). The first part is proved for translation-invariant Gibbs measures

associated with a translation-invariant UAC potential (with= M7, also).

We extend this result to any translation-invariant quasilocal measure in Section 4.
In [5], the second part was proved for some renormalized non-Gibbsian FKG
measures. In general, the sét will be a set of translation-invariant probability
measures that concentrate on good configurations (e.g., points of continuity of

conditional probabilities).

3. Variational properties of generalized Gibbs measures. We study the
variational principle—in the sense of Definition 2.11—for generalized Gibbs
measures. We first prove the second part for almost Gibbsian measures, which
is a rather straightforward technical extension of [7], Chapter 15.

3.1. Second part of the variational principle for almost Gibbsian measures.

THEOREM 3.1. Lety be a translation-invariant specification g, #) and
v € Ginv(y). Forall ue M}

1inv?
h(ulv) =0
- € Finv
w2y =1 w € Ginv(y)

and thus such a measugeis almost Gibbs wit. y .

PROOF Choosev € Ginw(y) andu such thati(u|v) = 0. We have to prove
that for anyg € £, A € 8,

(3.1) n(yag —8) =0.
Fix g € £ andA € 4§ such thalg is F4-measurable. The hypothesis

(3.2) h(ulv) = ——h(ulv)=0

. 1
lim
AzZd | A
implies that for everyA € 4§, the densityfa = du/dva exists and is a bounded
positive ¥ -measurable function. Introduce local approximationg0f:

g, (@) = inf yag(oa,wac),
we

g1 (o) = supyag(oa,wac).
we

In the quasilocal case, we hayg — g, — 0 uniformly whenn goes to infinity,
whereas here we hagg” — g, — 0 on the sef2, of u-measure 1 and, hence, by
dominated convergence ot (). To obtain (3.1) decompose

(33) nw(yag — 8 =A,+ B, +Cy + Dy,
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where
Ap=n(yYag — &)
By =v((g, — A& fa\A)s
Chn=v(faayag —8)),
Dy =v((fana = fa,)8)-
Using

O0<ya&—8 <& —4& -
A, — 0 asn goes to infinity. ForB,,, use

0<IBul=v((yag — &) fann) <v(fanale —g,))=ng —g,)

to obtainB,, — 0 asn — oo.
Sincev € §(y) and fa,\a € Fac, C, = 0. The fact thatD,, — 0 follows from
the assumption of zero relative entropy density (see [7], page 324).

REMARK 3.2. 1. The role ofM in Definition 2.11 is played here by the set
of measures that concentrate on the points of continuity pi € M if and only
if n(2,)=1].
2. Note that in Theorem 3.1, we do not ask any concentration properties of

3.2. Relative entropy density for some almost Gibbsian measufi@sobtain
a relationship between € 4(y) andh(u|v) = 0—the first part of the variational
principle—it turns out that concentration pf on the set of points of continuity
of y is not enough. In fact, we need some particular class of “telescoping
configurations” to be points of continuity of the specification. This is reminiscent
of asking for continuity properties of the one-sided conditional probabilities. In the
case of (uniformly) continuous specifications, this distinction between one-sided
and two-sided probabilities is, of course, not visible.

We choose a particular value writtepl in the state spac& and denote
by + the configuration whose value is1 everywhere. We use a telescoping
procedure with respect to this reference configuration. It is important that the
reference configuration be translation-invariant; hence, our choice of “the all
configuration” is not restrictive. In Section 3.4, we generalize to a telescoping
configuration chosen from a translation-invariant measure: this will be important
in Section 6.

To any configuratiom € 2, we associate the configuratiort defined by

o(x), if x <O,

+ _
o) {+1, if x > 0.
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Here, the ordek is lexicographic. We define theﬂ;o to be the subset a2 of
the configurations such that the new configuratier™ is a good configuration
for y:

Q0={ceQ ot eq,).
This set is described in different examples in Section 5.
3.2.1. Results. We consider a pai(y, v) with v € Gjn(y) and a measurg
which satisfies the following condition:
ConbDITION C1.
w0 =1.
We also introduce the-specific energy of the plus state,
1
+. i
e =— lim —logv(+,),
v ATZd |A| g ( A)

whenever it exists.

THEOREM 3.3. Under ConditionC1:

1. If and only ife;" exists h(u|v) exists and then

yo(o+|0+)M

yo(+lo ™)
whereh(u) is the Kolmogorov—-Sinai entropy pof

2. If, moreoveru € inv(y) ande;” existsthen

(3.4) h(ulv) = ~h(w) +ef — [ 1og o),

) 1 w(+a)
. = | —| .
(3.5) h(ulv) AITnZ1d N 0g o)

To obtain a result which is more reminiscent of the first part of the variational
principle in the standard theory of Gibbs measures, we add an extra condition to
Condition C1:

CONDITION C2.

. 1 w(+a)
3.6 € g issuchthat Ilim—Ilo =0.
(3.6) "€ Ginv(y) Atz A g D)

THEOREM 3.4. Assume that Conditiortsl andC2 are true Then

1. h(ulv) =0;
2. ¢ existsand;f =et;
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3. h(a|v) exists for alla € leinv satisfying ConditiorC1.

REMARK 3.5. In the standard theory of Gibbs measures, the existence
of h(i|v) and the identity (3.4) are obtaiddy proving existence and boundary
condition independence of the pressure. This requires the existence of a UAC
potential, which in our case is replaced by regularity properties of the specification
and existence of the limit defining. The existence is guaranteed, for example,
for renormalization group transformations of Gibbs measures and faith
positive correlations (by subadditivity). Moreover, in the case of transformations
of Gibbs measures, Condition C2 is also easy to verify (see Section 5). However,
showing existence and boundary condition independence of the pressure is highly
nontrivial in this context.

REMARK 3.6. A consequence of Theorem 3.3 is thatitbepecific energy;”
exists ifv satisfies Condition C1. This is a consequence of the existenog pf)
(= 0) and point 1 of this theorem for the particular chojce- v.

3.3. Proofs. First we need the following lemma.

LEMMA 3.7. If M(Q;O) = 1, then the following statements are valid
1. Uniformly inw € ©,

| ya, (0 0) yo(a o)
| e " u(do) = log————— = u(do).
% 1A Jo 0 ya, (Hay ) / 007 (o 1)
2. Forveg(y),
] v(oa,) )’O(U+|U+)
| — " u(do)= [ log————u(do).
o Tan] Jo 09 (a1 / 007 (o) )

In particular, the limit depends only on the paiy, u).

REMARK 3.8. If i is ergodic under translations, we have a slightly stronger
statement for item 1:(1/|A,]) /o l09((ya(olw))/ya(+|l@))n(do) converges
in LY(w) to [o109((vo(o Tlo ) /vo(+lo 7)) u(da), uniformly in w € L.
PROOF OFLEMMA 3.7. 1. The proof uses relative energies as in [26]. For all
A€, 0,we 2, we define
ya(o|w) yo(o|o)
Ef(o|lw)=log->—— and D(o)=EH (clo)=Io .
A A ) o 9o+
We consider an approximationef- at finite volumeA with boundary conditiom
and define théelescoping configuratiofiy’[x, o, +]:

w(y), if ye A€,
TRx, 0, +1(y) = o (y), ify<x,yeA,
+1, if yx,yeA.
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Using the consistency property f we have, by telescoping,
(3.7) EX(olo)= ) El(@|TX[x,0.+D).

xeA
Toseethis,denotd -, ={y e Ay <x}, Acx =A<y \{x}andA-y = A\ A<,.
Let A = {x1, ..., xy} denote an enumeration afin lexicographic order. Then we
can write, using consistency,

=

Ya(@a,, Ao, l©)

|w)

ya(o|w)
Ya(+lw)

i=1 YA (GAS-‘i—l +A>"i—1

(3.8)
N Vxi (Uxi|UA<xi +A>xi a)AC)

i=1 )/xi (+x,‘ |GA<.xi +A>-"i (,()AC)

Taking the logarithm yields (3.7). By translation invariance/of
E{(olw) =) D(t_xTR[x, 0, +]).
xXeA
By translation invariance qf,
[ Ex @lomdn = 3 [ D3l to +Duo).
£ xXen, £

Therefore, we have to prove that, uniformlydn

lim |A1n| (}g\j /Q[D(T_XTK; [x, Ty0, +1) — D(o+)]u(da)> =0.
By definition,
T_yw(y), if y+xeAS,
r_fo\"n[x,rxa,—l—]: +, ifO<y, y+xeA,,
o(y), if y<0,y+xeA,.

Now, pick ¢ > 0, w € Q and o € Q;O. Using the fact thate™ is a
point of continuity of D, we chooseng such that§|,\nO = 0+|An0 implies
|ID(&) — D(o )| <e. We remark that_, Ty [x, ©x0, +] ando ™ differ only on
the set{yeZ%:x + y e A%}, Therefore, the differenceD (o) — D(t_ T [x,
7,0, +])| can only be greater tharfor x such thatA,,—x) NA§ # @. Therefore,

1
| 2 [P TR, bx non +]) = D(e™)]
(3.9) e N A Ao
<642 D) E A (Ao =) N A # 2)]

| Anl
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and this is less thansZor n large enough. So we obtain that

1
| Al

D [D(r—xTR [x, T, +]) — D(0+)]’

xeA,

converges to zero on the set m‘;o of full pw-measure, uniformly inw. By
dominated convergence, we then obtain

Y D TRLx, 1c0,4+]) — D(c )]

xeA,

1
li do)=0
anmsgp|A |/Q p(do) )

n

which implies statement 1 of the lemma.
2. Denote
0g v(oa,)
|[AnlJo T v(4a,)

Fa,(n,v) = w(do).

Usingv € 4(y), we obtain

fg Y, (0lw)v(dw)
|A | QVA (+lw)v(dw)

Fp,(u,v) = w(do).

Use
YA, (0|®) - Java,(@lw)v(dw) - YA, (0|®)
weQ yp, (+lw) T [ova,(FHoW(dw) T peq va, (Hlw)
Lete > 0 be given and = w(n, 0, ¢), ' = &'(n, 0, &) such that

7)) va,(Olon, o, ¢))
flo do L —
/QJ)QQ 9 ™ )—/ 9 Gl o.e)

and

ynolo) ya, (010 (1, 0, £))
I n n
/szféi? o )—/ s (o (1,0, 0)

Now use the first item of the lemma and chod&such that for alk > N,

yAn( | ) +
— D .
#|A| 9 (o ) /sz (07 )uldo)| ¢
Forn > N, we obtain
[ peHuo) 20 < Fa,uv) < [ DeHudo)+2e. g
Q Q

PROOF OFTHEOREM 3.3. 1. Denote
n(on,)
v(oa,)

hn () :=

Io
|A | & g
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We recall that fop € MIinV(Q), the limit of i1, (1) := —(1/|A,]) ZGA" nioa,) X
logu(oa,) is theKolmogorov—Sinai entropgf 1 denoted: (). We write
1 v(oa,)

3.10) &, = —hy (1) —
(3.10) fn(ufv) W =7 i) Tl

> uloa,)log logv(+a,)-
OAp
When Condition C1 holds, the asymptotic behavior of the second term of the right-
hand side is given by Lemma 3.7. Hence, the relative entropy exists if and only
if e exists, and it is given by (3.4).

2. We consideru € inv(y) such thatM(Q;O) =1 and use the following
decomposition of the finite-volume relative entropy:

1
| > n(on,) |09M
nlop,

hy, =
=13 1a)

(3.11) )

v(oa,) 1 w(+a,)
A .
o Sl tog 1) L iog

v(+a,) Al v(+a,)

By Lemma 3.7, in the limit: — oo, the first two terms on the right-hand side
are functions ofy rather than functions gk, v € in(y) and cancel out. Hence,
the relative entropy exists if and only if the third term converges. Using item 1
(existence of relative entropy), we obtain the existence of the limit (3.5) and
the equality

OAp

. 1 w(+a,)
h(plv) = lim lo "
) = A %) O

PROOF OF THEOREM 3.4. 1. Start from the decomposition (3.11). For
w andv in 4(y), under Condition C1, in the limit — oo, the first two terms
on the right-hand side cancel (see Lemma 3.7), and we obtain, by Condition C2,

(3.12) 0= lim —Jog )
n—=>00 | Ayl v(+a,)

2. Now consider the decomposition (3.10). From (3.12), we obit&iriv) = O;
hence, by Lemma 3.2;" exists and is given by

= h(ulv).

(aFlo™)
et = h )+/Io Y07 19 do).
R
Existence ok, and the equality, = ¢;f now follows trivially from Condition C2

and existence of .

3. Consider any other measures :leinv such that Condition C1 holds. The

existence of the relative entropyo | ) follows by combining the existence ef
with Theorem 3.3, and
yo(o™lo™)

h(a|v)=—h(a)+ej—/|ogma(da). 0
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3.4. Generalization. In the hypothesis of the theorems above, the plus
configuration plays the particular role of a telescoping reference configuration.
Without too much effort, we obtain the following generalization where we
telescope w.r.t a random configuratidrchosen from some translation-invariant
measure.. Results of the previous section are recovered by chodsiag, . The
generalization to a random telescoping configuration will be natural in the context
of joint measures of disordered spin systems in Section 6.

For anyz, o € Q, we define the concatenated configuratdn

é() [a(x), if x <0,
os(x)=

(3.13) vxeZd, ,
E(x), if x>0,

and the senf,‘o to be the subset d2 x Q of the configurationso, £) such that
the new configuration? is a good configuration fop:

<0 _
Q5P ={(0.6)eQx Q0% €Q,}.

We also generalize the specific eneégyand denote
3.14 e / l0g v (Ex)(d
(3.14) ey MZd 1Al gv(Ea)Ar(dé)

provided this limit exists.
We consider a specification measures € Ginv(y) andu, A € <M1 iny» and the
following conditions:

£,<0

CoNDITION CT. We haver ® u(2; ™) =1.

CoNDITION C2. We have lim, 474 |T1\ Jolog(dun/dva)(En)A(dEn) =0

The following theorems are the straightforward generalizations of Theorems
3.3 and 3.4, respectively, and their proofs follow the same lines.

THEOREM 3.9. Under ConditionCY’:
1. If and only ife? exists 2 (u|v) exists and then

§1556
(3.15) h(M|U):_h(“)+eﬁ_/;zxglog%

2. If, moreoveru € inv(y) ande’ exists then

p(do)r(ds).

ha) = fim —— [ 1og 2 0y
(mlv = 1Al Ja gdUA Ea)A(EL).

THEOREM 3.10. If u,v € 4(y) are such that Condition€1 and C2 are
fulfilled, then
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1. h(u|v) =0;
2. ¢ exists and equals’;;

3. h(a|v) exists for alle € Mfmv satisfying ConditiorC1'.

4. Variational principle for quasilocal measures. The usual way to prove
u € Ginv(y) < h(u|v) = 0in the Gibbsian context uses thais a specification
associated with a translation-invariant and UAC poterdialand proceeds via
existence and boundary condition independence of pressure (see [7]). Since for
a general quasilocal specification we cannot rely on the existence of such a
potential (see [10] and the open problem in [28]), we show here that the weaker
property of uniform convergence of the vacuum potential, which can be associated
to the quasilocal specificatign (see [10]), suffices to obtain zero relative entropy.

THEOREM 4.1. Let y be a translation-invariant quasilocal specification

v € Ginv(y) andu € MY, Thenh(u|v) exists for allu € M, and

weEGinvly) << h(ulv)=0.

ProoOF The implication of the left-hand side (the second part) is proved in [7].
To prove the first part, we need the following lemma to check the hypothesis of
Theorem 3.4. Condition C2 is trivially true whenis quasilocal (2;0 =Q).

LEMMA 4.2. Forall i, v € Ginv(y) with y translation-invariant and quasilo-
cal, e, eZ exist and
1 u(+a,)

lim log =0
n—>00 | A, V(*‘An)

PROOF Kozlov [10] proved that to any translation-invariant quasilocal
specificationy there corresponds a translation-invariant uniformly convergent
vacuum potentiad such thaty =y ®.

By uniform convergence, we have

=0.

(4.1) lim su% > Do)

d
AMZT 0 | A50, ANACED

Note that in (4.1) the absolute valuedstsidethe sum, that is, (4.1) means that
the series_ 450 P4 (o) is convergent in the sup—norm topology 61<2), but not
necessarilyabsolutely convergeniVe can define a Hamiltonian and a partition
function for anyA € 4, n, o € €, as usual:

4.2)  Hjo)= Y. ®a(oanse) and Zp(w)= Y e MR,
ANA#D oe

Lemma 4.2 is now a direct consequence of the following lemma.
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LEMMA 4.3.
H 1 n w .
(4.3) nll_)mo%s:gg ™ |HY (0) — HY (0)|=0;
1 Z
(4.4) lim sup log A (@) _

n=>00 4 | Ayl Za, ()

PrRoOF We follow the standard line of the argument used by Israel [9]
to prove existence and boundary condition independence of the pressure for a
UAC potential, but we detail it because the vacuum potential is only uniformly
convergent. Clearly, (4.3) implies (4.4). For alE N,

exp{ — SUp|H} (o) — HY (0)|} < supM
wno " " w.n Za, (M)

< exp{ SUp|H, (0)— HY, (cr)|}.
w,n,o
To prove (4.3), we write

Hy (0)— HY (o) = Y. [Paloa,nag) — Paloa,ong)].
ANA,#D,ANAS#D
and we first note that

1
| Al

> [®a(oa,nag) — d’A(GAnwAz)]’
ANAL£D, ANAS£D

2
= > su% > D 4(0)

| ”|xeAn 7 lAsx, ANAS#£D

We obtain

su% 2. Pal0)|=sup) Pa()— ) Pal)

o

Asx, ANAS#D A>x A3x,ACA,
=supd Pu(xo)— > DPa(r0)
9 1450 A30,AC(Ap—x)

<sup > ch(E)’-

§ 1450,AN(Ap—x)#£0

Pick e > 0 and choos& such that

SU% Yo D4

§ 1A30,ANAc£D

<e.
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Then

g, if (A, —x)DA,
2 (DA@)’S{C, if (A, —x) N A £ 2,

A30,AN(A,—x)#£D

where

< Q.

C= sg%z PAE)

A30

Since for anyA ¢ Z¢ finite,
(A +xNAG £ _

lim ¢ 0,
n—o00 |An|
we obtain
. 1
limsup > su > d48)| <e,
no1Aal (X e x5x, ANAS#£D

which by the arbitrary choice af> 0 proves (4.3) and the statement of the lemma.
O

To derive Lemma 4.2 from Lemma 4.3, we have to prove only that for all
v € Ginv(y), €] exists and is independent pf For such a measure write

—Hy (+)
Q Za,(n)

whereHXn is defined via the vacuum potential fin (4.2). We use Lemma 4.3
to write

v(+a) = v(dn),

H

e—Hyx () 4
v(dn)

+

ZA

V() = /Q

whereap = by means limy (1/|A])|log(aa/bp)| = 0. Sinced is the vacuum
potential with vacuum state, Hj((+A) =0 and hence

-1
v(Ha) = (ZH 1= (2" —1:[ > exp(— > @A(a)ﬂ :

oEQA ACA

whereZX (resp.ZB{ee) is the partition function with the+ (resp. free) boundary
condition, which in our case coincide. Fik> 0 and put

D 4(0), if diam(A) <R,

(R)
0] =
A (@) { 0, if diam(A) > R.
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Then, using the existence of pressure for finite range potentials (cf. [9]),
.1 .
lim — log ZT®(®®)) := P(0R)) exists.
A A
Now use

Y6 eXP(— Y gcp Palo)) %
log <su
Yo €XP(— Y ach @40(0)) T o 2

D4(0)

ACA,diam(A)>R

<sup)_ > P 4(0)

7 xeAlAsx,diamA)>R

< ZSU% Y. Dalo)

xeA 7 lAsx,diamA)>R

- |A|su% Y. P

% 1450,diam(A)>R

and

N (R)
36 EXP(— X 4ca <b&/)(o>> < 1Al Su% 5 (o)
26 EXP(— 2 pch Py (0)) o

to conclude thatP (®®)), R > 0} is a Cauchy net with limit

A>0,diam(A)>RAR’

. . 1
lim P(®@®) = lim —logzfee=¢7,
R—o0 A Z4 |A|
which depends only on the vacuum potential (hence on the specificajion
This proves thate}” and e exist for all u,v € Ginv(y), and depend ory
only. Therefore,
lim — log pta) =ef —ef =0,
Arzd || v(+a)
which proves Lemma 4.2.0]

A direct consequence of this lemma is that in the framework of Theorem 4.1,
e, exists and Conditions C1 and C2 are true. We obtain the theorem by applying
Theorem 3.4. O

5. Examples.
5.1. The GriSing random field. The GriSing random field is an example of

joint measure of disordered systems, studied more in Section 6. It was studied
in [30] and provides an easy example of a non-Gibbsian random fields which fits
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in the framework of our theorems. The random field is constructed as follows.
Sites are empty or occupied according to a Bernoulli product measure of parameter

p < pe, Wherep, is the percolation threshold for site percolationZh For any
realizationn of occupancies where all occupied clusters are finite, we have the

Gibbs measure on configuratiosise {—1, +1}Zd,

pg(do),

which is the product of free boundary condition Ising measures on the occupied
clusters. More precisely, undmf; spin configurations of occupied cluste¢sare
independent and distributed as

1
Mﬁ,c(ac)=Z—AeXp<ﬂ Z G(X)G(y)>-

(xy)cC

The GriSing random field is then defined as
§(x) =0 (x)n(x).

In words,& (x) = 0 for unoccupied sites and equals the spin) at occupied sites.
We denote byK, g the law of the random field. It is known that for any

p €(0,1), B large enoughk, g is not a Gibbs measure (see [30] fpr< p.

and [13] for anyp € (0, 1)). The points of essential discontinuity of the conditional

probabilitiest,ﬁ(a(0)|§Zd\{0}) are a subset of

D = {£: & contains an infinite cluster of occupied sites

Sincep < p., there exists a specification such that{K, g} = §(y) and such
that for the continuity points2,, we havek , 5(2,) =1, that is,K, g is almost
Gibbs. Moreover, if we choosg = 0 as a telescoping reference configuration,
then clearlyo € D¢ implies 0% € D¢, that is, in this case&, C Q;O. Therefore,
in this example Condition C1 is satisfied as soomancentrates o®°. Using

{Kp,pt=§(y) and
1
im —logK, 3(04) =log(1l— p),
Jim, A7 109K p.5(00) = log1 — p)
we obtain the following proposition:

PROPOSITIONS.1. If u(D)=0,theni(u|K, g) exists andis zero if and only
if u=Kp,pg.

5.2. Decimation. Let MZ (resp.ulg) be the low-temperatured(> B.) plus
(resp. minus) phase of the Ising model &f. Forb € N, vy (resp.vy) denotes

its decimation, that is, the distribution ¢ (bx): x € Z%} wheno is distributed
according toul‘g (resp.ug). It is known thatv; is not a Gibbs measure [28].
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In [6] it was proved that there exists a monotone specification(resp.y ™)
such thatv; €eq(y™) [resp.vg € §(y7)]. In [5] it was proved that the points
of continuity 2, + satisfyvy (2,+) = 1, thatis,v; is almost Gibbs. The points of
continuity ofy * can be described as those configuratipfer which the “internal
spins” do not exhibit a phase transition when the decimated spins are fixed to be
For example, the all plus and the all minus configurations are elemeists-qf
but the alternating configuration is not.

The first part of the variational principle faiy ™, v;, M) has already been
proved in [5] (and is direct by Theorem 3.1), with a sét consisting of the
translation-invariant measures which concentrat&on. Here we complete this
result by adding a second part:

THEOREM5.2. Foranyu e M;" . satisfying ConditiorC1for y+:

1,inv

1. h(ulvg) exists
2. We have the equivalence

1eGiv(yt) = hulvg)=0.
We first use a lemma.
LEMMA 5.3. Expressiong. € G(y™) andu(2,+) = Limply
(5.1) vgjujv;.
PrROOF.  Considerf monotone. By monotonicity of * [6], for all A € &,
[ ran= [ @i p@no < [ ¢t Heuds) = @i HE.
Taking the limitA 4 Z¢ and usingy, (:|+) goes tovy" gives

[ ran= [ rav.

Similarly, usingt($2,+) = 1 and the expression 6f,,+ in [6], we havey *(f) =
Yy~ (f), u-a.s. and hence

[ rdu=[vithduzyire.
which gives
[ rauz [ rav;. 2

The following corollary proves Theorem 5.2 using Theorem 3.4.
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PrRoOPOSITION5.4. 1. The equalltyzv; = —lim 474 737109 Vg (+4) exists
2. Foranyu € §(y ™),

. 1
lim —Ilo 'li(+A) =0.
AzZd | A Vg (+a)

ProoOF Statement 1 follows from subadditivity and positive correlations.
Statement 2 follows from stochastic domination (5.1) and
+ +
1 vg(+a) 1 wg (+pa)
lim —Ilo ‘i = lim —|og§7:o
azd Al T vg () Atz AL g ()

’

where, to obtain the last equality, we used tb%l, pg are the Ising plus and
minus phases.]

REMARK 5.5. We conjecture that Condition C1 is satisfied for any ergodic
measurew € §(y™) in dimensiond = 2. This means proving that the internal
spins do not show a phase transition, given a typical configuratipnasf»Z to
the left of the origin and al- on bZ? to the right. Fixing these decimated spins
acts as a magnetic field, pushing the spins on the right of the origin into a plus-like
phase and the spins on the left of the origin into a plus-like or minus-like phase,
depending or. The location of the interface between right and left should not
depend on the boundary conditiondn= 2 (no Basuev transition). However, we
do not have a rigorous proof of this fact.

6. More examples: joint measures of random spin systems. We consider
the joint measures of disordered spin systems on the product of spin space
and disorder space defined in terms of a quenched absolutely convergent Gibbs
interaction and an a priori distribution of the disorder variables. They were treated
before [13, 14] and provide a broad class of examples of generalized Gibbs
measures. A specific example of this, the GriSing field, was already considered
in Section 5.1.

First we prove that, for the same quenched potential, the relative entropy density
between corresponding, possibly different, joint measures is always zero. Next we
prove in generality that these measures are asymptotically decoupled whenever
the a priori distribution of the disorder is. The useful notion of asymptotically
decoupled measures was recently coined by Pfister [23] and provides a broad class
of measures, including local transformations of Gibbs measures, for which the
existence of relative entropy density and the large deviation principle holds. Using
these results, we easily obtain existence of the relative entropy density. Next we
specialize to the specific example of the random field Ising model in Section 6.3.
We focus on the interesting region of the parameter space when there is a phase
transition for the spin variables for almost any configuration of disorder variables.
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Here we show on the basis of [14] that the joint plus and the joint minus state for
the same quenched potential are not compatible with the same interaction potential.
In [14] it was already shown that there is always a translation-invariant convergent
potential or a possibly nontranslation-invariant absolutely convergent potential for
the corresponding joint measure. We also discuss this in more detail and sketch a
proof on the basis of [14] and the renormalization-group (RG) analysis of Bricmont
and Kupiainen [2] that shows that there is a translation-invariant joint potential that
even decays like a stretched exponential. This provides an explicit example of a
weakly (but not almost) Gibbsian measure for which the variational principle fails.

6.1. Setup. We consider disordered models of the following general type. We
assume that the configuration space of the quenched model is again as detailed in
Section 2.1 and we denote the spin variablesrbydditionally we assume that
there are also disorder variabbes= (1) ..z« that enter the game, taking values in

an infinite product spao(e‘:"/)zd, where agairt’ is a finite set. We denote thaint
variablesby & = (&;),c7¢ = (0, 1) = (0, Nx) 74 It Will be convenient later also
to write simply (o n) to denote the paifo, n).

One essential ingredient of the model is given by tefining potential
® = (Py) 474, Which depends on the joint variables= (o, n); ®4(£) depends
on & only through&4. We assume thatd is finite range. When we fix a
realization of the disorden, we have a potential for the spin variablesthat
is typically nontranslation-invariant. We then define the correspongiiremched
Gibbs specificatioly Definition 2.6 using the notation

u%nl(B) == PR ICINN:

Z3 ]
(6.1)

XGXP(- > CI’A(GA&zd\A,n))-

AT ANA#D

To keep the notation simple, we suppressed the synbboh the |.h.s. of (6.1).
The measures (6.1) are also called more loosglgnched finite-volume Gibbs
measuresObviously, the finite-volume summation is ovey EX,

The second ingredient of the quenched model is the distribution of the disorder
variablesP(dn). Most of the time in the theory of disordered systems one considers
the case of i.i.d. variables, but we can and will be more general here.

The objects of interest then are the infinite-volujoiat measuresk ° (d¢), by
which we understand any limiting measure ofAilpzd P(dn)u‘f\[n](dcr) in the
product topology on the space of joint variables. Of course, there are examples
for different joint measures of the same quenched Gibbs specification for different
spin boundary conditiong. In principle, there can even be different ones for the
same spin-boundary conditi@n depending on the subsequence.
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For all of this, think of the concrete example of ttedom field Ising model.
Here the spin variables, take values in{—1, 1}. The disorder variables are
given by the random fields, that are i.i.d. with single-site distributidPg that is
supported on a finite se¥y and assumed to be symmetric. The defining potential
®(o,n) is given by &y, (o, n) = —Boyo, for nearest neighbors, y € Z4,
by (o, n) = —hnyeoy,, andd 4, =0 else.

6.2. Relative entropy for joint measureskor the first result we do not need
the independence of the disorder field. In fact, without any decoupling assumption
onP, we have the following theorem:

THEOREM 6.1. Denote byk? and K° two joint measures for the same
quenched Gibbs specificatiqui, [7](do), obtained with any two spin boundary
conditionso and o', respectivelyalong any subsequencesy and A'y,, respec-
tively. Then their relative entropy density vanishest is 7 (K°|K°) = 0.

REMARK 6.2. Note that we are more general than in the usual setup and we
do not need to assume translation invariance, not even of the defining pogential

REMARK 6.3. This result is directly related to neither the first part nor to the
second part of the variational principle. It does not yield the first part (which will
be proved differently) because it is not clear that every measure that is compatible
with the same specification & can be written in terms ok ?. Applied to the
random field Ising model in Section 6.3, this result will disprove the second part
of the variational principle for weakly but not almost Gibbs measures.

PROOF OFTHEOREM6.1. We have from the definition of the joint measures
as limit points with suitable sequences of volumes,

K%(oana) _Nimy K3 (oana) limy [Py, p]  [71(0n)
Ko (oana) — limy K§, (oana) — limy [Pi)Ly,nf, [il0n)

(6.2)

Here and later we will write for shott, , for the indicator function of the event that
the integration variabl@ coincides with the fixed configurationon A. We have
from the finite range of the disordered potential that

sup D (Palon) — @a(c’n))| < C1ldA|
on=0'n" ONA| 4

for cubesA with some finite constant1. By d A we mean the-boundary ofA,
wherer is the range ofb. So we get that foV large enough,

exp(—2C1|d A G [nafiza A1(0n) < 1S [NATiza A 1(04)

< exp2C1IAA UG [1a iz A1 (0n)
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for any joint reference configurati@y,. This gives the upper bound exXg1 |0 A|)

on the right-hand side of (6.2) by application of the last inequalities on the

numerator and the denominator of (6.2) for the same reference configuration.
This implies for the finite-volume relative entropy an upper bound on the order

of the boundary, that is,

5o & K (oanA)
ha(KPIK7)= > K%(oana)log————"= <4C1|dA|.
oA K2 (oana)

The claim h(K°|K%') < limsu%oo(l/mnnh,\n([(&|Kf'f’) =0 for (An)nen
a sequence of cubes clearly follows.]

The next theorem also can be proved in a natural way when we relax the
independence assumption of the a priori distribuffoaf the disorder variables.
It says that the property of beingsymptotically decoupledarries over from
the distribution of the disorder fields to any corresponding joint distribution.
Following [23], we give the following definition:

DEFINITION 6.4. A probability measur® e ,MImV is called asymptotically

decoupled (AD) if there exist sequenggs ¢, such that

lim - —o, im & =0

n—-oo n
andforallA e #,,, B € ?Aﬁm with P(A)P(B) # 0,

(63) e < M < efn

P(A)P(B)

THEOREM 6.5. SupposelP is asymptotically decoupled with functions
gn andc,. Assume thak ® is a corresponding translation-invariant joint mea-
sure of a quenched random systesith a defining finite range potentialhen
K° is asymptotically decoupled with functiogs = g, andc), = ¢, + C|3 A,
where(C is a real constant

PROOF. It suffices to show that for arfynite V.C A}, .\, we have

K(éa,év) _ K(opa,na,0vnv)
Ea)KGEv)  K(oa,na,)K(ovny)

We show only the upper bound. It suffices to show

<expc).

(6.4) exp(—c,) < X

_ K¢ (0n,08,0711V)
limsup N

— = < explcy)
KS (oa,na,)K (ovnv)
N N
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for any sequenca y. The quantity under the lim sup equals
[Py, Ty ug Tiloa,0v)
[Py, ug linlon,) [Pdi)ly, 1§ li2lov)

Look at the term under the disorder integral in the numerator. We have by the
compatibility of the quenched kernels that

(6.5)

M(I_{N[nAnnVﬁZd\(AnUV)](ﬂ-dAn]loV)
:/MC}\N[77Anﬂvﬁzd\(AHUV)](d&)]lovuin[ﬁAnﬂvﬁZd\(Anuv)](ﬂoAn)

< exp2C11aA DG, [1a,zt\a, JOn,) X 1% 18,19 20\ (a0v) ) (o)

where the inequality follows from the uniform absolute convergence of the
quenched potential for any reference configurafign
We use that

15 [na, G0za\a,)(0n,) = €XU=2C11d A DG, [18, 720\ 4, ) (04,)

and the similar lower bound on the first disorder integral in the denominator
of (6.5) with the same reference joint reference configuradignFrom this we
get an upper bound on (6.5) in the form

SRy, Lyy i [ilov)
[ P@ii) 1y, [P@ii) Ly uG [i2l(ov)

Last we need to control the influence of the variation of the random fields inside
the finite volumey,, on the Gibbs expectation outside. We have that

(6.6) exp(4C1|oA,))

T L
1% [nasiizaa, J0v) < @xp2C1IALNAT [0 ize\a,)(0v)

for any configurationg andn‘V insideA,,. This gives the upper bound on (6.6) as
J Py, Lny
JPiD)Ly,, [Pdi2)1y,
but this, by the property of asymptotic decoupling of the disorder field, is bounded

by exp8C1|dA,| + ¢,) and the proof of the upper bound in (6.4) is done. The
proof of the lower bound is similar.(J

exp(8C10A,|)

Applying Pfister’s theory [23], we have the following corollary:

COROLLARY 6.6. Supposé® is asymptotically decoupled and th&t is a
corresponding translation-invariant joint measure of a quenched random system
with a defining finite range potentialThenh (K |K?) exists for all translation-
invariant probability measurek .
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Moreover we have the following explicit formula:

THEOREMG6.7. Suppose that the defining potenti®(o, ) is translation-in-
variant and thafP is asymptotically decouple@uppose thak ? is a translation-
invariant joint measure constructed with the boundary condiéorBbuppose that
K is a translation-invariant measure on the product spabenote byK, its
marginal on the disorder variables Then

h(K|K?) = h(KqlP) — h(K) — h(K4)

1
+) K (Palon= ))+K<Ilm log Z{ (n = ))
1A |A]

whereh(K) is the Kolmogorov—-Sinai entrogg.5).
REMARK 6.8. The fourth term has the meaning of tkieexpectation of the

joint energy. The last term is th€ mean of the quenched pressure. Note that it is
boundary onditions -independent, of course.

REMARK 6.9. In the case th& is a Gibbs distribution, the existence of the
relative entropy density is obtained directly, that is, without relying on Pfister’s
theory.

PROOF OFTHEOREM®G.7. We have

}lA 1( OATNA 0 k OANA
| | | |0AUA

OATIA

where the first term converges tei(K). For the second term we use the
approximation

K(_I
sup Iog( - (GAAUA) )‘ < 2C1|0A].
5.6.7 Pma) i nanzaalloa)
First we have
~TAT A| > K(oana)logP(ny) = mhuKdUP) - W ZKd(nA) log Ka(na).

OANA
The second term convergesiok ;); the first term converges (K ;|P). This is

clear either by the classical theory for the casefhiatGibbs or even independent,
or by Pfister’s theory if? is asymptotically decoupled. Next, by definition

loguf nafizaallon) == D @a(Gabza\anaTza\p) — 109 ZE (NATiza\ 0)-
At ANA#D
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Using translation invariance of the measuke we get that the application

of lTl‘fK(daA dna) over the first sum of the right-hand side converges to

— > 450 ‘T}lK(CDA(on =.)). To see that the average over the last term converges
we use the ergodic decompositionkf to write K;(dn) = [ p(dk)x(dn), where
o(dk) is a probability measure that is concentrated on the ergodic measures
on 7. Fix any ergodic measure Fork-a.e. disorder configuratiapwe have the
existence of the limit-lim Wl‘ log Z4 (n = -) by standard arguments [25]. The

convergence is also ib!, by dominated convergence. So we may integrate pver
to see the statement of the theorern]

6.3. Discussion of the first part of the variational principle for joint measures.
To discuss the first part of the variational principle, we use an explicit represen-
tation of the conditional expectations of the joint measures. For this we need to
restrict to the case th&t is a product measure. First, in the situation detailed be-
low, we prove the first part of the variational principle by direct arguments. Next,
we illustrate the criteria given in the general theory of Section 3.4 by showing that
they can be verified in the context of joint measures in the almost Gibbsian case,
giving then an alternative proof of the variational principle.

We start with the following proposition from [14].

PROPOSITIONG6.10. Assume thaP is a product measuréAssume that there
is a set of realizations aof of P-measurel such that the quenched infinite-volume
Gibbs measure[n] is a weak limit of the quenched finite-volume meas(6€l.
Then a version of the infinite-volume conditional expectation of the corresponding
joint measurekK* (do, dn) = P(dn)u[nl(do) is given by the formula

M ()
(diin) O\ A, Tia, Nac)

(6.7) K¥Ealencl= [M?\nﬂ%'aA

Here M‘j‘\””&_A (£4) is the trivial annealed local specification given in terms of the
potentialU}{"’ (0,n) = P4(0, n) —La=(x) l0gPo(n,) W.r.t counting measure on the
product spaceFurthermore we have put

Qﬁ(n}\, n,Z\, nac) = M[mz\mv] exp(—AHA (nk, ni, naA)),
where

AH (R, nA. nae) (@) = > (@alo, nhnac) — Palo, n4na0)).
ANA#£D

According to our assumption on the measurability o], Q' depends
measurably oms-. We fix a version of the map and define the right-hand side
of (6.7) to be the specificatiopt*. Note that for the random field Ising model, this
specification exists for all configurationsof the random field by monotonicity.
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In this context we always have the first part of the variational principle. Note
that we do not need any further assumption about almost Gibbsianness.

THEOREM 6.11. Assume thatP is a product measureThere exists a
constantC depending only o, P such that for anyk, K’ € .(y*), one has

suqlog K(&a)
£ K'(§A)

In particular, n(K|K') =h(K'|K) =0

< C|oAl.

PROOF UsingK, K’ € 4(y*), it suffices to show that we have the estimate

)’K(SAEAC) < ,ClaA|

VA EalEpe) ~

where the constanf is independent ofA, &, &’. From the explicit representa-
tion (6.7) we obtain

’

) ZAEEN) pBmEan (g o )fua“”denA)QA(nA,nA,nAJ

(6.8 T = n
YAGAIERD 3 ) [ AN @A) QR a s T na)

Using the definition ofx3™%* and using the finite range assumption @nwe
obtain the bouna<?Al for the first factor on the right-hand side of (6.8). The
second factor on the right-hand side of (6.8) is bounded by

( 0" (1a. iia. ngc>)fui””g“<dﬁA>Q‘;<nA,ﬁA,nm

SUpQ ( amné&a 7~ W ~ )
in OAA A1)/ [ s (diia) O (M, Tia, Nac)
annésa

Using the same argument qni, again, we see that the second factor is
bounded by 1?21, To estimate the first factor, recall the explicit expression

Qlj\ (77A, ﬁAv nAC) = M[ﬁAnA"](qu—AHA(T]A, ﬁA, T]AC)))
< PN pliianacl(@xp(—AHAMA, ias 0ye)))-

Here the inequality follows from the definition &f, and the finite range property
of ®. Now use the definition of the quenched kernels and once again the finite
range of® to see that the last expectation is bounded from above by

P fan\ J(€Xp(—AHA (A, Tia, 1he))) = O (A, Tia, Me)-

This completes the proof.(]

Let us now check what can be said about the criteria for the first part of the
variational principle for joint measures. It turns out that it is natural to use the
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criteria given in Section 3.4 with a measur¢hat is not a Dirac measure. Instead,
let us take any translation-invariant configuratichand puti := P ® 8o.

First, using the arguments given in the proof of Theorem 6.7, it is simple in this
situation to see that the limit (3.14) exists and to give an explicit expression for it.

PROPOSITION 6.12. Suppose that the defining potenti@l is translation-
invariant Suppose thakK? is a translation-invariant joint measure constructed
with the boundary conditiof. Then

1
ehs =—h®) + Z/P(d y——— 2 |A| +/]P’(dn) lim —= log Z3 [n]

A30 1A

exists

Put
o we 1l 2 ; : 1.2
Hyu={n € H,n> O (ny, 1%, nza\,) 1S continuous’ x, ny, ny}.

Then we have thatn € Qv & n € H,. Assume thaf’[#,] = 1. Then any
joint measure is almost Gibbs. This was pointed out and discussed in [13, 14] and
is apparent from the above representation of the conditional expectation.

Let us remark that whenevér is a translation-invariant probability measure on
the product space arid’ is any joint measure with marginKI;;r (dn) =P(dn), we
have thatk ;(dn) #P(dn) = h(K|K?) > 0. This is clear from the monotonicity
of the relative entropy w.r.t. to the ltfiation (see [7], Proposition 15.5c).
So h(K|K®) =0 would imply thatk(K4|P) = 0, which again would imply
K, =P by the classical variational principle applied to the product meaBure
So, given a joint measutk?’ , the class of interesting measures is reduced to those
that have the samgmarginal.

PROPOSITIONG6.13. Suppose thaP is a product measure and that* is the
above specification for a translation-invariant joint measufé¢. Suppose that
P(#,) = 1. TakeK a translation-invariant measure with margin&l; = P. Then
ConditionC1’ holds for the measur& for the above choice of.

PROOF We have to check thai(doldnl)K (do?dn?) a.s. a configura-
tion olontooZan?, is in Q,u, where for a configuratiom we have written

o0 = (0x)x<0 and so forth. This is equivalent it jn2 € ¥, for P ® P-a.e.n’,

nz, since bothh andK have marginaP, and the later is immediate because itis a
product measure.

To illustrate the general theory of Section 3.4 we note the following corollary:
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COROLLARY 6.14. Suppose thaP is a product measure and that* is the
above specification for a translation-invariant joint measufé. Suppose that
P(#,) = 1. Take K € Ginv(y") with marginal K; = IP. Then ConditionC2 of
TheorenB.10is true and hence

Ko _,
Ki(Rna)

for any translation-invariant spin configuratiar®.

1
us
h(K|K )—|I5\n —|A|/P(dn)log

6.4. Random field Ising modefailure of the second part of the variational
principle. Let us now specialize to the random field Ising model. For all that
follows we denote bX ™ (do dn) = P(dn)ut[n](do) the plus joint measure. Here
we clearly mean by " [n](do) = lim 174 " [n](do) the random infinite-volume
Gibbs measure on the Ising spins. The limit exists for any arbitrary fixduy
monotonicity. Similarly we writeK ~(dodn) = P(dn)u~[n](do). In this situation
we have the following proposition:

PROPOSITION6.15. Assume that the quenched random field Ising model has
a phase tranigion in thesense that " [n](oy = +) > u ™ [n](ox = +) for P-a.e. n
and for somer € Z4. Then the joint measurgs™ and K —, obtained with the same
defining potentiglare not compatible with the same specification

REMARK 6.16. We already know by Theorem 6.1 that the relative entropy
h(KT|K™) is zero. Thus we prove here that the second part of the variational
principle is not valid in the case of phase transition for the quenched random field
Ising model.

REMARK 6.17. In the so-calledyrand ensemble approacto disordered
systems proposed in the theoretical physiesdture [22], it is implicitly assumed
that the potential for the joint measure always exists and does not depend on
the choice of the joint measure for the same defining potential. Here we give
a full proof that nonunicity of the joint conditional expectation (and necessarily
of the corresponding joint potential) really does happen, despite the fact that the
joint measures are always weakly Gibbs. It is thus an important example of a
pathological behavior in the Morita approach in a well-known disordered system
in a translation-invariant situation. For a discussion of the problems of the Morita
approach within the theoretical physics community, see [11, 12, 29].

PROOF OFPROPOSITIONG6.15. The proof relies on the explicit representation
of Proposition 6.10 for the conditional expectationskot (resp.K ~) in terms
of u™ (resp..n™). We show that/ K+ (d&,c)K (-|xc) # KT (-). Let us evaluate
both sides on the evelt:= {n, =+, 3", |,_y =10y =0}
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Using Proposition 6.10, it is simple to see that we have, in particular, for the
local eventy, = + for any configuratiow with 3., =1 0y =0, the formula

N1
K+(77x = +|oxenye) = (1+/M+[77x = nxv](d5x)62h”*) = "+(7]x")-

So we get that

K*(B) = / P(dﬁ)ﬂﬁ]( S o= 0) x 't (fiye).

yily—x|=1
Definer—(n,c) as above, but with the Gibbs measure. Then we have

[ K*agok; ceam = [ P(dﬁ);ﬁ[ﬁ]( > o= 0) X (e
yily—x|=1
Now it follows from our assumption that fdf-a.e. configuratiom, we have the
strict inequalityr ™ (77,c) < r~ (7jxc). However, this shows that both measures give
different expectations aB and finishes the claim.

In the following discussion, we show from the weakly Gibbsian point of view
that K™ and K~ have a “good” (rapidly decaying) almost surely convergent
translation-invariant potential. This strengthens the results in [14], where the a.s.
absolutely convergent potential is not translation-invariant.

THEOREM6.18. Assume thad > 3, g8 is large enoughthe random fieldg,
are i.i.d. with symmetric distribution that is concentrated on finitely many values
and thath]P’;ﬁ is sufficiently smallThere exists an absolutely convergent potential
that is translation-invariant for the plus joint measuke' (do dn) for sufficiently
low temperature and small disordand it decays like a stretched exponential

PROOF  Applying Remark 5.5 that relies on Theorem 2.4 of [14], we have the
following fact.

FACT (proved in [14]). Assume thaK*(d&) = P(dn)u[nl(do) is a joint
measure for the random field Ising model. Denote the disorder average of the
guenched spin—spin correlation by

c¢(m):=  sup /P(dn)lu[n](axay)—M[n](ax)u[n](ay)l-

xX,yilx—yl=m

Suppose we give ourselves any nonnegative translation-invariant functién
giving weight to a subset cZ¢. Then there is a potentidl* () on the disorder
space that satisfies the decay property

> wA) [PamiTinl = Ert Co Y m®imcn)
A A>3x0 m=2
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if the right-hand side is finite. Her@(m) := w({z € Z%; z > 0, |z| < m}), where

> denotes the lexicographic order. ConstafitsandC, depend org, k. If K* is
translation-invariant, the®* () is translation-invariant, too. The total potential
U™ (o, n) + U*(n) is a potential fork . HereU™ is a potential for the formal
Hamiltonian—g Z<i’j> o;o; —h};nio; — ) ;logPo(n;).

It was already stated in [14] that we expect a superpolynomial decay of the
qguantityc(m) with m whenm tends to infinity. We remark first that it was already
stated and proved in [2] thiz[n](o0y) — ulnl(ox) 1lnl(oy)| < C (e P
with a random constan€(n) that is finite forP-a.e.n. The problem is that
integrability of the constant is not to be expected. Unfortunately, Bricmont and
Kupiainen [2] did not explicitly control the decay of the disorder avera@e).

Now we reenter their renormalization group proof and sketch how stretched
exponential decay is obtained fo¢m). Obviously, we cannot repeat the details

of the RG analysis here. For a pedagogical exposition of the RG for disordered
models, see also [1], where the example of an interface model is treated.

COROLLARY 6.19 (from [2]). There is an exponent> 0 such that for allm
sufficiently largewe have

(6.9) c(m) < exp(—m?).

Sketch of proof based on RGFor the first part we follow [2], Section 8.3,
page 750. Fixx andy. We are interested in sending their distance to infinity. Let
us denote byH cZ? the half spaced :={z € Z¢, e - z < a} for a > 0, wheree is
a fixed unit vector. Let us denofey[n] := lim4p MX[H]- By monotonicity we
have for any configuration of random fielgghat the quenched expectation of the
spin at the origin in the measu@[n] is greater than that in the measwe[n].

Repeating the FKG arguments given in the first steps of [2], Chapter 8.3, it is
sufficient to show stretched exponential decay of the quantity

/ P(dn) (1 [n1(00) — wHnl(o0)

as a function ol (H*¢, 0) to prove (6.9). As in [2] we denote bgy the “good”
eventin spin space in all @ that there is no Peierls contour around 0 that touches
the complement of. Then, in the same configuration we have that the right-
hand side is bounded by

w3 nl(oo) — ntnl(oo) < ntI(ES).

Now, we can always estimate this expectation as a sum over probabilities of Peierls
contours

W Il(EG) < > 1l ().
y i intys0,intyNHC #Q
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The problem is that there is no uniform Peierls estimate for all configurations of
the disorder. There is, however, a “good event” in disorder sgaeeG gy such

that there really is a Peierls estimate for all the “long” contours that appear in
the above sum. Th& probability of the complement of this event is small and
controlled (in a very nontrivial way) by the renormalization group construction.
Forn € Gy we really have that

> nFnl(y) <exp(— CBd(H¢,0)).
yinty30,intyNHC #Y

This is stated as (8.34) in [2]. So we have that
[ Bt e < PG + exp-cpache,0).

From the construction of the renormalization group in Bricmont—Kupiainen
we can see thaf is expressable in the so-called bad fies(n) in the form

G = {n,NE(i) =0 Vx| < L,Vk > (logd(x, H°)/logL)}. L is a fixed finite
length scale (the block length suitably chosen in the construction of the RG).
It appears here just as a constant. khe Z¢ runs over sites in the lattice and

k is a natural number that denotes tkiln application of the renormalization
group transformation. The renormalization group gives the probabilistic control
of the form

P(Ny(n) # 0) < exp(—L")
with somer; > 0 (this follows from [2] Lemmas 1 and 2, page 563) and so we have

P(GS) < L4 > exp(—L"%) < LY exp(—d (0, HS)™?)
k>(logd(0,H¢)/logL)

for d(0, H®) sufficiently large withry > ro > 0. This proves the claim.(J
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