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COMPUTER-INTENSIVE RATE ESTIMATION, DIVERGING
STATISTICS AND SCANNING

BY TUCKER MCELROY AND DIMITRIS N. POLITIS

U.S. Bureau of the Census and University of California, San Diego

A general rate estimation method is proposed that is based on studying
the in-sample evolution of appropriately chosen diverging/converging statis-
tics. The proposed rate estimators are based on simple least squares argu-
ments, and are shown to be accurate in a very general setting without requir-
ing the choice of a tuning parameter. The notion of scanning is introduced
with the purpose of extracting useful subsamples of the data series; the pro-
posed rate estimation method is applied to different scans, and the resulting
estimators are then combined to improve accuracy. Applications to heavy tail
index estimation as well as to the problem of estimating the long memory pa-
rameter are discussed; a small simulation study complements our theoretical
results.

1. Introduction. Let X1, . . . ,Xn be an observed stretch from a general time
series {Xt } that is not necessarily linear, or stationary. A number of converging
and/or diverging statistics can be computed from a dataset of this type. In many in-
stances, however, the rate of convergence/divergence of some statistics of interest
may be unknown, that is, it may depend on some unknown feature of the underly-
ing probability law P . This rate is often a quantity of direct interest; for example,
it may be connected to the heavy tail index, the long memory or self-similarity
parameter, and so on.

For each given context, that is, choice of statistic and assumptions on the time
series {Xt }, a context-specific rate estimator may be devised and its properties
analyzed. By contrast, a general approach for rate estimation has been given in the
subsampling literature where knowledge/estimation of the rate is necessary for the
construction of confidence intervals, hypothesis tests, and so on; see Bertail, Politis
and Romano [3] or Politis, Romano and Wolf [19], Chapter 8. The subsampling
rate estimator is based on evaluating the statistic of interest over subsamples of
different size; subsequently, the rate of convergence/divergence is gauged by the
effect incurred on the distribution of the statistic when the subsample size varies.

The subsampling rate estimator is consistent under very weak conditions. Nev-
ertheless, a typical condition assumed in connection with subsampling is the strong
mixing condition which may preclude its applicability in settings where the time
series exhibits long-range dependence. In addition, the subsample size must be
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carefully chosen for optimal results; in general, this is a difficult problem analo-
gous to the notorious bandwidth choice problem in nonparametric smoothing; see
Politis, Romano and Wolf [19], Chapter 9.

In this paper, a different noncontext-specific rate estimation method is intro-
duced based on studying the in-sample evolution of appropriately chosen converg-
ing/diverging statistics. The proposed rate estimator is based on a simple least
squares argument and is shown to be consistent in a very general setting that does
not require the strong mixing assumption. Furthermore, no “bandwidth-type” se-
lection is required for the new estimator.

In order to improve the accuracy of this general estimation method, the notion of
scanning a sequence is introduced. The proposed rate estimation method is imple-
mented over different “scans” of the data sequence X1, . . . ,Xn, and the resulting
estimators are then combined to yield an improved estimator in the spirit of the
“bagging” aggregation of Breiman [4].

In the next section a motivating example is given in the setup of estimation of
the heavy tail index with data from a linear time series model. Section 3 introduces
the general rate estimation methodology based on statistics that converge/diverge
without centering; the important notion of scanning a sequence is also introduced.
In Section 4 the methodology is extended to cover the case of statistics that re-
quire centering in order to converge. An application to the problem of estimating
the long memory parameter of a long-range dependent time series is given in Sec-
tion 5, together with a novel application combining heavy tails and long-range
dependence. The setup of Section 2 is revisited in Section 6 by means of a finite-
sample simulation; all proofs are deferred to the Appendix.

2. A motivating example: the heavy tail index.

2.1. A heavy-tailed linear time series. Throughout this section (and this sec-
tion only) we will assume that the data X1, . . . ,Xn are an observed stretch of
a linear time series satisfying Xt = ∑

j∈Z ψjZt−j , for all t ∈ Z, where {Zt } is
i.i.d. from some distribution F ∈ D(α). The filter coefficients {ψj } are assumed to
be absolutely summable, and D(α) denotes the domain of attraction of an α-stable
law with α ∈ (0,2]; see, for example, Embrechts, Klüppelberg and Mikosch [8],
Chapter 2.

In this context, it is well known that there exist sequences an and bn such that

a−1
n (

∑n
t=1 Zt − bn)

L�⇒ Sα, where Sα denotes a generic α-stable law with un-
specified scale, location and skewness; recall that an = n1/αL̃(n) for some slowly-
varying function L̃(·). The centering sequence bn can be taken to be zero if either
α < 1 or α > 1 and Zt has mean zero. When α = 1, we can only let bn = 0 if Zt is
symmetric about zero.

Our goal is estimation of α, which is tantamount to estimation of the main
part of the rate an; the shape of the unknown slowly-varying function L̃(·) is thus
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considered a nuisance parameter. Tail index estimators typically are based upon
a number q of extreme order statistics, such as the well-known Hill estimator;
see Csörgő, Deheuvels and Mason [5] and Csörgő and Viharos [6]. A practical
problem for these estimators is choosing the number of order statistics, such q to
be used; while it is known that we must have q → ∞ and q/n → 0 as n → ∞ to
ensure consistency, the optimal choice of q in any given finite sample situation is
challenging; see, for example, Danielsson et al. [7] and the references therein.

An alternative tail index estimator that is not based on order statistics has been
recently proposed in the subsampling literature; see Bertail, Politis and Romano [3]
and Politis, Romano and Wolf [19], Chapter 8. The subsampling tail index estima-
tor is consistent under very general conditions; interestingly, it shares with Hill’s
estimator the difficulty of having to choose a “bandwidth”-type parameter, namely,
the subsample size. It is of interest to construct a general rate estimator that is free
from this difficulty of a “bandwidth”-type selection.

2.2. A simple tail index estimator. Let S2
n = 1

n

∑n
t=1 X2

t , and note that when
α ∈ (0,2) it follows that

n−2/αL(n)

n∑
t=1

X2
t

L�⇒ J,(1)

where L(·) is a slowly-varying function and J has a positively skewed Sα/2 dis-
tribution; see, for example, McElroy and Politis [14]. When α = 2, the expression
(1) is valid if Zt has finite variance, and the law of large numbers kicks in.

Let Yk = logS2
k , and Uk = Yk − γ log k + logL(k) for k = 1, . . . , n, where γ =

−1+2/α. Then it is immediate that (1) implies that Un = OP (1). From the relation
Yk = γ logk + Uk − logL(k), it is suggested that γ could plausibly be estimated
as the slope of a regression of Yk on logk, with a resulting estimator for α. The
reason that we treat logL(k) as “approximately constant” in the regression of Yk

on logk is given in Proposition 2.1 below.

PROPOSITION 2.1. Any slowly-varying function L(·) satisfies

logL(k) = o(log k) as k → ∞.(2)

So, let γ̂ and γ̆ be the slope estimators in least squares (LS) regression of Yk on
log k with and without an intercept term, respectively, and define ᾰ = 2/(γ̆ + 1)

and α̂ = 2/(γ̂ +1). A rough estimate of slope in the regression without an intercept
is simply the ratio Yn/ logn; see Meerschaert and Scheffler [16].

PROPOSITION 2.2. If (1) is true, then ᾰ
P−→ α, as n → ∞.
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Proposition 2.2—whose proof follows from the more general Theorem 3.1 in
the next section—remains true even in the case α = 2 as long as (1) holds; see the
discussion in Section 6.

The rate of convergence of ᾰ can be quite slow. To get a more accurate esti-
mator, a permutation/averaging technique was proposed in Politis [17]. However,
permutations are only justified in the special case when the Xt data are i.i.d.; to ad-
dress the general scenario of dependent data, the notion of scanning is introduced
in Section 3.2 and will be used in connection with an estimator of the type of α̂.
Intuitively, including an intercept term in the regression offers an improvement, as
it captures the nonzero large-sample expectation of Uk , as well as the influence of
the term logL(k).

3. The general rate estimation methodology.

3.1. Statistics that converge or diverge without centering. We outline below
the basic rate estimation method and show its consistency under general condi-
tions.

(a) Let Tn = Tn(X1, . . . ,Xn) be some positive statistic whose rate of conver-
gence/divergence depends on some unknown real-valued parameter λ.

(b) Assume that for some slowly varying function L(n) and for some known
invertible function g(·) that is continuous over an interval that contains λ, we have
Un = OP (1) as n → ∞, where

Uk = log
(
k−g(λ)L(k)Tk

)
for k = 1, . . . , n.(3)

(c) Estimate g(λ) by ĝ =
∑n

k=1(Yk−Ȳ )(log k−logn)∑n
k=1(log k−logn)2 , and λ by λ̂ = g−1(ĝ),

where Yk = logTk for k = 1, . . . , n, Ȳ = 1
n

∑n
k=1 Yk and logn = 1

n

∑n
k=1 logk.

Alternatively, estimate g(λ) by ğ = ∑n
k=1 Yk logk/

∑n
k=1 log2 k, and λ by λ̆ =

g−1(ğ).

To study λ̂ and λ̆, the following additional assumptions will be useful:

Un
L�⇒ some r.v. U, with EU2

n → EU2,(4)

EUn − EU = O(n−p) for some p > 0,(5)

and

Cov(Ub,Un) = O(bγ1n−γ2L̃(n)) for b ≤ n and some 0 ≤ γ1 < γ2,(6)

where L̃ is some slowly-varying function. Equations (4), (5) and/or (6) can be
verified under some assumptions in the setting of Section 2; see www.math.ucsd.
edu/~politis/PAPER/scansAppendix2.pdf for details.

We are now able to state a general asymptotic result on λ̆ and λ̂. Theorem 3.1
below is a more general (and corrected) version of results in Politis [17] that were
worked out under the assumption that the slowly-varying function is a constant.

www.math.ucsd.edu/~politis/PAPER/scansAppendix2.pdf
www.math.ucsd.edu/~politis/PAPER/scansAppendix2.pdf
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THEOREM 3.1. Assume statements (a), (b), (c) are true.

(i) Then λ̆
P−→ λ as n → ∞.

(ii) If assumption (4) holds, then Eĝ → g(λ) and Var(ĝ) = O(1) as n → ∞.
(iii) If assumption (5) holds, then Eĝ = g(λ) + A1 + A2, where

A1 = O(n−p logn) and A2 = −
∑n

k=1(logL(k) − logL)(logk − logn)∑n
k=1(log k − logn)2

.

(iv) If assumptions (4) and (6) hold, then Var(ĝ) = o(1) and λ̂
P−→ λ.

REMARK 3.1. Note that the estimators ĝ and ğ correspond to L2 regression
estimators of slope (with or without an intercept). However, an L1 regression esti-
mator of slope would be a robust alternative which is expected to also be consistent
and perhaps even more reliable, especially if the large-sample distribution of the
Uk has heavier tails than the normal.

REMARK 3.2. The assumption Un = OP (1) in statement (b) would typically
be verified by proving a limit theorem of the type

n−g(λ)L(n)Tn
L�⇒ J as n → ∞,(7)

where J is some well-defined probability distribution. Therefore, the implication
of the assumption Un = OP (1) is that if g(λ) > 0, then Tn diverges to ∞, whereas
if g(λ) < 0, then Tn converges to 0 in probability; the case g(λ) = 0 roughly cor-
responds to the case where the uncentered distribution of Tn converges in law to
some nondegenerate distribution. Unless g(λ) = 0, Yk = logTk diverges to either
+∞ or −∞ as the block size k increases. In addition, note that centering can
typically be omitted only when Tn is a diverging statistic, in particular, when the
centering is constant or grows at a slower rate than the scale of Tn. Thus, most
applications of Theorem 3.1 are expected to be in cases where g(λ) ≥ 0. However,
this rule is not adamant, as Remark 3.3 suggests.

REMARK 3.3. In the setting of Section 2 the parameter λ would be the heavy
tail index α, and Tn could well be the second sample moment S2

n; in that case,
g(λ) = −1 + 2/λ. Note, however, that the diverging statistic S2

n can be turned
into a statistic that converges to zero by appropriate shrinking. For example, if
α > 1, then the statistic T ′

n = S2
n/n converges weakly to zero, and logT ′

n to −∞;
thus, the choice of Un based on the statistic T ′

n ensuring Un = OP (1) is identical
to the Un corresponding to the diverging statistic S2

n , and α̂ is the same in both
cases, which is reassuring. In essence, these are not really separate cases; since
log(ndTn) = d logn + logTn, multiplying the statistic Tn by nd leads to the same
log–log regression.
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REMARK 3.4. The validity of the regression of Yk on logk is based on asymp-

totic assumptions such as Un = OP (1) or Un
L�⇒ U , line (2), and so on. Hence,

the (Yk, logk) points may not be very informative if k is small, and it may be advis-
able in practice to drop some points from the regression, much in the same manner
as some points are invariably dropped in the beginning of a Markov chain simu-
lation. In other words, one would regress Yk on log k for k = n0, . . . , n, for some
n0 chosen either as constant or even as a function of n but such that n − n0 → ∞
without affecting the asymptotic consistency of λ̆ or λ̂. Thus, choosing n0 here is
not a bandwidth-choice problem, and the choice n0 = 1 is definitely a valid one;
the reason is that the log–log scatterplot is very sparse for points with k small, and
therefore, such points have little influence collectively.

Theorem 3.1 shows that λ̆ is consistent under minimal assumptions, essentially
the Un = OP (1) assumption of statement (b). Nevertheless, the rate of conver-
gence of λ̆ may be very slow, essentially of logarithmic order. Intuitively, as men-
tioned in Section 2, the estimator λ̂ should be more accurate than λ̆; this is indeed
true at the expense of the additional assumptions (4), (5) and (6). For example, it
is immediate that the bias of λ̂ will tend to zero at a polynomial rate under some
conditions on the slowly-varying function L, for example, when L is constant.
However, no rate for the variance of λ̂ was given in Theorem 3.1. Furthermore, if
assumption (6) fails and/or can not be verified, the rough bound Var(λ̂) = O(1)

ensues by the delta method. Therefore, a technique to reduce the variance of λ̂ is
desirable; this is accomplished in the next subsection via the notion of scanning a
sequence.

3.2. Scanning a sequence. The rate estimation method introduced in Sec-
tion 3.1 is based on evaluating the statistic Tk on subsets (blocks) of growing size
taken from the data set X1, . . . ,Xn. Subsequently, the in-sample evolution of the
(logarithm of the) statistic Tk is studied. This method is closely related to sub-
sampling since our statistic is evaluated on subsamples/subseries of the data. The
only difference is that here we consider blocks of all sizes as opposed to one pre-
ferred block size; as a matter of fact, here we have one block for each block size
k = 1, . . . , n. As in subsampling, the crux of the method outlined in Section 3.1
lies in the fact that Tk and Tk′ should behave similarly (when appropriately nor-
malized); see Politis and Romano [18] or Politis, Romano and Wolf [19] for more
details on the subsampling methodology, and Barbe and Bertail [1] in connection
with the study of subsamples of increasing size.

To fix ideas, assume that the time series {Xt } is strictly stationary. In that case,
it is apparent that the statistic Tk should behave in the same fashion when applied
to any stretch of size k of consecutive data points extracted from the data series
X1, . . . ,Xn; this observation motivates the notion of “scanning.” On top of the
particular application that will become obvious immediately, scanning may also
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provide an alternative way to think about the usual expanding sample asymptotics
for stationary time series.

DEFINITION 3.1. A scan is a collection of n block-subsamples of the se-
quence X1, . . . ,Xn with the following two properties: (a) within each scan there
is a single block of each size k = 1, . . . , n; and (b) those n blocks are nested, that
is, the block of size k1 can be found as a stretch within the block of size k2 when
k1 ≤ k2.

As usual, a block-subsample of the sequence X1, . . . ,Xn is a block of consecu-
tive observations, that is, a set of the type Xj,Xj+1, . . . ,Xj+m.

We will say that the sequence X1, . . . ,Xn has been scanned if a block corre-
sponding to each block size k = 1, . . . , n has been extracted, and if those blocks
are nested, that is, the block of size k1 can be found as a stretch within the block of
size k2 when k1 ≤ k2. For example, in Section 3.1 the following “direct” scan was
employed:

(X1), (X1,X2), (X1,X2,X3), . . . , (X1, . . . ,Xn−1), (X1, . . . ,Xn),

over which the in-sample “evolution” of Tn was investigated. Nevertheless, there
are many possible scans; for example, consider the “reverse” scan

(Xn), (Xn−1,Xn), (Xn−2,Xn−1,Xn), . . . , (X2, . . . ,Xn), (X1, . . . ,Xn).

In general, a scan will start at time-point j (say) and then the blocks will proceed
growing/expanding to the left and/or to the right—thus, the different perspective
on asymptotics; for example, a valid scan is

(X5), (X4,X5), (X3,X4,X5), (X3,X4,X5,X6), . . . , (X1, . . . ,Xn);
note how within each block the natural time order is preserved, and how all scans
end with the block containing the full data set. The number of possible scans is
large as the following proposition shows.

PROPOSITION 3.1. There are 2n−1 different scans of the sequence X1, . . . ,Xn

when no ties are present.

Let Bk
i = (Xi, . . . ,Xi+k−1), that is, Bk

i for i = 1, . . . , n − k + 1 are all the
possible blocks of size k. Pascal’s triangle and a backward induction argument
suggest the following useful corollary.

COROLLARY 3.1. Among the 2n−1 different scans of the sequence X1, . . . ,Xn,
there are exactly

(n−k
i−1

)
2k−1 scans that contain block Bk

i as their block of size k for
1 ≤ i ≤ n − k + 1.

A collection of algorithms to generate randomly selected scans can be found at
www.math.ucsd.edu/~politis/PAPER/scansAlgorithms.pdf, where some properties
of those algorithms are also discussed.

www.math.ucsd.edu/~politis/PAPER/scansAlgorithms.pdf
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3.3. Improving upon the basic estimator. As mentioned before, the usage of
the particular “direct” scan

(X1), (X1,X2), (X1,X2,X3), . . . , (X1, . . . ,Xn−1), (X1, . . . ,Xn)

in Section 3.1 was quite arbitrary; any scan could have been used with simi-
lar results. To elaborate, consider all the 2n−1 different scans of the sequence
X1, . . . ,Xn; order the scans in some arbitrary fashion, focus on the I th such scan,
and consider the following analogs of our previous statements (a)–(c).

(a[I ]) Let Tn = Tn(X1, . . . ,Xn) be some positive statistic whose rate of conver-
gence/divergence depends on some unknown real-valued parameter λ.

(b[I ]) For k = 1, . . . , n, let T
(I)
k denote the value of the statistic Tk as computed

from the block of size k of the I th scan of the sequence X1, . . . ,Xn.
(c[I ]) Estimate λ by λ̂(I ) = g−1(ĝ), or by λ̆(I ) = g−1(ğ), where

ĝ =
∑n

k=1(Yk − Ȳ )(log k − logn)∑n
k=1(logk − logn)2

, ğ =
∑n

k=1 Yk log k∑n
k=1 log2 k

,

and Yk = logT
(I)
k for k = 1, . . . , n, Ȳ = 1

n

∑n
k=1 Yk and logn = 1

n

∑n
k=1 log k.

THEOREM 3.2. Assume that the time series {Xt } is strictly stationary. Under
the assumptions of Theorem 3.1, the conclusions of Theorem 3.1 remain true with
λ̂(I ) and λ̆(I ) in place of λ̂ and λ̆, respectively, for any I .

Theorem 3.2—whose proof is identical to the proof of Theorem 3.1—suggests
an approach on potentially improving the estimators λ̂ and λ̆ by combin-
ing/averaging the estimators based on scans. Consider the estimators λ̂(1), . . . , λ̂(N)

and λ̆(1), . . . , λ̆(N) for some integer N , and define λ̂∗ = N−1 ∑N
i=1 λ̂(i) and λ̆∗ =

N−1 ∑N
i=1 λ̆(i). A different way of combining estimators is given by the median;

so, we also define λ̂∗∗ = median{λ̂(1), . . . , λ̂(N)} and λ̆∗∗ = median{λ̆(1), . . . , λ̆(N)}.
The median estimators λ̂∗∗ and λ̆∗∗ will exhibit similar variance reduction behav-
ior as the mean estimators λ̂∗ and λ̆∗. However, the median may be preferable in
practice because of its robustness. The following corollary shows that averaging
does not hurt asymptotically.

COROLLARY 3.2. Assume that the time series {Xt } is strictly stationary.

(i) Assume N is fixed. Under the assumptions of Theorem 3.1, the conclusions
of Theorem 3.1 remain true with λ̂∗ or λ̂∗∗ in place of λ̂, and λ̆∗ or λ̆∗∗ in place
of λ̆.

(ii) Assume N is a general positive function of n (possibly diverging to infin-
ity as n → ∞). Under the assumptions of Theorem 3.1, the conclusions of Theo-
rem 3.1 remain true with λ̂∗ in place of λ̂ and λ̆∗ in place of λ̆.
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It is generally difficult to quantify the variance reduction effect of scanning es-
timators; nevertheless, the simulations in Section 6 show a very spectacular effect
even with a small value of N . Note that N is really tied to the practitioner’s com-
putational facilities, and not so much to the sample size n or the number of scans
2n−1. The recommendation is to take N as big as computationally feasible; in prac-
tice, however, even taking N as small as 100 gives a significant benefit especially if
the N scans under consideration are very different from one another. A way to en-
sure this is to use N randomly selected scans from an algorithm that gives (close to)
equal weight to each scan. A practical option is given by Algorithm A(f ) or Algo-
rithm B′—the latter being valid only for weakly dependent, stationary sequences;
see www.math.ucsd.edu/~politis/PAPER/scansAlgorithms.pdf for details.

4. Extensions of the basic methodology.

4.1. Limit theorems with centering. As mentioned in Remark 3.2, centering
can typically be omitted in the case of diverging statistics. By contrast, in most
cases of converging statistics a centering will be necessary in order to transform
Tn into a bounded random variable (in probability). Therefore, the following ex-
tension of the rate estimation methodology of Section 3 is proposed.

(a′) Let Tn = Tn(X1, . . . ,Xn) be some (not necessarily positive) statistic whose
rate of convergence depends on some unknown real-valued parameter λ. Also as-
sume that P(Tk = Tn) = 0 for k = 1, . . . , n − 1.

(b′) Assume that for some slowly varying function L(n) > 0 and for some
known invertible function g(·) that is continuous over an interval that contains
λ, and such that g(λ) < 0, we have

n−g(λ)L(n)|Tn − µ| L�⇒ J as n → ∞,(8)

where µ is a real-valued parameter and J some well-defined probability distribu-
tion; both µ and the shape of the limit distribution J can be unknown.

(c′) Let m,b be positive integers with m ≤ n − b and b ≤ n; as before, we
estimate g(λ) by ĝm,b = ∑b+m

k=m(Yk − Ȳ )(log k − log)/
∑b+m

k=m(log k − log)2, and
λ by λ̂m,b = g−1(ĝm,b), where Yk = log |Tk − Tn|, Ȳ = 1

b+1
∑b+m

k=m Yk and log =
1

b+1
∑b+m

k=m log k.

Note that ĝ in the above is an L2 regression estimator of slope. As in Re-
mark 3.1, here too it should be stressed that an L1 estimator of slope in the re-
gression of Yk on log k for k = m, . . . , b + m (with an intercept term included)
might well give an attractive alternative that would be robust to the possibility that
one of the Tk’s happens to be very close to Tn.

THEOREM 4.1. If statements (a′), (b′) and (c′) are true, and assumptions (4)

and (6) hold, then λ̂m,b
P−→ λ, provided 1 ≤ m ≤ n − b and b → ∞ but b + m =

o(n) as n → ∞.

www.math.ucsd.edu/~politis/PAPER/scansAlgorithms.pdf
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The assumption P(Tk = Tn) = 0 is imposed to ensure that Yk is well defined;
it follows easily if the distribution of the statistic Tn is absolutely continuous, in
which case the probability of exact ties is zero. The condition P(Tk = Tn) = 0
could actually be relaxed to P(Tk = Tn) → 0 when k = k(n) → ∞ as n → ∞ to
accommodate the handling of statistics with discrete distributions; the details are
straightforward and are omitted.

REMARK 4.1. Note that choosing m is not a “bandwidth” selection problem;
the choice m = 1 is fine for Theorem 4.1, although, in practice, one may prefer
to take m to be a small positive integer. Nevertheless, the trade-off requirements
b → ∞ but b + m = o(n) imply that choosing b is unfortunately a “bandwidth”-
type problem. In this sense, rate estimation for uncentered diverging statistics
seems to be easier to deal with; see, for example, Remark 3.2. To sidestep this
difficulty, one may try to recast the problem into a diverging setup. So if Tn is non-
negative, and if a lower bound for g(λ) is known to exist [say G < g(λ) < 0], then
line (8) implies that the uncentered quantity nG−g(λ)L(n)Tn should be diverging
to ∞, and thus, the methods of Section 3 may be applicable; see Section 5.1 for an
example of such a transformation.

4.2. Improving upon the basic estimator. As before, the notion of scanning
may lead to improved estimation. Focus on the I th scan, and let T

(I)
k denote the

value of Tk computed from the block of size k of the I th scan of the sequence
X1, . . . ,Xn. Estimate g(λ) by

ĝm,b =
∑b+m

k=m(Yk − Ȳ )(log k − log)∑b+m
k=m(log k − log)2

,

and λ by λ̂
(I )
m,b = g−1(ĝm,b), where Yk = log |T (I)

k − Tn|, Ȳ = 1
b+1

∑b+m
k=m Yk and

log = 1
b+1

∑b+m
k=m log k. The following theorem and corollary ensue with proof

identical to the proof of Theorem 4.1 combined with Corollary 3.2.

THEOREM 4.2. Assume the time series {Xt } is strictly stationary. If state-
ments (a′), (b′) and (c′) are true, and assumptions (4) and (6) hold, then

λ̂
(I )
m,b

P−→ λ, provided 1 ≤ m ≤ n − b and b → ∞ but b + m = o(n) as n → ∞.

To produce an improved estimator, we may again define

λ̂∗
m,b = N−1

N∑
i=1

λ̂
(i)
m,b and λ̂∗∗

m,b = median
{
λ̂

(1)
m,b, . . . , λ̂

(N)
m,b

}
,

where N is some fixed positive integer.
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COROLLARY 4.1. Assume the time series {Xt } is strictly stationary. If state-

ments (a′), (b′) and (c′) are true, and assumptions (4) and (6) hold, then λ̂∗
m,b

P−→ λ

and λ̂∗∗
m,b

P−→ λ, provided 1 ≤ m ≤ n−b and b → ∞ but b+m = o(n) as n → ∞.

5. Two examples with long memory. The study of long memory time series
appears to have been initiated by the hydrologist H. E. Hurst [12], who investi-
gated the flow of the river Nile. Notably, Hurst’s original R/S statistic was driven
by a log-log regression as is our rate estimator λ̂; see Beran [2] or Giraitis, Robin-
son and Surgailis [10] and the references therein. Interestingly, the well-known
Geweke and Porter-Hudak [9] estimator of the long memory parameter also en-
tails a log-regression based on some particular diverging statistics, namely, the
periodogram ordinates at frequencies near zero.

5.1. A second example: long memory time series. Long memory time series
are typically defined via an underlying stationary, mean zero, purely nondetermin-
istic Gaussian time series {Gt, t ∈ Z} with autocovariance R(k) = Cov(G0,Gk)

that is not absolutely summable. So assume that Xt = h(Gt), where h is some mea-
surable function satisfying Eh2(Gt) < ∞. Also assume that R(k) = k−βL(k) as
k → ∞, where L is some slowly varying function, and β > 0 some unknown con-
stant termed the long memory parameter. If β > 1, then the series {Xt } and {Gt }
are weakly dependent, and the following central limit theorem typically holds:

√
n(X̄n − µ)

L�⇒ N

(
0,

∞∑
k=−∞

RX(k)

)
,(9)

where X̄n = n−1 ∑n
t=1 Xt , RX(k) = Cov(X0,Xk) and µ = EXt . If β ≤ 1, then

the sequences {Xt } and {Gt } are said to be long-range dependent and neither of
them is strong mixing; see Ibragimov and Rozanov [13]. Hence, the subsampling
methodology of Politis and Romano [18] may not be applicable, and the same
is true for the subsampling rate estimator of Bertail, Politis and Romano [3] and
Politis, Romano and Wolf [19], Chapter 8. In the long-range dependence case of
β ≤ 1, the following is true:

n(X̄n − µ)/dn
L�⇒ Wq,(10)

where dn = n1−qβ/2Lq/2(n), and q is the Hermite rank of h; see Taqqu [20, 21]. It
is often the case that q = 1, in which case the limit distribution W1 is a mean-zero
Gaussian; for q ≥ 2, Wq is not Gaussian. Nevertheless, just the existence of the
limit distributions in lines (9) and (10) is enough to imply that the techniques of
Section 4 are applicable. In particular, a consistent estimator of the product qβ can
be constructed using the sample mean as the converging statistic in Theorem 4.1;
if q is known, then this immediately yields an estimator of the long memory para-
meter β .
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Different statistics could also be used; one example is the familiar second sam-
ple moment S2

n = n−1 ∑n
t=1 X2

t that was the focus of Section 2. As analogous
limit theorems as (9) and (10) hold for the second sample moment, our rate es-
timation method of Theorem 4.1 could be based on the converging statistic S2

n.

The second sample moment S2
n , however, is especially useful as it can be trans-

formed to a diverging statistic as suggested in Remark 4.1. To do this, we simply
let Tn = ∑n

t=1 X2
t = nS2

n . It is easy to see that the requirements of Theorem 3.1
are satisfied for the diverging statistic Tn, and thus, a “bandwidth-free,” consistent
estimator of the product q ′β can be built based on Tn; here, of course, q ′ denotes
the Hermite rank of the function h2.

5.2. A third example: heavy tails with long memory. Consider a time series
defined as Xt = √

εtGt for t ∈ Z, where the series {εt } and {Gt } are independent,
and the εt ’s are positive and i.i.d. with distribution in D(α/2) for some α ∈ (0,2),
and {Gt } is stationary Gaussian with mean zero and autocovariance R(k). For
some ζ ∈ [0,1), define the condition

LM(ζ) :
{ ∑

|h|<n

R(h) ∼ Cnζ and
∑

|h|<n

|R(h)| = O(nζ ) as n → ∞
}
,

where C > 0 is a constant. As before, the series {Xt } and {Zt } are said to have long
memory if LM(ζ) holds with ζ ∈ (0,1), in which case the long memory parameter
β equals 1 − ζ ; the case LM(0) denotes weak dependence.

Interestingly, when appropriately normalized, the sample second moment con-
verges in distribution in this general setting as the following proposition demon-
strates; see Gomes, de Haan and Pestana [11] and McElroy and Politis [15] for
related results.

PROPOSITION 5.1. In the setting described above [including condition
LM(ζ)], suppose that εt is absolutely continuous with a probability density fε

that is bounded and ultimately monotone, that is, fε is monotone on (z,∞) for
some z > 0, and is monotone on (−∞, u) for some u < 0. Then we have

a−2
n

n∑
t=1

X2
t

L�⇒ W as n → ∞,

where an = n1/αK(n) for some slowly varying function K(n). In the above, W is
α/2-stable with scale C

−2/α
α/2 (E|Gt |α)2/α , skewness 1 and location zero, and the

constants C−1
p are defined by C−1

p = �(2 − p) cos(πp/2)/(1 − p).

The limit theorem of Proposition 5.1 is interesting, because the convergence
of the sample second moment does not depend on the long memory parameter,
and hence, our methods from Sections 3 and 4 can be unambiguously applied
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to estimate α. Other methods in the tail index estimation literature may well en-
counter serious difficulties in this context, being sensitive to long-range depen-
dence; this seems to be true for the Hill estimator—see Embrechts, Klüppelberg
and Mikosch [8]. It is also true for the subsampling rate estimator of Bertail, Politis
and Romano [3]; see the discussion in Section 5.1.

6. A small simulation experiment. We now revisit the setup of Section 2,
that is, data X1, . . . ,Xn from a linear time series; see Remark 3.3. To perform the
simulation, the AR(1) model

Xt = ρXt−1 + Zt(11)

was employed with ρ = −0.5, 0.1 or 0.7 and {Zt } i.i.d. from a distribution F ∈
D(α). The distributions used were (i) {Zt } ∼ i.i.d. Cauchy, (ii) {Zt } ∼ i.i.d. 1.5–
Stable (symmetric), (iii) {Zt } ∼ i.i.d. 1.9–Stable (symmetric), (iv) {Zt } ∼ i.i.d.
N(0, 1), (v) {Zt } ∼ i.i.d. Pareto(2,1), (vi) {Zt } ∼ i.i.d. Burr (2, 1, 0.5) and (vii)
Zt = Z̃t · max(1, log10 |Z̃t |), where {Z̃t } ∼ i.i.d. Burr (2, 1, 0.5). The variation
(vii) has as its purpose the construction of a nonnormal domain of attraction, that
is, the case where the slowly-varying function L is not constant; see Embrechts,
Klüppelberg and Mikosch [8].

For each combination of the value of ρ and the distribution F , 100 time series
stretches were generated, each of length n = 1,000. From each series, the esti-
mator α̂ was computed, where α̂ was defined in Section 2; also computed were
the improved versions α̂∗ and α̂∗∗, that is, the mean and median of the values of
α̂ based on scans as in Corollary 3.2. Note that the information that 0 < α ≤ 2
was explicitly used in that values of α̂ bigger than 2 were truncated to the value
2; interestingly, no occurrences of a negative α̂ were observed. This truncation is
necessary for good performance of α̂∗, but is superfluous for α̂∗∗ since the latter is
based on a median that “clips” outliers.

A number of scanning algorithms can be devised; the website www.math.ucsd.
edu/~politis/PAPER/scansAlgorithms.pdf presents Algorithms A, B and A(f ),
making the claim that Algorithm A(f )—with a carefully chosen f —may be
preferable. However, Algorithm A(f ) is very computer-intensive. Although this
is not a problem for the practitioner with a single dataset at hand, it is prohibitive
in terms of conducting a simulation with thousands of datasets. A computational
shortcut is presented by Algorithm B′ that is valid for weakly dependent stationary
sequences only. In particular, it is not suitable for the “long-memory” series of
Section 5; see the aforementioned website for more details.

The results of our simulation, where N random scans were generated using Al-
gorithm B′, are summarized in Table 1 where the empirical mean squared error
(MSE) of each estimator is given. In this setup, the benchmark for comparison
among estimators of α is given by the Hill estimator Hq based on q extreme or-
der statistics. Empirical MSEs of Hill estimators are given in Table 2 for different

www.math.ucsd.edu/~politis/PAPER/scansAlgorithms.pdf
www.math.ucsd.edu/~politis/PAPER/scansAlgorithms.pdf
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TABLE 1
Empirical MSEs of estimators of the heavy tail index α; data from model (11) with n = 1,000 and

(a) ρ = 0.1, (b) ρ = 0.7, (c) ρ = −0.5

α̂ α̂∗
(N=20) α̂∗

(N=100) α̂∗
(N=200) α̂∗∗

(N=20) α̂∗∗
(N=100) α̂∗∗

(N=200)

(a)
(i) 0.315 0.223 0.102 0.096 0.329 0.098 0.085
(ii) 0.171 0.109 0.064 0.064 0.152 0.107 0.109
(iii) 0.051 0.036 0.025 0.024 0.044 0.041 0.037
(iv) 0.006 0.004 0.002 0.002 0.004 (<0.0005) (<0.0005)
(v) 0.222 0.190 0.142 0.140 0.220 0.167 0.166
(vi) 0.294 0.159 0.079 0.079 0.228 0.106 0.101
(vii) 0.319 0.156 0.074 0.068 0.260 0.106 0.096

(b)
(i) 0.328 0.193 0.108 0.106 0.265 0.127 0.109
(ii) 0.161 0.097 0.057 0.055 0.147 0.101 0.093
(iii) 0.078 0.046 0.034 0.033 0.059 0.058 0.052
(iv) 0.011 0.009 0.006 0.005 0.010 0.002 0.001
(v) 0.120 0.079 0.079 0.077 0.091 0.088 0.084
(vi) 0.343 0.205 0.105 0.103 0.312 0.112 0.107
(vii) 0.314 0.189 0.062 0.060 0.295 0.102 0.097

(c)
(i) 0.322 0.234 0.145 0.138 0.322 0.156 0.145
(ii) 0.139 0.097 0.055 0.052 0.151 0.091 0.086
(iii) 0.054 0.046 0.026 0.028 0.056 0.040 0.044
(iv) 0.008 0.005 0.003 0.003 0.007 0.001 (<0.0005)
(v) 0.254 0.193 0.164 0.169 0.218 0.202 0.210
(vi) 0.295 0.204 0.089 0.079 0.283 0.123 0.109
(vii) 0.321 0.151 0.064 0.056 0.237 0.105 0.097

values of q . Also included in Table 2 are the (empirically found) true optimal val-
ues of q , denoted by qopt; in other words, Hqopt was the smallest MSE empirically
computed from the model in question over a wide range of q values. Things to
note are the following:

• Averaging over scans does indeed succeed in dramatically reducing the MSE of
estimation. As a matter of fact, even with N as low as 100, significant benefits
ensue, typically halving the MSE of the original estimator; this is of course
contingent on having those N scans generated in a very “random” fashion as
Algorithm B′ ensures.

• The comparison between α̂∗ and α̂∗∗ is unclear. The former seems to lead to
somewhat smaller MSEs, but it should be borne in mind that its performance
is aided by the truncation of the original estimator to the value 2. On the other
hand, α̂∗∗ is more robust, and thus recommendable in a general setup when
outside information—such as the restriction α ∈ (0,2]—may not be available.
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TABLE 2
Empirical MSEs of Hill estimator Hq based on q order statistics; data from model (11) with

n = 1,000 and (a) ρ = 0.1, (b) ρ = 0.7, (c) ρ = −0.5

H100 H200 H300 H400 Hqopt qopt

(a)
(i) 0.011 0.011 0.048 0.170 0.007 140
(ii) 0.121 0.013 0.130 0.546 0.013 200
(iii) 1.469 0.043 0.290 1.147 0.017 220
(iv) n/a n/a n/a n/a n/a n/a
(v) 0.149 0.291 0.450 0.629 0.086 40
(vi) 0.032 0.065 0.099 0.138 0.027 60
(vii) 0.094 0.106 0.134 0.167 0.059 20

(b)
(i) 0.045 0.019 0.051 0.136 0.019 200
(ii) 0.253 0.039 0.135 0.562 0.031 220
(iii) 1.262 0.050 0.315 1.198 0.035 220
(iv) n/a n/a n/a n/a n/a n/a
(v) 0.373 0.147 0.059 0.026 0.026 400
(vi) 0.057 0.023 0.017 0.022 0.017 300
(vii) 0.048 0.064 0.078 0.087 0.048 100

(c)
(i) 0.017 0.012 0.042 0.155 0.011 180
(ii) 0.135 0.015 0.118 0.532 0.013 220
(iii) 1.297 0.042 0.286 1.111 0.015 220
(iv) n/a n/a n/a n/a n/a n/a
(v) 0.184 0.421 0.727 1.072 0.118 40
(vi) 0.038 0.084 0.141 0.219 0.034 60
(vii) 0.104 0.138 0.183 0.252 0.052 20

Comparing Table 1 to Table 2, it is apparent that both α̂∗ and α̂∗∗ underperform
as compared to the optimized Hill estimator Hqopt in cases (i), (ii), (v) and (vi),
whereas α̂∗ and α̂∗∗ perform comparably to Hqopt in cases (iii) and (vii). Both α̂∗
and α̂∗∗ perform excellently in the Gaussian case (iv); however, as kindly pointed
out by one of the referees, the Hill estimator is inapplicable/inconsistent in this
case as it diverges to infinity—therefore, the n/a’s in Table 2.

Perhaps it should be stressed that qopt is not known by the practitioner. As men-
tioned earlier, estimation of qopt is not a trivial matter and is further complicated
when the data are dependent; see Embrechts, Klüppelberg and Mikosch [8] or
Danielsson et al. [7] and the references therein. This phenomenon is manifested in
our simulations, especially in cases (v)–(vii), that is, the Pareto and Burr distribu-
tions, for which the value of the empirically found qopt seems to be quite unstable
as a function of the dependence factor ρ, to the extent exemplified in our small
simulation.
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The simulation confirms that our proposed methodology leads to reasonable es-
timates of the index of domain of attraction under (linear) dependence and possibly
nonnormal domains of attraction, that is, nonconstant slowly-varying function L.
Nevertheless, it should be stressed that our methodology has general applicabil-
ity, and it is not specific to the particular context as Hill’s estimator is. Of course,
it is expected that context-specific, carefully optimized estimators may give im-
proved performance relative to this general “off-the-shelf” tool. The fact that in
some of the cases considered, for example, (iii) and (vii), our general methodol-
ogy performs comparably with the optimally fine-tuned Hill estimator (using the
true qopt) can be considered remarkable.

An added bonus of our methodology is that it is totally automatic: no fine-tuning
is required in terms of a tricky “bandwidth”-type choice, such as estimating qopt
for the Hill estimator. In addition, note that—even in the specific tail estimation
context of this section—our methodology is applicable in connection with differ-
ent diverging statistics other than the second moment. There is a plethora of such
diverging estimators that can be used; for example, Tn could be taken as the 2r th
sample moment for some integer r ≥ 1, the r th sample moment of the absolute
values of the Xt ’s for some integer r ≥ 2, the maximum Mn = max{X1, . . . ,Xn}
or the range Kn = Mn − Ln, where Ln = min{X1, . . . ,Xn}.

The performance of those different candidate statistics is context-specific, and
will generally depend on many factors, including the underlying value of α as well.
Furthermore, since all these different statistics yield useful information for α, it is
conceivable that they can all be combined to construct an improved estimator. To
give a concrete example, let α̂∗∗(r) denote our median-averaged estimator of α

based on the r th sample moment of the absolute values as the diverging statistic.
The estimators α̂∗∗(r) for r = 2,3, . . . ,R can be constructed for some fixed inte-
ger R whose magnitude will depend on the practitioner’s computational facilities.
Those R estimators can then be combined to yield the yet improved estimator

α̂∗∗,R = median
(
α̂∗∗(2), . . . , α̂∗∗(R)).(12)

APPENDIX: TECHNICAL PROOFS

PROOF OF PROPOSITION 2.1. By a corollary of Karamata’s representa-
tion theorem, see, for example, Theorem A.3.3 in Embrechts, Klüppelberg
and Mikosch [8], it follows that logL(n)/ logn asymptotically behaves as∫ n
z (δ(u)/u)du/ logn for some number z > 0 and a measurable function δ(u) that

tends to zero as u → ∞. If the integral converges, then the assertion is proved;
otherwise use l’Hôpital’s rule to obtain an asymptotic rate of δ(n), which tends to
zero. Thus, logL(n)/ logn = o(1). �

PROOF OF THEOREM 3.1. Consider the identity

Yk = g(λ) log k + Uk − logL(k)(13)
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for k = 1, . . . , n. After some straightforward calculations, we have that ğ = g(λ)+
a1 + a2, where

a1 =
∑n

k=1 Uk log k∑n
k=1 log2 k

and a2 = −
∑n

k=1 logL(k) log k∑n
k=1 log2 k

.

Note that

c1 logn ≤ logn ≤ c2 logn and c3(logn)2 ≤ n−1
n∑

k=1

(log k)2 ≤ c4(logn)2,

for some constants ci > 0. Since it is assumed that Un = OP (1), it follows that
a1 = OP (1/ logn) = oP (1). Using line (2), it follows that a2 = o(1) as well.
Hence, ğ = g(λ) + oP (1). Finally, part (i) is proven by an application of the con-
tinuous mapping theorem.

To analyze λ̂, note that similarly we have ĝ = g(λ) + A0 + A2, where

A0 =
∑n

k=1(Uk − Ū )(log k − logn)∑n
k=1(log k − logn)2

,

A2 = −
∑n

k=1(logL(k) − logL)(log k − logn)∑n
k=1(log k − logn)2

;

here Ū = 1
n

∑n
k=1 Uk and logL = 1

n

∑n
k=1 logL(k). Let A1 = E[A0]. By a

Riemann-sum approximation argument, it follows that

n−1
n∑

k=1

(logk − logn)2 = n−1
n∑

k=1

(log k/n − log k/n)2

(14)

→
∫ 1

0
(logx + 1)2 dx = 1,

where log k/n = 1
n

∑n
k=1 log k/n. Focus on the numerator of A2: defining Ln(x) =

L(�nx
) such that Ln(k/n) = L(k), we obtain

−1

n

n∑
k=1

(
logL(k) − logL

)
(logk − logn)

= −1

n

n∑
k=1

logLn(k/n)(log k/n − logk/n)

= −
∫ 1

0
Ln(x)(logx + 1) dx + o(1)

by a straightforward application of the definition of the Riemann integral.
Note that the error in this approximation is just o(1) instead of O(1/n), since
logx does not have a bounded derivative on [0,1]. From Theorem A3.3 of
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Embrechts, Klüppelberg and Mikosh [8], we have the representation L(y) =
c(y) exp{∫ y

z (η(u)/u)du} for some z > 0, c(x) → c > 0 and η(x) → 0 as x → ∞.
It follows that

logLn(x) − logLn(1) = log
(
c�nx
/cn

) −
∫ n

�nx

(η(u)/u)du.

So for each fixed x ∈ (0,1], c�nx
/cn → 1 and∣∣∣∣
∫ n

�nx

(η(u)/u)du

∣∣∣∣ ≤ sup
u∈[nx,n]

|η(u)|n(1 − x)

nx
,

which tends to zero as n → ∞. This shows that logLn(x)− logLn(1) = o(1). But
since logLn(1) does not depend on x and

∫ 1
0 (logx + 1) dx = 0,

−
∫ 1

0
Ln(x)(logx + 1) dx = −

∫ 1

0

(
Ln(x) − Ln(1)

)
(logx + 1) dx → 0

by the dominated convergence theorem, since the integrand converges uniformly
to zero. This shows that A2 = o(1).

Part (ii). Now assume (4). From line (14), we also have that

A0 = n−1
n∑

k=1

Uk(log k/n − logk/n) + o(1),

which we will denote by I1. Now since EU2
n → EU2, we find that supn EU2

n < ∞
so that {Un} is a uniformly integrable sequence. Together with Un

L�⇒ U , this
implies that EUn → EU as n → ∞, and also that for each x, EUn(x) → EU

with Un(x) = U�nx
. Hence we calculate

EI1 = 1

n

n∑
k=1

EUn(k/n)(log k/n − log k/n)

= o(1) +
∫ 1

0
EUn(x)(logx + 1) dx

→
∫ 1

0
EU(logx + 1) dx = 0

using the dominated convergence theorem. Hence, Eĝ = g(λ)+A1 +A2 = g(λ)+
o(1). Now observe that

Var(A0) ∼ n−2
n∑

k=1

n∑
b=1

Cov(Ub,Uk)(logb − logn)(log k − logn).

So from (4) it follows that Cov(Ub,Uk) = O(1); thus, line (14) implies that
Var(A0) = O(1), completing the proof of part (ii).
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Part (iii). Now assume (5) as well;

EI1 = 1

n

n∑
k=1

(EUk − EU)(log k − logn),

since EU does not depend on k. Taking absolute values produces a crude bound
of 1

n

∑n
k=1 Ck−p log k for some constant C > 0; thus, A1 is clearly O(n−p logn),

and A2 has already been analyzed.
Part (iv). Finally, assume (4) and (6). Then we have

Var(A0) ≤ log2 n

n2

n∑
k=1

n∑
b=1

|Cov(Ub,Uk)| = O(nγ1−γ2(log2 n)L̃(n)) = o(1),

which shows that ĝ
P−→ g(λ) and hence λ̂

P−→ λ as well. �

PROOF OF PROPOSITION 3.1. To see this, one has to look at the last block
of a scan and deconstruct it, that is, go backward. Since the last block is always
(X1, . . . ,Xn), the next-to-last is either (X1, . . . ,Xn−1) or (X2, . . . ,Xn), that is,
one of two choices. Similarly, from any step of the process, for example, from the
block of size k + 1, there are two choices for the preceding block corresponding
to shrinking from the left or from the right. Thus, there are two choices for each of
the n − 1 steps of the deconstruction of the last blocks; these choices multiply to
give the number 2n−1. �

PROOF OF COROLLARY 3.2. Regarding λ̂∗ and λ̆∗, the proof follows by a
simple application of the Cauchy–Schwarz inequality. Regarding λ̂∗∗ and λ̆∗∗, just
note that they represent medians of N i.i.d. random variables where N is finite.

�

PROOF OF THEOREM 4.1. We first show that λ̂m,b
P−→ λ under the assump-

tions of Theorem 4.1 together with the additional assumption that m → ∞. First
note that if we define

Uk = log
(
k−g(λ)L(k)|Tk − Tn|) for k = m, . . . , b + m,

then the identity (13) still holds true but now for k = m, . . . , b + m only. In ad-
dition, we also have Un = OP (1) as n → ∞ as before. To see this, note that

k−g(λ)L(k)|Tk − µ| L�⇒ J as k → ∞ by assumption (8). Also note

k−g(λ)L(k)(Tk −µ) = k−g(λ)L(k)(Tk −Tn+Tn−µ) = k−g(λ)L(k)(Tk −Tn)+A0,

where A0 = k−g(λ)L(k)(Tn − µ). But

|A0| = k−g(λ)L(k)|Tn −µ| = k−g(λ)L(k)

n−g(λ)L(n)
n−g(λ)L(n)|Tn −µ| = OP

((
k

n

)−g(λ))
,



1846 T. MCELROY AND D. N. POLITIS

again by assumption (8). Since k/n ≤ (b + m)/n = o(1) and g(λ) < 0, it follows
that A0 = oP (1). Finally, Slutsky’s theorem and the continuous mapping theo-

rem ensure that k−g(λ)L(k)|Tk − Tn| L�⇒ J as k → ∞ and hence, Uk = OP (1) as
k → ∞. By a calculation similar to that in the proof of Theorem 3.1, we have that
ĝm,b = g(λ) + A1 + A2, where now

A1 =
∑b+m

k=m(Uk − Ū )(log k − log)∑b+m
k=m(logk − log)2

and

A2 = −
∑b+m

k=m(logL(k) − logL)(log k − log)∑b+m
k=m(logk − log)2

;

here Ū = 1
b+1

∑b+m
k=m Uk and logL = 1

b+1
∑b+m

k=m logL(k). As in the proof of The-
orem 3.1, it follows that, as b → ∞, A2 = o(1) and EA1 = o(1) by equation (4).
Moreover, VarA1 = o(1) by equation (6), and hence, ĝm,b = g(λ) + oP (1). An

application of the continuous mapping theorem shows that λ̂m,b
P−→ λ.

We now wish to relax the extra assumption m → ∞. To do this, we will show

that m = 1 is a good enough choice, that is, that λ̂1,b
P−→ λ when b → ∞ but

b = o(n); the proof for other nondiverging choices for m is similar. Note that by
the above arguments we can write λ̂1,b = g−1(ĝ1,b), where

ĝ1,b = g(λ) + A∗
1 + A∗

2;
in the above, A∗

1,A
∗
2 are similar to the terms A1,A2 but with summations of the

type
∑b+1

k=1 instead of
∑b+m

k=m in both numerator and denominator. Now consider a
choice of m satisfying m → ∞ but also m = o(b). By the above discussion, we
have shown that λ̂m,b−m+1

P−→ λ. In particular, we can write

ĝm,b−m+1 = g(λ) + A′
1 + A′

2,

where A′
1,A

′
2 are again similar to the terms A1,A2 but with summations of the

type
∑b+1

k=m instead of
∑b+m

k=m; furthermore, we have also shown that A′
1,A

′
2 are

both oP (1). Looking at the numerator of A′
1, we see a sum of the type

∑b+1
k=m

which we have shown to be of order OP ((b −m) log(b −m)). The denominator of
A′

1 includes a sum of the type
∑b+1

k=m which is of exact order O((b − m) log2(b −
m)). Now writing those sums as

∑b+1
k=m = ∑b+1

k=1 −∑m−1
k=1 in both numerator and

denominator of A′
1, and using the assumption m = o(b), it follows that A′

1 = A∗
1 +

oP (1). Similarly, A′
2 = A∗

2 + oP (1). Since A′
1,A

′
2 are both oP (1), it is immediate

that A∗
1,A

∗
2 are both oP (1); thus, ĝ1,b = g(λ) + oP (1), and λ̂1,b

P−→ λ as desired.
�

PROOF OF PROPOSITION 5.1. The proof is available at the website www.
math.ucsd.edu/~politis/PAPER/scansAppendix1.pdf. �

www.math.ucsd.edu/~politis/PAPER/scansAppendix1.pdf
www.math.ucsd.edu/~politis/PAPER/scansAppendix1.pdf
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