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STRONG MEMORYLESS TIMES AND RARE EVENTS IN
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Let W be the number of points ifD, 7] of a stationary finite-state Markov
renewal point process. We derive a bound for the total variation distance
between the distribution d¥ and a compound Poisson distribution. For any
nonnegative random variable we construct a “strong memoryless timg”
such that¢ — ¢ is exponentily distributed conditional on¢ <1¢, ¢ > 1},
for eacht. This is used to embed the Markov renewal point process into
another such process whose state space contains a frequently observed state
which represents loss of memory in the original process. We then Write
as the accumulated reward of an embedded renewal reward process, and
use a compound Poisson approximatierror bound for his quantity by
Erhardsson. For a renewal process, the bound depends in a simple way
on the first two moments of the interrenewal time distribution, and on two
constants obtained from the Radon—Nikodym derivative of the interrenewal
time distribution with respect to an exponential distribution. For a Poisson
process, the bound is 0.

1. Introduction. Inthis paper, we are concerned with rare events in stationary
finite-state Markov renewal point processes (MRPPs). An MRPP is a marked point
process orR or Z (continuous or discrete time). Each point of an MRPP has an
associated mark, or state. The distance in time between two successive points and
the state of the second point are jointly conditionally independent of the past given
the state of the first point. A renewal process is a special case of an MRPP, and any
finite-state Markov or semi-Markov process can be constructed using a suitable
MRPP, simply by defining the state of the process at tin® be the state of the
most recently observed point of the MRPP.

The number of points of a stationary MRPP (i ] with states in a certain
subsetB of the state space is an important quantity in many applications. For
example, the number of visits ® in (0, ¢] by a stationary Markov chain can be
expressed in this way. If points with statesBnare rare, this quantity should be
approximately compound Poisson distributed. Heuristically, the set of such points
can be partitioned into disjoint clumps, the sizes of which are approximately i.i.d.,
and the number of which are approximately Poisson distributed. For a further
discussion, see Aldous (1989).
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In this paper, the main result is an upper bound for the total variation distance
between the distribution of this quantity and a particular compound Poisson
distribution. The bound can be expressed in terms of the first two moments of the
interrenewal time conditional distributions, and on two constants obtained from
each Radon—Nikodym derivative of an interrenewal time conditional distribution
with respect to an exponential distribution, by solving a small number of systems
of linear equations of dimension at most the total number of states. This is explicit
often enough to be of considerable interest.

We briefly describe the ideas in the proof. If a single stateB¢ is chosen, we
can construct a bound of the desired kind by expressing the quantity of interest
as the accumulated reward of an embedded renewal reward process, for which the
points with statez serve as renewals. We then use Theorem 5.1 in Erhardsson
(2000b) which gives a compound Poisson approximation error bound for the
accumulated reward. However, the bound is small only if points with states
frequently observed. For many Markov chains, there exists a frequently observed
statea [see Erhardsson (1999, 2000a, 20014, b)], but in many other cases no such
a exists.

To solve this problem, we study the pair of random varialded’), whereg is
the distance between two successive pointslansithe state of the second point.

We construct a probability space containifgg V) and a third random variable
such that, for allz, conditional on{Z‘ <t, ¢ > t}, the pair(¢ — ¢, V) has the
distributionv, x u, wherev, is an exponential (or geometric) distribution with
meany —1, andu is a fixed distribution. One might say that the evegnt 7, ¢ > 1}
indicates a loss of memory at or befareFor this reason, we call a “strong
memoryless time.”

Using strong memoryless times, we embed the stationary MRPP into another
stationary MRPP whose state space contains an additional state 0. The points with
states different from 0 also belong to the original MRPP. The points with state 0
represent losses of memory in the original MRPP, and are frequently observed if
the original MRPP loses its memory quickly enough. The bound is then derived by
an application of Theorem 5.1 in Erhardsson (2000b) to the accumulated reward
of a renewal reward process embedded into the new MRPP, for which the points
with state O serve as renewals.

In the last section, we compute the bound explicitly for an important special
case: the number of points (9, ] of a stationary renewal process in continuous
time. The bound is 0 if the interrenewal times are exponentially distributed, that
is, if the renewal process is Poisson. We intend to present other applications of our
results in the future.

It should be emphasized that the results in this paper are not limit theorems,
but total variation distance error bounds which are valid for all finite parameter
values. If desired, they can be used to derive limit theorems for various kinds of
asymptotics, by showing that the bound converges to 0 under these asymptotics.
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They can also be used to bound the rate of convergence in limit theorems, by
bounding the rate of convergence of the error bound.

It should also be mentioned that the literature contains a number of results
concerning weak convergence to a compound Poisson point process, for special
kinds of point processes (e.g., thinned point processes, or point processes
generated by extreme values). Most of these are pure limit theorems without error
bounds; see, for example, Serfozo (1984) and Leadbetter and Rootzén (1988).
A few error bounds also exist, but not intended for processes of the kind studied in
this paper, and derived using methods very different from ours; see, for example,
Barbour and Mansson (2002).

The rest of the paper is organized as follows. In Section 2, some basic notation is
given. In Section 3, we give necessary and sufficient conditions for the existence of
strong memoryless times, and derive some of their relevant properties. In Section 4,
we derive bounds for the total variation distance between the distribution of the
number of points of an MRPP i, ¢] with states inB and a compound Poisson
distribution. In Section 5, we consider the number of point®in] of a stationary
renewal process, and obtain a more explicit expression for the bound.

2. Basic notation. Sets of numbers are denoted as folloWs= the real
numbersZ = the integersR, = [0, o0), R/, = (0, ), Z, ={0,1,2,...} and
Z; = {1, 2,...}. The distribution of any random elemekt in any measurable
spacgS, .) is denoted byZ’(X). The Borels -algebra of any topological spase
is denoted byAs.

A compound Poisson distribution is a prdiidy distribution with a character-
istic function of the formp (r) = exp(— fRL (1— e'™)dn(x)), wherer is a mea-

sure on(R’ "@Rﬁr) such that[R;(l A x)dm(x) < oo. It is denoted by POI().

If 7|l =7 (R) < oo, then POI$7) = X(folei), where.Z(T;) = = /||| for
eachi e Z, U ~Po(|| 7)), and all random variables are independent.

The total variation distance is a metric on the space of probability measures on
any measurable spacg, .). It is defined for two such measuresandv, by

dtv(v1, v2) = sup|vi(A) —v2(A)|.
AeS

3. Strong memorylesstimes. In Theorems 3.1-3.3, we define strong memo-
ryless times, give necessary and sufficient conditions for their existence, and derive
some of their relevant properties. Note that Theorem 3.1 holds under more general
conditions than are needed in Section 4. This will facilitate other applications in
the future.

By v, we mean the exponential distribution with meant.

THEOREM 3.1. Let (¢, V) be a random variable taking valuesin (R, x S,

Pr, x ), where (S, .) isameasurable space. Let 11 be a probability measure
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on (S, .%). Assumethat o : Ry — [0, 1] satisfies

(3.1) )< inf “W=LVIEC)
CG%R;X,SJ (vy x w)(C)
(vy xpu)(C)>0

Vit €R+,

and that G: R, — R, defined by G(r) = o (¢)e"?, is nondecreasing and right-
continuous. In particular, these conditions are satisfied if equality holdsin (3.1).
Then we can define, on the same probability spaceas (¢, V), a nonnegativerandom
variable  (called a strong memoryless timejich that

P <t,;<u,VeA)
(3.2) =P <tAu,VeA +ao()(l—e " )u(A)
V(I,M,A)€R+XR+Xy,

and such that P(Z <¢) =1and Z((¢ — 1, V)|{ <t,¢ > 1) =v, x u for each
t € R,.. Conversely, assumethat the nonnegativerandomvariable Z, defined on the
same probability spaceas (¢, V), satisfiesP(; <¢) =1and ZL((¢ —t, V)| <t,
¢ >1t)=v, x u for eachr € Ry. Then o :R; — [0, 1], defined by o (¢) =
P(Z <1,¢ > 1), satisfies (3.1),and G : R, — R, defined by G (1) = o (t)e??, is
nondecreasing and right-continuous.

PrROOE For notational convenience, exteadto a functiono :R — [0, 1]
by definingo (r) = 0 for eachr < 0, and defineF:R x R x .¥ — [0, 1] by
F(t,u,A)=P@ <tAu,VeA+o)(1—e 7)1, (A). Itis easyto see that
if we can define a random variabie, ¢, V) taking values iR x R x §, &r x
PHr x ) such that

PC<t,i<u,VeA) =F@t,u,A) V@t u A)eRxRx.7,

thenP(; <¢)=1and.2((¢ —1, V)| <t,¢ > 1) = v, x pu for eachr € R,.
Hence, for the first part of the theorem it suffices to prove that there exists a
probability distributiom.r on (R x R x §, Br x Br x .¥) such that

Ap((—00,1] x (—oo,u] x A)=F(t,u, A)  V(t,u,A)eRxRx.7.
To do this, we use Theorem 11.3 in Billingsley (1986). Defieby
H={(a,b] x (c,d] x A;, —c0<a<b<oo,—0c0<c<d<o00,Ac.S}.

Clearly, 77 is a semiring generatinggr x %r x .. Define a set function
Ap . — R by

Ar((@,b] x (c,d] x A)
=F(b,d,A) — F(a,d,A) — F(b,c, A)+ F(a,c, A)
=P(¢ € (a,b]1N (c,d], V € A) + o (b)(e V7Pl — 77ld=0lt)  (A)
—o(a)(e7Vlemde —emvld=aley (A V(a,b] % (c,d] x A€ .
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Using the facts that satisfies (3.1) and thai is nondecreasing, it can be shown
thatA g is nonnegative. For example df< b < ¢ < d, we get

Ar((a, b] x (c,d] x A)
= (b)(e VD) — eV E@D)) (A
_ U(a)(e—y(c—a) _ e_y(d_“)),u(A)
= (e —e ") (o b)e”” — o (a)e”*)u(A) = 0,

while if a < ¢ < b <d we get

Ar((a,b] x (¢, d] x A)
=P(¢ €(c,b],VeA) +ab)(1l—e 74D\ u(A)
_ G(a)(e—y(c—a) _ e—y(d—a))M(A)
=P(¢ €(c,b],VeA)+a(b)e’’ (e’ —e 7 u(A)
—o(@e (e —e " Du(A)
>P( €(c,bl,VeA)—a(@)e’ (e —e ") u(A) > 0.
We now show that ¢ is countably additive o7’. In other words, we assume that
(a,b] x (c,d] x A=U2 (ai, bil x (ci, di] x Aj, where(a, b] x (c,d] x Ae A,

(ai,bi] x (ci,di] x A; € A for eachi € Z/_, and the set$(a;, b;] x (c;, d;] x
A;;i € ZI ) are disjoint, and show that

(3.3) rr((a, b] x (¢, d] x A) ZAF (@i, bil X (ci, di] x A;).
Define Fa:R x R — [0, 1] by Fa(t,u) = F(t,u, A) [where A is the same set as

in (3.3)]. Define also the semiring?”* and the set functiohr, : 77* — R by

% ={(a,b] x (c,d]; —o0o<a <b <00, —00 <c<d < o0};
rr,((a,b] x (c,d]) = Ap((a, b] x (c,d] x A) Y (a,b] x (c,d] € *.
Clearly, F4 is continuous from above, and it was shown earlier thaf is
nonnegative. It therefore follows from Theorem 12.5 in Billingsley (1986) that

Ar, can be uniquely extended to a measurgRrx R, Zr x Hr), which in turn
implies thathp, x p is a measure ofR x R x §, Zr x Br x .¥). Hence,

Ary((a, b1 x (c, dl)u(A) = Z)\FA ((ai, bi1 x (ci, dil) (A,
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from which (3.3) will follow if we can show that

Y P(¢ € (@i, bil N (ci di]. V € A)u(A))
i=1

=Y P(Z € (ai, bil N (ci, dil, V € Ai)iu(A).
i=1

But this follows from the facts that
P(¢ € (a,b]N(c,d],V € A)u(A) = ZP(e(a,, 1N (ci,dil, V € A)u(A;)
and
P(¢ € (a,b]N (c,d],V € A) = i[@(g € (ai, bilN (ci,di], V € A;).
i=1

This concludes the proof of the first part of the theorem.

We next show that ilo is chosen so that equality holds in (3.1), th&nis
nondecreasing and right-continuous. lL@te 931&; x . and define, for each
teRy, C'={(x+1,y);(x,y) € C}. Itis easy to show thatv, x u)(C") =
e 7' (v, x u)(C) for eachr e R,. Hence, for each & s <1 < oo,

P((¢—1,V)eC) Pt —s,V)eC'™%)e V=9

’

vy x W(C) (vy X W)(C'=%)
implying that
— vt
G = inf P((¢ —1,V)€C)e
Ce:%]R/ery (vy x u)(C)
(vy xu)(C)>0
P _ t—s\,VS
= int S osVIEC D gy,
CE%R; x.7 (Vy X H/)(Ct_s)
(vy xpu)(€)>0

S0 G is nondecreasing. Next, fixe Ry and choose a sequenfg; e %’R; X
<k e Z,} such thai(v, x u)(Cy) > 0 for eachk € Z/, and

im P((¢—1,V)eCy) . P((¢—t,V)e C).

k—oo (v, x W(Ck) Cedby x (vy x W)(C)
(vy xu)(C)>0

For eachk € Z/, and u € R, define Cy, = C¢ N ((u,00) x S§) and
Ck‘j ={(x —u,y); (x,y) € Cr,u}. Then, for eaclk € Z/_ and each: € R such
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that(v, x u)(Cru) >0,

. P —t—u,V)eC)et+w
Getuw= inf u,V)eCe
CeBy) xS (vy x w)(C)
(vy xpu)(C)>0

P -r-u Ve Cre’ ™ (¢ —1,V) e Cru)e
N y X w)(Cr) iy x (Cr)

This implies that lim SUpoG(r +u) < G(), and sinceG is nondecreasing, it
must be right-continuous. .

For the last part of the theorem, assume that a nonnegative random variable
can be defined on the same probability spadg a8), such thaf’(¢ <¢)=1and
L& —t, V)¢ <t,¢>1t)=v, x uforeachr e R;. Then,

P((¢ =1, V) €C) = (vy x W(OPE 1,2 >1)
+P((¢—1,V)eCIE>1,0 > )P >1,¢ >1)
V¢, C) €R+ X ('%’R; Xy),

which implies thato : Ry — [0, 1], defined byo () = ]P’(Z' <t,¢ >t), satis-
fies (3.1). Moreover, (3.2) holds with defined in this way, which implies that
ifa<b<c<d,then

P(¢ € (a,b, ¢ € (c,d))
=o(b) (e_V(C—b) _ e—y(d—b)) _ o.(a)(e—y(c—a) _ e—y(d—g))
= (7 =N (ob)e"” —o(@e’) =0,

soG is nondecreasing, and clearly also right-continuous.

THEOREM 3.2. Let (Z,¢, V) be a random variable taking valuesin (R x
Ry x S, Br, x Br, x.7), where (S,.7) is a measurable space Let u be a

probability measureon (S, ). Defineo : Ry — [0, 1] by o (7) —]P’(; <t,{>1).
IfP( <¢)=1land Z((¢ —1, V)| <1, ¢ >1)=v, x uforeachreRy,then

3((;‘,;‘ ;,V)|§<;)—g(§|§<§)xvyX[/L,Where

P(g‘gz,&<g)=a(:)+y/(:a(x)dx VieR,
and
PC=¢<t,VeA)

=P §t,VeA)—u(A)y/Otcr(x)dx V(t,A) eRy x 7.

Conversely, if P(¢ < ¢) =1and .2 ((§. ¢ =, V)IE <¢) = ZCIE <) x vy xp,
then Z((¢ —t,V)|¢ <t, ¢ >1)=v, x uforeachr e R,.
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PrROOF From (3.2), and using bounded convergence, we get

P(Z €(0,7]1,¢ — ¢ €(0,ul, V € A)
= ,V'E"OOZP( ( Nl)t, %]4“ S (% % +u}, Ve A)
: N it
= j(A) ngnoo<<1—e—V")izzla(ﬁ>
N
— (&Y UIN) _ gy @/ N+ Z < [ = 1)t>>

N

- () (52
i=1

N .
+ M(A)(l— e_VM) Nli_r)noo(l_ e—y(t/N)) Za((l ;V].)t>

i=1
V(I,M,A)ER+ XR+ x 7.

The first sum telescopes. For the second sum, we note tisd®iemann integrable
on [0, ]. This holds since the functiof : R, — R, defined byG () = o (r)e?”,

is nondecreasing, hence Riemann-Stieltjes integrablg0on with respect to

a: Ry — [0,1], defined byu (1) =1 — e~ 7’; see Theorems 6.9 and 6.17 in Rudin
(1976). This gives

P(; €(0,1],¢ — ¢ € (O, u], V € A)
—u)a-e (00 0@+ [ otdx)
V(t,u,A) e Ry x Ry x .7,
To complete the proof of the first part of the theorem, note that
P(=0,¢€(0,ul,V e A)=u(A)(1—e "0 (0),

andthatP(( =¢ <t,Ve A) =P <t,VeA) —PC <1, <L,V € A). For
the second part of the theorem,

P —t<u,VeA<t,l>1)
=E(e" ¢ <18 <g))(e77 — e ) u(A)
=P <t,t>0DA—e"Hu(A)  Vt,u,A)eRy xRy x.7. O
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THEOREM3.3. Lettheconditionsof Theorem3.1hold with S afinite set, and
let f:R; x § — R bethe Radon-Nikodym derivative with respect to v, x p of
the part of .Z(¢, V) which is absolutely continuous with respect to v,, x . Then,

P(¢—1,V)eC)

inf =e V" essinf f(x) VieR,.
CG%R/+ xS (vy x w)(C) xe(t,00)x S
(vy xu)(C)>0

PROOF The “>” part is easy. For the £” part, we use Theorem 35.8 in
Billingsley (1986). For each € Z, let.%#, be thes -algebra generated by the sets
{(k27", (k +1)27"] x {s}; k € Z4,s € S}. It is well known thato (;2 %) =
Py x HBs. Therefore, fow, x u—almostevery e R x S, f(x) is the limit of
ratios of the kind appearing on the left-hand sidel

REMARK 3.1. The strong memoryless timdor which equality holds in (3.1)
is optimal in the sense th&(¢ < |¢ > 1) is maximized uniformly overall € R..

REMARK 3.2. Theorems 3.1 and 3.2imply thais a strong memoryless time
for (¢, V)ifandonlyif (¢,¢ —¢, V) = x(no, n1, V1) + (1 — x)(n2, 0, V2), where
the random variableg, no, n1, V1 and (2, V») are independenj; takes values
in {0, 1}, n1 is exponentially distributed with mear1 and.#Z(Vy) = u. Clearly,
o(t) =P <1, >1)=P(x = DE( 7719 {ng <1}).

REMARK 3.3. LetS = {1}, and letf be the Radon—Nikodym derivative of
Z(¢) with respect to the exponential distribution with meant.

1. Assume thatf () > lim,_« f(u) =c > 0 for all t € R;.. Then, the optimal
choice ofo is o (1) = ce””" which, by Theorem 3.2, implies th&(x = 1) =c¢
andno=0.

2. Assume thatf is nondecreasing. Then, the optimal choicecofs o (¢) =
f(H)e~" which, again by Theorem 3.2, implies that= 1 andP(ng < 1) =
f@®e "'+ P <) foreachr e Ry.

REMARK 3.4. The strong memoryless times were originally inspired by
another construction, the strong stationary times used in Aldous and Diaconis
(1986, 1987) and Diaconis and Fill (1990) to bound the rate of convergence
of a finite-state discrete-time Markov chaify;;i € Z,} to the stationary
distribution . A strong stationary timg" is a randomized stopping time such
that £ (n;|T < i) = u for eachi € Z,. It seems unlikely that strong stationary
times could be used (even in the restricted setting of discrete-time Markov
chains) to solve the problem considered in the present paper, without significant
modifications leading in the end to the construction of strong memoryless times.

Strong memoryless times are also related to a construction due to Athreya and
Ney (1978) and Nummelin (1978), known as splitting. This is an embedding of a
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discrete-time Markov chain on a general state space (satisfying an irreducibility
condition) into another Markov chain on a larger state space which contains
a recurrent single state. In general, this recurrent state need not be frequently
observed, so splitting does not suffice (even in the discrete-time Markov chain
setting) to solve the problem considered in the present paper.

We end this section with lattice versions of the preceding theorems. The proofs
are analogous to those above, but simpler, since right-continuity is trivial in the
lattice case.

THEOREM 3.4. Let the conditions of Theorem 3.1 hold, with the following
changes: R, isreplaced by Z., v, is the geometric distribution with mean y 1
and e77 is replaced by 1 — v in the definition of G and in (3.2). Then, all the

assertions of Theorem 3.1remain valid.

THEOREM 3.5. Let the conditions of Theorem 3.2 hold, with the following
changes. R, is replaced by Z,, and v, is the geometric distribution with
mean y ~1. Then, all the assertions of Theorem 3.2 remain valid, with [§ o (x) dx

replaced by Y-/ Z3 o (i).

4. Markov renewal point processes. In this section we use the results in
Section 3 to address the problem described in Section 1. Recall that we wish to
find a bound for the total variation distance between the distribution of the number
of points of an MRPP ir0, 7] with states inB, and a suitable compound Poisson
distribution. We assume that the reader is familiar with the basic theory of marked
point processes. Good references are Rolski (1981), Franken, Kénig, Arndt and
Schmidt (1982) and Port and Stone (1973).

We begin with the definition of an MRPP. Lef = {1,..., N}, and let
{(¢7, V5,1); i € Z} be a stationary discrete-time Markov chain taking values in
(R4 x S, Zr, xs), with a transition probabilityp such thatp((z,s), ) = p(s, -)
for each(z,s) € Ry x S. Assume thai{Vl.S;i € 7} is irreducible, and that &

E({OS) < 00. (We collectively denote these conditions by CO.)

Foreachd C S, let{(¢, VA ,); i € Z} have the distribution? ((¢*, V3.1): i €
Z|Vg € A), and defingU?; i € Z} by Uy =0,U/ = X' ¢# foreachi > 1, and
Uf = —Z]T:li ¢/ for eachi < —1. Define the point process” on (R x S, Zrxs)
by WA() = Y H{WUA, V) € -}. WA is a Palm version (with respect to marks
in A) of an MRPP.

Next, define the point procedson (R x S, Brxs) by

vt
E(fy * g6 (¥))dr)
EWU%)

1

(4.1) E(g(¥)) =

=t
VeeF ymxs)
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where }‘}(Rxs) are the nonnegative Borel functions on the space of counting
measures ofR x S, Brxs), T{' = min{i > 1; V4 € A} and@ is the shift operator,
defined byg; (V) ((a, b] x -) = ¥ ((a + ¢, b+1t] x -). This definition is independent

of the choice ofd, andW is a stationary marked point process. There exist random
variables{(U;, V;);i € Z} (where--- < U_1 < Ug <0 < Uz < ---) such that
W)=z I{(U;, V;) € -}. Vis astationary MRPP.

The quantity that we are interested in can be expressdd(@k ] x B). We
assume without loss of generality thit= S, since otherwise we can replade
by its restriction taR x B, %r« ), Which is also a stationary MRPP.

Analogously, we may define, using a stationary discrete-time Markov chain
(¢, V5.):i € Z} taking values in(Zy x S, %z, «s), a stationary MRPP in
discrete time. In this case, for eaehc S, the distribution of¥ is given by a
discrete version of4.1), where the integral is replaced by a sum over the integers
{o,...,Ufiq —1}.

We now explain how to use strong memoryless times to embed a stationary
MRPP into another stationary MRPP which has favorable properties from the
point of view of compound Poisson approximation. Consider a stationary discrete-
time Markov chain{(;7, V5 1); i € Z} on the state spad® x S, Zr, «s) With
transition probabilityp, satisfying condition CO. Denote by, the exponential
distribution with meary —1, and letu be a probability measure ais, Zs). For
eachs € S, assume that, : Ry — [0, 1] satisfies

P —t, VS e C|VS =
@2) o< inf & i) €ClVg =5)
Ce%R/+ X B (vy x W)(C)
(vy xpu)(C)>0

Vit €R+,

and thatG,:R; — R,, defined byG,(r) = o,(¢)e?’, is nondecreasing and
right-continuous. Assume also thg§® os(r)dr > 0 for at least ones € S.
(We collectively denote these conditions by C1.) Let= S U {0}, and let

{(Ef , \71.5+1); i € Z} be a stationary discrete-time Markov chain on the state space
Ry x S, %&Xg), with a transition probabilityy defined for eaclis, s') € § x §
by

55 10, u] x {0)) = oy () + 7 /0 "oyt d,

55, 10, 1] x (') = p(s. [0, ul x {s}) — u(s)y /O "oyt dt,

P(0,[0,u] x {0}) = (L —&)(1— e~ /o),
50, [0, u]l x {s'}) = u(se(l— e~ V7M.

wheree € (0, 1). For eachd C S, let WA(-) = X7 I{(Uf, Vi) € -} be the Palm
version (with respect to marks iA) of the MRPP associated with(¢;*, V5 ,);
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i €2}, and letw® = w{%, ¥4 is a point process ofR x S, By, 5). Heuristically,
0 is a frequently observed state f&r* if ¢ is small enough, and if the MRPP4
loses its memory quickly enough after each occurrence of a pomt Lefalso-
Yiez 1{(U;, V;) € -} be the stationary MRPP associated V\{I(Lh,s 1) i €Z}.

The following fact is now crucial, since it implies that we have constructed an
embedding: the restriction ob to (R x S, Zryxs) has the same distribution as
W. To see this, leCy, ..., C; be disjoint subsets dR x S, let Cl.’ ={(x+1,y);
(x,y) € C;} for eacht € Ry and let ny,...,n; be nonnegative integers.
Applying (4.1) with A = S gives

USg
LB E(fo * [Tica S (C) =ni}dr).
(rwier=n) 505

Clearly, we may replac&S(-) by Y;;, I{(US , VSS) € -}, where-.- <75, <

To =0< rl < ... are the random integefs Z VS € §}. It is straightforward
to show, using Theorems 3.1 and 3.2 and the strong Markov property, that the

random sequeno{QUS — U VS, )i € Z} is a stationary Markov chain with
Tit1 l 1+l
transition probabllltyp, that is, it has the same distribution {asl , il) i €Z}.

Hence,{(UT. ,st),z € Z} has the same distribution 46U?, V5);i € Z}, and

since¥S () =Y,z I{(UI.S, Vl.S) € -}, the proof is complete.
Finally, we need the following tools. Defingx?, ¥?); i € Z} by (X2, Y2 =

770 .0 0 0 0 0 i
(Ufio, 71— 1 —1),where--- <17, <75 =0< 1y <---aretherandom integers

{i € Z; V2 = 0}. The strong Markov property implies thaex?, , — X?, v

i € 7} is an i.i.d. sequence. L&P() = 3., I{(X?, ¥?) € -} be a point process
on (R x Z, $Brxz, ). By definition, this is a Palm version of a renewal reward
process. Similarly, defin¢(X;,Y;);i € Z} by (X;,Y;) = (Ur, Tyl — T — 1),
where.--- <11 <190<0< 11 <--- are the random integerg < Z; V, = 0},
and let&(:) = > ez I{(X;,Y;) € -} be a point process O(R x Zy, Brxz,)-

It is straightforward to show tha$ is the stationary renewal reward process
corresponding tg°.

It is now easy to state and prove the main result of this section. It will be
demonstrated in Section 5 that the bound given below can be expressed in terms of
a small number of parameters obtained from the functiefiss € S}, by solving
a small number of systems of linear equations.

THEOREM4.1. Let W beastationary MRPP with statespace S = {1, ..., N},
satisfying condition CO above. Let y > 0, let 1 be a probability measure on
(S, As) and assume that the functions {o, : Ry — [0, 1]; s € S} satisfy condition
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C1above. Then,
drv(Z(Y((0, ] x S)), POIST)
4.3) (Z( (~0 ) )
2E(U_y) Hl(n)StE(Yg)<E(X8Y8) E((X?)Z)E(Yg))
- ExD Ex)) \ Ex9 E(X9)2
L t 0 . .
where r; = —E(X?)IP(YO =) fori>1,and
<1/\ i)e”””, always,
1
1
1 log" (2(ry — 2 )
Hy(m) < N T — 27‘[2(4(7‘[1 — 2717) +log ( (71 T[Z))
ifim; > (i + Dmipa Vi > 1,
! ifo <3
1—20)%° =2

where A = Y% im; and 0 = 1 %, i (i — Dm;.

PROOF The fact thatZ (W ((0, ] x §)) = .Z(¥((0,¢] x S)) and the triangle
inequality imply that

drv(Z(¥((0,1] x S)), POIS(7))

<dtv (;f(li((o, 11 x S)), z(/(o’t]xm vdé(u, v)))

+dry (.z(/ vdEu, v)), POIS(n)).
O.1]x7Z,

For the first term on the right-hand side, the basic coupling inequality and (4.1)
give
_ 3 2B )
drv(2(9((0, 1 s,,z(/ dEu, ))52]P’V6S=7.
(2@ (0.0 x9) o, V@) (re9)=—r0

For the second term, sinéas a stationary renewal reward process, Theorem 5.1 in
Erhardsson (2000b) gives a bound which equals the second term on the right-hand
side in (4.3). The proof of Theorem 5.1 in Erhardsson (2000b) uses the coupling
version of Stein’s method for compound Poisson approximation. The last of the
three bounds for the Stein constdii(rr) is due to Barbour and Xia (1999)[]

We finally give, without proof, the latteeversion of the mrceding theorem.

THEOREM 4.2. Let the conditions of Theorem 4.1 hold, with the following
changes: R isreplaced by Z, v, isthe geometric distribution with mean y 1,
and e 7 is replaced by 1 — y in the definition of G for each s € S. Then, the

bound (4.3) remainsvalid, with E((X?)?) replaced by E(X9(X? — 1)).
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5. Application to renewal counts. The bound (4.3) does not at first sight
seem explicit. However, by using the Markov property and solving a small
number of systems of linear equations of dimension at mMsit is possible
to express all quantities appearing in (4.3) in termsyofu, {E(¢5I1{V}y =
sV =9); (s,8") € S x SH ARSIV =s);s € S}, 1[5 os(t)dt; s € S} and
(" [ os(t)dt dus s € S}

Below, we consider an important special case. We give a bound for the total
variation distance between the distribution of the number of pointg0jm]
of a stationary renewal process in continuous time and a compound Poisson
distribution.

By v, we mean the exponential distribution with meant.

THEOREM 5.1. Let W be a stationary renewal point process on (R, %r)
with generic interrenewal time ¢. Let f be the Radon-Nikodym derivative of the
absolutely continuous part of .Z(¢) with respect to v, . Assume that o : R —
[0, 1] satisfies

(5.1) ot)y<e ¥ inf f(x) VieR,,
x€(t,00)

and that G : R — [0, 1], defined by G (1) = o (¢)e”?, is nondecreasing and right-
continuous; these conditions are satisfied if equality holds in (5.1). Let ¢g =
Yo o®dtandci=y [5° [" o(t)dt du. Assumethat co > 0. Then,

drv (Z(¥((0,1])), POIS(r))

3 (E@Q)—yto E@Q-ca  E¢?»-2y1la
SH“”)E@)Z( w0 T E@)
L 2EQ) —e)EQ) - y—lco>)
coE(¢)

2(E¢) — v teo)
E(¢) ’

whererr; = ||z ||(1 — co) ~teg for i > 1, ||| = teo/E(¢), and

1

<— /\1) exp(llz ), if co € (0, 1],

I llco

1

+ log™ (2|7 ||co(2¢ —1))/\1,
Hy(m) < ||7T||Co(200—1)(4||n||co(2co_1) g7 (2llrllco(2co — 1))
if coe [3.1],
c767 |f COE (é’ 1]
7 [|(5co — 4)
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PrRoOOF We shall compute the bound (4.3) in the c&se {1} for a fixede, and
let e — 0. All quantities appearing in (4.3) can be expressed in terms @f(¢),
E(z2), c¢o andcy, by solving a small number of systems of linear equations Todo
this, recall from Section 4 the deflnltlons of the Markov ch{a(lgf, l+1) i €7}
and the random sequencgg?, V2 );i € Z} and {(X?,¥?);i € Z}. Also, let

r1=minfi € Z ; VS 0} andz = min{i € Z,; V= 0}.

1. Clearly,P(Y{ = k) = Pz =k + 1) = ¢(1 — co)* Lo for eachk € Z/.. In
particular,E(YQ) = ¢/co.

2. Definehg : {0,1} — R4 by ho(s) = E(X_L, 1; |V0 = 5). Conditioning on
(Eog, \715) and using the Markov property, we see tHak ) = ho(0) = ey 1+
eho(1) andho(l) E(g“o |V0 =1) + (1 — co)ho(1). From the definition ofp
we see thaE(;OWo 1) = E(¢) — y Lco. It follows thathg(1) = (B(7) —

~tco)/co andE(X?) = eE(Z) /co.

3. Deflne h1:{0,1} - Ry and h2:{0,1} - R, by hi(s) = I[?j(ztl 1(g“s) |

Vs =) and ha(s) = E(X5, 1§ Y lilz |V§ = s), respectively. Again
conditioning on (go,Vls) and using the Markov property, we see that
E((XD)%) = E(Z kg 0 ZHAVS =0) =262y 2 4 B o THAVS =1 +
262y 1ho(l) = 252 -2 + eh1(1) + 2eho(1) + 262y 1h0(1) Also, h1(1) =
E(@)AV5 =1 + (1 — coha(D), andha(1) = EG3 1T = 1175 = 1) x
ho(l) + (1 — co)h2(1). Again, from the definition oF we see thaE((gg) |
Ve =1 =E(? — 2y ey, andE(;OSI{Vl = 1}|v0 =1 =FE@) —c1. It
follows thati1(1) = (E(¢?) — 2y ~1c1)/co andha(1) = (E(¢) — ) (E(C) —

y ~Leo)/c3. Hence,

2 lE 2 -2 E 2 ) -1
E((X )) 2 _2 (5 YV (fc)o o) +5 € - gy “C1

2(E(¢) — c1) (eE(¢) — ey ~Leg)
+ c2 .
0

4. Definehs: {0, 1) — Ry andhs: {0, 1} — Ry by ha(s) = E(X ot Y105
VO§ =s) andha(s) = E(T/L, 14“ (11— 1— i)|X70§ = s5). Yet again condition-
ing on (¢5, V) and using the Markov property, we see ttE(tX?Yg) =
E(C 3 - DIVS =0) =2y BV = 1) + e X1 50175 =
1) = 2y (11| Vg = 1) + eha(D) + eha(l). Likewise,hg(1) = ho(1) + (1 —
cohs(), andha(1) = EGS 1{T = 1178 = DEm| Vs =1 + (A - co)ha(D).
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It follows thaths(1) = (E(¢) — y ~1co) /c3 andha(1) = (E(¢) — c1)/c3. Hence,

8%/4_%SE@)—;y_%m_+eE@);ny

5. It holds thatE(J'%,_,) = E(X/5" VS =0 <EG IV =1V =0 +
eho(1) = e?y ™1 + (¢E(¢) — ey ~Lco) /co.
We finally lete — 0in (4.3). O

E(x%d) =

REMARK 5.1. In order to clarify what is needed to make the bound in
Theorem 5.1 small, recall from Remark 3.2 the representgtieny (no + n1) +
(1 — x)n2, where the random variables no, n1 andn, are independenj; takes
values in{0, 1} and 1 is exponentially distributed with megn1. It is easy to
see thalP(x = 1) = co andE(x (0 + n1)) = c1, implying thatE(z) — y ~1cg =
coE(no) + (1 — coE(2), E(¢) — c1 = (1 — co)E(n2) and E(¢?) — 2y ~te1 =
coB (1) + (1 = co)E(n3).

As a consequence, assume that> ¢ > 0 and O< a <t/E(¢) < b < oo (if
c > ‘g‘, the second contion is not needed). Then, the bound in Theorem 5.1 is
bounded above and below by a positive constant times the expression

{Emw E(m3) (1— co)E(n2) u—mem@}
E@) "E@©)? E¢ O E@©)? '

REMARK 5.2. The bound given in Theorem 5.1 simplifies further4f(¢)
has a Radon-Nikodym derivativg with respect tov, for somey > 0, and
iNfrer,00) f(x) =c > 0foreach € R,.. Itis then clear that we may choosg= ¢
andcy =y L.

For example, assume th&f(¢) is DFR (decreasing failure rate), and the failure
rate has a strictly positive limiz > 0. It then follows from Remark 4.9 in Brown
(1983) thatf (x) decreases monotonically as— oo to a limitc¢ > 0. If ¢ > 0, we
are in the case just described.

REMARK 5.3. Assume tha® is a Poisson process, that is, tH&t(¢) = v,
for somey > 0. Then, from Remark 5.29 = 1 andc1 = y ~1, so the bound given
in Theorem 5.1 is 0. The approximating distribution PQGdpis Paty).
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