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WHEN DO STEPWISE ALGORITHMS MEET SUBSET
SELECTION CRITERIA?1

BY XIAOMING HUO AND XUELEI (SHERRY) NI

Georgia Institute of Technology

Recent results in homotopy and solution paths demonstrate that certain
well-designed greedy algorithms, with a range of values of the algorithmic
parameter, can provide solution paths to a sequence of convex optimization
problems. On the other hand, in regression many existing criteria in subset
selection (including Cp , AIC, BIC, MDL, RIC, etc.) involve optimizing an
objective function that contains a counting measure. The two optimization
problems are formulated as (P1) and (P0) in the present paper. The latter is
generally combinatoric and has been proven to be NP-hard. We study the
conditions under which the two optimization problems have common solu-
tions. Hence, in these situations a stepwise algorithm can be used to solve the
seemingly unsolvable problem. Our main result is motivated by recent work
in sparse representation, while two others emerge from different angles: a
direct analysis of sufficiency and necessity and a condition on the mostly cor-
related covariates. An extreme example connected with least angle regression
is of independent interest.

1. Introduction. We consider two types of optimization problem:

• an optimization problem that is based on a counting measure,

min
x

‖y − �x‖2
2 + λ0 · ‖x‖0,(P0)

where � ∈ R
n×m,x ∈ R

m,y ∈ R
n, the notation ‖ ·‖2

2 denotes the sum of squares
of the entries of a vector, the constant λ0 ≥ 0 is an algorithmic parameter and
the quantity ‖x‖0 is the number of nonzero entries in the vector x;

• an optimization problem that depends on a sum of absolute values,

min
x

‖y − �x‖2
2 + λ1 · ‖x‖1,(P1)

where ‖x‖1 = ∑m
i=1 |xi | for the vector x = (x1, x2, . . . , xm)T and where the con-

stant λ1 ≥ 0 is another algorithmic parameter.

Note that ‖x‖0 (resp., ‖x‖1) is a quasi-norm (resp., norm) in R
m. In the literature

on sparse presentation, these are called the �0-norm and the �1-norm, respectively.
The notation (P0) and (P1) also appears in [8], with slightly different definitions.
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In subset selection under linear regression, many well-known criteria—includ-
ing the Cp statistic, the Akaike information criterion (AIC), the Bayesian infor-
mation criterion (BIC), minimum description length (MDL), the risk inflation cri-
terion (RIC) and so on—are special cases of (P0), resulting from the assignment
of different values to λ0. It is shown in this paper that problem (P0) is, in general,
NP-hard (Theorem 2.1). The NP-hardness has been known for many years, but to
the best of our knowledge, no paper has formally presented a proof of this yet.

At the same time, (P1), which has a long history that will be reviewed later, is
the mathematical problem that is called upon in [45]. Recent advances (details and
references are provided in Section 2.2) demonstrate that some stepwise algorithms
(e.g., [10, 38, 39]) reveal the solution paths of problem (P1) while the parameter
λ1 takes a range of values. More importantly, most of these algorithms take only
a polynomial number of operations (i.e., they are polynomial-time algorithms).
In fact, the complexity of finding a solution path for (P1) is the same as that of
implementing an ordinary least square fit [10].

The major objective of this paper is to find out when (P0) and (P1) give the
same result in subset selection. A subset that corresponds to the nonzero subset
of the minimizer of (P0) [resp., (P1)] is called a type-0 (resp., type-1) optimal
subset with respect to λ0 (resp., λ1). A subset that is both type-0 and type-1 op-
timal is called a concurrent optimal subset. It is known that there is a necessary
and sufficient condition for the type-1 optimal subset and that this condition can
be verified in polynomial time. However, there is no polynomial-time necessary-
and-sufficient condition for the type-0 optimal subset. We search for easily verified
(i.e., polynomial-time) sufficient conditions for type-0 optimal subsets. When suf-
ficient conditions are available, given solutions of (P1) by a stepwise algorithm, we
can determine whether (P0) has been solved. The title of this paper reflects such
an objective.

The main contributions of this paper are two verifiable sufficient conditions for
(P0), Theorems 3.1 and 3.2. The latter is an improved version of the former. Other
conditions are generally standard and known. They are presented subsequently for
the sake of completeness.

The paper is organized as follows. Section 2 reviews the subset selection criteria
that can be formulated as (P0), as well as the literature on (P1). Two cases are
studied/reviewed. Section 3 contains the main results. Section 4 presents some
associated conditions, which are either known or relatively easy to verify. Section 5
discusses some related work. A brief conclusion is provided in Section 6. Proofs
are relegated to the appendices when convenient.

2. Formulation and review of literature. We consider a regression setting.
Let � ∈ R

n×m (n > m) denote a model matrix. Vectors x ∈ R
m and y ∈ R

n are
coefficient and response vectors. The columns of matrix � are covariates. A re-
gression model is y = �x + ε, where ε is a random vector. Let I = {1,2, . . . ,m}
denote the set of indices of the coefficients. A subset of coefficients (or covariates)
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is denoted by � (� ⊆ I). Let |�| denote the cardinality of the set �. Let x� denote
the coefficient vector that takes only nonzero values when the coefficient indices
are in the subset �. To choose a subset �, a subset selection problem has two com-
peting objectives: (1) the residuals, y − �x�, are close to zero and (2) the size of
the set � is small.

2.1. Subset selection criteria and (P0). There exists an extensive body of lit-
erature on the criteria regarding subset selection. Miller [31], Burnham and An-
derson [2] and George [19] all give excellent reviews. An interesting fact is that
a majority of these criterion can be unified under (P0), where ‖y − �x‖2

2 is the
residual sum of squares [denoted by RSS(x)] and where the constant λ0 depends
on the criterion. Some well-known results are the Akaike information criterion
(AIC) [1], Cp [20, 30], the Bayesian information criterion (BIC) [44], minimum
description length (MDL) (see the equivalence between BIC and MDL in [25],
Section 7.8), the risk inflation criterion (RIC) [15] and so on. We refer to George
[19] for the details. In this paper, the “subset selection criteria” that appears in the
title encompasses all of the foregoing criteria.

Solving (P0) generally requires an exhaustive search of all subsets. When ‖x‖0
(i.e., the number of covariates) increases, the methods based on exhaustive search
rapidly become impractical. Innovative ideas have been developed to reduce the
number of subsets being searched; see [17, 32], as well as some later improve-
ments, [18, 35, 36, 40, 41]. All of these methods adopt a branch-and-bound (B&B)
strategy. Improvements can be achieved by modifying the structure in B&B or by
applying stronger optimality tests. Despite these efforts, when the number of co-
variates (m) is moderately large (e.g., m = 50), the subset search cannot generally
be carried out, unless the model matrix � possesses some special structure.

In fact, solving (P0) is an NP-hard problem! The following theorem can be
considered as an extension of a result originally presented in [33]. The proof of the
theorem appears in Appendix A.1.

THEOREM 2.1. Solving (P0) with a fixed λ0 is an NP-hard problem.

2.2. Stepwise algorithms and (P1). Due to the difficulty of solving (P0), a re-
laxation idea has been proposed. The relaxation replaces the �0-norm with the
�1-norm in the objective, which leads to (P1).

Santosa and Symes [43] is considered the first modern appearance of the for-
mulation (P1). The idea of relaxation has been studied extensively in the literature
on sparse representation. Some representative papers are (roughly in chronologi-
cal order) [4, 8, 11, 23, 6, 46, 47, 16, 7, 29, 22], and so on. A full review is well
beyond the scope of this paper. The problem of sparse representation has a differ-
ent emphasis, involving the derivation of a priori conditions instead of a posteriori
conditions, as in the present paper.
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At the same time, (P1) has been proposed in the statistics literature as a method
of subset selection. This has been termed the Lasso method [45]. An interesting
recent development—least angle regression (LARS) [10]—demonstrates that cer-
tain stepwise algorithms can reveal the solutions to (P1) with varying values of λ1,
based on the idea of homotopy (see [38]). More recent analysis further demon-
strates that stepwise algorithms can literally render the entire solution path in a
large class of problems; see [24] and the references therein. The homotopy con-
tinuation method [39] and the subdifferential are the key technical tools in this
development. [42] and [37] are useful references.

2.3. Case studies. We present two cases that have been instructive to us.

2.3.1. An extreme example. We construct an extreme example, in which a so-
phisticated stepwise algorithm (LARS) can miss an optimal subset. This example
has played an inspirational role in our study of the equivalence conditions, which
are discussed further in the next section. Details of the LARS algorithm can be
found in [10], Section 2. We believe that this example is interesting in its own
right.

The example is constructed as follows. Let φi ∈ R
n, i = 1,2, . . . ,m, denote the

ith column of the model matrix �. Hence, � = [φ1, φ2, . . . , φm]. Let δi ∈ R
n, i =

1,2, . . . ,m, denote the Dirac vector taking 1 at the ith position and zero elsewhere.
For i = m − A + 1,m − A + 2, . . . ,m, let φi = δi , where A is a positive integer.
Consider a signal s = 1√

A

∑m
i=m−A+1 φi . Obviously, in this case the optimal subset

is {m − A + 1, . . . ,m}. For the first m − A columns of �, let φj = aj · s + bj · δj ,
where 1 ≤ j ≤ m − A and a2

j + b2
j = 1. Note that the φi ’s and s are all unit-

norm vectors. Hereafter, for simplicity, we always assume that 1 ≤ j ≤ m−A and
m − A + 1 ≤ i ≤ m. It is easy to verify that

〈s, φj 〉 = aj and 〈s, φi〉 = 1/
√

A.

In this example, we choose 1 > a1 > a2 > · · · > am−A > 1/
√

A > 0.

THEOREM 2.2 (An extreme example). In the above example, the LARS algo-
rithm chooses covariates φ1, φ2, . . . , φm−A one-at-a-time and by the same order
in the first m − A steps.

It takes some effort to verify the above theorem. We refer to the technical report
[26], which is a longer version of this paper, as well as to the thesis [34].

Readers may notice that in the above example, the covariates are not standard-
ized, while in the LARS algorithm, choosing covariates according to the inner
product implies the standardization of covariates. A discussion in [26], Theo-
rem 3.4, shows that this can be remedied by an orthogonal transformation.



874 X. HUO AND X. NI

The foregoing example is developed in a fairly general form, with controlling
parameters A and m. To illustrate how dramatic this example can be, let us consider
the case where A = 10 and m = 1,000,000. Based on the previous description, the
LARS algorithm will select the first 999,990 covariates before it selects any of the
last ten covariates. At the same time, the optimal subset is formed by the last ten
covariates. Another example regarding the performance of LARS can be found in
[48], which has a different emphasis.

This example is motivated by an early example in [4], which can be traced
further back to [3] and [5] in the analysis of some stepwise algorithms (e.g., or-
thogonal matching pursuit) in signal processing. Our example is similar in spirit;
however it is different in constructional details.

2.3.2. Subset selection with orthogonal model matrix. The following result
is well known: for an orthogonal model matrix �, when

√
λ0 = λ1/2, solutions

to (P0) and (P1) have the same support. Moreover, at each position the solutions
differ by a constant λ1/2. A partial list of references for such a result includes [10,
38, 45], and many more. For readers who are familiar with soft-thresholding and
hard-thresholding [9], this result should not come as a surprise.

The above two examples collectively motivate us to pursue sufficient conditions
that guarantee common support in the solutions of (P0) and (P1).

3. Main results. A general sufficient condition for (P0) is derived. It is moti-
vated by a recent approach which has appeared in applied mathematics; see [22].
We have modified their approach to solve a different mathematical problem.

Recall that x ∈ R
m denotes a coefficient vector. Denote the corresponding resid-

ual vector by ε = y − �x. Recall that y ∈ R
n and � ∈ R

n×m are the response
vector and the model matrix, respectively. Let � denote the support of the vector
x :� = supp(x). For an integer k ≥ 1, let

σ 2
min,k = inf

‖�δ‖2
2

‖δ‖2
2

subject to ‖δ‖0 ≤ k.

The above quantity reflects a certain property of the model matrix. Furthermore,
for a vector v ∈ R

n and an integer k ≥ 1, we define

c(v, k) =
√√√√ k∑

i=1

v2
(i),

where |v(1)| ≥ |v(2)| ≥ · · · ≥ |v(n)| are the nonincreasing-ordered magnitudes of the
entries of the vector v. For finite k, we assume that the quantities c2(�T ε, k) and
σ 2

min,k have been computed. The following theorem provides a sufficient condition
for a subset to be included in a type-0 optimal subset with respect to λ0.



SUBSET SELECTION 875

THEOREM 3.1 (Main result 1). A subset of coefficients � is given. Suppose
that coefficient vector x is the minimizer of the function ‖y − �x‖2

2 subject to
supp(x) ⊂ �. Let ε = y − �x.

(1) If mini∈� |xi | > q1(|�|), then, with respect to λ0, there is no type-0 optimal
subset whose support is of size less than |�|.

(2) Furthermore, if mini∈� |xi | > q(|�|), then, with respect to λ0, we have
� ⊂ �′, where �′ is the type-0 optimal subset with respect to λ0.

The quantities q1(·) and q(·) are defined as follows. For an integer k ≥ 1,

q1(k) = sup
m<k

c(�T ε,1) +
√

c2(�T ε, k + m) + (k − m)λ0σ
2
min,k+m

σ 2
min,k+m

,

q2(k) = sup
m≥k

c(�T ε,1) +
√

c2(�T ε, k + m) + (k − m)λ0σ
2
min,k+m

σ 2
min,k+m

and

q(k) = max{q1(k), q2(k)}.

The proof of this theorem appears in Appendix A.2.
Note that quantities q1(·) and q2(·) have the same objective function. However,

the ranges of the variable m are different. Because q1(k) requires only a finite
choice of the variable m (recall that m < k), it is computable. It is not straightfor-
ward to show that for any k ≥ 1, the quantity q2(k) will exist. In this paper, we
assume the existence of this quantity.

Readers may compare the above with the test proposed in [22]. That test is
related to the optimality in sparse representations.

In Theorem 3.1, the quantities q1(·) and q(·) require multiple values of σ 2
min,k ,

for a range of values of k. Compared to the quantities c(·, k), it is harder to compute
the σ 2

min,k’s. Inspired by the derivation in Theorem 2 of [22], we derive a sufficient

condition, which depends only on σ 2
min,|�|, where � is the subset being tested. To

state our result, the following quantity needs to be defined: for an integer m ≥ 1
and a given integral constant M , let

λ(m;M) = 1 − M√
m

sup
|I|≤m

sup
k /∈I

‖�+
I φk‖2,

where I is a subset of indices, |I| denotes the size of this subset, the matrix �I is
a submatrix of � whose column indices form the set I, �+

I = (�∗
I�I)−1�∗

I is the
Moore–Penrose pseudo-inverse [21], with (·)∗ denoting the adjoint, and φk is the
kth column (i.e., covariate) in �. Given m, the quantity λ(m) can be computed by
enumerating all m-subsets of the covariates.

Now we present another sufficient condition.
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THEOREM 3.2 (Main result 2). A subset of coefficients � is given. Suppose
that coefficients vector x is the minimizer of the function ‖y − �x‖2

2 subject to
supp(x) ⊂ �. Suppose it is known a priori that the size of the type-0 optimal subset
is no larger than M . If mini |xi | > q ′(|�|,M), then the set � is at least a subset of
the type-0 optimal subset. Here, the quantity q ′(·) is defined, for integer k ≥ 1 and
constant M , as

q ′(k,M)

= sup
1≤m≤M

(
c(�T ε,1) +

√
c2(�T ε, k) + λ0 · k2(k − m)

(k + m)2 · σ 2
min,k · λ2(k;m)

)

×
(

k

(k + m)
σ 2

min,k · λ2(k;m)

)−1

.

See the proof in Appendix A.3.
If the model matrix � is orthonormal, readers can verify that σ 2

min,k = 1 and
λ(m;M) = 1. This brings about significantly simplified criteria in Theorem 3.1
and Theorem 3.2. Compared with the case when the model matrix is orthogonal,
the new criteria are less attractive. We consider this a price to be paid for the
generality.

The two results here focus on the type-0 optimal subset. Given a type-1 optimal
subset (which can be derived from some efficient algorithm), one can easily calcu-
late the least square estimator according to it and use this estimator and subset to
test whether the subset is also type-0 optimal.

4. Other conditions of equivalence. In Section 4.1, we give a sufficient and
necessary condition for a subset to be the concurrent optimal subset. Checking this
condition cannot be achieved in polynomial time [recall that (P0) is NP-hard]. In
Section 4.2, we ask when the k most correlated covariates form the concurrent
optimal subset. A sufficient condition is derived. This result is easy to check, but
too restrictive.

4.1. Sufficient and necessary conditions. Before moving on to the specific dis-
cussion, we introduce a sufficient and necessary condition for a concurrent optimal
subset. Let I1 denote a subset of indices. Let �1 and x1 denote columns of � and
entries of x with indices from I1. Let � = [�1 �2]. Here, a permutation that does
not change the problem is implied. The following can easily be verified.

LEMMA 4.1 [Sufficient and necessary condition for (P0)]. I1 is the optimal
subset of (P0) if and only if the value

yT y − yT �1(�
T
1 �1)

−1�T
1 y + λ0 · ‖x1‖0(1)

is the minimum of the objective in (P0).
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The following is well known (see, e.g., [29, 38, 47]).

LEMMA 4.2 [Sufficient and necessary condition for (P1)]. I1 is the optimal
subset of (P1) if and only if there exists a vector ω such that

�T y =
(

�T
1 �1

�T
2 �1

)
x1 +

(
λ1

2
· sign(x1)

ω

)
(2)

holds and ‖ω‖∞ ≤ λ1/2.

The following can be easily derived from the above two lemmas.

COROLLARY 4.3 [Sufficient and necessary condition (for concurrence)]. I1 is
the concurrent optimal subset of (P0) and (P1) if and only if (1) and (2) are true.
Moreover, with x̃0 and x̃1 the solutions of (P0) and (P1), respectively, we have

(x̃0 − x̃1)I1 = (�T
1 �1)

−1 · λ1

2
· sign((x̃1)I1).(3)

For the equation above, consider

(x̃0)I1 = (�T
1 �1)

−1�T
1 y

and

�T
1 y = (�T

1 �1)(x̃1)I1 + λ1

2
· sign((x̃1)I1).

By combining the above two, equation (3) follows.
The above theorem gives a necessary and sufficient condition for a concurrent

optimal subset. Further comments follow.

REMARK 4.4. Equation (3) provides a method for computing x̃1, given that
x̃0 is available and represents the optimal solution. Evidently,

(x̃1)I1 = (x̃0)I1 − λ1

2
(�T

1 �1)
−1 · sign((x̃1)I1).

REMARK 4.5. Note that

�(x̃0 − x̃1) = �1(x̃0 − x̃1)I1

= λ1

2
· �1(�

T
1 �1)

−1 · sign((x̃1)I1),

which is an equiangular vector among the columns of �1. Hence, when optimality
is achieved in both (2) and (3), the difference between the two predicted vectors is
an equiangular vector.

4.2. A sufficient condition for mostly correlated covariates. We introduce a
set of sufficient conditions which depend only on the correlations between the
response y and the covariates φi , as well as the maximum correlation between
the covariates. For simplicity, we assume that the response y and the covariates
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φi are all standardized. It is not hard to see that |〈y,φi〉| ≤ 1, i = 1,2, . . . ,m,
and |〈φi,φj 〉| ≤ 1,1 ≤ i, j ≤ m. Denote z = �T y = (z1, z2, . . . , zm)T . Without
loss of generality, we assume |z1| > |z2| > · · · > |zm|. We want to find sufficient
conditions such that the subset A1 = {φ1, φ2, . . . , φk} is the solution to both (P0)
and (P1): the k most correlated covariates (with the response) form the optimal
subset. Clearly, an optimal subset does not need to consist of the most correlated
covariates with the response. Due to this additional condition, this set of conditions
is restrictive. The restrictiveness is illustrated in an example in Section 4.2.1.

Denote

µ = max
1≤i,j≤m

i 
=j

|〈φi,φj 〉|.

We have the following theorem.

THEOREM 4.6. For a given λ0 and correlations z1, z2, . . . , zk , if the three
conditions

[1 − (k − 1)µ]z2
k ≥ 2(k − 1)2µ + z2

k+1[1 + (k − 1)µ],(4)

z2
k+1 ≤ λ0(1 − 
) − (2k − 1)µ

1 + (k − 1)µ

k∑
i=1

z2
i ,(5)

z2
k ≥ λ0 + (2k − 3)µ

1 + (k − 1)µ

k∑
i=1

z2
i(6)

are satisfied, where 
 = n ·µ in (5), then the subset A1 is the type-0 optimal subset.

To prove the above theorem, we can show that for subsets of size equal to k,
greater than k, less than k, the above three conditions guarantee that subset A1 is
the type-0 optimal subset. A detailed proof can be found in [26] or [34]. Anyone
whose interest is restricted to (P0) should now be satisfied. The following is to
establish a condition for concurrent optimality.

REMARK 4.7. Conditions (4), (5) and (6) are independent, that is, none of
them can be derived from the other two.

The following theorem states the condition for the set A1 = {φ1, φ2, . . . , φk} to
be the type-1 optimal subset; see the proof in [26] or [34].

THEOREM 4.8. Given λ and k, if

λ

2
− |zk+1| ≥

√
kµ

1 − (k − 1)µ

√√√√ k∑
i=1

(
|zi | + λ

2

)2

,(7)

then subset A1 is the type-1 optimal subset.
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The following corollary gives a sufficient condition for A1 to be the concurrent
optimal subset.

COROLLARY 4.9. Given conditions (4), (5), (6) and (7), subset A1 is the con-
current optimal subset.

4.2.1. Restrictiveness of the aforementioned sufficient conditions. Readers
may have noticed that the four conditions in the previous section are restrictive.
One can easily find an example that does not satisfy these conditions, but which
still has the concurrent optimal subset A1.

An example can be established as follows. Suppose that n,m and k are three
positive integers satisfying n > m > k and n ≥ m + k. Let ai denote the ith entry
of vector a ∈ R

k with |a1| ≥ |a2| ≥ · · · ≥ |ak|. Let Im×m ∈ R
m×m be an identity

matrix and �a ∈ R
k×k be the diagonal matrix with the ith diagonal entry being

equal to ai . Consider

� = standardized


�a 0k×(m−k)

Im×m

0(n−k−m)×m

 , y =
k∑

i=1

φi,

where “standardized{M}” refers to the standardization of all of the columns of
the matrix M , the matrices 0k×(m−k) and 0(n−k−m)×m consist entirely of zeros
and φi is the ith column of �. The optimal solution consists of the first k co-
variates and these covariates have larger correlations with y. However, there are
many choices of m,n, k and the vector a with which condition (4) is not satisfied.
As a special case, consider the following simple example: n = 10,m = 7, k = 3
and a = (−1 1 0)T . It is not hard to verify that µ(�) = 0.1667, z3 = 0.7379, z4 =
−0.3162, [1 − (k − 1)µ]z2

k = 0.3630 and 2(k − 1)2µ + z2
k+1[1 + (k − 1)µ] =

0.9117. Hence, (4) does not hold in this case.

5. Discussion. The question addressed in this paper has a unique aspect. We
have the following application in mind: supposing a stepwise algorithm finds a
path of type-1 optimal subsets, then given verifiable (polynomial-time) conditions
that are derived in this paper, one knows whether a type-0 optimal subset has been
found. As mentioned earlier, our results potentially facilitate polynomial-time so-
lutions to seemingly NP-hard problems.

Our problem is different from that of analyzing statistical properties of the es-
timators. These properties include consistency, rate of convergence, asymptotic
normality and so on. We found the oracle properties derived in [12] very interest-
ing. However, Fan and Li [12] do not address whether their estimator—smoothly
clipped absolute deviation penalty (SCAD)—can be computed in polynomial time.
In fact, because of the possible exponential number of local optima, it is strongly
believed that SCAD cannot be solved in polynomial time. Hence, an interesting
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question will be: when can one verify that SCAD is indeed solved by a polynomial-
time algorithm? That is, we want to derive some sufficient conditions similar to
those in the present paper. Note that Fan and Peng [14] give a fundamental de-
scription of when oracle properties (as well as other properties) are achievable,
while a recent manuscript by Zou [50] proves the oracle property for a method that
is rooted in the Lasso.

As pointed out by an anonymous referee, there are two categories of equiva-
lence conditions for (P0) and (P1): a priori conditions determine in advance when
solving (P1) will identify a solution to (P0), while a posteriori conditions take a
given subset of covariates (produced in any manner) and determine whether it is
an optimal subset for (P0). The main results in this paper belong to the latter class.
Given the target application described at the beginning of this section, it is not sur-
prising that the latter is more interesting to us than the former. Moreover, a subset
satisfying the former will most likely satisfy the latter, which implies that the a
posteriori conditions are more powerful in the target application because they can
identify more cases of equivalence.

Subset selection has applications in feature selection. There are two major ap-
proaches in feature selection: filter and wrapper; see [27, 28, 32] for details. Our
formulations are closely related to wrappers. A recent survey paper by Fan and Li
[13] gives an excellent overview of the statistical challenges associated with high-
dimensional data, including feature selection and feature extraction. Besides many
contemporary applications, as summarized in [13], other applications are foresee-
able. For example, subset selection is a critical problem in supersaturated design.
A citation search of Wu [49] will provide most of the existing literature. A numer-
ically efficient condition on the optimality of subsets has the potential to identify a
good design.

6. Conclusion. Stepwise algorithms can be numerically efficient, that is,
polynomial-time. Specially designed stepwise algorithms can find type-1 optimal
subsets in subset selection. We have derived sufficient conditions to test whether
these type-1 optimal subsets are also type-0 optimal. Such an approach allows
polynomial-time algorithms to locate concurrent optimal subsets, which, other-
wise, generally requires solving an NP-hard optimization problem.

APPENDIX A: PROOFS

A.1. Proof of Theorem 2.1. Let

f (m) = min
x : ‖x‖0≤m

‖y − �x‖2
2,

where all of the symbols are defined in (P0). It is evident that the point array
(m,f (m)), m = 1,2, . . ., forms a nonincreasing curve in the positive quadrant.

We first establish the existence of an integer m0, such that value f (m0) + λ0m0
minimizes the objective in (P0). Note that there are a finite number of m’s such
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that λ0m ≤ f (1) + λ0 · 1. This inequality gives an upper bound on m’s that satisfy
f (m)+λ0m ≤ f (1)+λ0 ·1. Among this finite number of m’s, there is at least one
m0 that minimizes the value of the function f (m) + λ0m.

Define ε = f (m0). In general, we can assume that ε > 0 because if ε = 0, then
the response y can be superposed by a small (more specifically, no more than m0)
number of columns of the matrix �, which is a special case.

Using the idea of the Lagrange multiplier, we can see that solving (P0) with
λ0 is equivalent to solving the sparse approximate solution (SAS) problem in [33],
Section 2, with ε, which is proved in [33] to be NP-hard. Hence, in general, solving
(P0) is NP-hard.

A.2. Proof of Theorem 3.1. Suppose that �′ is the type-0 optimal subset,
with corresponding coefficient vector x′. We must have

‖y − �x′‖2
2 + λ0‖x′‖0 ≤ ‖y − �x‖2

2 + λ0‖x‖0.(8)

Denoting δ = x′ − x, we have ‖δ‖0 ≤ |�| + |�′|. We will prove that

if |�′| < |�|, then ‖δ‖∞ ≤ q1(�)(9)

and

for any �′, ‖δ‖∞ ≤ q(�).(10)

To see the above, a reformulation of (8) gives

‖ε − �δ‖2
2 ≤ ‖ε‖2

2 + λ0(|�| − |�′|),
which is equivalent to

‖�δ‖2
2 ≤ 2〈�T ε, δ〉 + λ0(|�| − |�′|),(11)

where 〈·, ·〉 denotes the inner product between two vectors. Define δ′ =
σ 2

min,|�|+|�′| · δ. Because ‖�δ‖2
2 ≥ σ 2

min,|�|+|�′|‖δ‖2
2 and (11) hold, we have

‖δ′‖2
2 ≤ 2〈�T ε, δ′〉 + λ0(|�| − |�′|) · σ 2

min,|�|+|�′|.

The above is equivalent to

‖�T ε − δ′‖2
2 ≤ ‖�T ε‖2

2 + λ0(|�| − |�′|) · σ 2
min,|�|+|�′|.

Define ε∗ = �T ε. The above inequality leads to∑
i∈�∪�′

(ε∗
i − δ′

i )
2 ≤ ∑

i∈�∪�′
(ε∗

i )
2 + λ0(|�| − |�′|) · σ 2

min,|�|+|�′|.

The above immediately leads to

sup
i∈�∪�′

|δ′
i | ≤ sup

i∈�∪�′
|ε∗

i | +
√ ∑

i∈�∪�′
(ε∗

i )
2 + λ0(|�| − |�′|) · σ 2

min,|�|+|�′|.
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Dividing both sides by σ 2
min,|�|+|�′|, we have

sup
i∈�∪�′

|δi |
(12)

≤
c(�T ε,1) +

√
c2(�T ε, |�| + |�′|) + λ0(|�| − |�′|) · σ 2

min,|�|+|�′|
σ 2

min,|�|+|�′|
.

Recalling the definitions of q1(·) and q(·), (9) and (10) can be derived directly
from (12).

We are now able to verify item (1) of the theorem. Suppose that there is a type-0
optimal subset �′ satisfying |�′| < |�|. We have

|x′
i | ≥ |xi | − |xi − x′

i | ≥ |xi | − q1(�) > 0.

The second inequality is based on (9) and the last inequality follows from the
condition in item (1). The above implies � ⊂ �′, which contradicts |�′| < |�|.
We have proven item (1).

The proof of item (2) is very similar to the proof of (1). We omit the obvious
details.

A.3. Proof of Theorem 3.2. The beginning of the proof is the same as that
of the proof of the previous theorem. It begins to deviate at stage (11). For the
reader’s convenience, we restate inequality (11):

‖�δ‖2
2 ≤ 2〈�T ε, δ〉 + λ0(|�| − |�′|).(13)

Readers are referred to the previous proof for the meanings of the notation.
First, we have

〈�T ε, δ〉 ≤
n∑

i=1

∣∣b(i)

∣∣ · ∣∣δ(i)

∣∣,(14)

where |δ(1)| ≥ |δ(2)| ≥ · · · ≥ |δ(n)| is the ordered list of the magnitudes of the en-
tries in the vector δ. Similarly, |b(1)| ≥ |b(2)| ≥ · · · ≥ |b(n)| is the ordered list of the
magnitudes of the entries in the vector �T ε. We denote �T ε by b. The following
manipulations are needed:

R.H.S. of (14) =
|�|∑
i=1

∣∣b(i)

∣∣ · ∣∣δ(i)

∣∣ + n∑
i=|�|+1

∣∣b(i)

∣∣ · ∣∣δ(i)

∣∣
≤

|�|∑
i=1

∣∣b(i)

∣∣ · ∣∣δ(i)

∣∣ + ∣∣b(|�|+1)

∣∣ · n∑
i=|�|+1

∣∣δ(i)

∣∣
≤

|�|∑
i=1

∣∣b(i)

∣∣ · ∣∣δ(i)

∣∣ + ∣∣b(|�|+1)

∣∣ · |�′|
|�| ·

|�|∑
i=1

∣∣δ(i)

∣∣(15)
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≤
(

1 + |�′|
|�|

) |�|∑
i=1

∣∣b(i)

∣∣ · ∣∣δ(i)

∣∣
=

(
1 + |�′|

|�|
)〈

b∗, δ∗|�|
〉
,

where the vector δ∗|�| takes the absolute values of δ only at the positions where the
vector δ has the |�| largest magnitudes and zeros elsewhere, that is,

δ∗|�|,i =
{ |δi |, if |δi | ≥

∣∣δ(|�|)
∣∣,

0, otherwise.

For the vector b∗,

b∗
i =

{ ∣∣b(j)

∣∣, if δi = δ(j) and
∣∣b(j)

∣∣ ≥ ∣∣b(|�|)
∣∣,

0, otherwise.

Combining (14) and (15), we have

〈�T ε, δ〉 ≤
(

1 + |�′|
|�|

)〈
b∗, δ∗|�|

〉
.(16)

Meanwhile, for any �∗ we have

‖�δ‖2
2 ≥ ‖��∗�+

�∗�δ‖2
2

≥ σ 2
min,|�∗| · ‖�+

�∗�δ‖2
2(17)

= σ 2
min,|�∗| · ‖�+

�∗�δ�∗ + �+
�∗�δ�∗c‖2

2,

where the set �∗c is the complement of the set �∗, and the matrices ��∗ and ��∗c

are submatrices of the matrix � formed by taking columns whose indices are in
�∗ and �∗c, respectively. As mentioned earlier, the matrix �+

�∗ is a pseudo-inverse
of ��∗ . The vector δ�∗ (resp., δ�∗c ) takes only nonzero values when the index is
in the set �∗ (resp., �∗c). In the above steps, the first inequality holds because
the matrix ��∗�+

�∗ is a projection matrix. The second inequality is based on the
definition of σ 2

min,|�∗|. The last step is a simple reformulation.
Note that in (17), �∗ can be any subset of the indices. In the following, with-

out loss of generality, we assume that the set �∗ corresponds to the largest |�|
magnitudes in the vector δ, that is, |�∗| = |�| and δ�∗ = δ∗|�|. We then have

‖�+
��δ� + �+

�∗�δ�∗c‖2 ≥ ‖�+
�∗�δ�∗‖2 + ‖�+

�∗�δ�∗c‖2

≥ ‖δ�∗‖2 − ∑
k∈�∗c

|δk| · sup
�/∈�∗

‖�+
�∗φ�‖2

≥ ‖δ�∗‖2 −
n∑

k=|�|+1

∣∣δ(k)

∣∣ · sup
�/∈�∗

‖�+
�∗φ�‖2(18)
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≥ ‖δ�∗‖2 − |�′|
|�| · ∥∥δ∗|�|

∥∥
1 · sup

�/∈�∗
‖�+

�∗φ�‖2

≥ ‖δ�∗‖2 − |�′|√|�| · ∥∥δ∗|�|
∥∥

2 · sup
�/∈�∗

‖�+
�∗φ�‖2

≥ λ(|�|; |�′|) · ∥∥δ∗|�|
∥∥

2.

In the above, the first and second steps are common manipulations. The third
inequality takes �∗ to be the subset of indices where δ∗‖�‖ has nonzero entries.
The fourth inequality is based on ‖δ∗|�|‖1/|�| ≥ ∑n

k=|�|+1 |δ(k)|/|�′|. The fifth in-
equality is based on ‖δ∗|�|‖1 ≤ √|�| · ‖δ∗|�|‖2. The last step recalls the definition
of λ(·, ·). Combining (17) and (18), we have

‖�δ‖2
2 ≥ σ 2

min,|�| · λ2(|�|; |�′|) · ∥∥δ∗|�|
∥∥2

2.(19)

We now combine the above results and then maneuver back to the argument in
the proof of Theorem 3.1. Combining (13), (16) and (19), we have

σ 2
min,|�| · λ2(|�|; |�′|) · ∥∥δ∗|�|

∥∥2
2 ≤ 2

(
1 + |�′|

|�|
)〈

b∗, δ∗|�|
〉 + λ0(|�| − |�′|).

Let

δ′ = |�|
|�| + |�′|σ

2
min,|�| · λ2(|�|; |�′|) · δ∗|�|.

We have

‖δ′‖2
2 ≤ 2〈b∗, δ′〉 + λ0 · |�|2(|�| − |�′|)

(|�| + |�′|)2 · σ 2
min,|�| · λ2(|�|; |�′|).

The above is equivalent to

‖δ′ − b∗‖2
2 ≤ ‖b∗‖2

2 + λ0 · |�|2(|�| − |�′|)
(|�| + |�′|)2 · σ 2

min,|�| · λ2(|�|; |�′|),
which leads to

‖δ′‖∞ ≤ ‖b∗‖∞ +
√

c2(b∗, |�|) + λ0 · |�|2(|�| − |�′|)
(|�| + |�′|)2 · σ 2

min,|�| · λ2(|�|; |�′|).
Recalling the definitions of δ′ and b∗, we have

‖δ‖∞ ≤
(
c(�T ε,1)

+
√

c2(�T ε, |�|) + λ0 · |�|2(|�| − |�′|)
(|�| + |�′|)2 · σ 2

min,|�| · λ2(|�|; |�′|)
)

(20)

×
( |�|

|�| + |�′|σ
2
min,|�| · λ2(|�|; |�′|)

)−1

≤ q ′(|�|;M).
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The above is equivalent to ‖x − x′‖∞ ≤ q ′(|�|;M). Using the same argument as
in the last proof, we can argue that � ⊂ �′. Supposing xi 
= 0, we have

|x′
i | ≥ |xi | − |xi − x′

i | ≥ |xi | − q ′(|�|,M) > 0,

which implies that � ⊂ �′.
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