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ROBUST RECONSTRUCTION ON TREES IS DETERMINED
BY THE SECOND EIGENVALUE

BY SVANTE JANSON AND ELCHANAN Mossel
Uppsala University and University of California, Berkeley

Consider a Markov chain on an infinite trde= (V, E) rooted atp.
In such a chain, once the initial root stai€p) is chosen, each vertex
iteratively chooses its state from the one of its parent by an application
of a Markov transition rule (and all such applications are independent).
Let u; denote the resulting measure #@tp) = j. The resulting measure
wj is defined on configurations = (o (x))xev € AV, where 4 is some
finite set. Letu” denote the restriction qgf to the sigma-algebra generated
by the variabless (x), wherex is at distance exactly from p. Letting
ap = Max jeA dTV(M?,p,;!), wheredty denotes total variation distance,
we say that thereconstruction problem is solvable if liminf ;o a; > O.
Reconstruction solvality roughly means that theth level of the tree
contains a nonvanishing amount of information on the root of the tree as
n— oQ0.

In this paper we study the problem ofbust reconstruction. Let v be
a nondegenerate distribution of ande > 0. Let o be chosen according
to M'}- ando’ be obtained fromv by letting for each node independently,

o (v) = o’ (v) with probability 1— ¢ ando’(v) be an independent sample
from v otherwise. We denote hgc;?[v, ¢] the resulting measure an'. The
measureu’}[v, ] is a perturbation of the measuré]?. Letting a,, (v, &) =

may; je. drv (i v, €1, u;![v, ¢]), we say that the reconstruction problem

is v-robust-solvable if liminf ;o o, (v, ) > 0 for all 0 < ¢ < 1. Roughly
speaking, the reconstruction problem is robust-solvable if for any noise-rate
and for alln, the nth level of the tree contains a nonvanishing amount of
information on the root of the tree.

Standard techniques imply thatZfis the rootedB-ary tree (where each
node hasB children) and if B|xo(M)|? > 1, whereix(M) is the second
largest eigenvalue o (in absolute value), then for all nondegeneratéhe
reconstruction problem is-robust-solvable. We prove a converse and show
that the reconstruction problem is netobust-solvable ifB|Az(M)|2 <1
This proves a conjecture by the second author and Y. Peres. We also consider
other models of noise and general trees.

1. Introduction. In this paper we study the perturbative theory of reconstruc-
tion on trees, and show how it depends on the spectrum of the underlying Markov
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chain. In particular, we show that the threshold for “robust reconstruction” for the
B-ary tree isB|r2(M)|? = 1, wherer,(M) denotes the eigenvalue #f which is

the second largest in absolute value. In Section 3 we prove a similar threshold for
general bounded degree trees, whetlie replaced by the branching number of the
tree b(T). We refer the reader to Section 1.2 and to [3, 7, 21, 22] for background.

1.1. Definitions and main results. We proceed with some formal definitions.
Let T = (V, E, p) be a treeT with nodesV, edgesE and rootp € V. We
direct all edges away from the root so thakit (x, y), thenx is on the path
connectingp to y. Letd(., -) denote the graph-metric distance BnandL, =
{ve V:d(p,v) =n)} bethenth level of the tree. Far € V ande = (v, z) € E, we
denote|x| =d(p,x), d(x, (y,z)) = maxXd(x, y),d(x,z)} and|e| =d(p, ¢). The
B-ary tree is the infinite rooted tree, where each vertex has ex&ctlyildren.

A Markov chain on the tree is a probability measure whose state spage,is
wheres is a finite set. Without loss of generality we assume that {1, ..., g}.
Assume first thaf” is finite and letM = (M, ;); je be a stochastic matrix. In this
case the probability measure definedMyon T is given by

1) 1) =Lisp=ty [[ Mow.om-
(x,y)eE

In other words, ini, the root stater (p) satisfiess (p) = £ and then each vertex
iteratively chooses its state from the one of its parent by an application of the
Markov transition rule given by (and all such applications are independent).
We can define the measugig on an infinite tree too, by Kolmogorov’'s extension
theorem, but we will not need chains on infinite trees in this paper (see [7] for basic
properties of Markov chains on trees).

Instead, for an infinite treq’, we let T, = (V,,, E,, p), whereV, = {x €
Vid(x,p) <n},E, ={ec E:d(e, p) <n} and defineuy by (1) for 7,,. More
explicitly,

2) 110 == [ Mow.om-

(x.y)EE,
We are particularly interested in the distribution of the statés for x € L,,, the
set of leaves ir;,. This distribution, denoted by, is the projection ofij on
AL given by

3) ni(o) =Y {ij(6):6|Ly =0}

In this paper we are interested in perturbative theory of the above process. Below
we give three definitions of perturbationsof representing three different types
of “noise.” We call a distributionv on A = {1, ..., ¢} nondegenerate, if(i) > 0,
foralll<i <g.

In the general setting the perturbation is obtained by observing, for leaves
x € L,, notthe state (x) but a state (in a state spa@epossibly different from4)
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derived fromo (x) by another random choice (independently for all leaves). The
extra choice can be described by a stochastic mairis (N; j)ica, jes; this
defines a probability measure ot x 8L by

(4) AINT (0. D) =Lo=ty [] Mowrom X [ Nogy.ron:
(x,y)EER y€Ly

and the distribution of our observed states is the projegtipv]} on 8% given
by

(5) uINT;(t) =) [N} (o, 7).

We will mostly be interested in the following types of noise:

e Givenk > 0, defineN = M*. Here, for each leaf independentlyadditional
steps of the chain are performed. We wyitH k] for 1 [N].

e Given a distributiorv on 4, defineN; ; = (1 —¢)1;—;, + ev;. Here, for each
leaf independently, with probability 4 ¢, there is no noise; otherwise, the leaf
state is chosen independently from anything else according\ige will write
uilv, e] for u[N1;.

e Given 0<e <1, we letN be ag x (¢ + 1) matrix defined byV; ; = (1 —¢€),
N;4+1 =€ andN; ; = 0 otherwise. Here, for each leaf independently, the state
at the leaf is deleted with probability(deletion is marked by + 1). We write
wylel for uy[N].

Recall that for distributiong. andv on the same spac®, the total variation
distance between andv is

(6) Dy(u,v)=3% > |u(o) —v(o)|.

oeQ

DEFINITION 1.1. (i) The reconstruction problem for tiBeary treeT andM
is solvableif there existi, j € 4, for which

@) ILrE)iQOf Dy (u?, u;!) > 0.

(i) The reconstruction problem for the-ary treeT andM is robust-solvable
if for all k < oo there exist, j € 4 for which
(®) liminf Dy (u [k], w}[k]) > .

(iii) Let v be a nondegenerate distribution. The reconstruction problem for the
B-ary treeT and M is v-robust-solvable if for all ¢ < 1, there exist, j € 4, for
which

) liminf Dy (u [v, €], wj[v. €]) > 0.
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(iv) The reconstruction problem for thg-ary treeT andM is erasure-robust-
solvableif for all € < 1, there existi, j € -+, for which

(10) iminf Dy (i} [e], wile]) > 0.

Note that by takings = 0 in (9) or (10) we obtain the original reconstruction
condition (7). The same is truekf= 0 in (8).

Let Ao(M) denote the eigenvalue @f which has the second largest absolute
value p2(M) may be negative or nonreal]. In our main result we prove the
following:

THEOREM 1.2. Consider an ergodic Markov chain on the B-ary tree such
that B|Ao(M)|? < 1. Then we have the following:

(i) The reconstruction problemis not robust-solvable. Moreover, there exists
k* such that for all £ > k*,

(11) max lim Dy (u] [k], w}[k]) = O.
i,j n—oo -

(i) For all nondegenerate v, the reconstruction problem is not v-robust-
solvable. Moreover, for all nondegenerate v, there exists ¢* < 1 such that for all
&> ¢g¥,

(12) r??xnli)moo Dy (uj'[v, €], w}lv, e]) = 0.

(i) If all the entries of M are nonzero, then the reconstruction problemis not
erasure-robust-solvable. Moreover, there exists an €* < 1 such that for all € > ¢*,

(13) max lim Dy (u] [€], /j[€]) = 0.
i’j n—oo

It is easy to see that the total variation distances in (11), (12) and (13) are
monotone decreasing i ¢ ande respectively.

The following proposition follows immaiately from [12] or from the proofs
in [22]. Together with Theorem 1.2, it shows that the threshold for robust
reconstruction is given b |io(M)|% = 1.

ProPOSITION 1.3. Consider an ergodic Markov chain on the B-ary tree
where B|io(M)|? > 1. Then we have the following:

(i) Thereconstruction problemis robust-solvable.
(i) For all nondegenerate v the reconstruction problemis v-robust-solvable.
(iii) The reconstruction problem s erasure-robust-solvable.
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1.2. Discussion. The reconstruction problem was first studied in statistical
physics [9, 28], where the problem was phrased in terms of extremality of the
free measure for the Ising model on the + 1)-regular tree (Bethe lattice). It
is not too hard to see (e.g., [3]) that the measure is nonextremal if and only
if the reconstruction problem is solvable for the Markov chain on Bary
tree with transition probabilities given by the binary symmetric Markov chain:

(15‘3 155)- § is related to the “inverse temperaturg’by 1 — 25 = tanh(28).
The equivalence between nonextremality of the free measure of a random field
and reconstruction solvability of an associated Markov chain on the same tree
holds under mild nondegeneracy conditions (see, e.g., [18]).

In the past decade, the reconstruction problem reappeared in many applications:
In communication networks (see [3] and the references there), in noisy computa-
tion (a model introduced by von Neumann in [29], see [8, 4]) and in phylogeny
(molecular evolution, see [5, 26] for general background) [27]. Most recently, it
is shown that the reconstruction problem is of crucial importance to basic ques-
tions in phylogeny [19, 20, 23]. In all of these applications the interest is to find
when is it possible to reconstruct some information on the root state from states
at the leaves of a finite tree. In many of the applications it is natural to consider
robust-reconstruction as the observed data goes via additional “noise mechanism.

Solvability of the reconstruction problem is also closely related to the mixing
rate of Glauber dynamics on the tree. See [1, 17], where it is shown that
nonsolvability pughly corresponds to rapid mixing dynamics on the tree.

Determining if the reconstruction problem is solvable or not turns out to be
very hard. Binary symmetric Markov chains is the only family for which the
threshold for reconstruction solvability is known. Even here there is a generation
gap between the proof of the lower-bound [9] and proofs of the upper bound [2]
(see also [10] for a different proof, [3] for the result on general trees and [24]
for the critical case on general trees). For binary symmetric Markov chains on the
B-ary tree the threshold for the reconstruction problem is giveB (dy- 25)% = 1,
or, equivalently,Bkz(M)2 = 1. For all other families of Markov chain, including
g-ary symmetric Markov chain faf > 2 and general Z 2 Markov chains, only
bounds are known [15, 17, 22].

The thresholdB|12(M)|?2 = 1 is also the threshold for “census-solvability”
[22], where different nodes of, are indistinguishable (in other words, we
only observe the “census” of level). However, in general, it is not the
threshold for reconstruction. Indeed, except for the binary symmetric channel,
we know of no family of chains for whictB|i>(M)|2 = 1 is the threshold for
reconstruction. Moreover, [18] shows that for asymmetric binary Markov chains
(general stochastic 2 by 2 matrices) or symmetric Markov chaing;fer 2
[whereM; ; = (1—8)1i=;) + qi_ll{i#} fori,j e{l,...,q}], the reconstruction
problem is sometimes solvable even whp»(M)|? < 1. In [18] there is also
a construction ofM with A->(M) = 0 for which the reconstruction problem is
solvable for largeB.
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Why is determining the threshold for reconstruction hard? From the technical
point of view a Markov chain on the tree corresponds to a recursion in some
random variables ([2, 17, 24]). A natural way to analyze these recursions is to
use a perturbative argument around the stationary distribution of the chain. The
main problem is that the random variables we start with are atoms—far from the
stationary distribution—and that, in general, the recursions lack any convexity. For
“robust-reconstruction” the problem is easier—as the recursions begin close to the
stationary distribution.

Our proof is based on a new measuréligtrepancy for a vector of distributions
which is a weighted variant of thg? distance. We show that an application
of the chainM contracts the discrepancy by|a(M)|? factor, and that if the
discrepancy is smaller tha@nthen tensorin@ copies of the distributions increases
the discrepancy by a factor of at mastl + (8)), wheree(§) — 0, ass — 0.

It is interesting to compare our results with the results of [25]. In [25] Pemantle
and Steif study robust phase transition on trees. For a Gibbs measure on a tree we
say that a robust phase transition occurs if the boundary conditions on a cutset have
a nonvanishing effect on the root even when the interactions along the cutsets are
made arbitrarily small but fixed (see [25] for exact definition). The main results
of [25] give the exact threshold for robust phase transitions for general (bounded
degree) trees for Potts and Heisenberg models in terms of the underlying model
and the branching number (see [14]) of the tree.

Both in our result and in the results of [25], it is easier to analyze the “robust”
problem than it is the original problem for similar reasons. In both cases the
“nonrobust” problem is hard to control without some convexity assumption, while
the solution of “robust” problem allows the use of “local” arguments.

Moreover, like robust phase transition, robust reconstruction is a geomet-
ric property, that is, for general bounded degfethe threshold for robust-
reconstruction depends only on () and |A2(M)|. Indeed, the proof of
Theorem 3.3 combines the analysis of the new discrepancy measure introduced
here, with some of the techniques developed in [25] for controlling recursions on
general trees.

A natural open problem is to determine the behavior of robust-solvability in
the critical case, wher@|1(M)|?> = 1. Our techniques shed no light on this
problem. It is also interesting to try and remove the restriction that the entries
of M are positive for (13); see also Remark 2.10. Finally, in the proof presented
for Theorem 3.3, for fixeds andv, the bounds omr andk are becoming weaker
as bx7)|r2(M)|2 approaches 1 (i.es,— 1 andk — oo). It is natural to ask if for
given M, v andK, there exist andk for which the result holds uniformly for all
infinite treesT” with br(T)|A2(M)|? < 1.

2. Proof. Recall that we denote i/ the transition matrix. In this section we
will often multiply M from the right by a vector of functions, from the left by a
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vector of measures—in which case the resulting vector would also be a vector of
functions/vector of measures.

Let1=(1,...,1), then clearlyM1 = 1. Let v; be the stationary probability
of statei, andv = (vy, ..., vy) the stationary distribution, so that/ = v. In the
remainder of this section we will useb, c, . .. for column vectors, and, v, w, ...
for row vectorsv will always denote the stationary distribution.

Note that if6 is a column vector such thab = 0, thenuMb = vb = 0. In other
words, the linear spaae- = {b € R? : vb = 0} is invariant unden/.

LEMMA 2.1. Letb = (bs,...,b,)" beavector suchthat b; > Ofor all i. Then

PROOF By Jensen,
1 1 1
= S Z mi’j -—.
(Mb)i X jmijbj — % bj

Hence,

w|\

G, =2 = X (S )= 2

as needed. [
By looking at the Jordan form Q¥ it is easy to see the following:

LEMMA 2.2. Given ¢ > 0, there exists an Euclidean norm || - || on v such
that | Mb|| < (|x2(M)| + &)|b| for all b € v+.

Let O be the projection onto+ defined byQb = b — (vb)1 [note thatv Qb =
— (vb)(v1) = 0 for all b].

DEFINITION 2.3. Let||-| be a Euclidean norm on-. Letv = (vq, ..., v,) be
a vector of distributions on a common space. lfet (f1,..., f,) be the vector
of density functions with respect to&finite measureu, such that; <« u for
everyi. In other wordsdv; = f; du for all i. We then define thdiscrepancy of
the vector by

Dfy(H = [lefI Z

We also writeD(v) and D(f) for the discrepancy, without explicitly indicating
the norm and reference measure.
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Note the similarity between the discrepancy and tpédistance. The
x2-distance is known to be well behaved with respecttmorms. Note that if
fi=---=f; thenQf = f01=0. Thus,Q projects into the orthogonal com-
plement of the space where the discrepancy should be 0.

LEMMA 2.4. D(v) is independent of the reference measure w; that is, if
f=0,....fp)andg =(g1,...,8,) aresuchthatdv; = fidu = g; dju for all 7,
then D|', (f) = D|f(2)-

PROOF Assume thaji <« . The general case then follows by considering
the three reference measuyesu + i, fi.

SinceQ is linear and| - || is Euclidean, we may writ¢Qb||% = ” _1ti,jbib;
for somer; ; € R. Now

q q ~ 2
fiti gigj(dir/d )
D*(f) = Vel du vty [ SBECEEE 4
,,,-ijzl fr ,%;1 Y grdi/dp
q
=Y ,/g’g’ dji =D (g).
ri,j=1 t
LEMMA 2.5. Letthenorm | - | on vt satisfy |Mb| < «|b]|| for all b € v+

and some constant «.. Then D(M f) < &?D(f) for all f, asin Definition 2.3.

PrRooOE Forallb,
MQb=M(b— (vb)1)=Mb — (vb)M1
=Mb— (vb)l1=Mb — (vMb)1l= QOMb.

Therefore, we have pointwise that

(14) IOMFII> = IMQOfI? < o?IQf II%.
Now
q
pMf) = [ 10MfI? Z(Mf), u
(15) <a /ann Z(Mf)l "
(16) <a / 1071 Z dp=a?D(f),

i=1 l
where (15) follows from (14), and (16) follows by Lemma 2.1
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LEMMA 2.6. For every Euclidean norm || - || on v, there exists a constant
C=C(|l -1, suchthat

(17) ‘/ﬁ—ﬁdu—l‘ <cp(p).
S
for all i, j, k, where f and u areasin Definition 2.3.

PrROOF By Cauchy-Schwarz,

‘ @du—l‘:’/(ﬁ_fk;ifj_fk)du‘

S
| fi — fxl? | fj — fil?
= \// fx d“\// fr ap.

Therefore, in order to prove the lemma, it suffices to prove that there exists a
constantC such that for all, j, k, it holds that

- £.12
(18) / % du<CD(f).
Note that

(Qb)i = (Qb)j = (b= Wh)1); — (b= (wD)1); =bi = b

Therefore, for alb, it holds that, for some constaqt;,

|bi —bj| =[(Qb); — (Qb),;| = Ci; | QD]

Hence,

i — 112 o [lorI? €5
/n__iﬁj ‘”LS(Qj/Q—iE:—ﬁS D(f).

Uk
2

Now (18) follows by takingC = sup G

Jok vt

Given ao-finite measureuw on a spaceX, we denote byu®? the product

measure orX 2 with marginalsy. Similarly, if f; is a density ofy; with respect
to u, write 28 for the density ofv®? with respect tou®8. Finally, for
=1, fp), write f®8 = (fP%, . f®B), and forv = (v1,..., 1), write

V&8 = WP 1v®B). We similarly use®?_; v" for the componentwise product

of several vectors” of measures.
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LEMMA 2.7. Let | - | be an Euclidean norm on v, B > 1 an integer
and ¢ > 0. Then there exists a § > 0 such that if v1=(v%,...,v£}), B =
B ... vB), satisfy D(v') <8 for 1 <i < B, then

<®v ) <@+e)(DOVYH +---+ DOEY).

Inparticular, givene > 0, thereexistsa é > Osuchthatif v = (vy, ..., v,) satisfies
D(v) <8, then D(v®B) < (1+¢)BD(v).

PROOF The second part of the lemma immediately follows from the first part.
Choose a reference measuravith v/ < u for everyi andr, and letf/ be the
densitydv; /d .

As in Lemma 2.4, we may writd| Qb||? = >_i jti.jbib;j. Moreover, since
101]12 =102 =0, it follows thaty"; ; #;, ; = 0. Hence,

D(f)z/IIQfIIZZ%d

(19) _kaz,,/f’ffd

i,j.k

_katl]</f’f]d —1)

i,j,k

Substituting@le f"in (19), we obtain, using the reference measu¥é,

oBr)-Zo [ e

— Z vktu(,li( %du) — 1).

i,j,k

(20)

Let C be chosen to satisfy (17) in Lemma 2.6, afic= C3ijltijl Lets be
chosen such that for alky, ..., xg) € [1 — C8, 1+ C§]Z, it holds that

B
_1_Z(x’_1) %
r=1

By Lemma 2.6, it follows that ifD( /) < 8, then for alli, j, k,

‘ fzf]d
Jk

(21)

‘SCD(f) <Cs.
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Therefore, it follows from (20) and (21) that

z r f J € f”
D(Rf )< X kai,j( —du ) = Y wltijl Ldu ‘
r=1 i,j.k,r i ¢ i,j.k,r ik
e 1
=YD += Y wlijl Ldp— 1‘
r Ci,j,k,r fk
(22) )
<Y DU+ = Y wl; ICD(T)
r C. 7%
L, ],K, 1
=(1+e)) D(f"),
r
where inequality (22) follows from Lemma 2.60J
LEMMA 2.8. Given a Euclidean norm || | on vt, there exists a constant

C (|| - D < oo suchthat for any vector v = (v, _1=(fi du) _4 of distributions we
have

(23) supdry (v;, v)) = s.u.p/ |fi = filduw < Cv'D(f),
L] L]

where f = (f1,..., fg)-

PrOOF By Cauchy-Schwarz,

/Iﬁ—f;lduf\//lﬁ}iifjﬁdu\//ﬁdu=\//|f"_fiifj|2du,

and (23) follows from Lemma 2.6.00

LEMMA 2.9. (i)Let| - || bea Euclidean normon v'. Let i be a probability
distribution on 1, ..., g such that (i) > O for all i. Then for all § > 0, there
existsan ¢* = £*(8) < 1 such that for any vector v’ = (v'y, ..., V') of probability
distributionson 1, ...,q andfor all ¢ > ¢*, if

v=>~1-)'1, ...V +e(, ..., n),

then D(v) <.

(i) Let | - || be a Euclidean norm on vt. Let vlf’) denote the ¢th row of M",
that is, the distribution of the chain given by M", after r steps starting at ¢, and
p) = (v{’), .. (’)) Then for all § > 0, there exists an r* = r*(8) such that if
r > r*, then D(v(’)) <.
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(iii) Let || - | be an Euclidean normon v'. Let v = (v1, ..., vy) be a vector
of probability measures such that for all 1 < i, j < ¢, it holds that v;(j) > 0. Let
ve=(vg,..., v;) be a collection of probability measureson {1, ..., g + 1} such

that vf = (1 — €)v; + €', where V' is the delta measure on ¢ + 1. Then for all
8§ > 0,thereexistsan ¢* = ¢*(§) < 1 suchthat if € > €*, then D(v¢) <.

PrROOFE For the first part of the lemma we use the representatiab (0f as
in (19) with respect to the measune Letm = min{x (1), ..., u(g)}, and observe
that if dv; = f; du, then

f dl)l' +(1 )dl)/l‘
i= 5 =€ —¢& )
du du

SO
e<fi<e+A—-¢e)/m,
and for alli, j, k,

fifi _(e+@A=e)/m)?
fe — € '

Hence, by (19),

_ 2
(24) D(V)§<(8+(188)/m) —1>Z|ti,j|’

iJ

and the right-hand side of (24) convergesto @ as 1.

The second part of the lemma follows from the first one, as the ergodicity of
implies that for alli, vl.(’") converges to the stationary distribution of the chain as
m — Q.

The third part of the lemma is proven similarly to the first part. ket=
min,-",-eeA, v (j) and

q
ut=ev + a-e > v
i=1
Note that if dvi = fidu®, thenm < f;(¢) < g for 1 <¢ < ¢ and alli, and
fi(qg +21) =1foralli. It follows that for alli, j, k and 1< ¢ < g,

m_z Ji) f; () filg+Dfi(g+1D _
g~ i Jilg+1)
Moreover,uf(g+ 1) =e¢andu®{l,...,q}) =1—¢, soforalli, j andk,

2
sq— and
m

2

J s (oo
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Hence, by (19),

(25) D(US)_kaz,,</ﬁf’d )_(g—l)(l—e)glli,jl

i,j.k

and the right-hand side of (25) convergesto @as 1. O

PROOF OFTHEOREM 1.2. The basic idea of the proof is thafuf N1" is the
vector of probability measureg.[N]7, ..., u[N]7) defined in (5), then we may
write «[N1"*1 in terms of u[N]" using the operatoM and tensoring. This will
allow us to bound discrepancies recursively. ket.. ., pg be theB children of
o in the B-ary tree. WriteE,,; 1(s) for the edges irE,, ;1 that are on the subtree
rooted inp, (formally, these are the edges Bf, .1 that are connected to only
by paths going via,). DefineL,1(s) similarly. Finally, for a configuratiol of
the vertices at the first level of the tree, let, ..., op denote the configurations
restricted to the subtrees rootedoat. .., pop. Then by (4) and (5),

1
HINGTH O =) o= [ Mowwow [] Nowco
(o2

(x,y)€En11 y€Lpt1
= 1_[( Y M Zl =) 1] Moyw.om
s=1\¢= (x,y)eE +1(s)

(26)

X 1_[ NUs(y)sTs(}’))

YELp4(s)

B
H( > MeouINT;, (r|Ln+1<s>))

'=1

Note that the expression in the parenthesis in (26) is giveMg[N1"))¢(t|
L,+1(s)), thefth coordinate of the vectav/ (u[N]"). It is now easy to see that

(27) UINT*L = (M (u[NTY)®?

We use (27) in order to bound discrepancies recursively.

The assumptioB|r>(M)|? < 1 implies by Lemma 2.2 that there existssan 0
and a nornj| - || onvt such that for alb € v, it holds that| Mb|| < «||b||, where
B(1+¢)a? <1—e¢. Lets be chosen as to satisfy Lemma 2.7, so thaX(ff) < s,
thenD(f®8) < B(1+¢)D(f).

By Lemma 2.9 it follows that there exists&such thap® = (u9[k]. ..., u[k])
satisfiesD (1% < & for all k > k*. Write " for (u] k], . ..,uq[k]) Thus, (27) im-
plies thatu"t1 = (M u™)®E. It now follows by Lemmas 2.7 and 2.5 that

D"y < B+ e)a?D(u") < (1 —e)D(u™).



RECONSTRUCTION ON TREES 2643

Hence, lim,_, ., D(u"") = 0. We therefore conclude from Lemma 2.8 that
lim np?xdw (i [k], i [k]) =0,

n—oo
and (11) follows.

In order to prove (12), lev be a nondegenerate measure and note that by
Lemma 2.9 it follows that there exist arf < 1 such thatu® = (19, ¢],...,
udlv, ¢]) satisfiesD (%) < § for all ¢ > £*. Now (12) follows similarly to (11).

The proof of (13) is similar. We look at* = (ule], ..., u}[€]). Note that (27)

implies thatu! = (M u%)®8. Letv = Mu°. Note that the vector satisfies for all
i thatv;(¢ +1) =€ andv;(j) = (1 — €)M, ; otherwise.

Since all the entries aff are positive, it follows from Lemma 2.9 that for every
8’ > 0 there exists am* < 1 such that ife > €¢*, thenD(v) < §’. We may now
apply Lemma 2.7 and choosé> 0 in such a way that

D(ut) = D(W®B) <.
The rest of the proof is identical.[]

REMARK 2.10. It is an interesting goal to extend (13) to general ergodic
chains (where some of the entriesMf may be zero). Above we proved this for
the case where all the entries Mf are positive.

The proof of Lemma 2.9 can easily be extended to the case when there exists
ann such that the measureg, ..., u all have the same support [in such a case
one can prove that there exists a value ef 1 such thatD(u") < § by showing
that fore sufficiently large, the measurgg have most of their mass on the atom
(g+1,...,9 +1 and bounded relative densities elsewhere]. However, we do
not know any simple characterizations of the matrig¢e$or which this holds (it
evidently depends only on the set of zero entrie&ff nor we do believe that this
property is necessary for nonerasure-robust-solvability.

3. General trees. Our results readily extend to general infinite bounded
degree trees, wherB is replaced by WT), the branching number of the tree.
In [6], Furstenberg introduced the notion of the Hausdorff dimension of a tree.
Later, Lyons [13, 14] showed how many the probabilistic properties of the
tree are determined by this number which he named the branching number.

For our purposes it is best to define the branching number via cutsettsedS
for a treeT rooted atp is a finite set of vertices separating from oco. In
other words, a finite sef is a cutset, if every infinite self avoiding path from
intersectsS. An antichain is a cutset that does not have any proper subset which is
also a cutset.

We follow the notation of [25] and for a cutsét write Ing(S) for the inside
of § (the finite component of" \ §, containing the roop), Insg(S) for edges
inside S [those edgesx, y) havingx € Ins(S)] and OutS) for the outside ofS
[Out(S) =T\ (SUIns(S))].
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DEFINITION 3.1. The branching number @fis defined as
—i - —lxl —
br(T)_lnf[A>0.Cut|Sneft§)§A _0}.

Note that

— . i —lxl —
br(T) = mf[/\ >0 'antiéﬁaflinss;/\ = 0}.

By Min-Cut-Max-Flow, b(T) is also the supremum of the real numbgrs 0,
such that7 admits a positive flow from the root to infinity, where on every
edgee of T, the flow is bounded by.~ll. It is shown in [14] that b¢7)~1
is the critical probability for Bernoulli percolation ofi. See [14] and [3] for
equivalent definitions of Bf") in terms of percolation, cutset sums and electrical
conductance. We note that(fg) = B for the B-ary treeTp.

As in Section 1, the Markov chain dhis described by ap4| x || stochastic
matrix M and the perturbations by dm| x |8B| stochastic matriXV. For B-ary
trees, we observed the process on the special anticligin®r general trees, it
seems more natural to consider arbitrary antichains. The distribptiofi; of
the observed (perturbed) states on an anticlsain 7 is given by, extending
(4) and (5),

28) uINE@O =Y 1low=a [] Mow.ow x []Now.cm-
g (x,y)€lnsg (S) yeS

We proceed by defining?, the measurg? [k] for k > 0, the measurg;[v, ¢] for
¢ > 0 and nondegenerate distributioron 4 anduf[e]. This is done in exactly
the same way as in the case of Bary tree, by choosing appropriakés in (28).

We say that the reconstruction problem is solvable if there ekigte A, for
which

; s S
S ar|1?i(f:hainDV(Mi ’ Mj) >0

Whereuzg denotes the conditional distribution ery given thato (p) = £. We
similarly define the notions of robust-solvabberobust-solvable and erasure-
robust-solvable.

REMARK 3.2. The definitions of solvability for general trees aBidary tree
are not compatible. If 7 is the B-ary tree, then solvability by Definition 1.1
involves only cutsets = L,, and is therefore a weaker condition than solvability
defined here, which involves all antichains (same for robust-solvable etc.).
However, we will obtain the same threshold for robust-reconstruction under both
definitions.
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The proof of our main result extends to show the next theorem.

THEOREM 3.3. Consider an ergodic Markov chain on a rooted tree T such
that br(7)|12(M)|? < 1. Then we have the following:

(i) Thereconstruction problemis not robust-solvable.
(i) For all nondegenerate v, the reconstruction problem is not v-robust-
solvable.
(iii) If all the entries of M are nonzero, then the reconstruction problemis not
erasure-robust-solvable.

This proves that the threshold for robust reconstruction is given B§)bx
|A2(M)|? = 1 as the proof of Theorem 1.4 in [22] immediately generalizes to show
the following proposition:

PrROPOSITION 3.4. Consider an ergodic Markov chain on a tree T such
that br(T)|A2(M)|? > 1. Then the reconstruction problem is robust-solvable, for
all nondegenerate v the reconstruction problem is v-robust-solvable and the
reconstruction problemis erasure-robust-solvable.

We now turn to the proof of Theorem 3.3 which generalizes the proof of
Theorem 1.2. For a vertex of the rooted tred”, we write T (x) for the subtree
rooted atx, that is, the subtree consisting.ofand all of its descendents. We will
use the following lemma from Pemantle and Steif [25].

LEMMA 3.5 ([25], Lemma 3.3). Assume that br(7') < g. Then for all ¢ > 0
there exists an anitchain S such that

(29) Z(E)x' <e.

and for all y € S U Ins(S),

(30) 5 (E)'X_y' -

xeSNT(v) 8

PrROOF oOF THEOREM 3.3. We will show that under the conditions of
Theorem 3.3 the reconstruction problem is not robust-solvable.

Let S be an antichain angl € S U Ins(S). Consider the Markov chain on the
subtre€eT (y), starting with state at y, and IetM[N]Z’S be the distribution of the
observed states di(y) N S. Thus,

.S
(Bl) uINL () =) Lism=y I Mooy % || Nowre)-
o (x,2)€lnsg (S) zeT(y)NS
xeT (y),zeT(y)
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We write u[N]*S for (u[NT}'°, ..., uINT)®). Note thatu[N15 = u[N1*-S for
any antichairs.

The proof of Theorem 1.2 easily extends to show thay i€ Ins(S) and
71, ..., zp are the children of, then

B
(32) p S INT= QM [N)).
r=1

We will prove the theorem by recursively analyzing discrepancies via (32). We
will prove the result for robust-solvability and indicate the modifications needed
for other cases at the end of the proof.

Below, we will write ;¥-5[k] for the measure:.”-S[N], whereN = M*. Note
that if S is an antichain and € S, then the measure”-$ is a measure on a single
node. We may therefore apply Lemma 2.9 and conclude that fér=al0, there
exists a* such that fork > k*, for all antichainsS andy € S, it holds that

(33) D(u>S[k]) <8.

Since btT)|r2(M)|? < 1, there exist, by Lemma 2.2, an> 0 and a norm
| - || on vt such that for allb € v, it holds that||Mb| < «|b|, where (1 +
e)br(T)a? < 1 — ¢. Recall that there is a uniform bouril on the number of
children of vertices off'. Let § be chosen as to satisfy Lemma 2.7 for every
B <K,sothatifD(f")<éforr=1,...,B,andB < K, thenD(®2_, f") <

L+e) X2 D)
Lemma 3.5 |mpI|es that there exists a sequence of anticlsgisach that

- 2
(34) lim 3" [ +e)e? =0,
X€ESy
and that for alk andy € S, U Ins(S,,),
(35) Yo A+eedH M <1
xeS,NT (y)

We will now show by induction (om — |y|, wheres = max.¢s |x|), that for all
antichainsS = §,, and ally € S U Ins(S), for k > k*,

(36) DSk <8 > [(A+e)a?M=h,

xeSNT (y)
The case where € S follows from (33). This also proves the base of the induction.
For the induction step, it therefore suffices to consider Ins(S) such that the
children ofv denoted:1, ..., zp satisfy the induction hypothesis. By Lemma 2.5
and the induction hypothesis, for all

(87) DM Skl <a®D(uSkD) <8a® > [(A+e)a?M7ll
xeSNT (zy)
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The right-hand side of (37) is bounded by (35), sincex < 1. Therefore, we
may apply Lemma 2.7 with (32) and (37) to obtain

B
(38) DSkl < (L+¢) Y D(MuS)
r=1

B
<@+)8a?Y Y [+ el

r=1xeSNT (z,)

=45 Z [(1+ &)a?]*I=I1

xeSNT (y)

proving (36).
Applying (36) for the roofp ands;,, we get by (34), taking — oo,

limsupD (g >k, ..., Sk < 8 lim " (14 e)e?* =0,

n— 00 xes,
which implies by Lemma 2.8 that
H £s8n £s8n _
T?Xn[)moo Dy (i ™ [k], ;™ [k]) =0,

as needed.

The proof forv-robust-solvability is exactly the same. The proof for erasure-
robust solvability requires the following modification.

First, as in the proof of Theorem 1.2, we may field< 1 such that ife > ¢*
andB < K, then for ally, which haveB childrenzs, ..., zp in a cutsets, it holds
that D(u?5[€]) < & (with § as above).

If S is an antichain, less” denote the set of children &f. Note thats), is an
antichain for alln. We prove by induction that for all antichaigs= S, and alll
y € SUIns(S), fore > €*,

(39) DS e <6 3@+ e)? bl
xeSNT (y)

The proof is again by induction on — |y|, wheres = max.cs |x|. The only
difference is in that foy € S, we use the estimate (w5 [€]) < 8. The remainder
of the proof is the same.(]

Acknowledgments. This research was carried out during a visit to the
Computation, Combinatorics and Probability program at the Isaac Newton
Institute for Mathematical Sciences in Cambridge, U.K. We thank Yuval Peres
for suggesting the 3rd open problem above.



2648 S. JANSON AND E. MOSSEL

REFERENCES

[1] BERGER N., KENYON, C., MOSSEL E. and EERES Y. (2004). Glauber dynamics on trees
and hyperbolic graph®robab. Theory Related Fields. To appear.

[2] BLEHER, P. M., Ruiz, J. and ZAGREBNOV, V. A. (1995). On the purity of the limiting Gibbs
state for the Ising model on the Bethe lattideStatist. Phys. 79 473-482.

[3] EvaNs, W. S., KENYON, C., PERES Y. and SSHULMAN, L. J. (2000). Broadcasting on trees
and the Ising modelnn. Appl. Probab. 10 410-433.

[4] EvaNs, W. S. and $HULMAN, L. J. (1999). Signal propagation and noisy circultSsEE
Trans. Inform. Theory 45 2367—2373.

[5] FELSENSTEIN J. (2003)Inferring Phylogenies. Sinauer, New York.

[6] FURSTENBERG H. (1970). Intersections dfantor sets and transversality of semigroups. In
Problemsin Analysis (R. C. Gunning, ed.) 41-59. Princeton Univ. Press.

[7] GEORGII, H. O. (1988).Gibbs Measures and Phase Transitions. de Gruyter, Berlin.

[8] HAJEK, B.and WELLER, T. (1991). On the maximum tolerable noise for reliable computation
by formulas.|EEE Trans. Inform. Theory 37 388—291.

[9] HiGucHI, Y. (1977). Remarks on thigmiting Gibbs states on & + 1)-tree.Publ. Res. Inst.
Math. Sci. 13 335-348.

[10] IoFFE, D. (1996). On the extremality of the disordered state for the Ising model on the Bethe
lattice.Lett. Math. Phys. 37 137-143.

[11] KENYON, C., MosSsEL E. and ERES Y. (2001). Glauber dynamics on trees and hyperbolic
graphs. In42nd |EEE Symposium on on Foundations of Computer Science 568-578.
IEEE, Los Alamitos, CA.

[12] KESTEN, H. and SiGumMm, B. P. (1966). Additionkalimit theorems fo indecomposable
multidimensional Galton—Watson process&wm. Math. Satist. 37 1463-1481.

[13] LyoNs, R. (1989). The Ising model and percolation on trees and tree-like gr@phmn. Math.
Phys. 125 337-353.

[14] LyoNs, R. (1990). Random walks and percolation on trées. Probab. 18 931-958.

[15] MARTIN, J. (2003). Reconstruction thresholds on regular treesDiscrete Random
Walks (C. Banderier and C. Krattenthaleeds.) 191-204. Availabl at http://dmtcs.
loria.fr/proceedings/dmACind.html.

[16] MARTINELLI, F., SNCLAIR, A. and WEITZ, D. (2003). The Ising model on trees: Boundary
conditions and mixing time. liProceedings of the Forty Fourth Annual Symposium on
Foundations of Computer Science 628-639.

[17] MARTINELLI, F., SNCLAIR, A. and WEITZ, D. (2004). The Ising model on trees: Boundary
conditions and mixing timeComm. Math. Phys. To appear.

[18] MossEL E. (2001). Reconstruction on trees: Beating the second eigenvahme.Appl.
Probab. 11 285-300.

[19] MossEL E. (2003). On the impssibility of reconstructing arestral data and phylogenies.
J. Comput. Biol. 10 669—-678.

[20] MossEL E. (2004). Phase transitions in phylogemans. Amer. Math. Soc. 356 2379-2404.

[21] MossEL E. (2004). Survey: Information flow on trees.@naphs, Morphisms and Satistical
Physiscs (J. Nesetril and P. Winkler, eds.) 155-170. Amer. Math. Soc., Providence, RI.

[22] MossEL E. and ERES Y. (2003). Information flow on treeginn. Appl. Probab. 13 817—844.

[23] MossEL E. and SEEL, M. (2004). A phase transitionof a random cluster model on
phylogenetic treesvathematical Biosciences 187 189-203.

[24] PEMANTALE, R. and EERES Y. (1995). Recursions on treesdathe Ising model at critical
temperatures. Unpublished manuscript.

[25] PEMANTLE, R. and SEIF, J. E. (1999). Robust phase traims for Heisenberg and other
models on general tree&nn. Probab. 27 876—912.



RECONSTRUCTION ON TREES 2649

[26] SEMPLE, C. and SEEL, M. (2003).Phylogenetics. Oxford Univ. Press.

[27] SOBER, E. and SEEL, M. A. (2002). Testing the hypothesis of common anceslkrifheor.
Biol. 218 395-408.

[28] SPITZER, F. (1975). Markov random fields on an infinite tréen. Probab. 3 387-398.

[29] vON NEUMANN, J. (1956). Probabilistic logics and thgnshesis of reliable organisms from
unreliable components. kutomata Studies (C. E. Shannon and J. McCarthy, eds.) 43—98.
Princeton Univ. Press.

DEPARTMENT OFMATHEMATICS DEPARTMENT OFSTATISTICS
UPPSALAUNIVERSITY EVANS HALL

P.O. Box 480 UNIVERSITY OF CALIFORNIA, BERKELEY
SE-75106 WPSALA BERKELEY, CALIFORNIA 94720-1776
SWEDEN USA

E-MAIL : svante.janson@math.uu.se E-MAIL : mossel@stat.berkeley.edu

URL: www.math.uu.se/"svante URL: www.stat.berkeley.edu/"mossel



