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MORE RIGOROUS RESULTS ON THE KAUFFMAN–LEVIN
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The purpose of this note is to provide proofs for some facts about
the NK model of evolution proposed by Kauffman and Levin. In the
case of normally distributed fitness summands, some of these facts have
been previously conjectured and heuristics given. In particular, we provide
rigorous asymptotic estimates for the number of local fitness maxima in the
case whenK is unbounded. We also examine the role of the individual fitness
distribution and find the model to be quite robust with respect to this.

1. Introduction. The purpose of this note is to provide proofs for some facts
about the NK model. Some of these proofs have been previously formulated, at
least approximately, as conjectures or heuristic arguments. Since we are interested
in the mathematical analysis of the model, we include only a brief summary of the
biological motivation, for which we can do no better than to excerpt and paraphrase
from the introductory section of the paper by Evans and Steinsaltz [3].

Beginning with Sewall Wright in the early twentieth century, evolution has been
modeled as the gradual motion of a genome through an abstract space, with a
tendency toward increasing values of thefitness function. One may think of the
graph of this function as afitness landscape and of natural selection as a random
walk with upward drift on the fitness landscape. One cannot understand the likely
behavior of such a random walk without understanding the qualititative nature
of the landscape as one with “slivers of high fitness looming up above the vast
genomic tohubohu” [3]. In any random walks model of fitness landscapes and
natural selection, the nature of the global fitness maximum is less important than
the number and height of local maxima.

Kauffman and Levin [7] introduced the NK model, which is a probabilistic
model for the fitness landscape. In this model, there areN loci, at each of which is
one of two possible alleles. Thus a genome is an element of the space{0,1}N .
The fitness of a genome is the sum ofN different fitnesses, thej th of which
is determined by the alleles at sitesj, j + 1, . . . , j + K moduloN . In the NK
model, the 2K+1 alleles in theN possible positions are given fitnesses whose joint
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distribution is that of 2K+1N i.i.d. picks from a distributionF . The fitness of a
given genome is then the sum of theN fitnesses corresponding to the actual string
of K + 1 alleles beginning at each position. Note that this randomness is present
in the model at the start; later one may model natural selection as a random walk
in this random environment, but that is beyond the scope of this paper. Evans and
Steinsaltz pointed out that since the allele substrings of lengthK +1 overlap, there
is no easy way to find the optimal choice for theN alleles. They concluded that
“while no one would mistake this abstract system for a realistic model of genetic
evolution, it has the virtues of a good foundational model: it is easy to describe, yet
contains a wealth of structure that is neither obvious nor superficially accessible.
Before we can analyze a more realistic model, it would seem we must first come
to grips with models such as this one. At the same time, we may hope that some
general features of this model will carry over to something like the real world.”

Most studies of the NK model rely on simulations, which are limited to small
to intermediate values ofN (e.g., in [6],N = 96 and in [2],N = 1024, which
corresponds to the size of a gene, but it is much smaller than the number of genes
in a genome). Simulations may provide quick answers to various questions in
particular cases of fitness distributionF . However, a very interesting and natural
question of robustness of the model under variations inF can be tackled only
mathematically.

We warn the reader that wealways assume in this paper that the parameterK

is strictly positive and that the underlying distributionF is continuous. The NK
model forK = 0 or K = N − 1 exhibits special behaviors which were rigorously
analyzed by many authors (see, e.g., [7]). IfF were not continuous, ties would be
possible and analysis would become cumbersome.

The study of the question to which our paper is devoted begins with [11], where
Weinberger gives asymptotic formulae for the number of local fitness maxima
(LFM) when N and K are large andF is the normal distribution. As noted
in [2] and [3], however, Weinberger’s derivation is not rigorous. Weinberger’s
heuristics are limited to the case whereF is the normal distribution, although he
points out that other distributions such as the Cauchy might be more realistic and
that one could expect the outcome to be independent of the choice of distribution.

The majority of rigorous results that have been obtained assume thatK is fixed
andN → ∞. In this context, several results were obtained in two recent papers
[2, 3]. Among other things, they both show ([3], Theorem 7, and [2], Theorem 2.1)
that the exponential growth rate number of local maxima (or, equivalently, the
exponential decay of the probability of a given genome being a local fitness
maximum) exists as a limit. In other words, the probability of a LFM decays
like expN(λK + o(1)) as N → ∞ with K remaining fixed. ForK = 1, they
computed this limit explicitly whenF is the exponential distribution [3] or the
negative exponential [2]. In the case whereF has an exponential moment, Durrett
and Limic ([2], Theorem 5.1) made partial progress toward showing the number
of local maxima (for largeK,N ) to be independent of the distributionF : they
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bounded the exponential rate on one side and they conjectured this to be correct
to within a constant factor. The value ofλK is theoretically possible to compute
for certain distributions whenK ≥ 1, but practically impossible. It is biologically
reasonable thatK be on the order of at least several dozens, whence our interest
in asymptotic formulae forλK with error estimates that are valid asK,N → ∞
without restriction. For example, in [6], pages 122–142, it is shown that maturation
of the immune response fits the parametersK = 40 andN = 122, which is
probably best described as “N andK large, withN/K remaining bounded.”

The first purpose of this note is to rigorize Weinberger’s computations for the
normal case. This includes sharpening his statements to include error bounds
and quantified asymptotic statements, specifically convergence uniform inN as
K → ∞. The second purpose is to investigate dependence onF . Specifically, we
prove some asymptotic results that do not depend at all on the distribution ofF ,
completing and generalizing the conjecture in [2], and we show some stronger
results for the “fat-tail” case, which we believe to be the extreme opposite to the
case whereF has finite second moment.

The remainder of the paper is organized as follows. The next section sets
forth the notation and states our main results. Section 3 gives proofs for the
results in whichF is the normal distribution. Section 4 proves results for general
distributions and derives asymptotics for fat-tailed distributions whenN/K → ∞.
Section 5 contains a detailed analysis of the case whereF has fat tails andN/K

remains bounded. Finally, Section 6 gives an exact expression for the exponential
rate whenF is the fat tail andK = 1, which, when compared with similar
computations for other distributions, corroborates an extremality conjecture for
the fat tail.

We use notationo(1) to represent a term that converges to 0 asK → ∞, O(1)

to represent a term bounded by a constant and�(expression(K)) to represent a
term for which there are positive finite constantsc,C (independent ofK) such
thatc expression(K) ≤ term≤ C expression(K).

2. Notation and statements of results. The parameters of the model are
positive integersN > K and a continuous distribution functionF on the real
numbers. Our concern in this paper is with the number of LFMs for a random
fitness landscape. The expectation of this number is equal to 2N times the
probability that any given genome is a local fitness maximum. Consequently, our
sole focus is the rigorous estimation of this probability. Showing that the logarithm
of the number of LFMs is near its expectation is not hard, but will not concern us
here; see, for example, [2], Theorem 7.1, where an asymptotic normality result is
obtained for the logarithm of the number of local fitness maxima.

In the NK model the (unnormalized) fitness of a particular genomeη =
(η1, η2, . . . , ηN ) ∈ {0,1}N is defined to be

N∑
j=1

Y
(
j; (ηj , ηj+1, . . . , ηj+K)

)
,(2.1)
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where the family{
Y
(
j; (η1, η2, . . . , ηK+1)

)
: j = 1, . . . ,N; (η1, η2, . . . , ηK+1) ∈ {0,1}K+1}

is the family of ofN · 2K+1 i.i.d. random variables with common distributionF .
Suppose we are given such a family on a probability space(�,F ,P) and
abbreviate

Yj := Y
(
j; (0,0, . . . ,0)

)
to be the fitness of the substring ofK + 1 zeros starting in positionj ; here and
throughout, arithmetic on subscripts is always taken moduloN . With the above
notation the fitness of the zero genome is

∑N
j=1Yj .

The genome consisting of all 0’s hasN neighbors, namely all binary strings
of lengthN with exactly one 1. Since in this paper we are only interested in the
probability of the event that the string of all 0’s is LFM, the only other relevant
random variables from the above family are the fitnessesY (j; (η1, η2, . . . , ηK+1)),
wherej = 1, . . . ,N and where

∑
i ηi = 1. We again abbreviate for 1≤ j ≤ N,0≤

i ≤ K ,

Yj,i := Y
(
j − i; (0, . . . ,1, . . . ,0)

)
,

where 1 is only in theith position above (here we count positions starting from 0).
The quantityYj,i is interpreted as the fitness of the substring of lengthK + 1
starting at positionj − i that is all 0’s except for a single 1 in positionj . Then the
definition (2.1) says that the stringej consisting ofN − 1 0’s and a single 1 in the
j th position has fitness (in the new notation)

j−K−1∑
i=j+1

Yi + Yj,0 + Yj,1 + · · · + Yj,K.

The zero genome is a LFM if it has greater fitness than that of any genome with
exactly one 1. We denote the event of optimality of the zero string byH . We
may write H = ⋂

j Hj , whereHj is the event that all 0’s are better thanej .
Equivalently,

Hj ⇔
j∑

i=j−K

Yi ≥
K∑

i=0

Yj,i.(2.2)

DefinepF (N,K) := P(H). We usually suppress dependence onF and write
simplyp(N,K). Our first result makes rigorous and precise what is stated in [11].

THEOREM 2.1. Suppose that F is the standard normal distribution. Then

logp(N,K) = N

K
(− logK + RN,K)
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with

c log logK ≥ RN,K ≥ −c
√

logK

for some c > 0.

REMARKS. (i) Specializing to the caseN/K → α, we obtain the estimate
p(N,K) = K−1/α+o(1). (ii) The error terms are independent ofN , so the previous
estimate is uniform inN > K +1 asK → ∞; here and throughout,all asymptotic
notation is with respect to K only (unless otherwise noted). (iii) In contrast to what
will be the case with other distributions, there is no correction whenN/K does not
go to infinity. (iv) If K = N − 1, then the NK model is essentially different from
the NK model whereK < N − 1, but sincep(N,N − 1) = 1/N + 1, it is still
true that logp(N,N − 1) = − log(N + 1) ∼ −N log(N − 1)/(N − 1) with error
smaller than the above bounds onRN,N−1 for largeN .

Next, we state our most general result.

THEOREM 2.2. Let F be any distribution and N ≥ 2(K + 1). Then

logp(N,K) ≤ −(1+ o(1)
)⌊N

K
− o(1)

⌋
logK(2.3)

≥ −(3+ o(1)
)⌈N

K

⌉
logK.(2.4)

We believe that the upper bound (2.3) is sharp, so we make the following
conjecture:

CONJECTURE1. It is possible to replace 3 by 1 in (2.4).

When sums of random variables are concerned, the class of most tightly
clustered distributions comprises the distributions with finite variance, since
these exhibit Gaussian behavior when summed. At the other extreme, one has
distributions with extremely fat tails. In the limit, one might consider a distribution
with the following property: In any collection ofn i.i.d. picks, the greatest is much
greater than the sum of the magnitudes of the others with probability tending
exponentially rapidly to 1 asn → ∞. For example, ifU is uniform on [0,1],
then exp(exp(1/U)) has this property. In this case, as long asK → ∞ at least as
fast as logN , one may approximateHj by the event

H ′
j :=

{
max

j−K≤i≤j
Yi ≥ max

i
Yj,i

}
.(2.5)

Heuristically, properties ofp(N,K) shared by fat-tailed distributions and
normal distributions would be likely to hold for all distributions, since all others



2154 V. LIMIC AND R. PEMANTLE

lie in between. One approach to establishing facts about fat-tailed distributions
would be to axiomatize how fast the probability should tend to 1 of the event
that the largest ofn picks dominates all the others, and then prove theorems
about distributions satisfying the axiom. We choose a less cumbersome approach,
namely to provide an analysis of the probability of the eventH ′ :=⋂N

j=1H ′
j . We

use the notationpfat(N,K) to denoteP(H ′) and sometimes call it “p(N,K) under
the fat-tail distribution.” Note thatpfat(N,K) is independent ofF , assumingF is
continuous.

CONJECTURE2. For any N and K , the infimum over all F of pF (N,K) is
equal to pfat(N,K).

Our next result shows that Conjecture 1 holds for the fat tail and thus that
Conjecture 2 implies Conjecture 1.

THEOREM 2.3. We have

logpfat(N,K) ≥ −(1+ o(1)
)⌈N

K
+ o(1)

⌉
logK.

Weinberger suggested the Cauchy as a biologically realistic distribution. Those
readers who are bothered by a mythological distribution called the fat tail will
perhaps be interested to see that the previous result for the fat tail may be proved
for the Cauchy. We remark that the criterion we have suggested for axiomatization
of the fat tail, namely exponential decay of the probability that the largest ofn picks
fails to dominate the sum of the others, requires much fatter tails than the Cauchy
distribution possesses. Thus we view the following result as more than adequate to
demonstrate that the fat-tail results hold for typical fat-tailed distributions.

THEOREM 2.4. When F is a symmetric Cauchy distribution,

logp(N,K) ≥ −(1+ o(1)
)⌈N

K
+ o(1)

⌉
logK.

Comparing these last results to Theorem 2.1, we see that for the fat-tail and
Cauchy distributions, and conjecturally for all distributionsF , logpF (N,K) ∼
logp�(N,K), where� is the normal c.d.f., as long asN/K → ∞: In this case the
difference betweenN/K and
N/K + o(1)� is irrelevant and the formulae agree.
Note that, on the other hand, ifN/K ≈ α, whereα = m − 0.5 for some integerm,
the difference between
N/K + o(1)� andN/K + o(1)� is 1, which amounts to
the difference of 1/K in the asymptotic lower and upper bounds forp(N,K). It
turns out there is, in fact, an asymptotic inequivalence between logp�(N,K) and
logpfat(N,K) whenN/K does not go to infinity. Because of this, we include a
more precise description of that asymptotics of logp(N,K) in this regime.
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TABLE 1
Behavior of p(N,K) across integer values of N/K

N j (1 + o(1))pfat(N,K)

2(K + 1) − j 0 < j ≤ K 1
K

( 1
K+3−j

− 1
K

+ logK

K2 )

(r − y)(K + 1) 0≤ y < 1 1
Kr fr (y) + 1

Kr+1 fr+1(1+ y)

The statement of the following theorem makes more sense if one keeps in mind
howH ′ is likely to occur. There will be at leastr0 := 
N/K� large fitnesses among
the Yj , which is the minimum number for which it is possible to have a large
fitness in every window of sizeK . The number of ways to pickr large fitnesses
increases withr , but the probability that any specificr fitness values are all large
decreases withr . In this energy–entropy tradeoff, the maximum occurs atr = r0 as
N/K increases tor0 − o(1), at which point ther value that achieves the maximum
switches tor0 + 1.

THEOREM 2.5. As K → ∞ with N/K bounded, there are formulae that give
the value of pfat(N,K) up to a factor of 1 + o(1). The formulae are in terms
of functions {fr : r ≥ 3} on R

+, which are defined by formula (5.7) in Section 5
and summarized in Table 1. Additionally, the functions fr satisfy the following
statements:

• fr(0) = 0.
• fr(x) ∼ xr−1 as x → 0.
• For r ≥ 4, fr is increasing, continuous and bounded on [0,1].
• For r = 3,fr is increasing and continuous on [0,1), with f3(1− t) ∼ 2 log(1/t)

as t → 0+.

In other words, there are narrow windows in the parameterN/K in which
pfat(N,K) changes from roughlyK−r to K−(r+1). These windows occur at
N/K ≈ r − K−1/(r−1). An exception is whenr = 2. In this case, the change from
orderK−2 to orderK−3 logK is complete atN = 2K − c logK , after which the
order slowly slides down toK−3 as log(N − 2K) increases to logK .

A final result is the analysis for the fat tail whenK = 1. Note that when
K = O(1), maxima are taken over collections of a bounded size, so no actual
distribution has tails fat enough to ensure that the maximum dwarfs the others.
Nevertheless, this result is still relevant to Conjecture 2.

THEOREM 2.6. We have

N−1 logpfat(N,1) → z := − log1.803. . . = −0.58947. . . ,
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where z is the solution of the Bessel equation

0 = π
√

6BesselI
(2

3, 2
3

√
2z
)− π

√
3zBesselI

(−1
3, 2

3

√
2z
)

+ 3
√

2 BesselK
(2

3, 2
3

√
2z
)+ 3

√
zBesselK

(1
3, 2

3

√
2z
)
.

The published exact values of logp(N,1) for the exponential and negative
exponential are, respectively,−0.57504. . . [3] and −0.5499934. . . [2]. The
published lower bound for the uniform is−0.55957. . . [2]. All of these values
are greater than the value for the fat tail given by Theorem 2.6, thus providing
further corroboration of Conjecture 2.

Some final notation and methodology common to all the proofs is as follows.
We let F = σ(Yj : 1 ≤ j ≤ N) be theσ -field generated by the fitnesses of zero
substrings. We letF (K+1) denote the c.d.f. for the sum ofK + 1 independent
picks from the distributionF . Conditional onF , the eventsHj are independent,
with

P(Hj |F ) = F (K+1)

(j+K∑
i=j

Yi

)
.

Removing the conditioning then gives a formula which appears as [11], (2.4),

p(N,K) =
∫ N∏

j=1

F (K+1)

(j+K∑
i=j

Yi

)
dF (Y1) · · ·dF (YN).(2.6)

3. Analysis of the normal case. The following facts are well known.

LEMMA 3.1. If � and φ are the normal c.d.f. and density, respectively, then

log�(x) = (−1+ o(1)
)(

1− �(x)
)

(3.1) = φ(x)
(
x−1 + O(x−2)

)
, x → ∞,

(log�)′′ = �φ′ − φ2

�2 < 0(3.2)

and

the function log� is concave.(3.3)

Next we define the normalized total fitness

t := N−1/2
N∑

j=1

Yj

and the recentered window sums

Xj := (
∑j+K

i=j Yj ) − ((K + 1)/
√

N )t√
K + 1

.
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It is immediate to verify that eachXj is a normal with mean 0 and variance 1−
(K +1/N). Since the quantitiesYj − t/

√
N are independent normals recentered to

sum to zero, their joint distribution is independent of the centering constantt . This
can be verified explicitly by checking that the covariance ofX andYj − t/

√
N is 0

for eachj . Consequently, since
√

K + 1Xj =∑j+K
i=j (Yj − t/

√
N ), we see that

{Xj : 1≤ j ≤ N} is independent oft.(3.4)

Plugging this into (2.6) and using the fact thatF (K+1) is a normal of variance
K + 1, we get

p(N,K) = E

N∏
j=1

�

(
Xj +

√
K + 1

N
t

)
.(3.5)

Up to here we have followed Weinberger, arriving at [11], (3.2). Weinberger
now asserts thatXj = O(1) with mean zero, and may therefore be removed from
the equation, resulting inp(N,K) ≈ E�(t

√
(K + 1)/N )N , wheret is a standard

normal; this is then evaluated by steepest descent. Our contribution in the rest of
this section is to finish this properly, with one inequality (the upper bound onR)
following directly from (3.3) of Lemma 3.1, rather than relying on independence
of t and{Xj : 1 ≤ j ≤ N}.

Upper bound on R. By definition, the random variablesXj sum to zero. Using
concavity of log�, we have the (deterministic) inequality

N∑
j=1

log�

(
Xj + t

√
K + 1

N

)
≤ N log�

(
t

√
K + 1

N

)
.

Plugging into (3.5) then gives

P(A) ≤ E�

(
t

√
K + 1

N

)N

=
∫

�

(
x

√
K + 1

N

)N

φ(x) dx,(3.6)

whereφ is the normal density. LetI (x) = IN,K(x) denote the integrand in (3.6)
and letM denote the maximum value of logI :

M := max
x

logI (x) = − log
√

2π + max
x

[
N log�

(
x

√
K + 1

N

)
− x2

2

]
.

If we can show that

log
∫

IN,K(x) dx ≤ M + O(1)(3.7)

and that

M = −N

K

(
logK + O(log logK)

)
,(3.8)
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then the first inequality in Theorem 2.1 will be proved. Both computations are
routine, and we need only one inequality of (3.8), but we include the arguments
because they clarify matters by indicating the location of the saddle.

To show (3.8), letx0 := √
(2N/(K + 1)) log(K + 1). Of course

M ≥ logIN,K(x0)

= − log
√

2π + N

K + 1

[
(K + 1) log�

(√
2 log(K + 1)

)− log(K + 1)
]

= −N

K

[
logK + 1+ o(1)√

logK + o(1)

]
,

where we have used the estimate (3.1) from Lemma 3.1 on log� and where
the last o(1) accounts for− log

√
2π . This shows one inequality in (3.8).

For an upper bound onM , suppose first thatx ≥ √
(2N/(K + 1)) ×√

(log(K + 1) − 2 log log(K + 1)). Then

logIN,K(x) ≤ −x2

2
= −N

K

(
logK + O(log logK)

)
as needed. On the other hand, whenx ≤ √

(2N/(K + 1)) ×√
(log(K + 1) − 2 log log(K + 1)), then

logIN,K(x) ≤ − log
√

2π + N log�
(√

2
(
log(K + 1) − 2 log log(K + 1)

) )
= (−1+ o(1)

)
N

1

K

(logK)2

√
2 logK − 4 log logK

≤ −(1+ o(1)
)N
K

(logK)3/2,

so these values ofx need not be considered and the other inequality in (3.8) is
proved.

Proving (3.7) is merely a matter of estimating the second derivative of logI . By
log concavity of�, this is at most the second derivative of logφ, which is equal to
−1/2. Let xM := xM(N,K) be such thatIN,K(xM) = M . Now an easy calculus
argument (using log concavity) shows

I (x) ≤ exp{I (xM)}exp{−(x − xM)2/4} = eM exp{−(x − xM)2/4},
so that

∫
e−MIN,K(x) dx is bounded above by a constant 2

∫∞
0 exp(−x2/4) dx

that is independent ofN andK , which shows that log
∫

I (x) dx ≤ M + O(1) and
finishes the proof of (3.7) and the first inequality of Theorem 2.1.

Lower bound on R. Let G1 be the event that

t ≥ x1 :=
√(

2N/(K + 1)
)(

log(K + 1) + 3
√

log(K + 1)
)
.
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Let G2 be the event that max|Xj | ≤ 1. Due to independence oft from {Xj : 1 ≤
j ≤ N}, we may write

p(N,K) ≥ P(G1 ∩ G2)P(H |G1,G2) = P(G1)P(G2)P(H |G1,G2).

We estimate this in pieces, the first being the one responsible for pushingR down
to −c

√
logK .

Since logφ(x) = −x2/2+ O(1), we may estimate

logP(G1) = log
(
1− �

(√(
2N/(K + 1)

)(
log(K + 1) + 3

√
log(K + 1)

) ))
= log

((
1+ o(1)

)φ
x

[√(
2N/(K + 1)

)(
log(K + 1) + 3

√
log(K + 1)

) ])
= O(1) − N

(K + 1)

(
log(K + 1) + 3

√
log(K + 1)

)− logx1

= −N

K

(
logK + O

(√
logK

))
.

Next, we estimateP(G2).

LEMMA 3.2. We have

logP(G2) ≥ −π2

2

N

K
.

PROOF. Let Sj := ∑j
i=1(Yi − t/

√
N ) be the recentered partial sums. Then

Xj = (K +1)−1/2(Sj+K −Sj−1), with indices still taken moduloN . The eventG′
2,

defined by

G′
2 := {|Sj | ≤ 1

2

√
K for all j ≤ N

}
,

implies the eventG2. Let W0 be Wiener measure on continuous pathsω on [0,N ]
starting at 0 and letWbr

0 be the Brownian bridge measure, that is,W0 conditioned
on {ω(N) = 0}. The law of {Sj : 1 ≤ j ≤ N} is the law of partial sums ofN
i.i.d. standard normals conditioned on summing to zero; this is the same as the
conditional law of{ω(j) : 1 ≤ j ≤ N} underW0, conditioned on{ω(N) = 0},
which is the same as the law of{ω(j) : 1 ≤ j ≤ N} underWbr

0 .
A Brownian bridge always stays closer to the origin than unconstrained

Brownian motion, in the following sense. In fact, it is not difficult to couple the
path of the reflected simple random walk bridge (i.e., the absolute value of the
random walk path conditioned to visit 0 at time 2n) and the path of the reflected
simple random walk up to step 2n so that the former stays below the later at
all times with probability 1. Taking the diffusion limits in an appropriate way
constructs one coupling of the reflected Brownian bridge and reflected Brownian
motion described above.
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LettingG′′
2 be the event that|ω(t)| ≤ √

K/2 for all t ≤ N , we then have

P(G2) ≥ P(G′
2) ≥ Wbr

0 (G′′
2) ≥ W0(G

′′
2).

Let Wµ be Wiener measure started from distributionµ. Clearly Wµ(G′′
2) is

maximized whenµ = δ0; that is,W0(G
′′
2) ≥ Wµ(G′′

2) for any µ. Now let µ be
the distribution on[−√

K/2,
√

K/2] with densityC cos(πx/
√

K ). This is an
eigendensity for Brownian motion killed on exiting[−√

K/2,
√

K/2] (see [8],
Theorem 4.1.1). We see that

P(G2) ≥ Wµ(G′′
2) = exp

(
−π2

2

N

K

)
,

proving the lemma. �

Finally, we estimate the third term. Recall from (3.5) the formula for the
probability of LFM:

p(N,K) = E

[
exp

(
N∑

j=1

log�
(
Xj + √

(k/N)t
))]

.

Forx > 1, consider the inequality√
2
(
x + 3

√
x
)
>

√
2
(√

x + 1
)2 − √

2+ 1 = √
2x + 1,

which can easily be checked, for example, by squaring both sides (note that
if x > 1, then both sides of the inequality are strictly positive). Applying this
inequality yields onG1 ∩ G2,

Xj + t

√
K + 1

N
≥
√

2
(
log(K + 1) + √

log(K + 1)
)− 1≥ √

2 log(K + 1).

Therefore, onG1 ∩ G2 we then have for allj

log�

(
Xj + t

√
K + 1

N

)
≥ log�

(√
2 log(K + 1)

)
and hence, using (3.5),

P(H |G1,G2) ≥ (
�
(√

2 log(K + 1)
))N ≥ exp

(
− N

K + 1

)
.

Plugging in the estimates forP(G1) andP(G2) then yields

logp(N,K) ≥ −N

K

(
π2

2
+ logK + O

(√
logK

))
,

which finishes the proof of the theorem.
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4. Proof of universality results.

PROOF OF THEOREM 2.2. First inequality. For the moment let the small
positive real parametery be unspecified. Break the interval from 1 toN into
L := N/(1 + y)(K + 1)� intervals of length(1 + y)(K + 1)�, discarding any
unused positions at the end. Denote these intervalsI1, . . . , IL and letI ′

j denote
the first
y(K + 1)� positions inIj . Let sj denote the indexs ∈ I ′

j that maximizes

S :=∑K
i=0 Ys,i . The maximum is a maximum ofy(K +1) independent draws from

F (K+1), soBj := F (K+1)(
∑K

i=0 Ysj ,i) has distributionβ(1, y(K + 1)). The mean

of Bj is 1− (y(K +1)+1)−1. For the eventHsj to occur, the sum
∑sj +K

i=sj
Yi must

exceedS. LetF ′ = σ(Yj,i : 1 ≤ j ≤ N,0≤ i ≤ K) be theσ -field generated by the
fitnesses of substrings with exactly one 1. Then

P (Hsj |F ′) = 1− Bj .

Since |sj − sk| > K whenj �= k, the eventsHsj are conditionally independent
givenF ′, and theBj ’s are mutually independent random variables. Therefore,

P(H) ≤ P

(
L⋂

j=1

Hsj

)
= EP

(
L⋂

j=1

Hsj |F ′
)

= E

L∏
j=1

(1− Bj) =
(

1

1+ y(K + 1)

)L

.

When K = o(N), we choosey = y(K) = o(1) to optimize this bound.
For example, takingy = 1/ logK gives an upper bound of exp(−(1 + o(1)) ×
(N/K) logK), as is required to prove (2.3).

WhenK = �(N), the same choice ofy leads to the same conclusion, except
that one hasN/y(K + 1)� in place ofN/K . Sincey(K) = o(1), this is again
sufficient to prove (2.3).

Second inequality. To prove (2.4), begin with the observation that the events
Hj are increasing events with respect to the variables{Yj : 1 ≤ j ≤ N} and
{−Yj,i : 1 ≤ j ≤ N,0 ≤ i ≤ K}. By Harris’ inequality, these are positively
associated. LetL = 
N/(K + 1)� and, for 1≤ j ≤ L, let

Gj :=
j (K+1)⋂

i=(j−1)(K+1)+1

Hi .

Positive association implies that

P(H) = P

(
L⋂

j=1

Gj

)
≥ P(G1)

L.

Thus it suffices to establish

logP(G1) ≥ −(3+ o(1)
)
logK.(4.1)
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Let al := F (K+1)(
∑l+K

i=l Yi) for eachl ∈ [1,K + 1]. Then

P(G1) = EP(G1|F ) = E

K+1∏
l=1

al.

If al ≥ 1−1/K for eachl ∈ [1,K +1], then
∏K

l=0 al ≥ e−1+o(1), so (4.1) follows
from

P

(
min{al : 1 ≤ l ≤ K + 1} ≥ 1− 1

K

)
≥ cK−3.(4.2)

Let F ∗ be theσ -field generated by the unordered pair of sets{Y1, . . . , YK+1}
and {YK+2, . . . , Y2K+2}. Then min{a1, aK+2} ∈ F ∗. Furthermore, conditional
onF ∗, the collection{Sl :=∑l

i=1(Yi+K+1−Yi) : 1≤ l ≤ K +1} has exchangeable
increments (generated by continuous distribution i.i.d. picks, so ties in the partial
sum sequenceS· happen with probability 0) that are symmetric about 0. Now note
the following consequence of exchangeability: Conditioned on all the increments,
if their total sum is positive, then the probability that the minimum occurs at the
beginning, that is, all the intermediate sums are positive, is at least 1/K . Namely,
all cyclic permutations of the increments are equally distributed and almost surely
there is at least one such permutation for which the minimum is achieved at step 0.

Therefore,

P(min{Sl : 1≤ l ≤ K + 1} > 0) ≥ 1
2K−1.

When{min{Sl : 1 ≤ l ≤ K +1} > 0} occurs, we have min{al : 1 ≤ l ≤ K +1} = a1.
Hence, by conditioning onF ∗ first, the probability on the left-hand side of (4.2)
is at least

1
2K−1

P(min{a1, aK+2} ≥ 1− 1/K),

and by independence ofa1 andaK+2 (recall thatN > 2K + 1) this is equal to(1
2 + o(1)

)
K−1K−2,

proving (2.4). �

The proofs of Theorems 2.3 and 2.4 are similar to the argument used to prove
the second inequality of Theorem 2.2. Having specific distributions to work with
makes the arguments simpler and the results sharper (cf. Conjecture 1).

PROOF OF THEOREM 2.3. Cover the interval[N ] := {1, . . . ,N} with L :=

N/((1− y)(1 + K))� intervals of size
(1− y)(K + 1)�. Denote these intervals
by I1, . . . , IL. Positive association again implies that

P(H ′) ≥ P(H ′
j ∀ j ∈ I1)

L.
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Let I ′ denote the interval of lengthy(K +1)� adjacent to and just precedingI1. If
the maximum of the collection{Yj ,Yl,i : j ∈ I ′, l ∈ I1,0 ≤ i ≤ K} is Yj0 for some
j0 ∈ I ′, it follows thatH ′

j occurs for eachj ∈ I1. The last claim follows directly
from definition (2.5) since for suchj0 we haveYj0 ≤ maxji=j−K Yj whenever
j ∈ I1.

The probability of {
max
j∈I ′ Yj > max

l∈I1,0≤i≤K
Yl,i

}
,

up to corrections for integer roundoff, is clearly equal toy(K + 1)/[(1− y)(K +
1)2 + y(K + 1)]. Thus

P(H ′) ≥
[(

1+ o(1)
) y(K + 1)

(1− y)(K + 1)2 + y(K + 1)

]L

.

Choosingy = y(K) = 1/ logK as before suffices to prove the theorem.�

PROOF OFTHEOREM 2.4. Keeping the notation from the previous proof, we
need to estimateP(Hj∀j ∈ I1) whenF is the Cauchy distribution. Define events:

(i) A := {maxj∈I ′ Yj ≥ 2(K + 1)2};
(ii) B := {∑j∈I1∪I0

0∨ (−Yj ) < (K + 1)2};
(iii) C := {maxj∈I1

∑K
i=0 Yj,i ≤ (K + 1)2}.

HereI0 is the interval of lengthK precedingI1 so that fory(K) < 1 (which will
be the case)I ′ ⊂ I0. Note thatA ∩ B ∩ C ⊂ ⋂

j∈I1
Hj since onA ∩ B ∩ C we

have, ifj ∈ I1, both{j−K∑
i=j

Yi ≥ max
j∈I ′ Yj + ∑

j∈I1∪I0

(
0∨ (−Yj )

)
> (K + 1)2

}

and {
K∑

i=0

Yj,i ≤ (K + 1)2

}
.

It is not difficult to check that

P (A) = (
(2π)−1 + o(1)

)
yK−1,

P (B) ≥ exp
(−(2− y)2

π

)
+ o(1),

P (C) = exp
(−(1− y)

π

)
+ o(1).
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Indeed,

P (A) = 1− P

(
max
j∈I ′ Yj ≤ 2(K + 1)2

)

= 1−
(

1− (1/π + o(1))

2(K + 1)2

)y(K+1)

= − y

K + 1

(
1

2π
+ o(1)

)
,

P (B) ≥ P

(
max

j∈I1∪I0
0∨ (−Yj ) <

K + 1

2− y

)

=
(

1− 2− y

π(K + 1)

)(K+1)(2−y)

≥ exp
(
−(2− y)2

π

)
+ o(1)

and

P (C) = P

(
K∑

i=0

Y1,i ≤ (K + 1)2

)(1−y)(K+1)

=
(∫ K+1

−∞
1

π(1+ y2)
dy

)(1−y)(K+1)

=
(

1− (1/π + o(1))

K + 1

)(1−y)(K+1)

= exp
(
− 1

π
(1− y)

)
+ o(1).

Another application of positive association shows that

P (A ∩ B ∩ C) ≥
(

e−5/π

2π
+ o(1)

)
y

K

so that

P(H) ≥
[(

e−5/π

2π
+ o(1)

)
y

K

]L

,

and taking the logarithm, withy(K) = log(K)−1, completes the proof.�

5. The fat tail when N/K remains bounded. This section provides a proof
of Theorem 2.5. In particular, in this section we derive asymptotic formulae for
pfat(N,K) that are valid asN,K → ∞, uniformly as long asN/K remains
bounded. Probability estimates come from the following algorithm for checking
whetherH ′ has occurred.

1. Initializer = 1 andC to be the collection of variables{Yj ,Yj,i : 1 ≤ j ≤ N,0≤
i ≤ K}.

2. Find the maximum of the variables inC.
3. (a) If this maximum is one of the variablesYj,i , then output FALSE and

stop.
(b) Else, letjr be the index such that the maximum occurred atYjr .

4. Remove fromC the variablesYj,i for j1 ≤ j ≤ j1 +K , 0≤ i ≤ K (these are no

longer relevant since no matter what their value is, we know that
⋂j1+K

j=j1
H ′

j has
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occurred, and otherH ′
l ’s do not depend on the values ofYj,i , j1 ≤ j ≤ j1 + K ,

0 ≤ i ≤ K , anyhow), and also remove the variableYjr .
5. (a) If the collectionC contains no more variablesYj,i , then output TRUE

and stop.
(b) Else, setr to r + 1 and go to Step 2.

Clearly H ′ = {algorithm stops at TRUE}. We may think of the output as
containing all values ofjr found before stopping, so that in addition to the indicator
function of the eventH ′, the algorithm outputs the random variablesR,j1, . . . , jR ,
whereR is the maximum value for which the first Step 3(b) (the else statement)
is executed. Recall thatr0 := 
N/(K + 1)� is a lower bound forR, provided
the output is TRUE. The possible values for the sequencej when it is of length
R = r are precisely the setS(r) of sequences that satisfy both of the following
statements:

(∗) For everyi ∈ [N ] there is ans ≤ r for which 0≤ i − js ≤ K .
(∗∗) No initial segment ofj satisfies property (∗).

Letting H( j) denote the event thatH ′ occurs and the algorithm outputs the
witnessing sequencej, we may decomposeH ′ into a disjoint union by setting
H(r) :=⋃

j∈S(r) H( j) and

H ′ =⋃
r

H(r) =⋃
r

⋃
j∈S(r)

H( j).

Given 1≤ s ≤ r +1 and any sequencej of lengthr containing distinct elements
of [N ], define

missed(s, j) := {
j ∈ [N ] : j − jt /∈ {0, . . . ,K} ∀ t < s

}
,

M(s, j) := |missed(s, j)|.
Vacuously,M(1, j) = N for all j. Figure 1 illustrates this definition whenr0 = 4.
In the illustration, the intervals[js, . . . , js + K] are shaded,j1 is equal toK + 1,
one interval overlaps with[1,K + 1] moduloN and the other two intervals also
overlap. Figure 1 also illustrates a general fact, namely that the setmissed(s, j) (the
white space between the shaded intervals) is always composed of no more thans

intervals (i.e., the unshaded set has at mosts connected pieces), where adjacent
white intervals are separated by a distance of at leastK + 1.

One further observation is that for alls andj,

N ≥ M(s, j) ≥ N − (s − 1)(K + 1).(5.1)

Conditional on the eventR ≥ r + 1 and onj1, . . . , jr , the values of the variables
remaining inC at stager are i.i.d., so the conditional probability ofjr+1 = j for
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FIG. 1.

anyj /∈ {j1, . . . , jr} is equal to the reciprocal of the number of variables remaining
in C, that is, 1/(N − r + (K + 1)M(r, j)). Applying this inductively yields

P(H(j)) =
r∏

s=1

1

N − (s − 1) + (K + 1)M(s, j)
.(5.2)

The(K +1)M(s, j) contribution above comes from the number ofYl,i variables
that are still inC. The above computation can be generalized in the following
useful way. Define the eventH∗( j) by

H∗( j) := H ′ ∩ { j is an initial segment of the output of the algorithm}.
Whenj of lengthr is an element ofS(r), H( j) = H∗( j); otherwiseH( j) is empty
and the right-hand side in (5.2) computes the probability of outputtingj as an initial
segment. To obtainP(H∗( j)) from this, one must multiply the right-hand side
in (5.2) by the probabilityQ( j) that, conditional on the initial segment beingj, the
algorithm eventually outputs TRUE. We compute an upper bound onQ( j), for j
of lengthr , as follows. For each intervalI = [a, b] ⊆ missed(r, j), for theH∗( j)
to happen, it is necessary that maxa−K≤j≤b Yj be greater than maxj∈I,0≤i≤K Yj,i .
This probability of{maxa−K≤j≤b Yj > maxj∈I,0≤i≤K Yj,i} equals

b + K + 1− a

b + K + 1− a + (b + 1− a)K
= (b + 1− a) + K

b + 1− a + (b + 2− a)K

≤ 1

K + 1
+ 1

b + 2− a
.

If missed(r, j) is composed of more than one interval, the probabilities for each
interval are multiplied (since they are at leastK + 1 units apart, everything is
independent) and, therefore, for a givenM(r, j), the upper bound onQ( j) is
greatest whenmissed has only one interval and we may take as an upper bound

Q( j) ≤ 1

M(r, j)
+ 1

K
.(5.3)

We now bound the number of sequencesj that produce a given value ofM(r, j).



KAUFFMAN–LEVIN EVOLUTION MODEL 2167

LEMMA 5.1. Let N = (r − y)(K + 1). Then the number of sequences j of
length r with M(r + 1, j) = ι is at most

NC(r)(yK + ι)r−2.

PROOF. By symmetry, it suffices to consider only sequences for whichj1 <

· · · < jr in cyclic order moduloN and then multiply by(r − 1)!. By convention,
we letj0 := jr −N . For 1≤ s ≤ r , consider the quantitiesAs := js−1+K +1−js

to be unknown and satisfying the following two nice properties:

(a)
∑r

s=1 As = j0 − jr + r(K + 1) = −N + r(K + 1) = y(K + 1);
(b)

∑r
s=1(−As) ∨ 0 =∑r

s=1[(js − js−1) − (K + 1)] ∧ 0 = ι.

Property (b) is a consequence of the fact that the length of the unique (white)
interval that contributes tomissed(r + 1, j), which is contained in[js−1, js],
equals[(js − js−1) − (K + 1)] ∧ 0. The sequence(A1, . . . ,Ar) and the value
j1 together determinej. The number of possible sequences(A1, . . . ,Ar) above
may be bounded as follows. LetS+ be the set of indicesi for which Ai ≥ 0.
GivenS+, the subsequence(Ai : i ∈ S+) is a sequence of nonnegative integers that
sum toy(K + 1) + ι. These sequences are calledcompositions of y(K + 1) + ι

into |S+| parts, and the number of such compositions is
(y(K+1)+ι+|S+|−1

|S+|−1

)
([10],

page 14). Similarly,(Ai : i /∈ S+) is a composition ofι into r − |S+| parts, and
the number of these is

(ι+r−|S+|−1
r−|S+|−1

)
. We claim that the product of the above two

binomial coefficients is bounded above byC0(r)(y(K + 1) + ι)r−2. Indeed, the
product equals

(y(K + 1) + ι + |S+| − 1)!
(|S+| − 1)!(y(K + 1) + ι)! · (ι + r − |S+| − 1)!

(ι)!(r − |S+| − 1)! .
Clearly |S+| ≤ y(K + 1) + ι andr − |S+| ≤ ι, which implies

(y(K + 1) + ι + |S+| − 1)!
(y(K + 1) + ι)! ≤ [

2
(
y(K + 1) + ι

)]|S+|−1

and
(ι + r − |S+| − 1)!

(ι)! ≤ [
2
(
y(K + 1) + ι

)]r−|S+|−1
.

Thus, for a givenS+, there are at mostNC0(r)(y(K +1)+ ι)r−2 suchj sequences
(N comes from the choice ofj1). Summing over at most 2r −2 values ofS+ proves
the lemma. �

As mentioned prior to the statement of Theorem 2.6, the complexity in the
behavior ofpfat(N,K) is due to transitions in the number ofYj variables with
large values from one integer to the next higher. We separate the argument into
several cases, the first three being restricted tor0 = 
N/K� ≥ 3:
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1. r0 − 1+ ε ≤ N/(K + 1) ≤ r0 − ε;
2. r0 − ε ≤ N/(K + 1) ≤ r0;
3. r0 − 1 ≤ N/(K + 1) ≤ r0 − 1+ ε;
4. r0 = 2.

The analyses of Cases 2 and 3 actually cover Case 1 since one could takeε = 1/2,
but since the argument is easier for values ofN/(K +1) not too close to an integer,
we prefer to present this as the first case.

CASE 1. We first computeP(H(r0)). For eachj ∈ S(r0) and eachs ≤ r0, the
expression (5.2) and the bounds (5.1) imply

c(ε) ≤ K2r0P(H( j)) ≤ C(ε) (recallN ∼ r0K).

Together with the fact thatS(r0) has cardinality�(Kr0) (see below for details),
this immediately implies that

P(H(r0)) = �(K−r0).

In this case, we claim thatP(H(r)) is maximized atr = r0. With P(H(r − 1))

trivially being zero, this statement and the theorem follow from a more precise
estimate ofP(H(r0)) and a bound onP(H∗(r0 + 1)).

Let T be ther0-dimensional torus ofr0-tuples inR/Z, with addition modulo 1
and unit Lebesgue measureλ. Fory ∈ [0, r0], define a subsetT(y) = T(y, r0) ⊆ T
to be the set ofx = (x1, . . . , xr0) such that for allz there is aj ≤ r0 with
xj − 1/(r0 − y) ≤ z ≤ xj . Consider the mapping ofS(r0) into T by

j �→ j/N.(5.4)

The setS(r0) then maps into the setT(y) for y = r0 − (N/(K + 1)). In fact, for
anyU ⊆ T(y), the cardinality of the subset ofS(r0) that maps intoU under (5.4)
is equal to(1 + o(1))Nr0λ(U) uniformly in N/K asN → ∞. Furthermore, for
j ∈ S(r0),

P(H( j)) = (
1+ o(1)

)
N−r0K−r0η

(
j
N

)
,(5.5)

where

η(x) =
r0∏

s=1

1

M̃(s,x)
(5.6)

andM̃(s,x) is the measure of[0,1]\⋃s
t=1[xt −K/N,xt ]. Lety = r0−N/(K +1)

and note thaty equalsj/(K + 1) whenN = r0(K + 1)− j for j > 0. By bounded
convergence, we then have

Kr0P(H(r0)) → fr0(y) :=
∫

T(y∧1;r0)
η(x) dλ(x)(5.7)
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(note here that sincey ∈ [ε,1 − ε], y ∧ 1 = y) asN → ∞, uniformly in N/K ,
with fr0(·) bounded, continuous and nondecreasing. This is thefr term in the last
line of Table 1.

Next, we compute an upper bound for the eventH∗(r0 + 1) :=⋃{H∗( j) : j /∈
S(r0), |j| = r0} that an output of TRUE requires at leastr0 + 1 covering intervals.
Multiplying the right-hand side of (5.2) byQ(r0, j) = Q( j), using (5.3) withr = r0
and using the fact thatM(s, j) ≥ C(ε)K for s ≤ r0, we see that

P
(
H∗(r0 + 1)

)≤ ∑
j/∈S(r0)

Q( j)
r0∏

s=1

1

N − (s − 1) + (K + 1)M(s, j)

≤
N∑

s=1

∑
M(r0+1,j)=s

C
1

s

1

K2r0
,

whereC represents a constant that depends only onr0 andε, and the sum is over
sequencesj of lengthr0. By Lemma 5.1, we may further bound this from above
by

P
(
H∗(r0 + 1)

)≤
N∑

s=1

C(yK + s)r0−21

s

N

K2r0

(
N

K
≤ r0 + 1

)

≤ C′ 1

Kr0+1

N∑
s=1

1

s

(
y + s

K

)r0−1
(

N∑
s=1

1

s
∼ log(N) ∼ log(K) + c

)
(5.8)

≤ C′′ logK

Kr0+1 .

Together with (5.7), this establishes that

Kr0P(H ′) → fr0(y).(5.9)

Whenε < y < 1 − ε, the term containingfr in the last line of Table 1 dominates
the term containingfr+1 sincefr(ε) > 0, so this proves the theorem in the case
ε < y < 1− ε andN/(K + 1) ≥ 3.

CASE 2. This is quite similar to the previous case. The part where we
estimated (5.7) goes through unchanged, only nowfr0 tends to zero asN/(K +
1) → r−

0 and we need to find the asymptotic rate to compare to thefr0+1 term.

LEMMA 5.2. The measure λ(T(y, r0)) of T(y, r0) is asymptotically yr0−1/

(r0 − y)r0−1 near y = 0.

PROOF. The setT(y) is invariant under translation of each coordinate by a
constant, so by symmetry the measure is the same as the(r0 − 1)-dimensional
measure of the fiber ofT(y), wherex1 = 0. By permutation invariance, this is equal
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to (r0 − 1)! times the measure of the subset ofT(y), where 0= x1 < x2 · · · < xr0.
Such a point is inT(y) if and only if the quantitiesxi + 1/(r0 − y) − xi+1, for
1 ≤ i ≤ r0 − 1, are positive numbers summing to at mosty/(r0 − y). In fact, the
mapping that maps eachx in the fiber to the sequence(x1+K/N −x2, . . . , xr0−1+
K/N − xr0) is an isometry. The(r0 − 1)-dimensional simplex of positive numbers
summing to at mosty/(r0 − y) has volumeyr0−1/((r0 − y)r0−1(r0 − 1)!), which
proves the lemma.�

As y → 0, the factors 1/M̃(s,x) converge tor0/(r0 − (s − 1)), since the only
way for a vector to be inT(y) is for it to haver0 approximately evenly spaced
coordinates. Therefore, the functionη defined in (5.6) converges to the constant
r
r0
0 /r0! on T(y), and we have

fr0(y) =
∫

T(y)
η(x) dλ(x) ∼ rr0

r0!λ(T(y)) ∼ yr0−1

r0! .

Since the contribution ofP(H(r0 + 1)) to P(H ′) is no longer negligible, we
must compute it a little more precisely as well. If we write it as an integral
analogous to (5.7), we find, forr0 ≥ 3, that the integral

∫
T(1) η(x) dλ(x) exists as

an improper integral, but the integral overT(y) diverges fory > 1. We have shown
thatKr0P(H(r0)) ∼ yr0−1/(r0 − 1)! asy → 0, and we have an upper bound (5.8)
onP(H∗(r0 + 1)). Wheny ≥ K−1/r0, these two together show that still

Kr0P(H ′) ∼ fr0(y).

Assume therefore that

y ≤ K−1/r0.(5.10)

We cannot immediately conclude for 0≤ y ≤ K−1/r0 that

Kr0+1
P
(
H∗(r0 + 1)

)→ fr0+1(1)

and it is our remaining task to verify the above statement. One part of this is easy.
For any positiveL, the functionη1η>L is bounded and, asL → ∞, these functions
converge inL1 to η as long asη ∈ L1, which is the case since we have assumed
thatr0 ≥ 3. Equivalently, the function

g(L) :=
∫

T(1;r0+1)
η(x)1η(x)≥L dλ(x)

converges to 0 asL → ∞ and, by bounded convergence, we may approximate the
truncated sum of the terms in (5.5) by a truncated integral asK → ∞:

Kr0+1
P
(
H(r0 + 1) ∩ {η( j/N) ≤ L})→ (

1− g(L)
)
fr0+1(1).(5.11)
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The theorem, in Case 2, follows if we can show that

P

(
η

(
j
N

)
≤ L,H∗(r0 + 2)

)
≤ C(L)

1

Kr0+2 ,(5.12)

P

(
η

(
j
N

)
≥ L,H∗(r0 + 1)

)
≤ c(L)

1

Kr0+1(5.13)

for c(L) → 0 asL → ∞, uniformly inK . Indeed if these two hold, then forL large
enough so thatc(L) < δ/2 andK then chosen large enough so thatC(L)/K < δ/2,
we have

P

[
H ′∖(H(r0 + 1) ∩

{
η

(
j
N

)
≤ L

})]
≤ δ

Kr0+1
,

which together with (5.11) finishes Case 2.
To prove (5.12), we may use the same argument that proved (5.8), but withr0

replaced byr0 + 1. We sum over sequencesj of lengthr0 + 1 to get

P

(
η

(
j
N

)
≤ L,H∗(r0 + 2)

)
≤ ∑

j/∈S(r0+1)

Q( j)
r0+1∏
s=1

1

N − (s − 1) + (K + 1)M(s, j)

≤
N∑

s=1

∑
M(r0+1,j)=s

C(L)
1

s

1

K2r0+2 .

Here we have used the fact thatη( j/N) ≤ L to bound the product in the first
line by C(L)K−2r0−2; equation (5.3) is valid for anyr , so there is no trouble
replacingr0 by r0 + 1 here. At the next step, instead of requiring Lemma 5.1,
we require only the trivial bound on the number of sequencesj of lengthr0 + 1
with M(r0 + 2, j) = j , namelyCKr0. Following the path to (5.8) leads this time
to (5.12).

To prove (5.13), observe first thatη( j/N) ≥ L implies M(r0 + 1, j) ≤
ε(L)K for some functionε(L) going to zero asL → ∞. This follows from
expression (5.2), according to which all the factors 1/M̃(s, j) in the definition of
η are bounded from below except for the factor withs = r0 + 1, which is of order
K/M(r0 + 1, j). Hence,

P

(
η

(
j
N

)
≥ L,H∗(r0 + 1)

)

≤
ε(L)K∑
s=1

∑
j:M(r0+1,j)=s

Q(r0, j)
r0∏

t=1

1

N − (t − 1) + (K + 1)M(t, j)

≤
ε(L)K∑
s=1

C(r0, ε)(N − r0K + 2s)r0−1 1

s
K−2r0
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≤ C(r0, ε)

Kr0+1

ε(L)K∑
s=1

(
N

K
− r0 + 2

s

K

)r0−11

s
.

This sum is at most twice the integral for which it is an upper Riemann. To be
precise, we consider the sum as a step function, change variables tox = (s +1)/K ,
and compare the upper and lower Riemann sums to integrals, concluding that

Kr0+1
P

(
η

(
j
N

)
≥ L,H∗(r0 + 1)

)

≤ 2C(r0, ε)

∫ ε(L)

0

(
N

K
− r0 + 2x

)r0 1

x + K−1 dx.

As a family of functions on[0,1], the integrands form a uniformly integrable
family as long asN/K − r0 ≤ K−α for someK . By assumption (5.10), this
inequality is indeed satisfied, and we may conclude that the integral from 0 toε(L)

tends to zero uniformly inK asε(L) → 0. This finishes the proof of (5.13) and
therefore of Case 2. We go onto Case 4, coming back to Case 3 later since it uses
some of the computations from Case 4.

CASE 4. Whenr0 = 2, the computation is particularly simple without using
the continuous approximation. The first term in the product in (5.2) is always
1/(N(K + 2)). By symmetry,

P(H(2)) = N
∑

j∈S(2)
j1=1

P(H( j)).

For j1 = 1, so thatj satisfies property (∗), it is necessary to chooseN − K ≤
j2 ≤ K + 2. Also, if j1 = 1, thenmissed( j,2) = {K + 2, . . . ,N} and the second
factor in (5.2) is always 1/(N − 1 + (K + 1)(N − K − 1)). Thus, lettingj =
2(K + 1) − N ∈ {0, . . . ,K}, we have

p(H(2)) = N

N(K + 2)

2K + 3− N

N − 1+ (K + 1)(N − K − 1)

= 1

K + 2

j + 1

N − 1+ (N − K − 1)(K + 1)
(5.14)

= (1+ o(1))
1

K2

j + 1

N − (K + 1) + ((N − 1)/(K + 1))

= (
1+ o(1)

) 1

K2

j + 1

K + 3− j
.

For P(H(3)), a similarly direct argument ensues. IfH(3) occurs viaH( j)
for some j ∈ S(3) with j1 = 1, then sinceH(2) does not occur, eitherj2 ∈
[2,N − (K +1)] or j2 ∈ [K +3,N ]. In the former case,j3 ∈ [N −K,j2+K +1],
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while in the latter case,j3 ∈ [j2 −K − 1,K + 2]. For the first of the two cases, we
then have a contribution top(H(3)) of

1

K + 2

N−K−1∑
j2=2

j2+K+1∑
j3=N−K

1

N − 1+ (K + 1− j)(K + 1)

× 1

(N − 2) + (N − j2 − K)(K + 1)

= 1

K + 2

1

N − 1+ (K + 1− j)(K + 1)
(5.15)

×
N−K−1∑

j2=2

j + j2

N − 2+ (K + 1)(N − K − j2)

= (
1+ o(1)

) 1

K3(1− j/K)

N−K−2∑
s=1

1− s/K

s

= (
1+ o(1)

) logK

K3(1− j/K)
.

Here the third equality comes from the substitutions = N − K − j2 and the
definition of j as 2(K + 1) − N , while the(1 + o(1)) term comes from factors
of order(1 + O(1/K)) that remain once we remove three factors ofK from the
top and bottom of the fraction preceding the sum and one factor ofK from the top
and bottom of the summand. The computation for the second case is symmetrical,
leading to

p(H(3)) = (
2+ o(1)

) logK

K3(1− j/K)
.(5.16)

Comparing (5.16) to (5.14), we see that the former is dominant whenj =
o(logK), the latter when logK = o(j) and both contribute whenj = �(logK).
In particular, (5.14) contributes only whenj → ∞, in which case the contribution
is (1 + o(1)) 1

K
( 1
K+3−j

− 1
K

), while (5.16) contributes only whenj = o(K), in

which case the contribution is(2+ o(1))logK/K3. From these the first line in the
Table 1 follows as a lower bound, with an identical upper bound yet to follow if
we show that changingH(3) to H∗(4) produces no change to the asymptotics.

The difference betweenH(3) andH∗(4) is that in the latter case,j3 can be
element ofmissed(3, (j1, j2)). These are allj ′ not in the interval[1, j2], so the
numeratorj + j2 of (5.15) becomesN − j2. This changes the 1− s/K in the
numerator of the subsequent line to 1+ s/K , which does not affect the sum
asymptotically since all the contribution come froms = o(K).

CASE 3. The analysis of theP(H(r0 + 1)) term in Case 2 works just as well
for N slightly greater thanr0(K + 1), and this becomes thefr term in the last line
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of the table forr = r0 + 1. Sincer0 ≥ 3, Case 2 handles thefr terms forr ≥ 4. It
remains only to analyze thef3 term appearing in line 2 of the table.

We borrow the analysis from Case 4. Now the eventH(2) cannot happen,
so we need to evaluateP(H(3)), show it gives the asymptotics stated in the
theorem and then show that addingP(H∗(4)) does not alter the asymptotics.
Let N = 2(K + 1) + j . Assumej1 = 1, so the first interval thrown out ofC is
[1,K +1]. To cover in three intervals, the second interval thrown out must overlap
the first or be contiguous to it: otherwiseC will be two disjoint intervals and will
have diameter more thanK , whence one more step will not suffice to cover it.
Again we may consider only the case where the second interval is contiguous to the
right of the first and then double to count the case where the second is contiguous
to the left of the first. The value ofj2 cannot bej or less, since this would leave
C with cardinality greater thanK + 1, which is too large a set to cover in one
additional step. Thus, before doubling, the allowable range forj2 is [j +1,K +2].
The corresponding range forj3 is [N − K,j2 + K + 1]. Equation (5.15) now
becomes

P(H(3))

2
= 1

K + 2

1

N − 1+ (K + 1)(K + 1+ j)

×
K+2∑

j2=j+1

j2 − j

N − 2+ (K + 1)(K + 2− j2 + j)
(5.17)

= 1+ o(1)

K3(1+ j/K)

K+2−j∑
s=1

1− j/K − s/K

j + 1+ j/K + s
,

which is bounded whenj/K ∈ [ε,1/2] and ast := j/K → 0+ due to

K+2−j∑
s=1

1− j/K − s/K

j + 1+ j/K + s
≤

K+2−j∑
s=1

1

j + 1+ j/K + s

≈ log
(
K(1− t) + 2+ Kt

)− log(Kt) = log
(

K + 2

Kt

)
,

by

1+ o(1)

K3
log

(
1

t

)
.

Doubling yields, as a lower bound, the expression in the second line of Table 1 for
r = 3; for the upper bound, it remains to get an upper bound onP(H∗(4)).

We must sum this time over two types of sequences(1, j2, j3). The first are
those withj + 2 /∈ [j + 1,K + 2]; these do not appear inH(3) because it is not
possible to cover[N ] in three intervals starting this way. The second are sequences
wherej2 ∈ [j + 1,K + 2] but (1, j2, j3) /∈ S(3); these do not appear inH(3)
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because the third interval did not complete the cover of[N ], where a different
choice ofj3 could have completed the cover. Analyzing the second of these two
types repeats the analysis from the last paragraph of Case 4. That is, allowing these
values ofj3 replaces 1−j/K −s/K in the numerator of (5.17) by 1+j/K +s/K ,
which does not affect the leading term whenj = o(K) and otherwise multiplies
by a bounded factor, which we absorb into the definition off3.

The first of the two types of sequences splits into subtypes:−j ≤ j2 ≤ j (in
which case you do not cover enough new ground to be able to complete coverage
in three steps) orK + 3 ≤ j2 ≤ K + 1 + j [in which case the setmissed(2, j)
splits into two intervals and cannot be covered by one more interval]. For the first
subtype,M(3, j) is always at leastK , so the sum over sequences of this subtype
is O(K−3). For the second subtype,M(3, j) = j . For eacht there is exactly one
value of j2 for which missed(2, j) is composed of disjoint intervals sizest and
j − t in that order. Given that this occurs for somet , one may reason as in (5.3)
to see thatQ( j) ≤ 2/(t (j − t)). Thus the total probability of the second subtype is
bounded above by

CK−3
j−1∑
t=1

2

t (j − t)
= O

(
K−3 logj

j

)
and since this is negligible compared toK−3 log(K/j), the proof in Case 3 is
complete.

6. The fat tail when K = 1. In this section, we prove Theorem 2.6. For
convenience we add a variableY0 to get an i.i.d. collectionC := {Y0, Yj , Yj,i : 1 ≤
j ≤ N,0 ≤ i ≤ 1} and define the event̃H0 to hold whenY0 ∨ Y1 ≥ Y1,0 ∨ Y1,1.
LettingH∗ = H̃0 ∩⋂N

j=1 H ′
j , it is evident that

P(H∗) ≥ pfat(N + 1,1)

by monotonicity of probability, and from Harris’ (positive association) inequality
we see that

pfat(N + 2,1) ≥ P(H ′
N+2 ∩ H ′

N+1 ∩ · · · ∩ H ′
2) · P(H ′

1) = P(H∗) · P(H ′
1).

SinceP(H ′
1) = c > 0 independently ofN , it suffices to prove Theorem 2.6 for

pN := P(H∗) in places ofpfat(N,1).
Having sliced open the circle, it is possible to derive a recursion forpN . Observe

that the order of the variables inC, namely{Yj ,Yj,i , Y0 : 1 ≤ j ≤ N,0≤ i ≤ 1}, is
uniform among the(3N + 1)! permutations, and that the permutation determines
whetherH∗ has occurred. ForH∗ to occur, it is necessary that the maximumM
of variables inC beYj for somej . Thus

pN =
N∑

j=0

1

3N + 1
P(H∗|Yj = M).
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These conditional probabilities may be evaluated recursively. IfY0 = M , then
further information aboutY1,0 and Y1,1 is irrelevant and the ordering of the
remaining 3N − 2 variables is uniform, leading to

P(H∗|Y0 = M) = pN−1.

To ensure this holds forN = 1, we setp0 := 1. Similarly,

P(H∗|YN = M) = pN−1.

Now supposeN ≥ 2 andYj = M for some 1< j < N −1. ThenH ′
j andH ′

j+1 are
known to occur. Removing from consideration the variablesYj , Yj,i andYj+1,i for
i = 0,1, the remaining variables are broken into two subsets of size 3(j − 1) + 1
and 3(N − j − 1) + 1; the ordering on the union of these is still jointly uniform,
leading to

P(H∗|Yj = M) = pj−1pN−j−1.

This equation is readily verified forN ≥ 2 andj = 1 orj = N −1 as well. Putting
these together gives the recursion

pN = δ0,N + 1

3N + 1

(
2pN−1 +

N−1∑
j=1

pj−1pN−j−1

)
(6.1)

= 1

3N + 1

(
2pN−1 +

N∑
j=2

pj−2pN−j

)
,

which holds for allN due to the inclusion of the delta function.
Let f (z) := ∑∞

N=0 pNzN . Since we know (by submultiplicativity) that
logpN/N → log(λ) for someλ ∈ (0,1), the radius of convergence for the power
series definingf above will be 1/λ. The generating function for(3N + 1)pN is
equal tof + 3zf ′. The generating function forδ0,N is 1, the generating function
for 2pN−1 is 2zf and the generating function for

∑N
j=2pj−2pN−j is z2f 2. Equa-

tion (6.1) then becomes a Riccati equation:

f + 3zf ′ = 1+ 2zf + z2f 2.(6.2)

From the derivation it is apparent that this functional equation has a unique
formal power series solution,f , and since|pN | ≤ 1 for all N , the series represents
a function, also denotedf , that is analytic in a neighborhood of the origin. Only
one locally analytic function can satisfy (6.2). To see this, writeg(z) = zf (z3) so
that g′ = 1 + 2z2g + z4g2 := F(z, g) with boundary valueg(0) = 0. SinceF is
bounded and Lipschitz in a neighborhood of the origin, Gronwall’s lemma ([5] or
implicit in the classical uniqueness result [1], Theorem 2.2) says there is at most
one suchg in the set of functions differentiable near 0.

Thus f is the unique locally analytic solution to (6.2), whence we may use
Maple’s ordinary differential equation solver to find solutions to (6.2) and be
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rigorously assured that any such solution we can verify by differentiation must
equalf . One finds that for any real constantA, there is a solutionfA which is a
ratio of Bessel functions. Its numerator is equal to

num := (
ABesselI

(−1
3, 2

3

√
2z
)+ BesselK

(1
3, 2

3

√
2z
))

and its denominator is equal to

den := √
z
(−A

√
2 BesselI

(2
3, 2

3

√
2z
)+ A

√
z BesselI

(−1
3, 2

3

√
2z
)

+ √
2 BesselK

(2
3, 2

3

√
2z
)+ √

z BesselK
(1

3, 2
3

√
2z
));

here BesselI and BesselK denote modified Bessel functions of the first and second
kinds, respectively. It is not yet clear whether one of these solutions isf .

As a fractional power series,fA has a leading term ofz−1/3, so certainly if
fA = f , thenA must be chosen to make this term vanish. Solving forA yields
A = −π

√
3/3, and plugging this into the expressions fornum andden leads to

a function with a power series, a priori fractional, beginning with 1+ z/2 + · · · .
The series converges in a neighborhood of the origin, so it defines a function that
is 1+ O(z) nearz = 0. Any function that is 1+ O(z) near the origin and satisfies
the differential equation (6.2) must be analytic in a neighborhood of the origin. We
have therefore found the functionf .

Sincef has positive coefficients, its minimal modulus singularities lie on the
positive real axis. Its functional form dictates thatf has positive real singularities
precisely at the zeros ofden. We may approximate these as closely as we
wish. Maple’s numeric solver givesz0 := 1.803034611. . . (the constant is not
recognized by Plouffe’s inverse symbolic calculator). Thus

logpN

N
→ − logz0 = −0.58947114. . . ,

which finishes the proof of Theorem 2.6.
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