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The motivation of this work is the study of the error termeε
t (x,ω) in the

averaging method for differential equations perturbed by a dynamical system.

Results of convergence in distribution for(
eε
t (x,·)√

ε
)ε>0 have been established

in Khas’minskii [Theory Probab. Appl. 11 (1966) 211–228], Kifer [Ergodic
Theory Dynamical Systems 15 (1995) 1143–1172] and Pène [ESAIM Probab.
Statist. 6 (2002) 33–88]. We are interested here in the question of the rate

of convergence in distribution of the family of random variables(
eε
t (x,·)√

ε
)ε>0

whenε goes to 0 (t > 0 andx ∈ Rd being fixed). We will make an assumption
of multiple decorrelation property (satisfied in several situations). We start
by establishing a simpler result: the rate of convergence in the central limit
theorem for regular multidimensional functions. In this context, we prove a
result of convergence in distribution with rate of convergence inO(n−1/2+α)

for all α > 0 (for the Prokhorov metric). This result can be seen as an
extension of the main result of Pène [Comm. Math. Phys. 225 (2002) 91–119]
to the case ofd-dimensional functions. In a second time, we use the same

method to establish a result of convergence in distribution for(
eε
t (x,·)√

ε
)ε>0

with rate of convergence inO(ε1/2−α) (for the Prokhorov metric). We close
this paper with a discussion (in the Appendix) about the behavior of the
quantity‖sup0≤t≤T0

|eε
t (x, ·)|∞‖Lp under less stringent hypotheses.

1. Introduction. We are interested in the asymptotic behavior of random
variables sequences defined by a probability dynamical system. Let us consider
a (discrete-time) probability dynamical system(�,F , ν, T ) [where(�,F , ν) is
a probability space endowed with aν-preserving transformationT :� → �].

Let a functionf defined on� with values inRd be given. We can study the
stochastic properties of the sequence of random variables(f ◦ T n)n≥0 defined
on (�,F , ν). If (�,F , ν, T ) is ergodic, Birkhoff’s ergodic theorem [6] gives a
strong law of large numbers for(f ◦ T n)n≥0 when the functionf is ν-integrable.
Furthermore, central limit theorems (CLTs) have been established for(f ◦ T n)n≥0
in various situations (see [9, 31, 36, 38], etc.). Results of speed of convergence
in the CLT for (f ◦ T n)n≥0 have been established in the one-dimensional case
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(i.e., whenf is a real-valued function) in [17], [19] and [32], for example. Here,
we are interested in the speed of convergence in the central limit theorem for
multidimensional random variables(f ◦ T n)n (i.e., whend ≥ 2). We estimate
the speed in the sense of the Prokhorov metric. When(f ◦ T n)n is a sequence
of independent random variables, Yurinskii established a speed of convergence in

1√
n

in the sense of the Prokhorov metric (cf. [39]). Let us point out the fact that

such an estimate gives directly an estimate in1√
n

for the speed of convergence
of the expectation of any bounded Lipschitz continuous function. In Section 2
of the present paper we establish a speed of convergence inO(n−1/2+α) (for all
α > 0) for the multidimensional CLT for(f ◦T n)n≥0 whenf is a regular function
(Theorem 2.2). This result holds under a hypothesis of multiple decorrelation (with
exponential rate) for regular functions. This hypothesis is satisfied in different
hyperbolic situations (systems studied in [38], billiard transformation studied
in [37], mostly contracting diffeomorphisms studied in [8]).

Our proof is based on the method developed by Jan to establish Theorem 7
of [19] (it uses characteristic functions) and on a result due to Yurinskii [39] which
plays here a similar role to the one played by the more classical Esseen lemma [12]
in the proof of Theorem 7 of [19]. (Let us mention the work of Jan who estimated,
in a slightly different context, the speed of convergence in the multidimensional
central limit theorem in the sense of the uniform convergence of the distribution
functions and then extended Rio’s result of [32]; cf. Theorem 9 of [19].)

In Section 3, a result of speed of convergence in terms of the Prokhorov
metric is established in a more sophisticated context. We study the averaging
method for differential equations perturbed by the probability dynamical system
(�,F , ν, T ). This problem has been studied in particular [11, 20, 21, 25, 26].
For a general reference about this method, we refer to Chapter 4 of [1] and to
Chapter 7 of [14] (see also Chapter 5 of [2]). The problem is the following one.
Let a functionF : Rd × � → Rd smooth enough (measurable, uniformly bounded
and uniformly Lipschitz in the first parameter) be given. For anyε > 0 and any
(x,ω) ∈ Rd ×�, we consider the continuous solution(xε

t (x,ω))t of the following
differential equation (with initial condition):

∀ t ∈ R+ \ N,
dxε

t

dt
(x,ω) = F

(
xε
t (x,ω), T 
t/ε�(ω)

)
and xε

0(x,ω) = x.

Let us write (wt (x))t the solution of the differential equation (with initial
condition) obtained from the previous one by averaging:

∀ t ∈ R+
dwt

dt
(x) =

∫
�

F(wt(x),ω′) dν(ω′) and w0(x) = x.

We are interested in the study of the asymptotic behavior (whenε goes to 0) of the
error term(eε

t (x,ω))t defined by

eε
t (x,ω) := xε

t (x,ω) − wt(x).
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Results of convergence in distribution for the family of processes
((

eε
t (x,·)√

ε
)t∈[0;T ])ε>0 have been established in [21] and in [28] (see Theorem 2.1.3

in [28]). Here, we establish a result of speed of convergence in distribution for the
family of random variables( eε

s (x,·)√
ε

)ε>0, s andx being fixed (Theorem 3.4). The
speed is estimated in the sense of the Prokhorov metric. The proof of this result is
based on the ideas of the proof of Theorem 2.2.

In the Appendix, we complete our study with estimates of the following form:

sup
x∈Rd

∥∥∥∥ sup
t∈[0;T0]

|eε
t (x, ·)|∞

∥∥∥∥
Lp

= O
(√

ε
)
,

for any real numberT0 > 0 and for some real numberp ≥ 1. With these results,
we improve a result of [11] in two particular cases: for a differential equation
perturbed by the billiard flow studied in [29, 37] and in the case of a differential
equation perturbed by a diagonal flow on a compact quotient ofSL(d,R) (see
Section A.2).

1.1. Context. Let us specify the context we consider here. Let us consider a
probability dynamical system(�,F , ν, T ). Let us suppose that the space� is
endowed with a metricd and thatF is the associated Borelσ -algebra. We denote
by Eν[·] the expectation relative to the measureν:

Eν[f ] :=
∫
�

f dν.

For all complex-valued square integrable functionsf,g, we denote by Covν(f, g)

the covariance of the functionsf andg with respect to the measureν:

Covν(f, g) = Eν[fg] − Eν[f ]Eν[g].
Let a real numberη ∈]0;1] be fixed. For any uniformly bounded andη-Hölder
continuous functionf :� → C, we define‖f ‖∞ := supx∈� |f (x)| and we denote

by C
(η)
f the Hölder coefficient of orderη of f :

C
(η)
f := sup

x =y

|f (x) − f (y)|
d(x, y)η

.

We writeHη the set of complex-valued uniformly boundedη-Hölder continuous
functions defined on�.

For any real numberr ≥ 1, we introduce the multiple decorrelation Property
(Pr ) as follows:

PROPERTY(Pr ). There exist a polynomial function Pr with real nonnegative
coefficients and a real number δr ∈]0;1[ such that, for all integers m and m′,
for all bounded η-Hölder continuous functions f1, . . . , fm+m′ :� → C, for all
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increasing finite sequences of nonnegative integers (k1, . . . , km) and (l1, . . . , lm′)
and for all nonnegative integer n, we have∣∣∣∣∣Covν

(
m∏

i=1

fi ◦ T ki ,

m′∏
j=1

fm+j ◦ T n+lj

)∣∣∣∣∣
(1)

≤
(

m+m′∏
i=1

‖fi‖∞ +
m+m′∑
i=1

C
(η)
fi

∏
j =i

‖fj‖∞
)
Pr(lm′)δr

n−rkm.

Such results of decorrelation have been studied in [22] for Anosov diffeo-
morphisms. Let us make some commentaries about this property. Let us no-
tice that Theorems 2.2 and 3.4 are still true if we replace, in Property(Pr ),
δr

n−rkm by hr(n − rkm), where(hr(n))n≥0 decreases rapidly (more precisely, if
limn→+∞ nβhr(n) = 0 for every real numberβ > 0).

Property(Pr ) is satisfied for anyr > 1 in the case of a billiard transformation
studied in [37] (cf. Corollary B.2. of [29]). This result can be proved in the same
way for any dynamical system to which Young’s method of [38] can be applied.
Examples of dynamical systems satisfying this property are given in [23] where
a similar property is proved. In particular, this property is satisfied for ergodic
algebraic automorphisms of the torus (this can be proved by rewriting the proof of
Theorem 4.1.2 of [28]) and for diagonal transformation on a compact quotient of
SL(d,R) (see [23]) and for the dynamical systems studied by Dolgopyat in [9].

1.2. Prokhorov metric, definition and first results. We endowRd with the
supremum norm| · |∞ defined by|(x1, . . . , xd)|∞ := maxi=1,...,d |xi |. For real-
valued random variables, we estimate the speed of convergence in distribution in
terms of uniform convergence of distribution functions. In thed-dimensional case,
a natural metric between two probability measures onRd is the Prokhorov metric
(cf. [10], e.g.). Let us recall now its definition and some of its properties.

DEFINITION 1.1 (Prokhorov metric). LetP and Q be two probability
measures onRd . The Prokhorov metric
(P,Q) betweenP and Q is the
following quantity:


(P,Q) := inf
{
ε > 0 : sup

B∈B

(
P (B) − Q(Bε)

)≤ ε

}
,

whereB is the Borelσ -algebra onRd and where we denote byBε the ε-open
neighborhood ofB.

Let us recall the link between the Prokhorov metric for the probability measures
on Rd and the Ky Fan metric for theRd -valued random variables defined on the
same probability space.
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DEFINITION 1.2 (Ky Fan metric). LetX andY be two Rd -valued random
variables defined on the same probability space(E,T ,P). The Ky Fan metric
(associated to| · |∞) betweenX andY is given by

K(X,Y ) := inf{ε > 0 :P(|X − Y |∞ > ε) < ε}.
PROPOSITION 1.3. Let P and Q be two Borel probability measures on Rd .

The Prokhorov metric 
(P,Q) between P and Q is the infimum of the Ky Fan
metric between X and Y , where (X,Y ) describes the set of couples of random
variables defined on the same probability space such that the distribution of X is
P and such that the distribution of Y is Q.

Another classical metric between probability measures onRd is the BL metric
(BL for bounded Lipschitz) defined as follows:

DEFINITION 1.4. LetP andQ be two probability measures onRd . The BL
metric betweenP andQ is the following quantity:

BL(P,Q) := sup
{

EP [φ] − EQ[φ]
‖φ‖∞ + Lφ

∣∣∣φ : Rd → R, ‖φ‖∞ + Lφ < +∞
}
,

where we denote‖φ‖∞ = supx∈Rd |φ(x)| andLφ := supx =y
|φ(x)−φ(y)|

|x−y|∞ .

These two metrics are metrics for the weak convergence for probability
measures (which corresponds to the convergence in distribution for random
variables). Moreover, we have the following (cf., e.g., [24], Proposition 1.2
and [10], Problem 11.3.5):

PROPOSITION1.5 (Equivalence of these metrics).Let P and Q be two Borel
probability measures on Rd . We have

1
3BL(P,Q) ≤ 
(P,Q) ≤ (3

2BL(P,Q)
)1/2

.

In the following, we will essentially be interested in questions of speed of
convergence in terms of Prokhorov metric. But, we will also talk about BL metric.

1.3. Notation. Let A andB be any vectors inRd . Let us denote byTA the line
vector, transposed toA. Let us denote byA ⊗ B the squared-dimensional matrix
given byA ⊗ B := A · TB and we writeA⊗2 := A ⊗ A.

Let a probability space(�,F , ν) and a real numberp ≥ 1 be given. We
denote byLp(�,Rd) the set of measurable functionsf :� → Rd such that∫
� |f |p∞ dν < +∞. For anyy in Lp(�,Rd), we denote‖f ‖Lp = (

∫
� |f |p∞ dν)1/p.

For any probability space(�,F , ν), any measurable space(E,T ) and any
random variableX : � → E, we denote byν∗(X) the image measure ofν by X,
that is, the probability measure defined on(E,T ) by ν∗(X)(A) = ν(X−1(A)) for
anyA ∈ T .
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2. Ordinary central limit theorem.

2.1. Introduction and result in the i.i.d. case. We are interested here in the
question of the rate of convergence in the central limit theorem, that is, the question
of the rate of convergence in distribution for sequences of random variables of
the form ( 1√

n

∑n−1
k=0 Xk)n≥1 to a normal random variable. For anyA ∈ Rd and

any d × d nonnegative symmetric matrixC, we denote byN (A,C) the normal
distribution with meanA and with covariance matrixC (cf. [13], III-6, for the
notion of normal distributions).

For independent multidimensional variables, results of speed of convergence
have been established by many authors under moment hypotheses. Let us mention
the works of Bergström [3], Sazanov [34], Ranga Rao [30] and Bhattacharya [4]
(for uniform estimates) and of Rotar [33] (for a nonuniform estimate). Let us give
the following result coming from [39]. The proof of this result given by Yurinskii
is based on a result linking Prokhorov metric with characteristic functions (cf.
Proposition 2.6).

THEOREM 2.1. Let (Xk)k≥0 be a sequence of Rd -random variables defined
on a probability space (�,F ,P). If these random variables are independent and
identically distributed, P-centered and admitting moments of the third order, then
the sequence of random variables ( 1√

n

∑n−1
k=0 Xk)n≥1 converges in distribution to a

random variable with (eventually degenerate) normal distribution N (0,E[X1
⊗2])

and we have




(
P∗

(
1√
n

n−1∑
k=0

Xk

)
,N (0,E[X1

⊗2])
)

= O

(
1√
n

)
.

Moreover, this speed of convergence is optimal under these hypotheses [there
exists such a sequence of random variables(Xk)k for which the speed is exactly
in 1√

n
].

Here we will consider random variablesXk which are maybe not independent
but are stationary. More precisely, we will suppose that the random variables
Xk are given byXk = f ◦ T k with (�,F , ν, T ) as described before and with
f :� → Rd any uniformly boundedη-Hölder continuous function.

2.2. A rate of convergence in the central limit theorem. For any function
f :� → Rd and any integern ≥ 1, we define

Sn(f ) :=
n−1∑
k=0

f ◦ T k.
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First of all, let us notice that, under hypothesis(Pr ), the following limit exists for
anyν-centered, boundedη-Hölder continous functionf :� → Rd :

D(f ) := lim
n→+∞

(
Eν

[(
Sn(f )√

n

)⊗2])
,

and that we have

D(f ) = Eν[f ⊗ f ] + ∑
k≥1

(Eν[f ⊗ f ◦ T k] + Eν[f ◦ T k ⊗ f ]).(2)

THEOREM 2.2. We suppose that there exists some r ≥ 1 for which Property
(Pr ) is satisfied. Let f :� → Rd be a ν-centered, bounded η-Hölder continous
function. If the matrix D(f ) is nondegenerate, then the sequence of random
variables (

Sn(f )√
n

)n≥0 converges in distribution to a d-dimensional random variable

with normal distribution N (0,D(f )) and we have

∀α > 0, 
n(f ) := 


(
ν∗
(

1√
n
Sn(f )

)
,N

(
0,D(f )

))= O(n−1/2+α).(3)

Let us make some comments about the case in which the asymptotic covariance
D(f ) is degenerate. By a classical argument (cf., e.g., Lemma 2.2 of [7]), we have
the following result:

PROPOSITION 2.3. Let us suppose that there exists a real number r ≥ 1 for
which Property (Pr ) is satisfied. If g :� → R is a ν-centered, bounded η-Hölder
continuous function such that D(g) = 0, then g is a coboundary in L2, that is,
there exists a ν-centered square integrable function h :� → R such that we have
g = h − h ◦ T almost surely.

If f :� → Rd is a ν-centered, boundedη-Hölder continuous function, then
there exists an orthogonal matrixA ∈ Od(R) such that the matrixD(A · f ) = A ·
D(f ) · TA is diagonal with diagonal termsα1 ≥ α2 ≥ · · · ≥ αd . Let us suppose now
that the matrixD(f ) is degenerate. It is natural to ask if, in that case, estimate (3)
is still true. Because of the equivalence of norms in finite dimension, estimate (3)
will be true forf if and only if it is true for the functiong defined byg := A ·f . Let
r be the rank of the matrixD(f ) andg1, . . . , gd be the coordinate functions ofg.
Coefficientsα1, . . . , αr are nonnull positive and coefficientsαr+1, . . . , αd are null.
We can therefore apply Theorem 2.2 to the function(g1, . . . , gr ) :� → Rr and,
consequently, to the functionG = (g1, . . . , gr ,0, . . . ,0) :� → Rd . Hence, we have
g = G+H with D(H) = 0. Then, according to the previous proposition applied to
the coordinate functions ofH , there exists aν-centered square integrable function
h :� → Rd such that we haveg = G+h−h ◦T almost surely. Therefore, for any
integern ≥ 1, we have

1√
n
Sn(g) = Sn(G) + Bn√

n
,
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where(Bn := h − h ◦ T n)n is a sequence of random variables bounded inL2 and
with

∀α > 0, 


(
ν∗
(

1√
n
Sn(G)

)
,N

(
0,D(g)

)) = O(n−1/2+α).

REMARK 2.4. If the sequence of random variables(Bn)n is bounded inLp

(for somep ≥ 1), then we have (according to Markov’s inequality)

K

(
Sn(G) + Bn√

n
,
Sn(G)√

n

)
≤ supm ‖Bm‖p/(p+1)

Lp

np/(2(p+1))
,

and therefore, according to Theorem 2.2,




(
ν∗
(

1√
n
Sn(f )

)
,N

(
0,D(f )

))= O
(
n−p/(2(p+1))).

If (Bn)n is bounded inLp for all real numberp ≥ 1, then we have

∀α > 0, K

(
Sn(G) + Bn√

n
,
Sn(G)√

n

)
= O(n−1/2+α),

and therefore, according to Theorem 2.2,

∀α > 0, 


(
ν∗
(

1√
n
Sn(f )

)
,N

(
0,D(f )

)) = O(n−1/2+α).

If (Bn)n is bounded inL1, then for any bounded Lipschitz continuous function
φ : Rd → R, we have∣∣∣∣Eν

[
φ

(
Sn(G) + Bn√

n

)]
− Eν

[
φ

(
Sn(G)√

n

)]∣∣∣∣ ≤ Lφ

supm ‖Bm‖L1√
n

,

and therefore, according to Theorem 2.2,

∀α > 0, BL
(
ν∗
(

1√
n
Sn(f )

)
,N

(
0,D(f )

))= O(n−1/2+α).

CONSEQUENCE2.5 (Case eventually degenerate). Let us suppose that there
exists a real numberr ≥ 1 such that Property(Pr ) is satisfied. Letf :� → Rd be
a ν-centered, boundedη-Hölder continuous function. Then, we have




(
ν∗
(

1√
n
Sn(f )

)
,N

(
0,D(f )

)) = O(n−1/3)

and

∀α > 0, BL
(
ν∗
(

1√
n
Sn(f )

)
,N

(
0,D(f )

))= O(n−1/2+α).
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2.3. Proof. In this section, we prove Theorem 2.2. This proof is inspired
by [29]. It uses a method developped by Jan in another context (cf. [18, 19]).
In order to estimate the speed of convergence in terms of the Prokhorov metric, we
will use the following result:

PROPOSITION2.6 ([39]). Let Q be a normal (nondegenerate) d-dimensional
distribution. There exist two real numbers c0 > 0 and � > 0 such that, for any real
number U > 0 and for any Borel probability measure P on Rd admitting moments
of order 
d/2� + 1, we have


(P,Q)

≤ c0

[
1+ �

U

+
(∫

|t|∞<U


d/2�+1∑
k=0

∑
{j1,...,jk}∈{1,...,d}k

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

(ϕP − ϕQ)(t)

∣∣∣∣2dt

)1/2]
,

where we denote by ϕP and ϕQ the characteristic functions of the distributions
P and Q, respectively:

∀ t ∈ Rd ϕP (t) = EP

[
ei〈t,·〉] and ϕQ(t) = EQ

[
ei〈t,·〉],

with 〈·, ·〉 the usual scalar product on Rd .

This result links the speed of convergence in terms of the Prokhorov metric with
a problem of estimation of the characteristic functions. It will play the same role in
our proofs as the one played by the Esseen lemma in the proof of unidimensional
central limit theorems established in [19, 29].

Let us suppose that the hypotheses of Theorem 2.2 are satisfied. Let us consider
a real numberr0 ≥ 1 such that Property(Pr0) is satisfied. Let us suppose that the
matrix D(f ) is nondegenerate. For anyt ∈ Rd and any integern ≥ 1, we define

hn(f, t) := Eν

[
exp

{
i〈t, Sn(f )〉√

n

}]
− exp

{
−〈t,D(f )t〉

2

}
.

The remainder of this section is essentially devoted to the proof of the following
result. Let a real numberα ∈]0; 1

2[ be given.

PROPOSITION 2.7. For any integer p ≥ 0, there exist a real number
Lp = Lp,α > 0 and a nonnegative functions sequence (an,p,α)n≥1 satisfying the
following: (∫

|t|∞≤n1/2−α

(
an,p,α(t)

)2
dt

)1/2

= On→+∞
(

1

n1/2−α

)
,
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and such that, for any integer n ≥ 1 and any t ∈ Rd satisfying |t|∞ ≤ n1/2−α , we
have


d/2�+1∑
k=0

∑
1≤j1,...,jk≤d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

hn(f, t)

∣∣∣∣ ≤ Lp

|t|p∞
np(1/2−α)

+ an,p,α(t).(4)

PROOF OF PROPOSITION 2.7. Let us prove inductively onp that the
following Property(Hp) is satisfied for all integerp ≥ 0. �

PROPERTY (Hp). For any real number β > 0, there exist a real number
Lp,α,β > 0 and a sequence (an,p,α,β(·))n of nonnegative uniformly bounded
functions (an,p,α,β)n≥1 satisfying

lim sup
n→+∞

n1/2−α

(∫
|t|∞≤n1/2−α

(1+ |t|β∞)
(
an,p,α,β(t)

)2
dt

)1/2

< +∞

and such that, for any integer n ≥ 1 and any t ∈ Rd satisfying |t|∞ ≤ n1/2−α , we
have


d/2�+1∑
k=0

∑
1≤j1,...,jk≤d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

hn(f, t)

∣∣∣∣ ≤ Lp,α,β

1+ |t|p∞
np(1/2−α)

+ an,p,α,β(t).

Let us first notice that, under Property(Pr ), for any bounded Hölder continuous
function f :� → Rd , the sequence of random variables(

Sn(f )√
n

)n≥1 is uniformly

bounded inLp for any real numberp ≥ 1 (see Lemma 2.3.4 of [28]). Conse-
quently, derivatives of order less than
 d

2� + 1 of functionshn(f, ·) are uniformly
bounded by some constantC̃ > 0. Therefore Property(H0) is satisfied (by taking
L0,α,β = dd/2+2C̃ andan,0,α,β(t) = 0).

Let us now consider an integerp ≥ 0. Let us suppose that(Hp) is satisfied
and let us show that(Hp+1) is then also satisfied. Let us notice that, since matrix
D(f ) is nondegenerate, there exist two real numbersc0 > 0 andc1 > 0 such that,
for everyu ∈ Rd , we have

c0|u|2∞ ≤ 〈u,D(f )u〉 ≤ c1|u|2∞.

Let a real numberβ > 0 be fixed. There exists an integern0 ≥ 1 such that, for
all u ∈ Rd satisfying |u|∞ ≤ n0

−α, we have〈u,D(f )u〉 < 1 (e.g., any integer
satisfyingn0 > c1

1/(2α) is suitable). In the following,n will be a nonnegative
integer andt a point in Rd satisfyingn ≥ n0 and |t|∞ ≤ n1/2−α . We will then
have 1− 〈t,D(f )t〉

2n
> 1

2 > 0. The notationO will only depend onp, α, β andf ; for
example, the notationgn,t = O(kn,t ) means that there exists a real numberC > 0
such that, for any integern ≥ 1 and anyt ∈ Rd satisfying|t|∞ ≤ n1/2−α , we have
|gn,t | ≤ C · |kn,t |. We will split hn(f, t) in pieces that we will estimate separately:
hn(f, t) =∑5

i=1 Hi(t, n).
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Part 1. We start by estimating the following quantity:

H1(t, n) :=
(

1− 〈t,D(f )t〉
2n

)n

− exp
{
−〈t,D(f )t〉

2

}
.(5)

We will show that we have


d/2�+1∑
k=0

∑
1≤j1,...,jk≤d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

H1(t, n)

∣∣∣∣
(6)

= O

(
1+ |t|(d+10)/2∞√

n
exp

{
−1

2
〈t,D(f )t〉

(
1− d + 4

2n

)})
.

This term will contribute to thean,p+1,α,β term in (4) (forp + 1 instead ofp). Let
us notice that we have

|H1(t, n)| ≤ c1
2 |t|4∞

8n
exp

{
−1

2
〈t,D(f )t〉

(
1− 1

n

)}
.

Let us now fix an integerk ∈ {1, . . . , 
 d
2� + 1} andk indicesj1, . . . , jk belonging

to {1, . . . , d}. In the following, we will denote byQk the set of partitionsA =
{A1, . . . ,Am} of {1, . . . , k} in nonempty subsets. Let us notice that, for anyCk-
regular functionb : Rd → R, we have

∂k

∂tj1 · · · ∂tjk

((
b

(
t√
n

))n)
= ∑

A={A1,...,Am}∈Qk

gn(A, b)(t),

with

gn(A, b)(t) := n(n − 1) · · · (n − m + 1)

(
b

(
t√
n

))n−m

(7)

×
m∏

p=1

(
∂#Apb

∂tj
l
(p)
1

· · · ∂tj
l
(p)
#Ap

)(
t√
n

)
1

nk/2 ,

if A = {A1, . . . ,Am} with Ap := {l(p)
1 , . . . , l

(p)
#Ap

}. In the following, we will con-

sider thatb = 1− 1
2〈·,D(f )·〉 orb = exp{−1

2〈·,D(f )·〉}. LetA = {A1, . . . ,Am} ∈
Qk . We denote bym0(A) the number ofAi ∈ A which contains only one point.
Then, we have 2m ≤ m0(A) + k. Indeed, we have

k =
m∑

p=1

#Ap ≥ m0(A) + 2
(
m − m0(A)

)= 2m − m0(A).

(i) Let us suppose that 2m < m0(A) + k. Using the fact that( ∂
∂tj

b)( t√
n
) =

O(
|t|∞√

n
) and that the derivatives of order at least 2 ofb taken in t√

n
are bounded,
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we establish the following estimate:

|gn(A, b)(t)| ≤ nm exp
{
−n − m

2n
〈t,D(f )t〉

}
O

(( |t|∞√
n

)m0(A))
n−k/2

= O

(
nm−(m0(A)+k)/2|t|m0(A)∞ exp

{
−1

2
〈t,D(f )t〉

(
1− m

n

)})
= O

(
n−1/2|t|m0(A)∞ exp

{
−1

2
〈t,D(f )t〉

(
1− m

n

)})
.

(ii) Let us suppose now that 2m = m0(A) + k. Then eachAi contains at most
two points and we show that we have∣∣∣∣gn

(
A,1− 〈·,D(f )·〉

2

)
(t) − gn

(
A,exp

{
−1

2
〈·,D(f )·〉

})
(t)

∣∣∣∣
= O

(
1+ |t|m0(A)+4∞

n
exp

{
−1

2
〈t,D(f )t〉

(
1− m + 1

n

)})
.

Effectively, let us notice that we have

∂

∂tj

(
1− 〈·,D(f )·〉

2
− exp

{
−1

2
〈·,D(f )·〉

})(
t√
n

)

=
d∑

l=1

D(f )j,l
tl√
n

(
exp

{
− 1

2n
〈t,D(f )t〉

}
− 1

)
= O

( |t|∞3

n
√

n

)
,

and we have (
1− 〈t,D(f )t〉

2n

)n−m

− exp
{
−n − m

2n
〈t,D(f )t〉

}

= O

( |t|4∞
n

exp
{
−1

2
〈t,D(f )t〉

(
1− m + 1

n

)})
,

by using formulae|an−m − bn−m| ≤ (n − m)max(|a|, |b|)n−m−1|a − b| and
|e−u − 1− u| ≤ u2

2 . Moreover, we have

∂2

∂tj ∂tj ′

(
1− 〈·,D(f )·〉

2
− exp

{
−1

2
〈·,D(f )·〉

})(
t√
n

)

= D(f )j,j ′
(

exp
{
− 1

2n
〈t,D(f )t〉

}
− 1

)

−
d∑

l,m=1

D(f )j,l
tl√
n
D(f )j ′,m

tm√
n

exp
{
− 1

2n
〈t,D(f )t〉

}
= O

( |t|2∞
n

)
.

Moreover, we recall that, forb = 1 − 1
2〈·,D(f )·〉 or b = exp{−(1/2)〈·,D(f )·〉},

we have( ∂
∂tj

b)( t√
n
) = O(

|t|∞√
n

) and that the derivatives of order at least 2 ofb



MULTIPLE DECORRELATION AND CONVERGENCE RATE 2489

taken in t√
n

are bounded.

Therefore, according to (7), the previous estimates and

m∏
i=0

ai −
m∏

i=0

bi =
m∑

j=0

(j−1∏
k=0

bk

)
(aj − bj )

(
m∏

l=j+1

al

)
,

we get∣∣∣∣gn

(
A,1− 〈·,D(f )·〉

2

)
(t) − gn

(
A,exp

{
−1

2
〈·,D(f )·〉

})
(t)

∣∣∣∣
= O

(
nm

[( |t|∞√
n

)m0(A)+2

+ |t|m0(A)+4∞√
n

m0(A)+2

]

× exp
{
−1

2
〈t,D(f )t〉

(
1− m + 1

n

)}
1

nk/2

)

= O

(
nm 1+ |t|m0(A)+4∞√

n
m0(A)+2

exp
{
−1

2
〈t,D(f )t〉

(
1− m + 1

n

)}
1

nk/2

)
and we have 2m = m0(A) + k.

Part 2. Hence, we have to study the quantity

Dn(t) := Eν

[
exp

{
i〈t, Sn(f )〉√

n

}]
−
(

1− 〈t,D(f )t〉
2n

)n

,

which we split as follows:

Dn(t) =
n−1∑
l=0

(
1− 〈t,D(f )t〉

2n

)l

Eν

[
Y ◦ T l · exp

{
i〈t, Sn−(l+1)(f )〉√

n

}
◦ T l+1

]
,(8)

with

Y := exp
{

i〈t, f 〉√
n

}
−
(

1− 〈t,D(f )t〉
2n

)
.

Part 3. Let us fix M := p + 3. Let us consider the nonnegative integers
a1(n), . . . , aM(n) given by the formulae

a1 :=
⌈
− ln(n)

ln(δr0)

⌉
,

aj :=
⌈
(r0 − 1)(a1 + · · · + aj−1) − ln(n(d+5+β)/2Pr0(n))

ln(δr0)

⌉
,

wherePr0 andδr0 are, respectively, a polynomial function and a real number as

in Property(Pr0). Let us writeA0 := 0 andAj := ∑j
k=1aj . We notice that there

exists a real numberκ > 0 such that, for any integern ≥ 1 and anyj = 1, . . . ,M ,
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we haveaj < κnα/2

M
. Therefore, we havea1 + · · · + aM = O(nθ ) for any real

numberθ > 0.
Part 4. Let us define

H2(t, n) := ∑
n−κnα/2≤l≤n−1

(
1− 〈t,D(f )t〉

2n

)l

(9)

× Eν

[
Y · exp

{
i〈t, Sn−(l+1)(f )〉√

n

}
◦ T

]
.

Let us prove that we have


d/2�+1∑
k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

H2(t, n)

∣∣∣∣
= O

(
nα/2(1+ |t|(d+4)/2∞ )√

n
(10)

× exp
{
−〈t,D(f )t〉

2

(
1− κ

n1−α/2 − d + 2

2n

)})
.

This term will contribute to thean,p+1,α,β term in (4) (forp + 1 instead ofp). Let
us consider an integerl satisfyingn − κnα/2 ≤ l ≤ n − 1 and an integerk ≥ 0 and
k indicesj1, . . . , jk in {1, . . . , d}. First, let us notice that we have

∂k

∂tj1 · · · ∂tjk

exp
{

i〈t, Sn−(l+1)(f )〉√
n

}

= ik
∏k

p=1Sn−(l+1)(fjp )

nk/2
exp

{
i〈t, Sn−(l+1)(f )〉√

n

}
= O(1),

since we haven − (l + 1) ≤ κnα/2 and 0< α < 1
2. Second, we have

∂k

∂tj1 · · · ∂tjk

Y = O

(
1+ |t|∞√

n

)
.

Indeed,Y is in O(
|t|∞√

n
) and derivatives oft �→ exp{ i〈t,f 〉√

n
} are inO( 1√

n
). Moreover,

derivatives of first order oft �→ 1− 〈t,D(f )t〉
2n

are in O(
|t|∞
n

), its derivatives of
order 2 are inO( 1

n
), its derivatives of order at least 3 are null. Now, let us show

that we have

∂k

∂tj1 · · · ∂tjk

(
1− 〈t,D(f )t〉

2n

)l

= O
(
bn,l(t)

)
,(11)
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with

bn,l(t) :=
min(
d/2�+1,l)∑

m=0

(
l · · · · · (l − m + 1)

1+ |t|m∞
nm

)
(12)

× exp
{
− 1

2n
〈t,D(f )t〉(l − m)

}
,

[with the conventionl · · · · · (l − m + 1) = 1 if m = 0]. Estimation (11) holds for
k = 0 (since|1 − u| ≤ e−u for any real numberu ∈ [0;1]). Let us suppose now
k ≥ 1. Since derivatives of order at least 3 oft �→ 1− 〈t,D(f )t〉

2n
are null, we have

∂k

∂tj1 · · · ∂tjk

(
1− 〈t,D(f )t〉

2n

)l

= ∑
A∈Bk

l · · · · · (l − m + 1)

(
1− 〈t,D(f )t〉

2n

)l−m

×
m∏

p=1

(
∂#Ap (1− 〈·,D(f )·〉/2)

∂tj
l
(p)
1

· · · ∂tj
l
(p)
#Ap

)(
t√
n

)
1

nk/2 ,

where we denote byBk the set of partitionsA = {A1, . . . ,Am} of {1, . . . , k}
in subsets of at most two points. Let us consider such a partitionA = {A1, . . . ,

Am} ∈ Bk. If m ≥ l + 1, then we have

l · · · · · (l − m + 1)

(
1− 〈t,D(f )t〉

2n

)l−m

×
m∏

p=1

(
∂#Ap (1− 〈·,D(f )·〉/2)

∂tj
l
(p)
1

· · · ∂tj
l
(p)
#Ap

)(
t√
n

)
1

nk/2 = 0.

Let us suppose now thatm ≤ l. Since we have 2m = m0(A) + k, we get∣∣∣∣∣ l!
(l − m)!

(
1− 〈t,D(f )t〉

2n

)l−m m∏
p=1

(
∂#Ap (1− 〈·,D(f )·〉/2)

∂tj
l
(p)
1

· · · ∂tj
l
(p)
#Ap

)(
t√
n

)
1

nk/2

∣∣∣∣∣
≤ l!

(l − m)!
(

1− 〈t,D(f )t〉
2n

)l−m

×
(

d supj,j ′ |D(f )j,j ′ | · |t|∞√
n

)m0(A)(
sup
j,j ′

|D(f )j,j ′ |
)m−m0(A) 1

nk/2

≤ l!
(l − m)!

(
1− 〈t,D(f )t〉

2n

)l−m( |t|m0(A)∞
nm

)(
1+ d sup

j,j ′
|D(f )j,j ′ |

)d/2+1

.
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Hence, we have proved (11). Let us prove now that we have
n−1∑
l=0

bn,l(t) = O

(
min

(
n,

n

|t|2∞
))

.(13)

We have

bn,l(t) =
min(
d/2�+1,l)∑

m=0

bn,l,m(t),

with

bn,l,m(t) := l · · · · · (l − m + 1)
1+ |t|m∞

nm
exp

{
− 1

2n
〈t,D(f )t〉(l − m)

}
.

We have
n−1∑
l=0

bn,l(t) =

d/2�+1∑

m=0

n−1∑
l=m

bn,l,m(t).

Let us consider an integerm ≤ 
 d
2� + 1. If |t|∞ ≤ 1, then we have

n−1∑
l=m

bn,l,m(t) ≤ 2
n−1∑
l=m

lm

nm
exp

{
− 1

2n
〈t,D(f )t〉(l − m)

}
≤ 2n.

If |t|∞ > 1, then we have
n−1∑
l=m

bn,l,m(t) ≤ 2
n−1∑
l=m

l · · · · · (l − m + 1)
|t|m∞
nm

exp
{
− 1

2n
〈t,D(f )t〉(l − m)

}

≤ 2
|t|m∞
nm

∑
l≥m

l · · · · · (l − m + 1)exp
{
− 1

2n
c0|t|2∞(l − m)

}

≤ 2
|t|m∞
nm

m!
(1− exp{−(1/2n)c0|t|2∞})m+1

≤ 2
|t|m∞
nm

m!
(exp{−c0/2}(1/2n)c0|t|2∞)m+1

≤ 2
|t|m∞
nm

m!(2n)m+1

(exp{−c0/2}c0|t|2∞)m+1

≤ O

(
n

|t|m+2∞

)
= O

(
n

|t|2∞
)
.

Part 5. For each nonnegative integerl satisfyingn − (l + 1) ≥ �κnα/2�, we
use the following decomposition ofSn−(l+1)(f ):

Sn−(l+1)(f ) =
(

M∑
j=1

Saj
(f ) ◦ T Aj−1

)
+ SMn,l

(f ) ◦ T AM ,(14)
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with Mn,l := n − (l + 1) − AM . Let us define

F
(l)
j := exp

{
i〈t, Saj

(f )〉√
n

}
and G(l) := exp

{
i〈t, SMn,l

(f )〉√
n

}
.

We have

Eν

[
Y ◦ T l · exp

{
i〈t, Sn−(l+1)(f )〉√

n

}
◦ T l+1

]

= Eν

[
Y

(
M∏

j=1

F
(l)
j ◦ T 1+Aj−1

)
G(l) ◦ T 1+AM

]
.

We start by estimating the following quantity:

h3(t, n, l) := Eν

[
Y · F (l)

1 ◦ T

(
M∏

j=2

(
F

(l)
j ◦ T 1+Aj−1 − 1

))
G(l) ◦ T 1+AM

]
.

Let us show that we have


d/2�+1∑
k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

h3(t, n, l)

∣∣∣∣ = O

(
1+ |t|∞√

n

(
1+ |t|∞
n(1−α)/2

)M−1)

= O

(
1+ |t|p+3∞√

n · n((1−α)/2)(p+2)

)
.

Effectively, for all k = 0, . . . , 
 d
2� + 1 and all indicesj1, . . . , jk ∈ {1, . . . , d}, we

have

∂k

∂tj1 · · · ∂tjk

Y = O

(
1+ |t|∞√

n

)
and

∂k

∂tj1 · · · ∂tjk

F
(l)
1 = O(1)

and

F
(l)
j − 1= O

( |t|∞
n(1−α)/2

)
and

∂k

∂tj1 · · · ∂tjk

(
F

(l)
j − 1

)= O

(
1

n(1−α)/2

)
and ∥∥∥∥ ∂k

∂tj1 · · · ∂tjk

G(l)

∥∥∥∥
L1

= O(1),

by using|eiu − 1| ≤ |u| andaj < κnα/2 and the fact that(Sn(f )√
n

)n≥1 is uniformly

bounded inLp, for all p ∈ [1,+∞[. Let us define

H3(t, n) :=
n−
κnα/2�−1∑

l=0

(
1− 〈t,D(f )t〉

2n

)l

h3(t, n, l).
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According to (11) and (13) we have

d/2�+1∑

k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

H3(t, n)

∣∣∣∣ = O

(
1+ |t|p+1∞

n(p+1−α(p+2))/2

)
(15)

= O

(
1+ |t|p+1∞

n(1/2−α)(p+1)

)
.

This term will contribute to the first term of estimate (4) (forp + 1 instead ofp).
Part 6. (Heart of the proof.) It remains to estimate the following term:

n−
κnα/2�−1∑
l=0

(
1− 〈t,D(f )t〉

2n

)l

× ∑
ε=(ε1,...,εm)

Eν

[
Y

(
M∏

j=1

εj ◦ T 1+Aj−1

)
G(l) ◦ T 1+AM

]
,

the second sum being taken over the set ofε = (ε1, . . . , εM) ∈ ∏M
j=1{−1;F

(l)
j },

with ε1 := F
(l)
1 and with at least oneεj equal to−1. Let an integerl = 0,

. . . , n − �κnα/2� − 1 and such a vectorε = (ε1, . . . , εM) be given. We define
j0 := max{j ≥ 2 :εj = −1}. Then we define

Dl,ε(n, t) := Y

j0−1∏
j=1

εj ◦ T 1+Aj−1

and

El,ε(n, t) := exp
{

i√
n

〈
t, Sn−(l+1)−Aj0

(f )
〉}

.

Therefore, we have

Eν

[
Y

(
M∏

j=1

εj ◦ T 1+Aj−1

)
G(l) ◦ T 1+AM

]
= −Eν

[
Dl,ε(n, t) · El,ε(n, t) ◦ T 1+Aj0

]
.

First step: control of Covν(Dl,ε(n, t),El,ε(n, t) ◦ T 1+Aj0). Let us prove that,
for all k = 0, . . . , 
 d

2� + 1 and allj1, . . . , jk ∈ {1, . . . , d}, we have∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

Covν
(
Dl,ε(n, t),El,ε(n, t) ◦ T 1+Aj0

)∣∣∣∣ = O

(
1+ |t|∞

n(d+3+β)/2

)
.(16)

We will use Property(Pr0). Let us notice that the functionsDl,ε(n, t) and
El,ε(n, t) are of the following form:

Dl,ε(n, t) = Y

Aj0−1∏
j=1

αj ◦ T j and El,ε(n, t) =
n−(l+1)−Aj0−1∏

j=0

exp
{

i〈t, f 〉√
n

}
◦ T j
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for someαj ∈ {1,−1,exp{ i〈t,f 〉√
n

}}. First, let us explain how we get (16) when

k = 0. Let us notice thatY is in O(
|t|∞√

n
) and isη-Hölder continuous with Hölder

constant inO(
|t|∞√

n
). Moreover,‖αj‖∞ = 1 and αj are η-Hölder continuous

with Hölder constant uniformly bounded inO(
|t|∞√

n
). Therefore, according to

Property(Pr0), we get

∣∣Covν
(
Dl,ε(n, t),El,ε(n, t) ◦ T 1+Aj0

)∣∣
≤
( |t|∞√

n
+ nO

( |t|∞√
n

))
Pr0

(
n − (l + 1) − Aj0

)
δr0

1+Aj0−r0Aj0−1

≤ O
(|t|∞√

n
)
Pr0(n)δr0

1+Aj0−r0Aj0−1

≤ O
(|t|∞√

n
) 1

n(d+4+β)/2 ,

according to the fact that

Pr0(n)δr0
1+Aj0−r0Aj0−1 ≤ 1

n(d+4+β)/2 ,

(see the definition ofaj0). Let us suppose nowk ≥ 1. The partial derivatives
of Y relative to t are in O(

1+|t|∞√
n

) and areη-Hölder continuous with Hölder

constant inO(
1+|t|∞√

n
). Moreover, the partial derivatives ofαj relative to t are

uniformly bounded inO( 1√
n
) and areη-Hölder continuous with Hölder constant

in O(
1+|t|∞√

n
). Therefore, the derivative of orderk′ ≥ 1 of

∏Aj0−1

j=1 αj ◦ T j is a sum

of (Aj0−1)
k′

terms of the following form:
∏Aj0−1

j=1 βj ◦ T j , whereβj is equal toαj

or to some derivative ofαj and with at least oneβj equal to some derivative of
αj . Therefore, according to Property(Pr0), for all integersk1 ≥ 1 andk2 ≥ 1 such
thatk1 + k2 = k, and alli1, . . . , ik1, j1, . . . , jk2 in {1, . . . , d}, we have

∣∣∣∣∣Covν

(
∂k1

∂ti1 · · · ∂tik1

Dl,ε(n, t),
∂k2

∂tj1 · · · ∂tjk2

El,ε(n, t) ◦ T 1+Aj0

)∣∣∣∣∣
≤ Aj0−1

kO

(
1+ |t|∞√

n
+ n

1+ |t|∞√
n

)
Pr0(n)δr0

1+Aj0−r0Aj0−1

≤ O
(
(1+ |t|∞)

√
n
)
Aj0−1

d/2+1Pr0(n)δr0
1+Aj0−r0Aj0−1.

We conclude by using the facts thatPr0(n)δr0
1+Aj0−r0Aj0−1 ≤ 1

n(d+5+β)/2 and that
Aj0−1 is in O(ln(n)) (see the definition ofaj ).
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We define

H4(t, n) :=
n−
κnα/2�−1∑

l=0

(
1− 〈t,D(f )t〉

2n

)l

(17)

× ∑
ε=(ε1,...,εM)

Covν
(
Dl,ε(n, t),El,ε(n, t) ◦ T 1+Aj0

)
.

According to the preceding and (11) and (13) we have


d/2�+1∑
k=0

∑
j1,...,jk∈{1,...,d}

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

H4(t, n)

∣∣∣∣ = O

(
1

n(d+1+β)/2

)
.(18)

This term will contribute to thean,p+1,α,β term in (4) (forp + 1 instead ofp). It
remains to estimate the derivatives of the following quantity:

H5(t, n) :=
n−
κnα/2�−1∑

l=0

(
1− 〈t,D(f )t〉

2n

)l

(19)

× ∑
ε=(ε1,...,εM)

Eν[Dl,ε(n, t)]Eν

[
El,ε(n, t) ◦ T 1+Aj0

]
.

Second step: control of the expectation of Dl,ε(n, t). Let us show that we have

sup
l=0,...,n−
κnα/2�−1

sup
ε=(ε1,...,εm)


d/2�+1∑
k=0

∑
j1,...,jk∈{1,...,d}

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

Eν[Dl,ε(n, t)]
∣∣∣∣

(20)

= O

(
1+ |t|3∞√
n · n1−α

)
.

Let us denote byJ the following set:

J := {
j = 1, . . . , j0 − 1 : εj = F (l)

j

}
.

Let us recall that 1 belongs toJ. In the following, we denoteSJ(g) :=∑
j∈J Saj

(g) ◦ T 1+Aj−1 = ∑
j∈J

∑Aj

k=Aj−1+1 g ◦ T k . We have

|Eν[Dl,ε(n, t)]| =
∣∣∣∣Eν

[
Y · exp

{
i√
n
〈t, SJ(f )〉

}]∣∣∣∣
=
∣∣∣∣Eν

[(
exp

{
i〈t, f 〉√

n

}
− 1+ 〈t,D(f )t〉

2n

)
exp

{
i√
n
〈t, SJ(f )〉

}]∣∣∣∣.
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Case k = 0. With the use of Taylor’s formulae of order 2 and 1 foreiu, we get

|Eν [Dl,ε(n, t)]|
=
∣∣∣∣Eν

[(
i〈t, f 〉√

n
+ 1

2n

(〈t,D(f )t〉 − 〈t, f 〉2))(1+ i√
n
〈t, SJ(f )〉

)]∣∣∣∣
+ O

( |t|3∞nα

n3/2

)

=
∣∣∣∣ 1

2n
Eν

[〈t,D(f )t〉 − 〈t, f 〉2 − 2〈t, f 〉〈t, SJ(f )〉]∣∣∣∣+ O

( |t|3∞nα

n3/2

)
=
∣∣∣∣ 1

2n

〈
t,
(
D(f ) − Eν[f ⊗2] − Eν[f ⊗ SJ(f )] − Eν[SJ(f ) ⊗ f ])t 〉∣∣∣∣

+ O

( |t|3∞nα

n3/2

)

= O

( |t|2∞
n2

)
+ O

( |t|3∞nα

n3/2

)
= O

(
1+ |t|3∞√

nn1−α

)
.

Term inO(
|t|2∞
n2 ) comes from (2) and from the fact thatEν[fj .fj ′ ◦ T k] converges

to 0 exponentially fast ask goes to infinity [this is a consequence of Property
(Pr0)]. Effectively, since 1 is inJ, we have

SJ(f ) =
a1∑

k=1

f ◦ T k + ∑
k′≥a1+1,k′∈L

f ◦ T k′
,(21)

for some set of integersL, and we have(δr0)
a1 ≤ 1

n
.

Case k ≥ 3. Let us recall that we have:

• Y = exp{ i〈t,f 〉√
n

} − 1+ 1
2n

〈t,D(f )t〉 = O(
|t|∞√

n
);

• for anyj ∈ {1, . . . , d}, ∂
∂tj

Y = ifj√
n

exp{ i〈t,f 〉√
n

}+ 1
n

Tej ·D(f ) · t = O( 1√
n
+ |t|∞

n
),

whereej is thej th vector of the canonical basis ofRd ;

• for all j, j ′ ∈ {1, . . . , d}, ∂2

∂tj ∂tj ′ Y = −fj fj ′
n

exp{ i〈t,f 〉√
n

} + 1
n
D(f )j,j ′ = O( 1

n
);

• for any integerm ≥ 3 and any(j1, . . . , jm) in {1, . . . , d}m,
∂m

∂tj1 · · · ∂tjm

Y = im
fj1 · · · · · fjm

nm/2 exp
{
i〈t, f 〉√

n

}
= O

(
1

nm/2

)
;

• for any integerm ≥ 0 and any(j1, . . . , jm) in {1, . . . , d}m,
∂m

∂tj1 · · · ∂tjm

exp
{

i√
n
〈t, SJ(f )〉

}

=
(

iSJ(fj1)√
n

)
· · · · ·

(
iSJ(fjm)√

n

)
exp

{
i√
n
〈t, SJ(f )〉

}
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is in O( 1
nm(1/2−α/3) ), according to the fact thataj = O(nα/3).

Hence, for any integerk ≥ 3 and any(j1, . . . , jk) in {1, . . . , d}k , we have

∂k

∂tj1 · · · ∂tjk

Eν[Dl,ε(n, t)] = O

(
1+ |t|∞√

nn1−α

)
.

Case k = 1. Let j ∈ {1, . . . , d} be given. We have

∂

∂tj
Eν[Dl,ε(n, t)]

= Eν

[(
∂

∂tj
Y

)
exp

{
i√
n
〈t, SJ(f )〉

}]
+ Eν

[
Y · ∂

∂tj
exp

{
i√
n
〈t, SJ(f )〉

}]

= Eν

[(
ifj√

n
exp

{
i〈t, f 〉√

n

}
+ 1

n

Tej · D(f ) · t
)

exp
{

i√
n
〈t, SJ(f )〉

}]

+ Eν

[(
exp

{
i〈t, f 〉√

n

}
− 1+ 1

2n
〈t,D(f )t〉

)
iSJ(fj )√

n

× exp
{

i√
n
〈t, SJ(f )〉

}]

= Eν

[(
i
fj + SJ(fj )√

n

)
exp

{
i√
n
〈t, f + SJ(f )〉

}]

+ Eν

[(
−i

SJ(fj )√
n

+
Tej · D(f ) · t

n

)
exp

{
i√
n
〈t, SJ(f )〉

}]

+ O

( |t|2∞√
nn1−α

)

= Eν

[
i
fj + SJ(fj )√

n

(
1+ i√

n
〈t, f + SJ(f )〉

)]

− Eν

[
i
SJ(fj )√

n

(
1+ i√

n
〈t, SJ(f )〉

)]
+

Tej · D(f ) · t
n

+ O

( |t|2∞√
nn1−α

)

= −1

n
Eν

[(
fj + SJ(fj )

)〈t, f + SJ(f )〉]
+ 1

n
Eν[SJ(fj )〈t, SJ(f )〉] +

Tej · D(f ) · t
n

+ O

( |t|2∞√
nn1−α

)

= 1

n

Tej

(
D(f ) − Eν[f ⊗2] − Eν[f ⊗ SJ(f )] − Eν[SJ(f ) ⊗ f ])t

+ O

( |t|2∞√
nn1−α

)
= O

( |t|∞
n2

)
+ O

( |t|2∞√
nn1−α

)
= O

(
1+ |t|2∞√

nn1−α

)
.
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Term inO(
|t|∞
n2 ) comes from (2) and (21) and from the fact thatEν[fj .fj ′ ◦ T k]

converges to 0 exponentially fast ask goes to infinity.

Case k = 2. Let j1 andj2 be in{1, . . . , d}. We have

∂2

∂tj1∂tj2

Eν[Dl,ε(n, t)]

= Eν

[
Y

∂2

∂tj1∂tj2

exp
{

i√
n
〈t, SJ(f )〉

}]

+ Eν

[(
∂

∂tj1

Y

)
∂

∂tj2

exp
{

i√
n
〈t, SJ(f )〉

}]

+ Eν

[(
∂

∂tj2

Y

)
∂

∂tj1

exp
{

i√
n
〈t, SJ(f )〉

}]

+ Eν

[(
∂2

∂tj1∂tj2

Y

)
exp

{
i√
n
〈t, SJ(f )〉

}]

= 1

n

(−Eν

[
fj1SJ

(
fj2

)]− Eν

[
fj2SJ

(
fj1

)]− Eν

[
fj1fj2

]+ D(f )j1,j2

)
+ O

(
1+ |t|2∞√

nn1−α

)

= O

(
1

n2

)
+ O

(
1+ |t|2∞√

nn1−α

)
= O

(
1+ |t|2∞√

nn1−α

)
.

Third step: control of the expectation of El,ε(n, t). We define

n′ = n′
n,l,ε := n − (l + 1) − Aj0 and t ′ = t ′n,l,ε := t

√
n′
n

.

We takeβ ′ := β + d + 8. According to the inductive hypothesis(Hp) applied
to (n′, t ′), we have


d/2�+1∑
k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

(
Eν[El,ε(n, t)]

− exp
{
−〈t,D(f )t〉

2

(
1− l + 1

n
− Aj0

n

)})∣∣∣∣
≤ Lp,α,β ′

1+ |t ′|p∞
n′p(1/2−α)

+ an′,p,α,β ′(t ′).
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Hence, sinceAj0 ≤ κnα, we have


d/2�+1∑
k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

Eν[El,ε(n, t)]
∣∣∣∣

≤ O

(
(1+ |t|d/2+1∞ )exp

{
−〈t,D(f )t〉

2

(
1− l + 1

n
− κ

n1−α

)})
(22)

+ Lp,α,β ′
1+ |t ′|p∞
n′p(1/2−α)

+ an′,p,α,β ′(t ′).

Part 7. (Conclusion.) To finish the proof of Proposition 2.7, we deduce from
the preceding an estimate of the following quantity:


d/2�+1∑
k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

H5(t, n)

∣∣∣∣,(23)

where we denote byH5 the quantity introduced in (19). According to (11), (20)
and (22), we have

d/2�+1∑

k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

H5(t, n)

∣∣∣∣
=

n−
κnα/2�−1∑
l=0

O

(
bn,l(t)

(
1+ |t|3∞√

nn1−α

)

×
(
(1+ |t|d/2+1∞ )exp

{
−〈t,D(f )t〉

2

(
1− l + 1

n
− κ

n1−α

)}

+ Lp,α,β ′
1+ |t ′|p∞
n′p(1/2−α)

+ an′,p,α,β ′(t ′)
))

.

Let us now estimate each term of the right-hand side part of this inequality. We
will use (13) in (b) and (c). In (a) and (d)–(f ), we use the fact thatbn,l(t) is in
O((1+ |t|
d/2�+1∞ )exp{− 1

2n
〈t,D(f )t〉(l − d

2 − 1)}).
(a) We have

n−
κnα/2�−1∑
l=0

bn,l(t)

(
1+ |t|3∞√

nn1−α

)
(1+ |t|d/2+1∞ )

× exp
{
−〈t,D(f )t〉

2

(
1− l + 1

n
− κ

n1−α

)}

= O

(
1+ |t|d+5∞
n1/2−α

exp
{
−〈t,D(f )t〉

2

(
1− κ

n1−α
− d + 4

2n

)})
.
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(b) We have

n−
κnα/2�−1∑
l=0

bn,l(t)

(
1+ |t|3∞√

nn1−α

) |t ′|p∞
n′p(1/2−α)

≤
n−
κnα/2�−1∑

l=0

bn,l(t)

(
1+ |t|3∞√

nn1−α

) |t|p∞
np(1/2−α)

≤ O

(
1+ |t|p+1∞

n(p+1)(1/2−α)

)
.

(c) Let us notice that ifl ≤ 
n
2� − �κnα� − 1, then we haven′ ≥ n

2, from which
we get


n/2�−�κnα�−1∑
l=0

bn,l(t)

(
1+ |t|3∞√

nn1−α

)
1

n′p(1/2−α)

= O

((
1+ |t|3∞√

nn1−α

)
1

np(1/2−α)
nmin

(
1,

1

|t|2∞
))

= O

((
1+ |t|∞
n1/2−α

)
1

np(1/2−α)

)
= O

(
1+ |t|p+1∞

n(p+1)(1/2−α)

)
.

(d) We have

n−
κnα/2�−1∑
l=
n/2�−�κnα�

bn,l(t)

(
1+ |t|3∞√

nn1−α

)
1

n′p(1/2−α)

= O

(
1+ |t|
d/2�+4∞√

nn1−α
nexp

{
−〈t,D(f )t〉

2n

(
n

2
− κnα − 2− d

2
− 1

)})

= O

(
1+ |t|
d/2�+4∞

n1/2−α
exp

{
−〈t,D(f )t〉

2

(
1

2
− κ

n1−α
− d + 6

2n

)})
.

(e) We have

(∫
|t|∞≤n1/2−α

(1+ |t|β∞)

(
n/2�−�κnα�−1∑
l=0

bn,l(t)

(
1+ |t|3∞√

nn1−α

)
an′,p,α,β ′(t ′)

)2

dt

)1/2

= O

((∫
|t|∞≤n1/2−α

(1+ |t|β∞)

×
(
n/2�−�κnα�−1∑

l=0

(
1+ |t|
d/2�+4∞√

nn1−α

)
an′,p,α,β ′(t ′)

)2

dt

)1/2)
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= O

(
n/2�−�κnα�−1∑
l=0

(∫
|t|∞≤n1/2−α

(1+ |t|β∞)

×
((

1+ |t|
d/2�+4∞√
nn1−α

)
an′,p,α,β ′(t ′)

)2

dt

)1/2
)

= O

(
1√

nn1−α


n/2�−�κnα�−1∑
l=0

(∫
|t|∞≤n1/2−α

(1+ |t ′|d+8+β∞ )

× (
an′,p,α,β ′(t ′)

)2
dt

)1/2
)

= O

(
1√

nn1−α


n/2�−�κnα�−1∑
l=0

(∫
|t ′|∞≤n′1/2−α

(1+ |t ′|d+8+β∞ )

× (
an′,p,α,β ′(t ′)

)2
dt ′

)1/2
)

= O

(
1

n2(1/2−α)

)
= O

(
1

n1/2−α

)
,

sincel ≤ 
n
2� − �κnα� − 1 impliesn′ ≥ n

2.
(f ) Using the fact that(am,p,α,β ′)m is uniformly bounded, we have

n−
κnα/2�−1∑
l=
n/2�−�κnα�

bn,l(t)

(
1+ |t|3∞√

nn1−α

)
an′,p,α,β ′(t ′)

= O

(
n−
κnα/2�−1∑

l=
n/2�−�κnα�
exp

{
−〈t,D(f )t〉

2

(
1

2
− κ

n1−α
− d + 6

2n

)}

×
(

1+ |t|
d/2�+4∞√
nn1−α

))

= O

(
exp

{
−〈t,D(f )t〉

2

(
1

2
− κ

n1−α
− d + 6

2n

)}(
1+ |t|
d/2�+4∞

n1/2−α

))
.

Terms studied in (a) and (d)–(f) give contributions to thean,p+1,α,β term in (4)
(for p + 1 instead ofp). Terms studied in (b) and (c) contribute to the first part of
estimate (4) (forp + 1 instead ofp).

Conclusion. Now we deduce Theorem 2.2 from Proposition 2.7. Let a
real numberα ∈]0; 1

4[ and an integerp ≥ 2 be given. Let us takeUn,p :=
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n(1/2−α)(1−(1+d/2)/(p+d/2)). From Proposition 2.7, we get(∫
|t|∞≤Un,p


d/2�+1∑
k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

hn(f, t)

∣∣∣∣2dt

)1/2

= On→+∞
(

1

n1/2−α

)
.

Finally, according to Yurinskii’s result (recalled in Proposition 2.6 of this paper),
we have

∀α ∈
]
0; 1

4

[
∀p ≥ 2 
n(f ) = On→+∞

(
1

n(1/2−α)(1−(1+d/2)/(p+d/2))

)
.

3. Limit theorem with rate of convergence for the averaging method. We
are interested in the asymptotic behavior of the error term between the solution
of a differential equation perturbed by a transformation and the solution of the
associated averaged differential equation. Results of convergence in distribution
have been established in [20, 21, 28], for example.

3.1. Averaging method for differential equation perturbed by a transformation.
In the following, we consider a (discrete-time) probability dynamical system
(�,F , ν, T ). Let an integerd ≥ 1 be given. LetF : Rd ×� → Rd be a measurable
function uniformly bounded and uniformly Lipschitz continuous in the first
parameter. We denote byLF its Lipschitz constant in the first parameter.

For anyε > 0 and any(x,ω) in Rd × �, we consider the continuous solutions
(xε

t (x,ω))t and (wt(x))t of the following differential equations (with initial
condition):

∀ t ∈ R \ εZ,
dxε

t

dt
(x,ω) = F

(
xε
t (x,ω), T 
t/ε�(ω)

)
and xε

0(x,ω) = x(24)

and
dwt

dt
(x) = �F (

wt(x)
)=

∫
�

F
(
wt(x),ω′)dν(ω′) and w0(x) = x.(25)

Let us define the error term(eε
t (x,ω))t as follows:

eε
t (x,ω) := xε

t (x,ω) − wt(x).(26)

NOTATION 3.1. Let a functiong : Rd × � → Rd and an integerk ≥ 1 be
given.

We denote byDk
1g the kth differential ofg relative to the first parameter if it

exists. Let us writeD1g := D1
1g.

The functiong is said to beC
k,∗
b if g is measurable, uniformly bounded,

Ck-regular in the first parameter and ifD1g, . . . ,Dk
1g are measurable and

uniformly bounded.
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For any functionh : Rd → Rd , we denote byDkh thekth differential ofh, if it
is well defined. We writeDh := D1h.

We will make the following assumptions.

HYPOTHESIS3.2. (i) The space� is endowed with a metricd , ν is a Borel
measure ( for the topology induced byd on �) and there exists a real number
r0 ≥ 1 such that the multiple decorrelation Property(Pr0) holds for(�,F , ν, T ).

(ii) The functionF : Rd × � → Rd is uniformly η-Hölder continuous in the
second parameter.

(iii) The functionF : Rd × � → Rd is C
2,∗
b .

We will denote byF̃ the function given by

F̃ (x,ω) := F(x,ω) − �F(x).

According to the proof of Theorem 2.1.3 of [28], we have the following result.

THEOREM 3.3. Let a real number T0 > 0 be given. Under Hypothesis 3.2,for
any integer L ≥ 1, we have

sup
0<ε<1

sup
x∈Rd

sup
0≤t≤T0

∥∥∥∥eε
t (x, ·)√

ε

∥∥∥∥
L

< +∞.

Moreover, for any x ∈ Rd , the family of processes ((eε
t (x, ·))0≤t≤T0)ε>0 converges

in distribution [in (C([0, T0]),‖ · ‖∞) for measure ν], when ε goes to 0, to the
Gaussian process (e0

t (x, ·))0≤t≤T0 solution of

e0
t (x, ·) = vt (x, ·) +

∫ t

0
D�F (

ws(x)
) · e0

s (x, ·) ds,

where vt (x, ·) is a Gaussian process with independent increments, centered and
such that

E
[(

vt (x, ·))⊗2]=
∫ t

0
A
(
F̃
(
ws(x), ·))ds,

with A(g) := limn→+∞ Eν[(Sn(g)√
n

)
⊗2] = Eν[g ⊗ g] + ∑

k≥1(Eν[g ⊗ g ◦ T k] +
Eν[g ◦ T k ⊗ g]), for any ν-centered, bounded η-Hölder continuous function
g :� → Rd .

An analogous result has been established in [21] under hypotheses of mixing
for sub-σ -algebras (cf. also [20]).
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3.2. Statement.

THEOREM 3.4. Let x ∈ Rd and a real number s > 0 be given. Under
Hypothesis 3.2,if D1F is uniformly η-Hölder continuous in the second parameter,
then the following limit exists:

�2
F := lim

ε→0
Eν

[(
eε
s (x, ·)√

ε

)⊗2]
.

If, moreover, the matrixes A(F̃ (wu(x), ·)) defined above are nondegenerate ( for
all u ∈ [0; s]), then the family of random variables (

eε
s (x,·)√

ε
)ε>0 converges in

distribution to a random variable with normal distribution N (0,�2
F ), and we have

∀α > 0, 


(
ν∗
(

eε
s (x, ·)√

ε

)
,N (0,�2

F )

)
= O(ε1/2−α).

3.3. Proof. Let us supposes = 1 (this is not a restrictive hypothesis: it suffices
to replace the functionF by the functions · F ). For any(x,ω) ∈ Rd × � and any
real numberε > 0, we define

vε
t (x,ω) := 1√

ε

∫ t

0
F̃
(
ws(x), T 
s/ε�(ω)

)
ds

and

yε
t (x,ω) := 1√

ε

∫ t

0
exp

{∫ t

s
D�F(wr(x)) dr

}
F̃
(
ws(x), T 
s/ε�(ω)

)
ds.

yε
t (x,ω) is solution ofyε

t (x,ω) = vε
t (x,ω) + ∫ t

0 D�F(ws(x)) · yε
s (x,ω)ds. Our

proof of Theorem 3.4 is based on the two following propositions (Propositions 3.5

and 3.7). The following result shows how the study of
eε

1(x,·)√
ε

comes down to the

study ofyε
1(x, ·).

PROPOSITION3.5. Let a real number T0 > 0 be given. Under Hypothesis 3.2,
we have

∀p ∈ [1,+∞[, sup
0≤t≤T0

sup
x∈Rd

∥∥∥∥eε
t (x, ·)√

ε
− yε

t (x, ·)
∥∥∥∥
Lp

= O(ε1/4).

If, moreover, function D1F is uniformly η-Hölder continuous in the second
variable, then we have

∀p ∈ [1,+∞[, sup
0≤t≤T0

sup
x∈Rd

∥∥∥∥eε
t (x, ·)√

ε
− yε

t (x, ·)
∥∥∥∥
Lp

= O
(√

ε
)
.

COROLLARY 3.6. Under hypotheses of Theorem 3.4,we have

∀α > 0, K

(
eε
t (x, ·)√

ε
, yε

t (x, ·)
)

= O(ε1/2−α).
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PROOF. This is a consequence of thesecond point ofProposition 3.5.
Effectively, if X andY are twoRd -valued random variables defined the a same

probability space, then we haveP(|X − Y |∞ > ε) ≤ ‖X−Y‖p
p

εp and soK(X,Y ) ≤
‖X − Y‖p/(p+1)

p . �

PROOF OFPROPOSITION 3.5. The first point is a consequence of computa-
tions detailed in [28], Section 2.4, proof of Theorem 2.1.3 (cf. also [20], pages
220 and 221), these computations done in normL1 being still true in normLp for
any integerp ≥ 1.

We only give the end of the proof of the second point which follows the scheme
of the proof of the first point.

According to the computations done in [28], Section 2.4, identification of the
cluster values, it is enough to show that we have

sup
0≤t≤T0

sup
x∈Rd

∥∥∥∥∫ t

0
D1F̃

(
ws(x), T 
s/ε�(·)) · yε

s (x, ·) ds

∥∥∥∥
Lp

= O
(√

ε
)
,

for any integerp ≥ 1. Let an integeri = 1, . . . , d be given. We have(∫ t

0
D1F̃

(
ws(x), T 
s/ε�(·)) · yε

s (x, ·) ds

)
i

= ∑
j,k=1,...,d

Li,j,k,ε(t, x),

with

Li,j,k,ε(t, x) = ε
√

ε

∫ t/ε

0

(
D1F̃

(
wεs(x), T 
s�(·)))i,j

×
(∫ s

0

(
exp

{∫ εs

εu
D�F (

wr(x)
)
dr

})
j,k

× F̃k

(
wεu(x), T 
u�(·))du

)
ds.

Let p be an even integer. We have

‖Li,j,k,ε(t, x)‖p
Lp

= √
ε
p
εpEν

[∫
Bε,p

( p∏
i′=1

(
D1F̃

(
wεsi′ (x), T 
si′ �(·)))i,j

)

×
( p∏

j ′=1

(
exp

{∫ εsj ′

εuj ′
D�F (

wr(x)
)
dr

})
j,k

× F̃k

(
wεuj ′ (x), T


uj ′ �(·)))ds1 · · ·dsp du1

· · ·dup

]
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= √
ε
p
εp
∫
Bε,p

( p∏
j ′=1

(
exp

{∫ εsj ′

εuj ′
D�F (

wr(x)
)
dr

})
j,k

)

× Eν

[( p∏
i′=1

(
D1F̃

(
wεsi′ (x), T 
si′ �(·)))i,j

)

×
( p∏

j ′=1

F̃k

(
wεuj ′ (x), T


uj ′ �(·)))]ds1 · · ·dsp du1 · · ·dup

≤ √
ε
p
εpepT0‖D�F‖∞

×

T0/ε�∑

k1,...,k2p=0

∫
ki′≤ui′≤ki′+1

∣∣∣∣∣Eν

[ 2p∏
i′=1

Gi′
(
wεui′ (x), T ki′ (·))]∣∣∣∣∣du1 · · ·du2p,

with Bε,p := {(s1, . . . , sp, u1, . . . , up) ∈ R2p : 0 ≤ ui ≤ si ≤ t
ε
} and by taking

G2i′−1(x
′, ·) = (D1F̃ (x′, ·))i,j and G2i′(x′, ·) = F̃k(x

′, ·) for any i′ = 1, . . . , p.
According to Property(Pr0) and to the proof of Lemma 2.3.4 of [28], we know
that, for any integerL ≥ 1 and any real numberM > 0, we have

sup
N≥1

1

NL/2

N−1∑
n1,...,nL=0

sup
H=(H (1),...,H (L))∈EL,M

∣∣∣∣∣Eν

[
L∏

k=1

H(i) ◦ T ni

]∣∣∣∣∣ < +∞,

whereEL,M is the set ofH = (H (1), . . . ,H (L)) where the functionsH(i) :� → R
are bounded,η-Hölder continuous,ν-centered and satisfy‖H(i)‖∞ + C

(η)

H(i) ≤ M .
We get ∥∥∥∥ ∫ t

0
D1F̃

(
ws(x), T 
s/ε�(·))yε

s (x, ·) ds

∥∥∥∥p

Lp
= O(εp/2). �

In the following, we study the behavior of the family of random variables
(yε

1(x, ·))ε>0 whenε goes to 0 (asymptotic behavior of the covariance matrices,
convergence in distribution with rate of convergence). Let us notice that the study
of the family of random variables(yε

1(x, ·))ε>0 whenε goes to 0 comes down to

the study of the sequence of random variables(y
1/N
1 (x, ·))N whenN goes to+∞.

Effectively, we have

sup
0≤s≤T0

sup
ω∈�

∣∣yε
s (x,ω) − y1/
1/ε�

s (x,ω)
∣∣∞ = O

(√
ε
)
.(27)

PROPOSITION3.7. Under Hypothesis 3.2,the following limit exists:

�2
F := lim

N→+∞ E
[(

y
1/N
1 (x, ·))⊗2]

.



2508 F. PÈNE

If, moreover, the matrixes A(F̃ (w(x), ·)) are nondegenerate ( for all u ∈ [0;1]),
then we have

∀α > 0, 

(
ν∗
(
y

1/N
1 (x, ·)),N (0,�2

F )
) = O(N−1/2+α).

According to Proposition 3.5 and to (27), we have

lim
ε→0

∥∥∥∥eε
t (x, ·)√

ε
− y

1/
1/ε�
t (x, ·)

∥∥∥∥
L2

= 0.

Hence, definitions of�2
F in Theorem 3.4 and in Proposition 3.7 coincide. Let us

recall that, for anyν-centered, boundedη-Hölder continuous functiong :� → Rd ,
we have defined

A(g) := Eν[g⊗2] + ∑
k≥1

(Eν[g ⊗ g ◦ T k] + Eν[g ◦ T k ⊗ g]).

LEMMA 3.8. Under Hypothesis 3.2,the following limit exists:

�2
F := lim

N→+∞ Eν

[(
y

1/N
1 (x, ·))⊗2]

and satisfies

�2
F := 1

N

N−1∑
l=0

A
(
Fl,N

(
wl/N (x), ·))+ O

(
log(N)2

N

)
,

with

Fl,N (x,ω) :=
∫ 1

0
exp

{
1

N

∫ N−l

s
D�F (

wr/N(x)
)
dr

}
F̃
(
ws/N(x),ω

)
ds.

PROOF. We have

y
1/N
1 (x,ω) = 1√

N

∫ N

0
exp

{
1

N

∫ N

s
D�F (

wr/N(x)
)
dr

}

× F̃
(
ws/N(x), T 
s�(ω)

)
ds(28)

= 1√
N

N−1∑
k=0

Fk,N

(
wk/N(x), T k(ω)

)
.

Hence we have

Eν

[(
y

1/N
1 (x, ·))⊗2] = 1

N

N−1∑
k,l=0

Eν

[
Fk,N

(
wk/N(x), T k(·))⊗ Fl,N

(
wl/N(x), T l(·))].
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We define

mN := log(N−2)

log(δr0)
and AN := {

(k, l) ∈ {0, . . . ,N − 1}2 : |k − l| ≤ mN

}
.

We also defineBN := {0, . . . ,N − 1}2 \ AN. According to the multiple decorrela-
tion Property(Pr0) and to our choice ofmN , we have

1

N

∑
(k,l)∈BN

Eν

[
Fk,N

(
wk/N(x), T k(·))⊗ Fl,N

(
wl/N (x), T l(·))]

= O

(
1

N
N2N−2

)
= O

(
1

N

)
.

On the other hand, since #AN = O(NmN) = O(N log(N)), we have

1

N

∑
(k,l)∈AN

∣∣Eν

[
Fk,N

(
wk/N(x), T k(·))

⊗ (
Fl,N

(
wl/N (x), T l(·))− Fk,N

(
wk/N(x), T l(·)))]∣∣

= O

(
1

N
N log(N)

log(N)

N

)
= O

(
log(N)2

N

)
.

Therefore, we have

Eν

[(
y

1/N
1 (x, ·))⊗2]
= 1

N

∑
(k,l)∈AN

Eν

[
Fk,N

(
wk/N(x), T k(·))

⊗ Fk,N

(
wk/N(x), T l(·))]+ O

(
log(N)2

N

)

= 1

N

N−1−mN∑
k=mN

∑
k−mN≤l≤k+mN

Eν

[
Fk,N

(
wk/N(x), T k(·))

⊗ Fk,N

(
wk/N(x), T l(·))]+ O

(
log(N)2

N

)

= 1

N

N−1−mN∑
k=mN

A
(
Fk,N

(
wk/N(x), ·))+ O

(
log(N)2

N

)

= 1

N

N−1∑
k=0

A
(
Fk,N

(
wk/N(x), ·))+ O

(
log(N)2

N

)
.

�

PROOF OF PROPOSITION 3.7. The proof being analogous to the proof of
Theorem 2.2 of the present paper, we do not give all its details. We only give



2510 F. PÈNE

the scheme of thepth iterative step. We will just detail computations which differ
from the proof of Theorem 2.2. In the following,N will be any integer andt any
point in Rd satisfying|t|∞ ≤ N1/2−α .

Let us write�2
F,l,N := A(Fl,N (wl/N (x), ·)).

1. We defineH0(t,N) := exp{−〈t,�2
F t〉

2 } − exp{− 1
2N

∑N−1
l=0 〈t,�2

F,l,N t〉}. Ac-
cording to Lemma 3.8, there exists an integerK0 ≥ 0 such that we have


d/2�+1∑
k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

H0(t,N)

∣∣∣∣
(29)

= O

(
exp

{
−1

2

(
〈t,�2

F t〉 − Cte(log(N)2)

N
|t|2∞

)}
(1+ |t|K0∞ )

(log(N))2

N

)
.

We define

H1(t,N) := exp
{
− 1

2N

N−1∑
l=0

〈t,�2
F,l,N t〉

}
−

N−1∏
l=0

(
1− 1

2N
〈t,�2

F,l,N t〉
)
.

We have

|H1(t,N)| = O

(
N−1∑
l′=0

exp

{
− 1

2N

〈
t,

(∑
l =l′

�2
F,l,N

)
t

〉}
supl′′ 〈t,�2

F,l′′,N t〉2

8N2

)
and, more generally, there exists a nonnegative integerK1 such that


d/2�+1∑
k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

H1(t,N)

∣∣∣∣
= O

(
1+ |t|K1∞√

N
(30)

× exp

{
− 1

2

(〈
t,

(∑
l

�2
l,N

)
t

〉
− d + 4

2N
sup
l′′

〈t,�2
l′′,N t〉

)})
.

We prove this estimate as we proved (6) in the proof of Theorem 2.2 by
replacing (7) by the following formula which holds for any integerN ≥ 1 and
all Ck-regular functionsg1, . . . , gN : Rd → C:

∂k

∂tj1 · · · ∂tjk

(
N∏

i=1

gi

(
t√
N

))

=
k∑

m=1

∑
{k1,...,km}∈Em,N

∑
A∈Lm,k

( ∏
j =k1,...,km

gj

(
t√
N

)

×
m∏

p=1

∂#Apgkp

∂tj
l
(p)
1

· · · ∂tj
l
(p)
#Ap

(
t√
N

))
1

Nk/2
,
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whereEm,N is the set of subsets{1, . . . ,N} with cardinalm and whereLm,k is
the set of partitionsA = (A1, . . . ,Am) of {1, . . . , k} in nonempty subsets (i.e.,
Ap ⊆ {1, . . . , k}, Ap = ∅,

⋃
p Ap = {1, . . . , k} andAp ∩ Aq = ∅ if p = q) with

Ap = {l(p)
1 , . . . , l

(p)
#Ap

}.
2. This leads us to the study of

Eν

[
exp

{
i√
N

〈t, y1/N
1 (x, ·)〉

}]
−

N−1∏
l=0

(
1− 1

2N
〈t,�2

F,l,N t〉
)

=
N−1∑
l=0

(
l−1∏
j=0

(
1− 〈t,�2

F,j,N t〉
2N

))

× Eν

[
Zl,N (x, ·)exp

{
i√
N

N−1∑
k=l+1

〈
t,Fk,N

(
wk/N(x), T k(·))〉}],

with

Zl,N (x, ·) := exp
{

i√
N

〈
t,Fl,N

(
wl/N (x), T l(·))〉}− 1+ 〈t,�2

F,l,N t〉
2N

.

3. We consider the quantitiesM := p + 3 anda1, . . . , aM introduced in the
proof of Theorem 2.2. We still defineA0 := 0 andAm := ∑m

j=1aj for every

m = 1, . . . ,M . There exists a real numberκ > 0 such thataj < κNα/2 for any
j = 1, . . . ,M .

4. We estimate the following quantity as we have estimatedH2 in the proof of
Theorem 2.2 [cf. estimate (10)]:

H2(t,N) :=
N−1∑

l=N−
κNα/2�

(
l−1∏
q=0

(
1− 〈t,�2

F,q,N t〉
2N

))

× Eν

[
Zl,N (x, ·)exp

{
i√
N

N−1∑
k=l+1

〈
t,Fk,N

(
wk/N(x), T k(·))〉}].

5. For anyl ≤ N − 
κNα/2� − 1 and anyj = 1, . . . ,M , we define

F (l)
j := exp

{
i√
N

l+Aj∑
k=l+Aj−1+1

〈
t,Fk,N

(
wk/N(x), T k(·))〉}

and

G(l) := exp

{
i√
N

N−1∑
k=l+AM+1

〈
t,Fk,N

(
wk/N(x), T k(·))〉}.
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We have

Eν

[
Zl,N (x, ·)exp

{
i√
N

N−1∑
k=l+1

〈
t,Fk,N

(
wk/N(x), T k(·))〉}]

= Eν

[
Zl,N (x, ·)

(
M∏

j=1

F (l)
j

)
G(l)

]
.

Moreover, as in the proof of Theorem 2.2, we can show that we have


d/2�+1∑
k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

H3(t,N)

∣∣∣∣ = O

( |t|p+1∞
N(1/2−α)(p+1)

)
,

with

H3(t,N) :=
N−
κNα/2�−1∑

l=0

(
l−1∏
j=0

(
1− 〈t,�2

F,l,N t〉
2N

))

× Eν

[
Zl,N (x, ·)F (l)

1

(
M∏

j=2

(
F (l)

j − 1
))

G(l)

]
.

6. It remains to estimate∑
ε=(ε1,...,εM)

Eν

[
Zl,N (x, ·)

(
M∏
i=1

εi

)
G(l)

]
,

where the sum is taken over theε = (ε1, . . . , εM) ∈ ∏M
j=1{−1;F (l)

j } with ε1 =
F (l)

1 , theεj being not all equal toF (l)
j . For any such vectorε = (ε1, . . . , εp+3),

we definej0 := max{j ≥ 2 :εj = −1}. We write

Dl,ε(N, t) := Zl,N (x, ·)
j0−1∏
j=1

εj

and

El,ε(N, t) :=
(

M∏
j=j0+1

F (l)
j

)
G(l) = exp

{
it√
N

N−1∑
k=l+1+Aj0

Fk,N

(
wk/N(x), T k(·))}.

In this study, we will use the following estimate instead of (11) (used in the proof
of Theorem 2.2):

∂k

∂tj1 · · · ∂tjk

l−1∏
j=0

(
1− 〈t,�2

F,j,N t〉
2N

)
= O

(
bN,l(t)

)
,(31)
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with

bN,l(t) :=
min(
d/2�+1,l)∑

m=0

l · · · · · (l − m + 1)
|t|m∞
Nm

(32)

× exp

{
− 1

2N

(〈
t,

l−1∑
j=0

�2
F,j,N t

〉
− msup

j ′′
〈t,�2

F,j ′′,N t〉
)}

.

We will see that we have

N−1∑
l=0

bN,l(t) = O

(
min

(
N,

N

|t|2∞
))

.

First, let us notice that there exists a real numberc̃0 > 0 such that, for all
integersN , L ≥ 1 and allx ∈ Rd , we have

0 ≤ 〈x,�2
F,L,Nx〉 ≤ c̃0|x|2∞.

On the other hand, since the symmetric matricesA(F̃ (wn(x), ·)) are nondegener-
ate, there exist an integerN1 ≥ 1 and a real number̃c1 > 0 such that, for all integer
L ≥ N1 and allx ∈ Rd , we have〈

x,
1

L

L−1∑
l=0

�2
F,l,Nx

〉
≥ c̃1|x|2∞.

If l ≥ max(N1,
2(
d/2�+1)c̃0

c̃1
), then we have

bN,l(t) ≤
min(
d/2�+1,l)∑

m=0

l · · · · · (l − m + 1)
|t|m∞
Nm

exp
{
− lc̃1

4N
|t|2∞

}
.

Hence, we get

N−1∑
l=max(N1,�(2(
d/2�+1)c̃0)/c̃1�)

bN,l(t) = O

(
min

(
N,

N

|t|2∞
))

.

On the other hand, we have ∑
l≤max(N1,

2(
d/2�+1)c̃0
c̃1

)

bN,l(t) = O(1).

First step: estimate for the covariance. We use Property(Pr0) as in the proof
of Theorem 2.2 to estimate Covν(Dl,ε(N, t),El,ε(N, t)).
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Second step: estimate for the first expectation. We show that we have


d/2�+1∑
k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

Eν[Dl,ε(N, t)]
∣∣∣∣ = O

(
1+ |t|3∞√
N · N1−α

)
.(33)

Let us denote byJ the following set:

J := {
j = 1, . . . , j0 − 1 :εj = F (l)

j

}
.

Let us recall that 1 belongs toJ. We have

|Eν[Dl,ε(N, t)]|

=
∣∣∣∣∣Eν

[
Zl,N (x, ·)exp

{
i√
N

∑
j∈J

l+Aj∑
k=l+Aj−1+1

〈
t,Fk,N

(
wk/N(x), T k(·))t 〉}]∣∣∣∣∣.

By noticing that we have

∑
j∈J

l+Aj∑
k=l+Aj−1+1

∣∣(Fk,N

(
wk/N(x), T k(·))− Fl,N

(
wl/N (x), T k(·)))∣∣∞

= O

(
(log(N))2

N

)
,

we are led to the study of|Eν[D̃l,ε(N, t)]|, with

D̃l,ε(N, t) := Zl,N (x, ·)exp

{
i√
N

∑
j∈J

l+Aj∑
k=l+Aj−1+1

〈
t,Fl,N

(
wl/N(x), T k(·))〉}.

We can estimate this quantity as we have estimated the termEν[Dl,ε(n, t)]
appearing in the proof of Theorem 2.2. We will not rewrite all the computations.
We will just detail the casek = 0.

According to Taylor’s formula, we get

Zl,N (x, ·) = i√
N

〈
t,Fl,N

(
wl/N (x), T l(·))〉

+ 1

2N

〈
t,
(
�2

F,l,N − (
Fl,N

(
wl/N(x), T l(·)))⊗2)

t
〉+ O

( |t|3∞
N3/2

)
and

exp

{
i√
N

∑
j∈J

l+Aj∑
k=l+Aj−1+1

〈
t,Fl,N

(
wl/N (x), T k(·))〉}

= 1+ i√
N

∑
j∈J

l+Aj∑
k=l+Aj−1+1

〈
t,Fl,N

(
wl/N (x), T k(·))t 〉+ O

( |t|2∞
N1−α

)
.
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Therefore, we have

Eν[D̃l,ε(N, t)]

= 1

2N
Eν

[〈
t,
(
�2

F,l,N − (
Fl,N

(
wl/N(x), T l(·)))⊗2

− Fl,N

(
wl/N (x), T l(·))

⊗ ∑
j∈J

l+Aj∑
k=l+Aj−1+1

Fl,N

(
wl/N (x), T k(·)))t

〉]

+ O

( |t|3∞√
NN1−α

)

= O

( |t|2∞
N2

)
+ O

( |t|3∞√
NN1−α

)
= O

(
1+ |t|3∞√
NN1−α

)
.

Third step: estimate for the second expectation. We write N ′ = N ′
N,l,ε :=

N − (l + 1) − Aj0 and t ′ = t ′N,l,ε := t
√

N ′
N

et β ′ := β + d + 8. We estimate
Eν[El,ε(N, t)] with the use of the inductive hypothesis as we have done in the
proof of Theorem 2.2. Hence, we get


d/2�+1∑
k=0

∑
j1,...,jk=1,...,d

∣∣∣∣ ∂k

∂tj1 · · · ∂tjk

Eν[El,ε(N, t)]
∣∣∣∣

≤ O

(
(1+ |t|d/2+1∞ )exp

{
− c̃1|t|2∞

2

(
1− l + 1

n
− κ

n1−α

)})

+ Lp,α,β ′
1+ |t ′|p∞

N ′p(1/2−α)
+ aN ′,p,α,β ′(t ′).

Therefore, we got estimates analogous to those established in the proof of
Theorem 2.2. We conclude in the same way with the use of (31) and (32).�

APPENDIX

Optimal and suboptimal estimates in norm Lp. Let us consider a time-
continuous dynamical system(M,T ,µ, (Yt )t∈R), where(M,T ,µ) is a probabil-
ity space and where(Yt )t∈R is a family ofµ-preserving transformations ofM such
that(t, y) �→ Yt (y) is measurable and satisfiesY0 = id andYt+s = Yt ◦ Ys . Let us
fix an integerd ≥ 1.

Let us consider a measurable functionf : Rd × M → Rd bounded, uniformly
Lipschitz continuous in the first parameter such that, for any(x, y) ∈ Rd × M,
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the functionst �→ f (x,Yt(y)) are continuous on the right-hand side and limited
on the left-hand side (i.e., they are cadlag functions), the set of discontinuity
points being contained in a numerable setDy independent ofx. For all ε > 0
and all (x, y) ∈ Rd × M, we consider the continuous piecewiseC1 function,
t �→ Xε

t (x, y), solution of the following differential equation with initial condition:

Xε
0(x, y) = x and ∀ t ∈ R \ εDy,

dXε
t (x, y)

dt
= f

(
Xε

t (x, y), Yt/ε(y)
)
.(34)

We are interested in the behavior of(Xε
t (x, y))t whenε goes to 0. We approximate

(Xε
t (x, y))t by the solution(Wt(x))t of the differential equation with initial

condition obtained from (34) by averaging

W0(x) = x and ∀ t ∈ R,
dWt(x)

dt
= f̄ (Wt (x)),(35)

with f̄ (x′) := ∫
M f (x′, y′) dµ(y′).

This leads us to the study of the behavior of the error term(Eε
t (x, y))t between

the solution of the perturbed equation (34) and the solution of the equation (35)
obtained by averaging

Eε
t (x, y) := Xε

t (x, y) − Wt(x).(36)

In [21] and [28], the question of convergence in distribution of(
Eε

t (x,y)√
ε

)t whenε

goes to 0 has been studied. The aim of this part is to establish estimates as optimal
as possible of supx∈Rd ‖sup0≤t≤T0

|Eε
t (x, ·)|∞‖Lp , with p ∈ [1;+∞].

In the following, we denotef̃ (x, y) := f (x, y) − f̄ (x).
If M is a compact manifold, if the flow(Yt)t is C1 and iff is C1 with compact

support and satisfies the following condition of uniformly bounded variance:

sup
x∈Rd

sup
t>0

∥∥∥∥∣∣∣∣ 1√
t

∫ t

0
f̃
(
x,Ys(·))ds

∣∣∣∣∞
∥∥∥∥
L2

< +∞,(37)

Dumas and Golse established the following estimate (cf. [11]):

∀T0 > 0,

∫
Rd×M

sup
0≤t≤T0

|Eε
t (x, ·)|∞ dx dµ(y) = O(ε1/3).(38)

Let us notice that their proof is still valid in the general context described at the
beginning of this appendix, whenf : Rd × M → Rd is a continuous function
with compact support,C1,∗

b (i.e., measurable, uniformly bounded,C1 in the first
variable withD1f measurable and uniformly bounded) satisfying the following
integrally bounded variance property:∫

Rd
sup
t>0

∥∥∥∥∣∣∣∣ 1√
t

∫ t

0
f̃
(
x,Ys(·)) ds

∣∣∣∣∞
∥∥∥∥
L2

dx < +∞(39)

(cf. [27]). Let us notice that,f having a compact support, condition (39) is weaker
than condition (37).
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In this appendix, we will make stronger hypotheses than conditions
(39) and (37), which will enable us to establish estimates inO(ε1/2) or in
O(| ln(ε)|ε1/2) according to results due to Billingsley [5] and Serfling [35].

In Section A.1 we give optimal and suboptimal estimates for
supx∈Rd ‖sup0≤t≤T0

|eε
t (x, ·)|∞‖Lp in the case of averaging method perturbed by

a transformation (cf. Section 3.1). In Section A.2, we deduce from Section A.1
estimates for supx∈Rd ‖sup0≤t≤T0

|Eε
t (x, ·)|∞‖Lp when the flow is associated (in

some sense) to a transformation satisfying hypotheses of Section A.1.

A.1. Perturbation by a transformation. In the following, we are in the
general context described at the beginning of Section 3.1 (before Hypothesis 3.2).
We will suppose that this dynamical system is invertible, that is, thatT is one-
to-one from a set� \ N0 onto a set� \ N1 with ν(N0) = ν(N1) = 0 and that
the inverse transformationT −1 is measurable. Such a hypothesis is not restrictive.
Effectively, any dynamical system is a factor of an invertible dynamical system
(its natural extension). We consider a real numberT0 > 0. We are interested in the
study of the asymptotic behavior (asε goes to 0) of the following quantities:

sup
x∈Rd

∥∥∥∥ sup
t∈[0;T0]

|eε
t (x, ·)|∞

∥∥∥∥
Lp

,(40)

with p ≥ 1. For any(x,ω) ∈ Rd × �, we defineF̃ (x,ω) := F(x,ω) − �F(x).
According to Gronwall’s lemma, we have

PROPOSITIONA.1.1. For any ε > 0 and any (x,ω) ∈ Rd × �, we have

sup
t∈[0;T0]

|eε
t (x,ω)|∞ ≤ (1+ LF eLF T0) sup

t∈[0;T0]

∣∣∣∣ε ∫ t/ε

0
F̃
(
wεs(x), T 
s�(ω)

)
ds

∣∣∣∣∞
and

sup
t∈[0;T0]

∣∣∣∣ε ∫ t/ε

0
F̃
(
wεs(x), T 
s�(ω)

)
ds

∣∣∣∣∞ ≤ (1+ LFT0) sup
t∈[0;T0]

|eε
t (x,ω)|∞.

According to this result, the study of (40) brings us to the study of the following
quantity:

sup
x∈Rd

∥∥∥∥ sup
t∈[0;T0]

∣∣∣∣ε ∫ t/ε

0
F̃
(
wεs(x), T 
s�(ω)

)
ds

∣∣∣∣∞
∥∥∥∥
Lp

.

A.1.1. Estimate in norm L2: a suboptimal result. A first result is the following
one.

THEOREM A.1.2. If we have

sup
i=1,...,d

∑
k∈Z

sup
x,y∈Rd

∣∣Eν

[
F̃i(x, ·) · F̃i

(
y,T k(·))]∣∣< +∞,(41)
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then we have

sup
x∈Rd

∥∥∥∥ sup
t∈[0;T0]

|eε
t (x, ·)|∞

∥∥∥∥
L2

= O
(| ln(ε)|√ε

)
.(42)

Let us notice that the condition (41) is close to the condition (37), the main
difference being the fact that in (41) we study covariances of functionsF̃i(x, ·) and
F̃i(y, ·), with x andy maybe distinct. Condition (41) is not extremely restrictive;
in particular, we can verify it for the examples studied in [11] without making more
computations than those done to show that the condition (37) is satisfied.

Let us recall the following result.

THEOREM A.1.3 ([5], page 102). Let two real numbers α ≥ 1 and β ≥ 1 be
given. Let (Xn)n be a sequence of real-valued random variables defined on the
same probability space and a sequence of nonnegative real numbers (un)n such
that, for all integer n0 ≥ 0 and n ≥ 1, we have

E

[∣∣∣∣∣
n0+n−1∑
k=n0

Xi

∣∣∣∣∣
α]

≤
(

n0+n−1∑
k=n0

ui

)β

;

then, for all integers n0 ≥ 0 and n ≥ 1, we have

E

[
sup

m=1,...,n

∣∣∣∣∣
n0+m−1∑

k=n0

Xi

∣∣∣∣∣
α]

≤ (
log2(4n)

)α(n0+n−1∑
k=n0

ui

)β

.

SCHEME OF THEPROOF OFTHEOREM A.1.2. Let us apply Theorem A.1.3
to Xk := ∫ k+1

k F̃i(wεs(x), T 
s�(·)) ds, α = 2, ui = C andβ = 1. We get

sup
x∈Rd

sup
ε>0

Eν

[
sup

n=0,...,N

∣∣∣∣ ∫ n

0
F̃
(
wεs(x), T 
s�(·))ds

∣∣∣∣2∞
]

= O
(
N log(N)

)
.

We conclude with the use of the fact thatF̃ is uniformly bounded. �

The result of Theorem A.1.2 is suboptimal. Effectively, under hypotheses of
Theorem A.1.2, we have

sup
x∈Rd

sup
t∈[0;T0]

∥∥∥∥∣∣∣∣ ∫ t/ε

0
F̃
(
wεs(x), T 
s�(·))ds

∣∣∣∣∞
∥∥∥∥
L2

= O(ε−1/2).

If, moreover, we have supi

∑
n∈Z |n|supx,y∈Rd |Eν[F̃i(x, ·) · F̃i(y, T n(·))]| < +∞,

then a direct computation (cf. [20] and [28], Proposition 2.2.3) enables us to
show that the covariance matrix (relative toν) of

√
ε
∫ t/ε
0 F̃ (wεs(x), T 
s�(·)) ds

converges, asε goes to 0, to
∫ t
0 A(F̃ (wu(x), ·)) du, with A(g) = ∑

k∈Z Eν[g ⊗
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g ◦ T k]. In that case, if somẽF(x, ·) are not coboundaries [i.e., if some ma-
trices A(F̃ (wu(x), ·)) are not null], then supx∈Rd sup0≤t≤T0

Eν[| ∫ t/ε
0 F̃ (wεs(x),

T 
s�(·)) ds|2∞]1/2 is exactly in 1√
ε
.

Therefore, according to Proposition A.1.1, supx∈Rd supt∈[0;T0] Eν[|eε
t (x,

·)|2∞]1/2 is exactly in 1√
ε
.

Let us mention that the case when functionsF̃ (x, ·) are all coboundaries has
been studied in [28].

Let us notice that we can get an estimate inO(
√

ε ) in L2 when we can apply
the martingale method (see Gordin’s method [15]; cf., e.g., Theorem 5.3.6 of [27])
with the use of Doob’s inequality for martingales [16].

A.1.2. Moment of larger order: optimal results. We use the following result
established in [35].

THEOREM A.1.4 (cf. Theorem B in [35]). Let two real numbers α > 2 and
C > 0 be given. There exists a real number K > 0 such that, for any sequence of
real random variables (Xn)n satisfying the following:

sup
n0≥0

sup
n≥1

Eν

[
1

nα/2

∣∣∣∣∣
n0+n−1∑
k=n0

Xk

∣∣∣∣∣
α]

≤ C,

we have

sup
n0≥0

sup
n≥1

Eν

[
1

nα/2 sup
k=1,...,n

∣∣∣∣∣
n0+k−1∑

l=n0

Xl

∣∣∣∣∣
α]

≤ K.

A consequence of this theorem is the following result.

THEOREM A.1.5. Let an integer p ≥ 2 be given. If the family of functions
F := {F̃i(x, ·);x ∈ Rd, i = 1, . . . , d} satisfies the following condition:

N−1∑
l1,...,l2p=0

sup
(g1,...,g2p)∈F 2p

∣∣∣∣∣Eν

[ 2p∏
i=1

gi ◦ T li

]∣∣∣∣∣ = O(Np),

then we have

sup
x∈Rd

∥∥∥∥ sup
t∈[0;T0]

|eε
t (x, ·)|∞

∥∥∥∥∥
L2p

= O
(√

ε
)
.

PROOF. We have

sup
x∈Rd

N−1∑
l1,...,l2p=0

∫ l1+1

l1

· · ·
∫ l2p+1

l2p

∣∣∣∣∣Eν

[ 2p∏
j=1

F̃i

(
wεsj (x), T lj (·))]∣∣∣∣∣ds1 · · ·ds2p

= O(Np).
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We conclude with Theorem A.1.4 forXk := ∫ k+1
k F̃i(wεs(x), T 
s�(·)) ds and for

α = 2p. �

Examples of systems satisfying the hypotheses of Theorem A.1.5 for allp ∈
[1,+∞[ have been studied in [28]. In particular, we have the following result.

PROPOSITIONA.1.6. Under the two first points of Hypothesis 3.2,we have

∀p ∈ [1,+∞[ sup
x∈Rd

∥∥∥∥ sup
t∈[0;T0]

|eε
t (x, ·)|∞

∥∥∥∥
L2p

= O
(√

ε
)
.

PROOF. By a combinatorial argument (cf., e.g., the proof of Lemma 2.3.4
of [28]), we can show that, in this situation, hypotheses of Theorem A.1.5 are
satisfied. �

A.2. Perturbation by a flow. We study here quantities supx∈Rd

‖supt∈[0;T0] |Eε
t (x, ·)|∞‖Lp for the averaging method for differential equations

perturbed by a flow in the context described at the beginning of the Appen-
dix. We will see how we can be brought to the question of the study of
supx∈Rd ‖supt∈[0;T0] |eε

t (x, ·)|∞‖Lp, whereeε
t (x,ω) is the error term in the av-

eraging method for a differential equation perturbed by a transformation. We will
consider the transformationT = Y1 (in the case of diagonal flows) or we will use
a representation of the flow as a special flow (in the case of the billiard flow). We
will conclude with the help of the results of Section A.1.

A.2.1. Flow stopped at time 1. In this section, we take(�,F , ν, T ) =
(M,T ,µ,Y1). We consider the functionF : Rd × � → Rd defined byF(x,ω) :=∫ 1
0 f (x,Ys(ω)) ds. We consider the processes(xε

t (x,ω)), (wt (x)) and(eε
t (x,ω))

given by (24), (25) and (26) for this choice of(�,F , ν, T ) and ofF . Then we can
show that, for any real numberT0 > 0, we have

sup
(x,ω)∈Rd×�

sup
t∈[0,T0]

|Eε
t (x,ω) − eε

t (x,ω)|∞ = O(ε).

According to results established in [23] about diagonal flows, Property(P1) is
satisfied in this context. This enables us to show the following result, according to
Proposition A.1.6.

EXAMPLE A.2.1 (Diagonal flow on a homogeneous space). Letd ≥ 2 be
an integer and let� be a cocompact subgroup ofG := SL(d,R). We consider
the quotient spaceM := SL(d,R)/� endowed with the probability measure left-
translation-invariant̄µ induced onM by the Haar measure onG. Let (Ti)

d
i=1 be a
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decreasing sequence ofd positive real numbers not all equal to 1, the product of
which is 1. For any real numbert ∈ R, we denote byT t the matrix

T t =


T t

1
T t

2 0
. . .

0 T t
d−1

T t
d

 .

We consider thēµ-preserving flow(Yt )t defined onG/� by Yt(x�) = T tx�. Let
us fix a riemannian metricd0 on G invariant by right-translation and let us define
a metricd onG/� by

d(x�,y�) := inf
γ∈�

d0(x, yγ ).

If f : Rd × M → Rd is a measurable function, which is uniformly bounded and
uniformly Lipschitz continuous in the first variable and uniformly Hölder in the
second variable (for the metricd), then we have

∀p ∈ [1,+∞[, sup
x∈Rd

∥∥∥∥ sup
t∈[0;T0]

|Eε
t (x, ·)|∞

∥∥∥∥
L2p

= O
(√

ε
)
,

where(Xε
t (x,ω)), (Wt(x)) and(Eε

t (x,ω)) are defined by (34), (35) and (36) for
this choice of(M,T ,µ, (Yt)t ) and off .

A.2.2. Case of a special flow. Let us suppose now that the time-continuous
dynamical system(M,T ,µ, (Yt)t ) is the special flow associated to a dynamical
system(�, ν,T ) and to a roof functionτ :� → [0;+∞[ satisfying infτ > 0 and
supτ < +∞, which means:

(i) M is the set{(ω, s) :ω ∈ �,s ∈ [0; τ (ω)]} with identifications(ω, τ (ω)) ≡
(T (ω),0);

(ii) T is theσ -algebra induced onM by the productσ -algebra� × R+;
(iii) the probability measureµ is given bydµ(ω, s) 1∫

� τ dν
dν(ω)ds;

(iv) the flow (Yt)t is given byYt(ω, s) = (ω, s + t) with the identifications
(ω, τ (ω)) ≡ (T (ω),0).

We make the following hypothesis on the functionf : Rd × M → Rd :

HYPOTHESISA.2.2. The functionf is measurable, uniformly bounded and
uniformly Lipschitz continuous in the first variable.

For every(x,ω) ∈ Rd × �, the functions �→ f (x, (ω, s)) is continuous on
[0, τ (ω)[ and the following limit exists: lims→τ(ω)− f (x, (ω, s)).

We then consider the functionF : Rd × � → Rd defined byF(x,ω) :=∫ τ(ω)
0 f (x, (ω, s)) ds. We consider also the processes(xε

t (x,ω)), (wt (x)) and
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(eε
t (x,ω)) defined by the (24), (25) and (26) for(�,F , ν, T ) and for this choice

of F . We consider the process(f ε
t (x,ω)) defined as the process(eε

t (x,ω)) by
replacingF by the functionG given byG(x,ω) = τ (ω)f̄ (x). According to [21]
(see also [28], Section 3.2), we have:

REMARK A.2.3. Under Hypothesis A.2.2, for any real numberT0 > 0, we
have:

sup
x∈Rd

sup
ε>0

sup
t∈[0,T0]

∣∣Eε
t (x,ω) − (

eε
εn(t/ε,ω)(x,ω) − f ε

εn(t/ε,ω)(x,ω)
)∣∣∞ = O(ε),

with n(t,ω) := max{n ≥ 0 :∑n−1
k=0 τ (T k(ω)) ≤ t}.

Hence, for anyT0 > 0 and anyp ∈ [1;+∞[, we have:∥∥∥∥ sup
t∈[0;T0]

|Eε
t (x, ·)|∞

∥∥∥∥
Lp

≤
∥∥∥∥ sup

t∈[0;T0/ inf� τ ]
|eε

t (x, ·) − f ε
t (x, ·)|∞

∥∥∥∥
Lp

+ O(ε).

On the other hand, as for Proposition A.1.1, we can show that we have:

REMARK A.2.4. Under Hypothesis A.2.2, there exists a real numberC > 0
such that, for any real numberε > 0 and any(x,ω) ∈ Rd × �, we have

sup
t∈[0;T0]

|eε
t (x,ω) − f ε

t (x,ω)|∞ ≤ C sup
t∈[0;T0]

∣∣∣∣ε ∫ t/ε

0
H
(
wεs(x), T 
s�(ω)

)
ds

∣∣∣∣∞,

with H(x,ω) := F(x,ω) − τ (ω)f̄ (x).

According to the results on the billiard flow established in [28] (cf. also
[37] and [38]), Property(Pr ) is satisfied for every real numberr > 1. Therefore,
according to the proof of Theorem A.1.5, we have:

EXAMPLE A.2.5 (Billiard flow with finite horizon). LetQ be a compact

subset of the torusT2 = R2

Z2 , the complement of which is a finite union of strictly
convex open sets (open disks, e.g.) with closure pairwise disjoint and the boundary
of which is C3 with curvature never null. We are interested in the behavior of
a point particle moving inQ with unitary speed and elastic reflections off∂Q.
We consider the time-continuous dynamical system(M,T ,µ, (Yt )t ) defined as
follows:

(a) we denote byT 1Q the set of position-speed couples(q, �v) with q ∈ Q and
‖�v‖ = 1; we defineM := {(q, �v) ∈ T 1Q :q /∈ ∂Q or 〈�n(q), �v〉 ≥ 0}, where�n(q) is
the unitary normal vector to∂Q in q (oriented to the inside ofQ) if q ∈ ∂Q. We
endowM with the metricd given by

d
(
(q, �v), (q ′, �v′)

)= d0(q, q ′) + d1(�v, �v′),
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whered0 is the metric induced onT2 by the usual euclidean metric onR2 and
whered1(�v, �v′) is the absolute value of the angular measure taken in] − π;π ] of
the anglê(�v, �v′);

(b) µ is the normalized Lebesgue measure onM;
(c) (Yt )t is the billiard flow defined onM by Yt(q, �v) = (q ′, �v′) is the position-

speed couple at timet of a particle that was at positionq with speed�v at time 0.

For every(q, �v) ∈ M, we defineτ+(q, �v) := inf{s > 0 :q + s �v ∈ ∂Q}. Let us
suppose that functionτ+ is bounded (we say that the billiard has finite horizon).
If f : Rd × M → Rd is a measurable function, uniformly bounded, uniformly
Lipschitz in the first variable and uniformly Hölder in the second variable, then
we have

∀p ∈ [1,+∞[, sup
x∈Rd

∥∥∥∥ sup
t∈[0;T0]

|Eε
t (x, ·)|∞

∥∥∥∥
L2p

= O
(√

ε
)
,

where the processes(Xε
t (x,ω)), (Wt(x)) and (Eε

t (x,ω)) have been defined by
(34), (35) and (36) for this choice of(M,T ,µ, (Yt )t ) and off .
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