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DISCUSSION: THE DANTZIG SELECTOR: STATISTICAL
ESTIMATION WHEN p IS MUCH LARGER THAN n

BY MICHAEL P. FRIEDLANDER AND MICHAEL A. SAUNDERS

University of British Columbia and Stanford University

1. Computational considerations. When Lasso [11] was proposed, it was a
computational challenge to solve the associated quadratic program

min
β

1
2‖y − Xβ‖2

2 s.t. ‖β‖1 ≤ tLasso(t)

given just a single parameter t . Two active-set methods were described in [11],
with some concern about efficiency if p were large, where X is n × p . Later when
basis pursuit de-noising (BPDN) was introduced [2], the intention was to deal with
p very large and to allow X to be a sparse matrix or a fast operator. A primal–dual
interior method was used to solve the associated quadratic program, but it remained
a challenge to deal with a single parameter.

The authors’ new Dantzig Selector (DS) also assumes a specific parameter. It is
helpful to state the BPDN and DS models together:

min
β,r

λ‖β‖1 + 1
2‖r‖2

2 s.t. r = y − Xβ,BPDN(λ)

min
β,r

‖β‖1 s.t. ‖XT r‖∞ ≤ λ, r = y − Xβ.DS(λ)

For reference purposes we also state the corresponding dual problems:

min
r

−yT r + 1
2‖r‖2

2 s.t. ‖XT r‖∞ ≤ λ,BPdual(λ)

min
r,z

−yT r + λ‖z‖1 s.t. ‖XT r‖∞ ≤ λ, r = Xz.DSdual(λ)

We congratulate the authors on justifying their Dantzig Selector on detailed statis-
tical grounds while also investigating a primal–dual interior method suitable for a
sparse or fast-operator X and making codes available through �1-magic [1]. The
attraction of a pure linear programming (LP) formulation is understandable. Our
aim here is to help explore the prospects for both interior and simplex implemen-
tations of DS, and to compare with BPDN.

The vectors r = y − Xβ and s = −XT r are used often below.
We now know that the Homotopy [5, 8, 7] and LARS [6] algorithms can solve

BPDN(λ) for all λ ≥ 0, and their active-set continuation approaches are remark-
ably efficient if the computed β remains sufficiently sparse. Nevertheless, most
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of our discussion involves a single λ, and although Lasso came before basis pur-
suit, we refer mostly to the de-noising problem BPDN(λ) because its λ is directly
comparable to the DS parameter.

Note from BPdual(λ) that an optimal basis-pursuit solution provides a feasible
solution to DS(λ). Both approaches constrain ‖XT r‖∞ ≤ λ while keeping ‖β‖1
“small,” but BPDN strikes a further balance by giving a slightly larger ‖β‖1 and a
slightly smaller ‖r‖2

2.

2. The DS implementation. The authors eliminate r from DS(λ) and formu-
late their model as the LP problem

min
β,u

1T u s.t. −u ≤ β ≤ u, −λ1 ≤ XT (y − Xβ) ≤ λ1,(DS)

for which �1-magic’s MATLAB primal–dual interior solver l1dantzig_pd [9]
is designed. The main work per iteration lies in solving a p ×p symmetric system

H�β = r3, H ≡ D12 + XT (XD34X
T )X,(2.1)

where D12 and D34 are positive definite diagonal matrices. This system is solved
in l1dantzig_pd using a dense or sparse factorization of H if X is explicit, or
the conjugate-gradient method if X is an operator.

To save work when n � p, the authors suggest reducing (2.1) to an n × n sys-
tem that involves the matrix I + (XD34X

T )(XD−1
12 XT ). Unfortunately this loses

symmetry (unnecessarily) and becomes increasingly hazardous as iterations pro-
ceed because D12 approaches singularity. It is hard to recommend this approach
except perhaps for the early iterations.

3. Test data. Following �1-magic’s example, in MATLAB we generated data
X,y depending on dimensions n,p,T as follows:
rand(’state’,0); % initialize generators
randn(’state’,0);
q = randperm(p); % random +/-1 signal
q = q(1:T);
beta = zeros(p,1);
beta(q) = sign(randn(T,1));
[X,R] = qr(randn(p,n),0);
X = X’; % n x p measurement matrix
y = X*beta + 0.005*randn(n,1); % noisy observations

Thus, X is dense with orthogonal rows (XXT = I ) and β should have T compo-
nents close to ±1. We used λ = 3e-3 for all test cases. Times are cpu seconds on
a 3.2 GHz Linux Intel Pentium 4 with 2 GB of memory.

4. DS and BPDN with interior solvers. To compare with more general
primal–dual interior solvers, we considered two formulations of the DS problem
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and also the BPDN formulation in [3]:

min
v,w,s

1T (v + w)

(DS1)

s.t. [XT X −XT X I ]

⎡
⎣ v

w

s

⎤
⎦ = XT y, v,w ≥ 0,‖s‖∞ ≤ λ,

min
v,w,r,s

1T (v + w)

(DS2)

s.t.
[
X −X I

XT I

]
⎡
⎢⎢⎣

v

w

r

s

⎤
⎥⎥⎦ =

[
y

0

]
, v,w ≥ 0,‖s‖∞ ≤ λ,

min
v,w,r

λ1T (v + w) + 1
2rT r

(DS3)

s.t. [X −X I ]

⎡
⎣ v

w

r

⎤
⎦ = y, v,w ≥ 0,

where β = v−w and ‖β‖1 = 1T (v+w), and we expect few nonzero elements in v

and w. We applied l1dantzig_pd [9], Pdco [10] and the Cplex barrier LP/QP
solver [4] to the relevant problem formulations (see Table 1). With X dense, all
solvers use dense Cholesky factors of matrices of the form H = AD1A

T + D2,
where A denotes the corresponding constraint matrix and D1,D2 are positive diag-
onal matrices that change each iteration. (We modified l1dantzig_pd slightly
to ensure that its H was recognized to be symmetric positive definite.)

Table 1 shows computation times on increasingly large problems. The �1-magic
solver is specialized to problem (DS) and operates with XT X only once, whereas

TABLE 1
Dense orthogonal X

Sizes (DS) (DS1) (DS2) (BPDN)

n p T l1magic Pdco Pdco Cplex Pdco Cplex Greedy

120 512 20 1.2 2.7 3.9 1.7 0.2 0.5 0.1
240 1024 40 6.9 16.1 24.5 16.5 1.0 4.9 0.2
360 1536 60 20.8 48.9 75.6 58.1 2.4 15.3 0.4
480 2048 80 46.9 110.7 171.3 122.8 5.0 34.3 1.0
720 3072 120 149.4 349.7 550.1 391.6 14.6 109.6 3.4
960 4096 160 349.1 814.0 1275.7 855.4 31.8 245.3 9.2

Cpu time for 15 iterations of three primal–dual interior solvers and T iterations of a
Homotopy/LARS-type greedy algorithm.
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Pdco must double-handle that matrix in (DS1) and has n + p general constraints
to deal with in (DS2). Cplex barrier solves all (DS2) examples in times midway
between those for the other two solvers.

We see that the solution times are rather large for all DS formulations and
solvers. In contrast, Pdco is quite efficient on the BPDN problems, primarily be-
cause there are only n general constraints. A minor specialization to avoid double-
handling X would reduce times further. We expected the Cplex barrier QP solver
to perform comparably on the BPDN examples (since its interior algorithm is simi-
lar to that in Pdco). In case unbounded variables were not handled well by Cplex’s
barrier implementation, we added bounds on r enforcing ‖r‖∞ ≤ ‖y‖2, but the
times remained essentially the same.

The greedy method listed in Table 1 is an experimental MATLAB active-set
method intended for problem BPDN(λ) with a specific λ. Like Homotopy and
LARS, it starts with β = 0 and selects one parameter at a time—in this case, the
one whose dual constraint is most violated. It required exactly T iterations on these
examples, each involving multiplications with X and XT (to compute r and s) and
a QR factorization of S, the columns of X chosen so far.

If T were changed in each test case, the solution times for the interior methods
would be essentially unaltered, but for the greedy method they would change in
proportion to T .

If X is sparse but XT X is not, interior solvers on (DS2) could potentially be
more efficient than on (DS) or (DS1). However, in trying to generate random sparse
examples we found that the expected T nonzero parameters were not correctly
identified. The sparse X case remains for study. Both l1dantzig_pd and Pdco
allow X to be an operator, but we have not compared those options.

Donoho and Tsaig [5] give related computational results for Homotopy, Pdco
and simplex for the basis-pursuit case r = 0 (another LP setting!), with n,p,T as
large as 1600,4000,320 and dense X drawn from the Uniform Spherical Ensem-
ble. Again the greedy Homotopy approach performs best.

5. DS and the simplex method. It seems clear that formulations (DS) and
(DS1) are not well suited to general-purpose simplex codes for two reasons: the
presence of a potentially dense XT X, and the large number of constraints (viz., p).

For a time, we thought that formulation (DS2) might be ideal for large-scale
simplex solvers such as in Cplex. This would be for a specific λ and values of T

up to a few hundred, or a few thousand if X were sparse. If the initial basis includes
r and s (with nonbasic variables v = w = 0), the initial primal and dual variables
can be cheaply computed from[

I

XT I

][
r

s

]
=

[
y

0

]
and

[
I X

I

][
r̄

s̄

]
=

[
0
0

]
.(5.1)

Note that the initial dual values r̄ = s̄ = 0 are dual feasible, and r will remain in
the basis throughout. We hoped that the dual simplex method would proceed in an
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essentially greedy fashion until T components of v or w replaced T components
of s. The basis would remain almost triangular and therefore easy for a typical
sparse LU factorization. If we partition X = [Z S] to match the current zero and
nonzero parameters, the basis LU factors take the form

B ≡
⎡
⎣ I S̄

ZT I

ST I

⎤
⎦

=
⎡
⎣ I

ZT I

ST L̄

⎤
⎦

⎡
⎣ I S̄

I −ZT S̄

Ū

⎤
⎦ with L̄Ū = −ST S̄,

where S̄ is the same as S with columns scaled by ±1 according to whether an
element of v or w is basic. The work per iteration with such factors is much the
same as for Homotopy/LARS: multiplications by X and XT and factorization of
ST S. (A specialized basis factorization could account for the special structure of
ST S̄ and compute a QR factorization of S.)

A specialized simplex solver could be constructed to use the same LU factor-
ization even if X is an operator. Ideally, S would be kept in memory as its columns
come and go.

Further, we note that if all values of λ are of interest, problem (DS2) may be
treated as an LP problem with parametric bounds. A simplex-type algorithm for
such problems is known [12] that works directly with the original variables and
constraints. Thus a Homotopy/LARS-type algorithm does indeed seem practical
at first sight.

The most effective Cplex simplex options we could find were dual simplex, no
scaling, no presolve and steepest-edge pricing. Results are summarized in Table 2.
Unfortunately, it appears that simplex methods work in a “far from greedy” man-
ner. In a genuinely optimal solution, many more than T parameters enter the basis,

TABLE 2
Dense orthogonal X

Sizes tol = 0.1 tol = 0.01 tol = 0.001

n p T itns |S| Time itns |S| Time itns |S| Time

120 512 20 20 20 0.1 20 20 0.1 86 63 0.2
240 1024 40 58 56 0.4 67 57 0.4 405 150 2.3
360 1536 60 187 134 2.3 655 156 7.8 1231 215 15.1
480 2048 80 163 122 3.4 549 211 11.1 1277 275 26.7
720 3072 120 356 223 15.3 1414 317 65.0 3006 420 146.6
960 4096 160 965 414 80.2 6226 488 574.9 9229 567 891.6

Cplex dual simplex on problem (DS2) with loose and tighter termination tolerances.
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FIG. 1. Cplex dual simplex method on 240 × 1024 problem (DS2) with T = 40 nonzero “true”
parameter values of ±1. Plot of significant (top) and small (bottom) solution values with two termi-
nation tolerances. More small values imply more simplex iterations and more time per iteration.

and the number of simplex iterations exceeds T by a huge factor. (Thus, many
parameters must be getting selected and then rejected.) This has dampened our
optimism for the effectiveness of simplex on large-scale DS problems.

On the other hand, the degree of optimality required can have a profound effect.
Table 2 shows the trend with several feasibility and optimality tolerances (tol =
0.1, 0.01 and 0.001). We would normally regard tol = 0.1 as unusually “loose,”
but Figure 1 emphasizes the benefit of terminating early (at the risk of violating
‖XT r‖∞ ≤ λ by as much as tol!).

6. Conclusions. We have tested interior solvers on three DS formulations,
and compared with three BPDN solvers on the same data. Table 1 results confirm
that the larger DS constraint matrix is likely to invoke a high computational cost
compared to the Lasso/BPDN model.

In keeping with the DS name, we have also tested some simplex codes (which
seem necessary if a range of λ values is of interest). Table 2 again predicts a high
cost, except perhaps if low-accuracy solutions are acceptable.
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Tables 1 and 2 and Figure 1 can be reproduced using the MATLAB scripts in
www.cs.ubc.ca/labs/scl/ds_discussion.html.

We emphasize that the solvers tested are general purpose. They would all be
“happier” if the dense data X were sparse, and none of them takes advantage of
the property XXT = I (which may arise in certain situations). We wish the authors
much success in exploring the virtues of their linear DS model for an increasing
range of real-world applications.
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