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LOCAL PARTIAL LIKELIHOOD ESTIMATION IN PROPORTIONAL
HAZARDS REGRESSION

BY SONGNIAN CHEN AND LINGZHI ZHOU

Hong Kong University of Science and Technology

Fan, Gijbels and King [Ann. Statist. 25 (1997) 1661–1690] considered
the estimation of the risk function ψ(x) in the proportional hazards model.
Their proposed estimator is based on integrating the estimated derivative
function obtained through a local version of the partial likelihood. They
proved the large sample properties of the derivative function, but the large
sample properties of the estimator for the risk function itself were not estab-
lished. In this paper, we consider direct estimation of the relative risk function
ψ(x2) − ψ(x1) for any location normalization point x1. The main novelty in
our approach is that we select observations in shrinking neighborhoods of
both x1 and x2 when constructing a local version of the partial likelihood,
whereas Fan, Gijbels and King [Ann. Statist. 25 (1997) 1661–1690] only
concentrated on a single neighborhood, resulting in the cancellation of the
risk function in the local likelihood function. The asymptotic properties of
our estimator are rigorously established and the variance of the estimator is
easily estimated. The idea behind our approach is extended to estimate the
differences between groups. A simulation study is carried out.

1. Introduction. The Cox proportional hazards model is by far the most pop-
ular model in survival analysis. In the Cox model, the conditional hazard rate of
a survival time, T , given the regressor vector, X = x, is modeled as

λ(t |x) = λ0(t) exp{ψ(x)},(1.1)

where λ0(t) is the baseline hazard function and ψ(x) is the risk function which
measures the contribution of X at x. Typically, the baseline hazard function
is left unspecified, while the risk function ψ(·) is specified parametrically as
ψ(X) = XT β0 for a vector of coefficients β0, where T denotes the transpose of the
vector. In practice, survival data are often censored due to termination of the study
or early withdrawal from the study. We can thus observe only Y = min{T ,C},
where C is the censoring time independent of T given X. In addition, we also
observe the censoring indicator, δ = I {T ≤ C}, as well as the covariate vec-
tor X. Let {(Xi, Yi, δi), i = 1, . . . , n} represent an i.i.d. sample from the popula-
tion (X,min(T ,C), I {T ≤ C}), t0

1 < · · · < t0
N denote the ordered observed failure
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times and (j) provide the label for the item failing at t0
j . Define Rj as the risk set

at time t0
j :Rj = {i :Yi ≥ t0

j }. Cox [5] suggested that estimation and inference on

β0 be based on the partial likelihood function

L(β) =
N∏

j=1

exp(XT
(j)β)∑

i∈Rj
exp(XT

i β)
.

With flexible specification for the baseline hazard function, Cox’s model and the
partial likelihood approach provide a very convenient way to measure the covariate
effects on the survival time. See [7, 16, 19] and [21] for references on this model.
However, the parametric specification of the risk factor ψ(x) is assumed largely
for convenience. In general, misspecification of the risk function will lead to incon-
sistent estimation and misleading statistical inferences. Therefore, it is desirable to
relax the parametric specification of the risk function. When the risk function ψ(x)

is not parametrically specified, the partial likelihood function is of the form

L(ψ) =
N∏

j=1

exp(ψ(X(j)))∑
i∈Rj

exp(ψ(Xi))
.

Note that the function ψ(x) is only estimable up to a location normalization. In
fact, in Cox’s original setup with the linear specification for the risk function, no
intercept is allowed in β . The relative risk provides all the information regarding
the contribution of the covariates based on the Cox proportional hazards model.
Recently, Fan, Gijbels and King [12] and Tibshirani and Hastie [23] considered
local versions of the partial likelihood approach. They compared the relative risks
for observations whose corresponding covariate values belong to a single shrinking
neighborhood. Obviously, these observations all have the same risk factor to the
first order. Namely, the first term of the Taylor expansion of ψ(Xi) will be the
same for Xi close to x. As a result, their estimation is based on the second-order
comparison of the relative risk factors, leading to the estimators for the derivatives
of the function ψ(x) only. To recover the original risk function, they suggested
using the expression ψ(x) = ∫ x

0 ψ ′(t) dt by replacing ψ ′(t) with their local partial
likelihood estimates ψ̂ ′(t) for t ∈ (0, x). Note that ψ(0) = 0 is implicitly imposed
for identifiability of ψ(·). However, the large sample property of the estimator∫ x

0 ψ̂ ′(t) dt has not been formally established; thus, formal statistical inference is
not feasible. Furthermore, their derivative-based approach cannot be extended to
the case in which the covariate variable is discrete, since ψ(·) is canceled out in
the local partial likelihood, as pointed out in Section 2.

In this paper, we consider the direct estimation of the relative risk function
ψ(x2) − ψ(x1) through a new version of the local partial likelihood. Intuitively, in
constructing our local partial likelihood, we use observations in the neighborhoods
of either x1 or x2, which have risk factors different to the first order, thus enabling
direct estimation and inference of the relative risk ψ(x2)−ψ(x1). Moreover, when
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the covariate variable is discrete, our approach reduces to the partial likelihood es-
timator for a two-sample comparison of survival times in the form of the usual
proportional hazards model. In other words, our procedure reduces to an efficient
estimation in the case of discrete covariates. Thus, we can expect our procedure
to have high efficiency, at least when the data for the covariate variable X are not
evenly distributed.

Our procedure can be easily adapted to estimate differences in risk functions at
any point x between two different groups by constructing our local partial likeli-
hood using observations in the neighborhood of x for the two groups under consid-
eration. We apply our procedure to the PBC data and find no treatment difference,
which is consistent with findings from parametric hazard regression. In an attempt
to compare treatment differences, Fan and Gijbels [11] suggested estimating ψ ′(x)

for the two treatments separately and then integrating the derivative functions to
recover the two risk functions. However, in this way each risk function is only
estimable to within a constant. As a consequence, the treatment difference is not
directly estimable. Fan and Gijbels [11] thus imposed zero risk for both treatments
at the left endpoint of the support of x. Our numerical analysis found that this
assumption is inappropriate.

There are some related studies on nonparametric regression techniques with
censored data. Gentleman and Crowley [14] proposed an iterative algorithm to
estimate ψ(·) with a uniform kernel function. Li and Doss [20]) investigated the
nonparametric estimation of the conditional hazard and distribution functions us-
ing local linear fits. O’Sullivan [22], Hastie and Tibshirani [15] and Kooperberg,
Stone and Truong [17, 18] used spline methods to study the model.

This paper is organized as follows. Section 2 introduces our estimator and the
idea is extended to the case when discrete covariates are also present. A numerical
study is presented in Section 3 where we compare our procedure with that of [12].
We also apply our procedure to the PBC data. Section 4 concludes the paper.

2. Local partial likelihood estimators. Recall that the partial likelihood
function for model (1.1) is

L(ψ) =
N∏

j=1

exp(ψ(X(j)))∑
i∈Rj

exp(ψ(Xi))
(2.1)

for an i.i.d. sample. For notational simplicity, we assume that X is a continuously
distributed random variable. We discuss cases with discrete and multivariate co-
variates later.

Suppose now that the form of ψ(x) is not specified and that the pth-order deriv-
ative exists at x. Then a local model [11] of ψ(X) can be expressed as

ψ(X) ≈ ψ(x) + ψ ′(x)(X − x) + · · · + ψ(p)(x)

p! (X − x)p(2.2)
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by Taylor expansion for X in a neighborhood of x. Namely, ψ(X) ≈ X̃T β for
X close to x, where X̃ = {1,X − x, . . . , (X − x)p} and β = (β0, . . . , βp)T =
{ψ(x),ψ ′(x), . . . ,

ψ(p)(x)
p! }T . Let K be a kernel function that smoothly down-

weighs the contribution of remote data points, let h be the bandwidth parame-
ter that controls the size of the local neighborhood and let X̃i = {1,Xi − x, . . . ,

(Xi −x)p}T for i = 1, . . . , n. Fan, Gijbels and King [12] considered nonparametric
estimation based on a local partial likelihood function

N∑
j=1

Kh

(
X(j) − x

)[
ψ

(
X(j)

) − log

{ ∑
i∈Rj

exp(ψ(Xi))Kh(Xi − x)

}]
.(2.3)

Using the local model (2.2), Fan, Gijbels and King [12] proposed to estimate the
β∗ defined below with the likelihood function

N∑
j=1

Kh

(
X(j) − x

)[
X̃T

(j)β − log

{ ∑
i∈Rj

exp(X̃T
i β)Kh(Xi − x)

}]
(2.4)

=
N∑

j=1

Kh

(
X(j) − x

)[
X̃∗T

(j)β
∗ − log

{ ∑
i∈Rj

exp(X̃∗T
i β∗)Kh(Xi − x)

}]
,

where Kh(t) = K(t/h)/h,

β∗ = (β1, . . . , βp)T and X̃∗
i = {Xi − x, . . . , (Xi − x)p}T .

Note, however, that the function value ψ(x) is not directly estimable, as (2.4) does
not involve the intercept β0 = ψ(x), which has been canceled out. Tibshirani and
Hastie [23] considered a similar approach using a nearest neighborhood method.
Furthermore, if X is a discrete random variable taking on a finite number of values,
a window around a value x only contains that value itself. Therefore, (2.3) reduces
to

N∑
j=1

I
(
X(j) = x

)[
ψ(x) − log

{ ∑
i∈Rj

exp(ψ(x))I (Xi = x)

}]

=
N∑

j=1

I
(
X(j) = x

)[− log

{ ∑
i∈Rj

I (Xi = x)

}]
,

which no longer depends on ψ(·). This approach is thus not applicable to the case
of discrete covariates.

2.1. Estimation of the relative risk function. We consider direct estimation of
ψ(x2) − ψ(x1) for a normalization point x1 and any other point x2 in the domain
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of x. By including observations in the neighborhoods of either x1 or x2, we con-
sider the following local partial likelihood which essentially replaces Kh(Xi − x)

in (2.3) with [Kh(Xi − x1) + Kh(Xi − x2)]:

Ln =
N∑

j=1

[
Kh

(
X(j) − x1

) + Kh

(
X(j) − x2

)]
(2.5)

×
[
ψ

(
X(j)

) − log

{ ∑
i∈Rj

exp(ψ(Xi))[Kh(Xi − x1) + Kh(Xi − x2)]
}]

.

Let α = ψ(x2) − ψ(x1) and, for l = 1,2,

X̃∗
li = {Xi − xl, . . . , (Xi − xl)

p}T for i = 1,2, . . . , n,

βxl
= (βxl,0, βxl,1, . . . , βxl,p)T

=
{
ψ(xl),ψ

′(xl), . . . ,
ψ(p)(xl)

p!
}T

= (βxl,0, β
∗T
xl

)T .

Using the local models in the neighborhoods of x1 and x2, we obtain an approxi-
mation of Ln,

L̃n = L̃n1 + L̃n2,(2.6)

where

L̃n1 =
N∑

j=1

Kh

(
X(j) − x1

)
X̃T

1(j)βx1

−
N∑

j=1

Kh

(
X(j) − x1

)
log

{ ∑
i∈Rj

[exp(X̃T
1iβx1)Kh(Xi − x1)

+ exp(X̃T
2iβx2)Kh(Xi − x2)]

}
(2.7)

=
N∑

j=1

Kh

(
X(j) − x1

)
X̃∗T

1(j)β
∗
x1

−
N∑

j=1

Kh

(
X(j) − x1

)
log

{ ∑
i∈Rj

[exp(X̃∗T
1i β∗

x1
)Kh(Xi − x1)

+ exp(α + X̃∗T
2i β∗

x2
)Kh(Xi − x2)]

}
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and, similarly,

L̃n2 =
N∑

j=1

Kh

(
X(j) − x2

)(
α + X̃∗T

2(j)β
∗
x2

)

−
N∑

j=1

Kh

(
X(j) − x2

)
log

{ ∑
i∈Rj

[exp(X̃∗T
1i β∗

x1
)Kh(Xi − x1)(2.8)

+ exp(α + X̃∗T
2i β∗

x2
)Kh(Xi − x2)]

}
.

Clearly, our formulation of the local partial likelihood will allow direct estimation
of α = ψ(x2) − ψ(x1), in contrast to [12] and [23].

In principle, one can estimate ψ(x2) − ψ(x1) by finding the value that maxi-
mizes (2.6). Intuitively, however, observations in the neighborhood of x1 would
not be informative about the derivatives of ψ(·) at x2, or vice versa. Therefore,
a one-step estimator, which simultaneously estimates (α,β∗

x1
, β∗

x2
) through max-

imization of (2.6), is not particularly appealing. Instead, we adopt the following
two-step strategy. In the first step, we adopt the approach of [12] to obtain the esti-
mates (β̂∗

x1
, β̂∗

x2
) for (β∗

x1
, β∗

x2
). In the second step, we propose to estimate α by α̂,

which maximizes

L̃n(α, β̂∗
x1

, β̂∗
x2

) = L̃n1(α, β̂∗
x1

, β̂∗
x2

) + L̃n2(α, β̂∗
x1

, β̂∗
x2

).(2.9)

It is also worth noting that this approach is computationally more attractive. In ad-
dition, we find from our simulation that the performance of the two-step estimator
is more stable than that of the one-step estimator.

Note that, from the construction of our estimator, only observations in the neigh-
borhoods of either x1 or x2 will affect the estimation of ψ(x2) − ψ(x1). The ap-
proach of [12], on the other hand, is cumulative in nature, in the sense that estimat-
ing ψ(x2) − ψ(x1) requires the estimation of ψ ′(x) for x in the interval between
x1 and x2; consequently, a likely drawback of their approach is that inaccurate esti-
mation of ψ ′(x) for x in a neighborhood belonging to [x1, x2] will adversely affect
the precision in estimating ψ(x2) − ψ(x1), which utilizes the estimates of ψ ′(x)

for all of the x ∈ [x1, x2]. Indeed, this observation is confirmed in our simulation
study presented in Section 3.1.

We now consider the asymptotic property of our estimator. Set

S(v|x) = P(Y ≥ v|x).

We impose the following conditions:

1. the kernel function is a bounded symmetric density function with compact sup-
port;

2. the function ψ(·) has a continuous (p1 + 1)st derivative around x1 and x2;
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3. the density f (·) of X is continuous at x1 and x2;
4. the conditional probability S(v|·) is equicontinuous at x1 and x2;
5. the local bandwidths h and h1 satisfy h/h1 → 0, nh → ∞; nh2p+3 and

nh
2p1+3
1 are both bounded, where p1 ≥ p and h1 are, respectively, the degree

of polynomial and the bandwidth used for estimating the derivatives of [12].

The choice of bandwidths deserves some attention here. It is clear from (A.8)
in the Appendix that when h/h1 is not bounded, the asymptotic normality of α̂

cannot be achieved. When h/h1 is bounded but does not approach 0 as n → ∞,
the asymptotic distribution of the first-step estimator will affect the distribution
of α̂. When h/h1 → 0, which we impose here, the asymptotic distribution of the
first-step estimator will have no impact on the second-step estimator, which makes
the expression of the asymptotic variance much simpler than without the condition.

Our main result is stated in the following theorem.

THEOREM 1. Under conditions 1–5, we have
√

nh
(
α̂ − α − bn(x1, x2)

) D→ N(0, σ 2(x1, x2)),(2.10)

where

bn(x1, x2) = hp+1

(p + 1)!
{
ψ(p+1)(x2) − ψ(p+1)(x1)

}(∫
up+1K(u)du

)
and

σ 2(x1, x2) =
(∫

K2(u) du

)(∫ ∞
0

ax1(v)ax2(v)

ax1(v) + ax2(v)
λ0(v) dv

)−1
,

with ax(v) = eψ(x)f (x)P (v|x).

The only unknown term of the bias, ψ(p+1)(x), can be easily estimated from
our first-step estimator of the derivatives if we choose p1 > p. To estimate σ 2, we
observe that if we know ψ , then

âxl
(v) = n−1

n∑
i=1

Kh(Xi − xl)Yi(v) exp(ψ(Xi))

will have converged to axl
(v) for l = 1,2 and all v. In addition, the baseline hazard

function �0(t) can be estimated by the Breslow estimator [3, 4],

�̂0(t) =
n∑

j=1

δj I (Yj ≤ t)∑
i∈Rj

exp(ψ(Xi))
.

Note that since ψ(·) itself is not estimable, ax(·) or �0(·) is only estimable up to

scale. However, we can express
∫ ∞

0
âx1 (v)âx2 (v)

âx1 (v)+âx2 (v)
d�̂0(v) as

n−1
n∑

j=1

δj

(
∑

i∈Rj
Kh(Xi − x1) exp(Di))(

∑
i∈Rj

Kh(Xi − x2) exp(Di))

(
∑

i∈Rj
exp(Di))(

∑
i∈Rj

(Kh(Xi − x1) + Kh(Xi − x2)) exp(Di))
,
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where Di = ψ(Xi)−ψ(x1) is already estimated with our methodology. Obviously,
we can estimate σ 2(x1, x2) by σ̂ 2(x1, x2), where

σ̂ 2(x1, x2)

=
(∫

K2(u) du

)

×
{
n−1

n∑
j=1

δj

( ∑
i∈Rj

Kh(Xi − x1) exp(D̂i)

)

×
( ∑

i∈Rj

Kh(Xi − x2) exp(D̂i)

)

×
(( ∑

i∈Rj

exp(D̂i)

)

×
( ∑

i∈Rj

(
Kh(Xi − x1) + Kh(Xi − x2)

)
exp(D̂i)

))−1}−1

,

with D̂i an estimate of Di .
The theoretical optimal bandwidth can be obtained by minimizing the asymp-

totic weighted mean integrated squared error∫ ∫
[{bn(x1, x2)}2 + σ 2(x1, x2)]w(x1)w(x2) dx1 dx2,

resulting in

hopt = C0,p(K)

[∫ ∫ (∫ ∞
0

ax1(v)ax2(v)

ax1(v) + ax2(v)
λ0(v) dv

)−1

× w(x1)w(x2) dx1 dx2

×
(∫ ∫ (

ψ(p+1)(x2) − ψ(p+1)(x1)
)2

× w(x1)w(x2) dx1 dx2

)−1]1/(2p+3)

n−1/(2p+3),

where C0,p(K) are constants depending on p and K . The value of C0,p(K) is
tabulated in Table 3.2 of [11]. For a detailed discussion of the issue of model
complexity, see [11].
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REMARK 1. Note that when X is a discrete random variable, our local partial
likelihood (2.5) reduces to

Ln =
N∑

j=1

[
J1(j)ψ(x1) + J2(j)ψ(x2)

− (
J1(j) + J2(j)

)
log

{ ∑
i∈Rj

(
J1i expψ(x1) + J2i exp(ψ(x2))

)}]

=
N∑

j=1

[
J2(j)α − (

J1(j) + J2(j)

)
log

{ ∑
i∈Rj

(
J1i + J2i exp(α)

)}]
,

where Jli = I (Xi = xl), Jl(j) = I (X(j) = xl) for l = 1,2, and α = ψ(x2)−ψ(x1).
This is, in fact, the partial likelihood estimator for a two-sample comparison of
survival time in the form of the proportional hazards model. In other words, our
procedure yields an efficient estimation for the case of discrete covariates since it
is well known that the partial likelihood estimator is efficient ([8] and [2]).

REMARK 2. Similar to the partial likelihood approach ([3] and [6]) and the
local partial likelihood approach of [12] and [23], our version of the local partial
likelihood function can also be viewed as a local profile likelihood. Analogous to
[12], the local likelihood in our setting can be written as

logL =
n∑

i=1

[δi{logλ0(Zi) + ψ(Xi)} − �0(Zi) exp(ψ(Xi))]
(2.11)

× (
Kh(Xi − x1) + Kh(Xi − x2)

)
.

Consider nonparametric modeling for �0(·), which has a jump of λj at tj ,
�0(t, λ) = ∑N

j=1 λj I {tj ≤ t}. Then

�0(Zi, λ) =
N∑

j=1

λj I {i ∈ Rj }.

Substituting these two expressions into the local likelihood expression (2.11), we
obtain

logL =
N∑

j=1

(
Kh(Xi − x1) + Kh(Xi − x2)

)[
logλj + ψ

(
X(j)

)]
(2.12)

−
n∑

i=1

N∑
j=1

(
Kh(Xi − x1) + Kh(Xi − x2)

)
λj I {i ∈ Rj } exp(ψ(Xi)).
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Then, by maximizing logL with respect to λj (j = 1, . . . ,N), we have

λ̂j = Kh(Xi − x1) + Kh(Xi − x2)∑
i∈Rj

(Kh(Xi − x1) + Kh(Xi − x2)) exp(ψ(Xi))
.

Substituting λ̂j into (2.12) yields

max
λ0

logL

=
N∑

j=1

(
Kh(Xi − x1) + Kh(Xi − x2)

)

×
{
ψ

(
X(j)

) − log
∑
i∈Rj

(
Kh(Xi − x1) + Kh(Xi − x2)

)
exp(ψ(Xi))

}
(2.13)

+
N∑

j=1

(
Kh(Xi − x1) + Kh(Xi − x2)

)
× {log[Kh(Xi − x1) + Kh(Xi − x2)] − 1}.

Clearly, maximizing (2.13) is equivalent to maximizing (2.5).

REMARK 3. One referee pointed out that when estimating ψ(x2) − ψ(x1),
an alternative approach would be to estimate ψ(x2) − ψ(x3) and ψ(x3) − ψ(x1)

separately and then to combine them for any point x3 between x1 and x2. In gen-
eral, these two approaches will lead to different estimates. Theoretical justification
could be based on two separate asymptotic linear representations, as in (A.8). In
our simulation experiment (not reported here), these two approaches seem to be
comparable.

REMARK 4. One of the main advantages of the proportional hazards model is
that it can easily accommodate time-varying covariates. The time-varying covari-
ates can be incorporated into our approach in a straightforward way by expressing
the local partial likelihood through the counting process representation. As our pa-
per is largely based on its comparison with [12], we chose to use notation similar
to that used in [12], in order to facilitate comparison.

2.2. Estimating the differences between groups. Our approach can be easily
modified to accommodate more realistic situations in which estimating the dif-
ferences between groups is necessary. Let the risk function be ψ(x, z), where
x is continuous and z is discrete, taking two values. We focus on estimating
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ψ(x, z2) − ψ(x, z1). Similar to (2.5), we include observations in the neighbor-
hoods of (x, z1) and (x, z2). Our local version of the log-likelihood becomes

Ln =
N∑

j=1

Kh

(
X(j) − x

)(
I
(
Z(j) = z1

) + I
(
Z(j) = z2

))

×
[
ψ

(
X(j),Z(j)

) − log

{ ∑
i∈Rj

exp(ψ(Xi,Zi))Kh(Xi − x)

× (
I (Zi = z1) + I (Zi = z2)

)}]
.

Using polynomial approximation in the neighborhood of x, we obtain the follow-
ing approximation to Ln:

L̃n(ρ,β∗
1 , β∗

2 )

=
N∑

j=1

Kh

(
X(j) − x

)[
I1(j)

(
ψ1(x) + X̃∗T

(j)β
∗
1
) + I2(j)

(
ψ2(x) + X̃∗T

(j)β
∗
2
)]

−
N∑

j=1

Kh

(
X(j) − x

)(
I1(j) + I2(j)

)

× log

{ ∑
i∈Rj

Kh(Xi − x)
[
I1i exp

(
ψ1(x) + X̃∗T

i β∗
1
)

(2.14)

+ I2i exp
(
ψ2(x) + X̃∗T

i β∗
2
)]}

=
N∑

j=1

Kh

(
X(j) − x

)[
I1(j)X̃

∗T
(j)β

∗
1 + I2(j)

(
ρ + X̃∗T

(j)β
∗
2
)]

−
N∑

j=1

Kh

(
X(j) − x

)(
I1(j) + I2(j)

)

× log

{ ∑
i∈Rj

Kh(Xi − x)[I1i exp(X̃∗T
i β∗

1 ) + I2i exp(ρ + X̃∗T
i β∗

2 )]
}
,

where ρ = ψ2(x) − ψ1(x), Iki = I (Zi = zk) for k = 1,2, i = 1,2, . . . , n and

ψk(x) = ψ(x, zk), β∗
k = (

ψ ′
k(x),ψ ′′

k (x)/2, . . . ,ψ
(p)
k (x)/p

)
for k = 1,2,

X̃∗
i = (

(Xi − x), (Xi − x)2, . . . , (Xi − x)p
)

for i = 1,2, . . . , n.
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By following an argument similar to the one in the previous section, we also adopt
a two-step strategy here. In the first step, we apply the procedure of [12] to esti-
mate β∗

1 and β∗
2 using observations in the neighborhoods of x for the two groups

separately. In the second step, we estimate ρ by maximizing L̃n(ρ, β̂∗
1 , β̂∗

2 ). We
now present the following theorem.

THEOREM 2. Let ρ̂ be the maximizer of L̃n(ρ, β̂∗
1 , β̂∗

2 ). Under conditions 1–5
of Section 2.1, with conditions 2–4 modified slightly so that they hold at point x,
we have √

nh
(
ρ̂ − ρ − b1n(x)

) D→ N(0, σ̃ 2(x)),(2.15)

where

b1n(x) = hp+1

(p + 1)!
(
ψ

(p+1)
2 (x) − ψ

(p+1)
1 (x)

)(∫
up+1K(u)du

)
,

σ̃ 2(x) = (
∫

K2(u) du)

f (x)

(
σ 2

1 (x)

p1x

+ σ 2
2 (x)

p2x

)
,

with pkx = P(Z = zk|X = x) and, for k = 1,2,

σ 2
k =

[
exp(ψk(x))

∫
P(Y ≥ v|X = x,Z = zk)λ0(v) dv

]−1

= [E{δ|X = x,Z = zk}]−1.

Similar to the estimation of the bias term for Theorem 1, the only unknown
terms ψ

(p+1)
k (x) for k = 1,2 are already obtained during the first step when we

estimate the derivatives using [12] if we choose p1 > p. To estimate the vari-
ance term, we note that n−1 ∑n

i=1 IkiδiKh(Xi − x) is an unbiased estimator of
pkxf (x)/σ 2

k (x) for k = 1,2. Natural candidates for the estimation of bias and
variance are, respectively,

b̂1n(x) = hp+1

(p + 1)!
(
ψ̂

(p+1)
2 (x) − ψ̂

(p+1)
1 (x)

)(∫
up+1K(u)du

)
,

σ̂ 2(x) =
(∫

K2(u) du

){
1

n−1 ∑n
i=1 I1iδiKh(Xi − x)

(2.16)

+ 1

n−1 ∑n
i=1 I2iδiKh(Xi − x)

}
.

As a consequence of (2.15), the theoretical optimal bandwidth minimizes the as-
ymptotic weighted mean integrated squared error,∫ [{

hp+1

(p + 1)!
(
ψ

(p+1)
2 (x) − ψ

(p+1)
1 (x)

)(∫
up+1K(u)du

)}2

+ (
∫

K2(u) du)

nhf (x)

(
σ 2

1 (x)

p1x

+ σ 2
2 (x)

p2x

)]
w(x)dx,
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with some weight function w ≥ 0. We find that the asymptotically optimal constant
bandwidth is given by

hopt = C0,p(K)

×
[∫

(1/f (x))(σ 2
1 (x)/p1x + σ 2

2 (x)/p2x)w(x) dx∫
(ψ

(p+1)
2 (x) − ψ

(p+1)
1 (x))2w(x)dx

]1/(2p+3)

n−1/(2p+3),

with C0,p(K) being the same as in Section 2.1.

REMARK 5. Although the risk functions for each group can only be estimated
up to a constant, the difference between two groups can be identified. Based on this
observation, if we are interested in estimating risk functions for k groups, we need
to impose only one condition, such as ψ1(0) = 0, for identifiability. On the other
hand, Fan, Gijbels and King [12] needed to estimate the risk functions for each
group separately. Therefore, k conditions, ψl(0) = 0 for l = 1,2, . . . , k, should be
imposed for identification. Sometimes, this can be inappropriate, as in the case of
analyzing PBC data, to be discussed in the next section.

3. Numerical studies. Extensive numerical studies were conducted to eval-
uate the new procedures and we found that the finite sample performance of our
procedure is either comparable or better than that of [12]. The Epanechnikov ker-
nel is employed in all of the simulation studies, as well as for the analysis of the
real data set.

3.1. Simulation studies on estimating relative risk. We compare the two pro-
cedures for the following three designs with different risk functions or distributions
of the covariate variable X:

• Design 1: X ∼ Uniform(−1,1), ψ(x) = x3.
• Design 2: X ∼ Uniform(−1,1), ψ(x) = x3 + exp(−150(x + 0.3)2) +

exp(−150(x − 0.3)2).
• Design 3: ψ(x) = x3. Half of the X are from N(−0.6,0.32) truncated at −1

and 0, the other half from N(0.6,0.32) truncated at 0 and 1. Note the sparsity
of data in the neighborhood of 0.

The survival time is set to be exp(−ψ(X) + ε), where ε is from the stan-
dard extreme-value distribution. This is justified by the well-known result on the
equivalence of the proportional hazards model (1.1) to the transformation model:
log�0(T ) = −ψ(X) + ε, where ε is a standard extreme-value random variable.
In addition, the censoring variable is assumed to be uniform on (0, c), where c is
chosen for a prespecified censoring proportion (viz., 0% and 30%). For each set of
c and ψ , we simulate 500 realizations of {(Xi, Yi, δi), i = 1,2, . . . ,300}. Let h0

1,
h0

2 and h0
3 denote the bandwidths used for [12] for designs 1, 2 and 3, respectively;
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TABLE 1
Mean integrated squared errors

Design 1 Design 2 Design 3

h0
1 censoring [12] new [12] new [12] new

0.15 0% 0.181 0.143 0.324 0.195 0.262 0.153
30% 0.271 0.212 0.384 0.259 0.353 0.205

0.25 0% 0.091 0.084 0.165 0.140 0.141 0.088
30% 0.129 0.119 0.213 0.176 0.197 0.118

0.35 0% 0.062 0.062 0.152 0.148 0.104 0.068
30% 0.084 0.085 0.182 0.171 0.155 0.093

we tried three different values for h0
1, namely, 0.15,0.25 and 0.35, for which their

approach yields reasonable estimates. Some adjustments were made in choosing
h0

2 and h0
3, due to some unique features involving ψ(·) or the distribution of X.

We set h0
2 = h0

1 when |x| > 0.5 and h0
2 = 0.8h0

1 when |x| ≤ 0.5. The reason for a
smaller bandwidth for |x| ≤ 0.5 is similar to the idea of variable bandwidth [10].
For design 3, we set h0

3 = h0
1 when |x| > 0.2 and h0

3 = 2h0
1 when |x| ≤ 0.2. The

doubling of the bandwidth in the neighborhood of zero ensures enough data in that
neighborhood. The bandwidths for our procedure are always set to be h = 0.8h0

for h0 = h0
1, h0

2 and h0
3 for the three designs. The mean integrated squared error

(MISE) of the function estimations of ψ(·) − ψ(0) for designs 1 and 2 and of
ψ(·) − ψ(−0.6) for design 3 are reported in Table 1. From the table, we find that
our procedure is slightly better than [12] for design 1 and has better performance
for designs 2 and 3.

We consider now the biases of the estimates. The function estimates are shown
in Figures 1–3 (FGK are function estimates by Fan, Gijbels and King [12]) for the
case of h0

1 = 0.25 and 30% censoring; similar results are observed for h0
1 = 0.15

FIG. 1. Design 1.
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FIG. 2. Design 2.

and 0.35 and are thus omitted here for brevity. Figures 1 and 2 and other unre-
ported results suggest that the biases of the two procedures for designs 1 and 2 are
comparable. For design 2, both procedures have some biases in the neighborhoods
of ±0.3 due to the peaks of ψ(·) at these two points. Figure 3 suggests obvious
bias in [12] when x > −0.2 and also some bias in our procedure in the neighbor-
hood of 0. Note that for design 3, poor performance in the neighborhood of 0 is to
be expected, due to the sparsity of data.

The mean squared errors at various points for 30% censoring are reported in
Table 2 to facilitate a more detailed comparison between the two approaches. We
now take a close look at Table 2 to understand better the advantages of our proce-
dure for designs 2 and 3. We find that the two procedures are largely comparable
in terms of mean squared errors at all the points selected for design 1. For de-
sign 2, we observe a similar pattern for |x| ≤ 0.4. For |x| > 0.4, our procedure
performs better than [12]. For design 3, the performance of the two procedures is
comparable for x ≤ 0.2, and our procedure outperforms [12] when x > 0.2.

FIG. 3. Design 3.
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TABLE 2
Mean squared errors with 30% censoring

x −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Design 1
h0

1 = 0.15 [12] 0.745 0.410 0.363 0.350 0.338 0.000 0.341 0.349 0.370 0.359 0.602
new 0.652 0.363 0.327 0.338 0.292 0.000 0.338 0.334 0.348 0.328 0.473

h0
1 = 0.25 [12] 0.489 0.272 0.255 0.252 0.198 0.000 0.207 0.264 0.253 0.255 0.425

new 0.471 0.262 0.251 0.255 0.197 0.000 0.215 0.261 0.248 0.245 0.380
h0

1 = 0.35 [12] 0.406 0.241 0.210 0.186 0.121 0.000 0.125 0.192 0.200 0.216 0.356
new 0.424 0.244 0.211 0.192 0.106 0.000 0.132 0.196 0.201 0.214 0.348

Design 2
h0

1 = 0.15 [12] 0.837 0.484 0.448 0.451 0.418 0.000 0.403 0.429 0.430 0.421 0.650
new 0.681 0.366 0.328 0.382 0.421 0.000 0.386 0.379 0.333 0.312 0.487

h0
1 = 0.25 [12] 0.529 0.332 0.321 0.305 0.279 0.000 0.277 0.311 0.307 0.312 0.438

new 0.496 0.269 0.263 0.288 0.284 0.000 0.271 0.302 0.257 0.265 0.388
h0

1 = 0.35 [12] 0.424 0.273 0.243 0.232 0.176 0.000 0.188 0.249 0.242 0.243 0.387
new 0.401 0.258 0.224 0.237 0.181 0.000 0.192 0.257 0.216 0.222 0.365

Design 3
h0

1 = 0.15 [12] 0.758 0.302 0.000 0.298 0.388 0.401 0.366 0.502 0.467 0.488 0.707
new 0.620 0.308 0.000 0.296 0.267 0.300 0.390 0.292 0.265 0.300 0.511

h0
1 = 0.25 [12] 0.490 0.194 0.000 0.178 0.295 0.311 0.288 0.383 0.381 0.372 0.527

new 0.489 0.198 0.000 0.180 0.170 0.201 0.295 0.232 0.209 0.218 0.371
h0

1 = 0.35 [12] 0.424 0.149 0.000 0.137 0.249 0.268 0.270 0.330 0.371 0.382 0.461
new 0.444 0.159 0.000 0.140 0.117 0.144 0.242 0.206 0.189 0.206 0.314

The better performance of our procedure for designs 2 and 3 in certain regions
is largely due to the way the two estimators are constructed. In the case of design 2,
due to the difficulty in estimating ψ ′(·) in the neighborhoods of the two peaks at
x = ±0.3, both procedures are not expected to estimate the function well in the
neighborhoods of these two points. But, for [12], the estimates of ψ(x) − ψ(0)

based on
∫ x

0 ψ ′(u) du will be adversely affected if 0.3 or −0.3 lies between 0 and
x. On the other hand, our procedure performs well, provided ψ ′(·) can be estimated
well in the neighborhoods of 0 and x. Similar arguments also apply to design 3, for
which ψ ′(·) is not expected to be estimated well in the neighborhoods of 0 due to
the sparsity of data, whereas ψ ′(x) can be better estimated when x is close to 0.6
or −0.6. This explains the obvious advantage of our procedure in the estimation of
ψ(x)−ψ(−0.6) in the neighborhood of x = 0.6 and a relatively poor performance
of [12] for all x > 0.

3.2. Application of estimation of the treatment effect. We apply our procedure
to the estimation of the treatment effect in an analysis of the Primary Biliary Cir-
rhosis (PBC) data set. Our procedure offers a natural approach to this particular
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FIG. 4. Estimates by Fan, Farmen and Gijbels.

problem. Basically, we estimate the treatment effect using data with bilirubin val-
ues in a neighborhood of each point of estimation. A detailed description of the
PBC data can be found in Chapter 4 of [13]. A total of 312 patients participated in
the randomized trial. Of the randomized patients, 187 cases (60%) were censored.

Fan and Gijbels [11] investigated the effect of treatment differences by dividing
the data into two groups according to the treatment code. For each treatment group,
model (2.4) was fitted using log(Bilirubin) as a covariate. The resulting curves are
reproduced in Figure 4 for the sake of comparison. It is worth pointing out that,
with [12], treatment differences can be estimated only up to a constant. Figure 4
implicitly assumes that the risk functions of the two treatment groups are equal
at the left endpoint of the support of the covariate. There is no justification for
this assumption since, while the risk functions themselves are not identifiable, the
difference can be estimated following our approach. Based on Figure 4, Fan and
Gijbels [11] suggested that the treatment effect is present.

Following [11], we take the time (in days) between registration and death, or
the time to being censored (liver transplantation or alive at study analysis) as the
response and the natural logarithm of Serum Bilirubin (in mg/dl) as the continuous
covariate. We use the local partial likelihood method (2.14) with p = 1. The deriv-
atives β∗

1 and β∗
2 are estimated separately using the approach of [12] with p1 = 2

and the bandwidth h1 = 1.2, which is the same as the bandwidth used to produce
Figure 5.9 of [11]. For our second-step estimator, the bandwidth is chosen to be
h = 0.8h1. Our 95% confidence interval for ρ is constructed as

ρ̂ − b̂A
1n(x) ± 
−1(1 − α/2)σ̂ (x),

where b̂1n(y) and σ̂ (x) are defined in (2.16) and

b̂A
1n(x) =

∫
b̂1n(y)Kh(y − x)dx
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FIG. 5. Estimates and 95% C.l.s.

is a local weighted average of estimated bias. The main reason for the average
is to stabilize the bias function, which involves an estimation of a higher-order
derivative curve, from abrupt change. The idea of smoothing was also adopted by
Fan, Farmen and Gijbels [9]. The results are shown in Figure 5.

Figure 5 shows that, contrary to the findings of [11], the treatment effect is not
present. The only sign of a treatment effect is in the range of negative covariate
values. However, a close inspection of the data set reveals that the estimation for
negative covariates is very unreliable since the censoring percentage is very high,
at 84%, while the censoring percentage for positive covariates is 48%.

4. Conclusion. In this paper, we have considered direct estimation of the rel-
ative risk function in the proportional hazards model through a new version of the
local partial likelihood. Our procedure was extended to the case where discrete
covariates such as treatment group indicators are also present. We found that, in
estimating the relative risk function, our procedure is either comparable to or out-
performs the estimator proposed by Fan, Gijbels and King [12]. We applied our
procedure to estimating the treatment effect in the PBC data and found that, con-
sistent with findings from parametric analysis, a treatment effect is not present,
contrary to the findings by Fan and Gijbels [11].

APPENDIX: PROOFS

PROOF OF THEOREM 1. Set

u∗ = {u,u2, . . . , up}T , ν1 =
∫

u∗K(u)du,

H ∗
1 = diag(h1, h

2
1, . . . , h

p
1 ),(A.0)
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ax(v) = eψ(x)f (x)S(v|x), γ (v) = ax2(v)

ax1(v) + ax2(v)
,

ωx(t) =
∫ t

0
ax(v)λ0(v) dv, κ(t) =

∫ t

0

ax1(v)ax2(v)

ax1(v) + ax2(v)
λ0(v) dv.

We first prove consistency. Define

Ni(t) = I {Yi ≤ t, δi = 1} and Yi(t) = I {Yi ≥ t}.(A.1)

Let the filtration Fnt be the statistical information accruing during the time [0, t],
namely

Fnt = σ {Xi,Ni(v), Yi(v+), i = 1, . . . , n,0 ≤ v ≤ t}.
Then, under the independent censoring scheme,

Mi(t) = Ni(t) −
∫ t

0
Yi(v) exp(ψ(Xi))λ0(v) dv(A.2)

is an Fnt -martingale.
By (2.6)–(2.8), θ̂0 = (α̂ − α) maximizes ln(θ0, θ̂1, θ̂2), where

θ̂1 = H ∗
1 (β̂∗

x1
− β∗

x1
), θ̂2 = H ∗

1 (β̂∗
x2

− β∗
x2

)

and

ln(θ0, θ1, θ2) =
∫ ∞

0
n−1

n∑
i=1

{Kh(Xi − x1)(X̃
∗T
1i β∗

x1
+ U∗T

1i θ1)

+ Kh(Xi − x2)(X̃
∗T
2i β∗

x2
+ U∗T

2i θ2 + θ0)}dNi(v)

−
∫ ∞

0
log{nSn,0(θ0, θ1, θ2, v)}n−1

×
n∑

i=1

{Kh(Xi − x1) + Kh(Xi − x2)}dNi(v).

Here,

U∗
1i = H ∗−1

1 X̃∗
1i , U∗

2i = H ∗−1
1 X̃∗

2i ,

Sn,0(θ0, θ1, θ2, v) = n−1
n∑

i=1

Yi(v)[exp(X̃∗T
1i β∗

x1
+ U∗T

1i θ1)Kh(Xi − x1)

+ exp(α + θ0)

× exp(X̃∗T
2i β∗

x2
+ U∗T

2i θ2)Kh(Xi − x2)].
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With a slight abuse of notation, let θ̂0 maximize ln(θ0, θ̂1, θ̂2, τ ), where

ln(θ0, θ1, θ2, τ ) =
∫ τ

0
n−1

n∑
i=1

{Kh(Xi − x1)(X̃
∗T
1i β∗

x1
+ U∗T

1i θ1)

+ Kh(Xi − x2)(X̃
∗T
2i β∗

x2
+ U∗T

2i θ2 + θ0)}dNi(v)
(A.3)

−
∫ τ

0
log{nSn,0(θ0, θ1, θ2, v)}n−1

×
n∑

i=1

{Kh(Xi − x1) + Kh(Xi − x2)}dNi(v).

Our case corresponds to that of τ = ∞.

Since θ̂1
p→ 0, θ̂2

p→ 0, similar to (6.26) in [12], we can show that, for any θ0,

ln(θ0, θ̂1, θ̂2, τ ) = ln(θ0,0,0, τ ) + op(1).

Let

Skn(v) = n−1
n∑

j=1

Yi(v) exp(ψ(Xi))Kh(Xi − xk) for k = 1,2.

Then

ln(θ0,0,0, τ ) − ln(0,0,0, τ ) = An(θ0,0,0, τ ) + Xn(θ0,0,0, τ ),

where

An(θ0,0,0, τ ) =
∫ τ

0
S2n(v)θ0λ0(u) du

−
∫ τ

0
log

{
Sn,0(θ0,0,0, v)

Sn,0(0,0,0, v)

}(
S1n(v) + S2n(v)

)
λ0(v) dv,

Xn(θ0,0,0, τ ) =
∫ τ

0
n−1

n∑
i=1

Kh(Xi − x2)θ0 dMi(v)

−
∫ τ

0
log

{
Sn,0(θ0,0,0, v)

Sn,0(0,0,0, v)

}
n−1

×
n∑

i=1

{Kh(Xi − x1) + Kh(Xi − x2)}dMi(v).

The process Xn(θ0,0,0, ·) is a locally integrable martingale with a predictable
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variation process

Bn(t) = 〈Xn(θ0,0,0, t),Xn(θ0,0,0, t)〉

=
n∑

i=1

∫ t

0
n−2

[(
Kh(Xi − x2)θ0

− (
Kh(Xi − x1) + Kh(Xi − x2)

)
log

Sn,1(θ0,0,0, v)

Sn,0(0,0,0, v)

)]2

× Yi(v) exp(ψ(Xi))λ0(v) dv.

By Lemma 1 of [12], it can be shown that

EX2
n(θ0,0,0, t) = EBn(t) = O(n−1h−1) for 0 ≤ t ≤ τ,

and

Sn,0(θ0,0,0, v) = S(v|x1)f (x1) + exp(α + θ0)S(v|x2)f (x2) + op(1)

= exp(−ψ(x1))[ax1(v) + exp(θ0)ax2(v)] + op(1),

S1n(v) = ax1(v) + op(1), S2n(v) = ax2(v) + op(1).

Therefore,

An(θ0,0,0, τ ) = A(θ0,0,0, τ ) + op(1),

where

A(θ0,0,0, τ ) =
(∫ τ

0
ax2(v)λ0(v) dv

)
θ0

−
∫ τ

0
log

{
ax1(v) + exp(θ0)ax2(v)

ax1(v) + ax2(v)

}(
ax1(v) + ax2(v)

)
λ0(v) dv.

Consequently,

ln(θ0, θ̂1, θ̂2, τ ) = A(θ0,0,0, τ ) + op(1).

It can be easily shown that A(θ0,0,0, τ ) is a strictly concave function with a
unique maximum at θ0 = 0. As ln(θ0, θ̂1, θ̂2, τ ) is a concave function of θ0, by

the convexity lemma [1], θ̂0
p−→ 0.

We now consider asymptotic normality. Note that

0 = ∂ln(θ̂0, θ̂1, θ̂2, τ )

∂θ0

= ∂ln(0,0,0, τ )

∂θ0
+ ∂2ln(θ̄0, θ̄1, θ̄2, τ )

∂θ2
0

θ̂0(A.4)

+ ∂2ln(θ̄0, θ̄1, θ̄2, τ )

∂θ0 ∂θ1
θ̂1 + ∂2ln(θ̄0, θ̄1, θ̄2, τ )

∂θ0 ∂θ2
θ̂2,
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where θ̄k lies on the line segment from 0 to θ̂k for k = 0,1,2. By making use of
Lemma 1 from [12], it is straightforward (although tedious) to show that

∂2ln(θ̄0, θ̄1, θ̄2, τ )

∂θ2
0

= −κ(τ) + op(1),

∂2ln(θ̄0, θ̄1, θ̄2, τ )

∂θ0 ∂θT
1

= κ(τ)νT
1 + op(1),(A.5)

∂2ln(θ̄0, θ̄1, θ̄2, τ )

∂θ0 ∂θT
2

= −κ(τ)νT
1 + op(1),

where κ(τ) and ν1 are defined in (A.0). Furthermore, we prove at the end of the
Appendix that

∂ln(0,0,0, τ )

∂θ0
= U0n(τ ) + b0n(τ ) + op(hp+1),(A.6)

where

U0n(τ ) = n−1
n∑

i=1

∫ τ

0

{
Kh(Xi − x2)

− Sn,1(0,0,0, v)

Sn,0(0,0,0, v)
[Kh(Xi − x1) + Kh(Xi − x2)]

}
dMi(v),(A.7)

b0n(τ ) = hp+1κ(τ)

(p + 1)!
{
ψ(p+1)(x2) − ψ(p+1)(x1)

}(∫
up+1K(u)du

)
.

Here,

Sn,1(θ0, θ1, θ2, v)

= ∂Sn,0(θ0, θ1, θ2, v)

∂θ0

= n−1
n∑

j=1

Yi(v) exp(α0 + θ0) exp(X̃∗T
2i β∗0

x2
+ U∗T

2i θ2)Kh(Xi − x2).

It follows from (A.4)–(A.6) that

θ̂0 = (
1 + op(1)

)[U0n(τ )

κ(τ )
+ b0n(τ )

κ(τ )
(A.8)

+ (
ν1 + op(1)

)T
(θ̂1 − θ̂2) + op(hp+1)

]
.

By applying the martingale property [13], we can easily prove that
√

nhU0n(τ )
d→ N

(
0, κ(τ )

∫
K2(u) du

)
.(A.9)
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In addition, it follows from Theorem 4 of [12] that
√

nh1θ̂l = Op(1) for l = 1,2.
We conclude that

√
nhθ̂l =

√
h

h1

√
nh1θ̂l = op(1), for l = 1,2,(A.10)

since h/h1 → 0 by Condition 5 of Theorem 1. Finally, from (A.7)–(A.10), we
have

√
nh

(
θ̂0 − bn(τ )

) d→ N

(
0,

(
∫

K2(u) du)

κ(τ )

)
,

where

bn(τ ) = b0n(τ )

κ(τ )
= hp+1

(p + 1)!
{
ψ(p+1)(x2) − ψ(p+1)(x1)

}(∫
up+1K(u)du

)
.

To finish the proof of Theorem 1, it suffices to prove (A.6). �

PROOF OF (A.6). By taking the derivative with respect to θ0 in (A.1), we
obtain

∂ln(0,0,0, τ )

∂θ0
= U0n(τ ) + B0n(τ ),

where

U0n(τ ) = n−1
n∑

i=1

∫ τ

0

{
Kh(Xi − x2)

− Sn,1(0,0,0, v)

Sn,0(0,0,0, v)
[Kh(Xi − x1) + Kh(Xi − x2)]

}
dMi(v)

and

B0n(τ ) = n−1
n∑

i=1

∫ τ

0

{
Kh(Xi − x2)

− Sn,1(0,0,0, u)

Sn,0(0,0,0, u)
[Kh(Xi − x1) + Kh(Xi − x2)]

}
× Yi(u) exp(ψ(Xi))λ0(u) du

= B01n(τ ) + B02n(τ ).

Here

B01n(τ ) = −n−1
n∑

i=1

∫ τ

0
Kh(Xi − x1)

Sn,1(0,0,0, v)

Sn,0(0,0,0, v)
Yi(v) exp(ψ(Xi))λ0(v) dv
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and

B02n(τ ) = n−1
n∑

i=1

∫ τ

0
Kh(Xi − x2)

×
{

1 − Sn,1(0,0,0, v)

Sn,0(0,0,0, v)

}
Yi(v) exp(ψ(Xi))λ0(u) dv.

Define

Be
01n(τ ) = −n−1

n∑
i=1

∫ τ

0
Kh(Xi − x1)

Sn,1(0,0,0, v)

Sn,0(0,0,0, v)

× Yi(v) exp
(
ψ(x1) + X̃∗T

1i β∗0
x1

)
λ0(v) dv,

Be
02n(τ ) = n−1

n∑
i=1

∫ τ

0
Kh(Xi − x2)

{
1 − Sn,1(0,0,0, v)

Sn,0(0,0,0, v)

}
× Yi(v) exp

(
ψ(x2) + X̃∗T

2i β∗0
x2

)
λ0(v) dv.

Similar to the proof of (6.24) in [12], and by the fact that

Sn,1(0,0,0, u)

Sn,0(0,0,0, u)
→ exp(α0)f (x2)P (v|x2)

f (x1)P (u|x1) + exp(α0)f (x2)P (v|x2)

= ax2(v)

ax1(v) + ax2(v)
= γ (v),

we have

B01n(τ ) − Be
01n(τ ) = −ψ(p+1)(x1)h

p+1

(p + 1)! κ(τ )

∫
up+1K(u)du + op(hp+1),

B02n(τ ) − Be
02n(τ ) = ψ(p+1)(x2)h

p+1

(p + 1)! κ(τ )

∫
up+1K(u)du + op(hp+1).

Furthermore,

Be
02n(τ ) + Be

01n(τ )

= n−1
n∑

i=1

∫ τ

0
Yi(v)Kh(Xi − x2) exp

(
ψ(x2) + X̃∗T

2i β∗0
x2

)
λ0(v) dv

−
∫ τ

0

Sn,1(0,0,0, v)

Sn,0(0,0,0, v)
n−1

×
n∑

i=1

Yi(v)
{
Kh(Xi − x1) exp

(
ψ(x1) + X∗

1iβ
∗0
x1

)
+ Kh(Xi − x2) exp

(
ψ(x2) + X̃∗T

2i β∗0
x2

)}
λ0(v) dv



912 S. CHEN AND L. ZHOU

= exp(ψ(x1))

{∫ τ

0
Sn,1(0,0,0, u)λ0(u) du

−
∫ τ

0

Sn,1(0,0,0, u)

Sn,0(0,0,0, u)
Sn,0(0,0,0, u)λ0(u) du

}
= 0.

We conclude that

B0n(τ ) = (
B01n(τ ) − Be

01n(τ )
) + (

B02n(τ ) − Be
02n(τ )

) = b0n(τ ) + op(hp+1),

where b0n(τ ) is defined in (A.7). �

PROOF OF THEOREM 2. Define

�(τ, x) =
∫ τ

0
S(v|x)λ0(v) dv,

ι(x) = p2x exp(ψ2(x))

p1x exp(ψ1(x)) + p2x exp(ψ2(x))
,(A.11)

κ̃(x) = p1x exp(ψ1(x))p2x exp(ψ2(x))

p1x exp(ψ1(x)) + p2x exp(ψ2(x))
.

The proof of Theorem 2 is similar to that of Theorem 1. Therefore, we will only
provide the main steps that differ from those in the proof of Theorem 1. Denote η̂ =
(η̂0, η̂1, η̂2) with η̂0 = ρ̂ − ρ0, η̂k = H ∗

1 (β̂∗
k − β∗0

k ) for k = 1,2. Then, maximizing
L̃n of Section 2.2 is equivalent to maximizing ln(η,∞), where

ln(η, τ ) =
∫ τ

0
n−1

n∑
i=1

Kh(Xi − x)

× [I1i (X̃
∗T
i β∗

1 + Ũ∗T
i η1)

(A.12)
+ I2i (ρ + η0 + X̃∗T

i β∗
2 + U∗T

i η2)]dNi(v)

−
∫ τ

0
n−1

n∑
i=1

Kh(Xi − x)(I1i + I2i ) log{nSn(η, v)}dNi(v).

Here, Ni(t) [and later Mi(t)] are defined in (A.1) and (A.2) in the proof of Theo-
rem 1,

U∗
i = (H ∗

1 )−1X̃∗
i , with H ∗

1 defined in (A.0), and

Sn(η, v) = n−1
n∑

i=1

Yi(v)Kh(Xi − x)[I1i exp(X̃∗T
i β∗

1 + Ũ∗T
i η1)

+ I2i exp(ρ + η0 + X̃∗T
i β∗

2 + U∗T
i η2)].
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By an argument similar to that in the proof of Theorem 1, and by noting that

Sn(η0,0,0, v)

→ p1x exp(ψ1(x)) + p2x exp
(
ψ2(x) + η0

)
exp(−ψ1(x))f (x)S(v|x),

we can prove that

ln(η0, η̂1, η̂2, τ ) − ln(0,0,0, τ )

= (
p1x exp(ψ1(x)) + p2x exp(ψ2(x))f (x)�(τ, x)

)
×

[
η0 − log

{
p1x exp(ψ1(x)) + p2x exp(ψ2(x) + η0)

p1x exp(ψ1(x)) + p2x exp(ψ2(x))

}]
+ op(1).

Obviously, the right-hand side of the above equation is a strictly concave function
of η0. Since ln(η0, η̂1, η̂2, τ ) is a concave function of η0, by the convexity lemma,

η̂
p→ 0.
Next, we prove asymptotic normality. Note that

0 = ∂ln(η, τ )

∂η0

∣∣∣∣
η=η̂

(A.13)

= ∂ln(0, τ )

∂η0
+ ∂2ln(η̄, τ )

∂η2
0

η̂0 + ∂2ln(η̄, τ )

∂η0 ∂ηT
1

η̂1 + ∂2ln(η̄, τ )

∂η0 ∂ηT
2

η̂2,

where η̄ lies on the line segment between 0 and η̂. Using arguments similar to

those in the proof of Theorem 1, we can show that for any η̄
p→ 0,

∂2ln(η, τ )

∂η2
0

∣∣∣∣
η=η̄

= −κ̃(x)f (x)�(τ, x) + op(1),

∂2ln(η, τ )

∂η0 ∂ηT
1

∣∣∣∣
η=η̄

= κ̃(x)f (x)�(τ, x)νT
1 + op(1),(A.14)

∂2ln(η, τ )

∂η0 ∂ηT
2

∣∣∣∣
η=η̄

= −κ̃(x)f (x)�(τ, x)νT
1 + op(1),

with κ̃(x) and �(τ, x) defined in (A.11). ∂ln(0,τ )
∂η0

can be expressed as

∂ln(0, τ )

∂η0
= D̃(τ ) + b̃1n(τ ),(A.15)

where

D̃n(τ ) =
∫ τ

0
n−1

n∑
i=1

Kh(Xi − x){I2i − (I1i + I2i )qn(v)}dMi(v),

b̃1n(τ ) =
∫ τ

0
n−1

n∑
i=1

Kh(Xi − x){I2i − (I1i + I2i )qn(v)}

× Yi(v) exp(ψ(Xi,Zi))λ0(v) dv,
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with

qn(v) = n−1 ∑n
i=1 Yi(v)Kh(Xi − x)I2i exp(ρ0 + η0 + X̃∗T

i β0∗
2 )

Sn(0, v)
.

By Taylor expanding at (x, z1) and (x, z2),

I1i

(
expψ(Xi,Zi) − exp

(
ψ1(x) + X̃∗T

i β∗
1
))

= I1i exp(ψ1(x))
ψ

(p+1)
1 (x)

(p + 1)! (Xi − x)p+1 + op(hp+1),

I2i

(
expψ(Xi,Zi) − exp

(
ψ2(x) + X̃∗T

i β∗
2
))

= I2i exp(ψ2(x))
ψ

(p+1)
2 (x)

(p + 1)! (Xi − x)p+1 + op(hp+1),

we obtain for b̃1n(τ )

b̃1n(τ ) = hp+1

(p + 1)!
(
ψ

(p+1)
2 (x) − ψ

(p+1)
1 (x)

)
(A.16)

× κ̃(x)f (x)�(τ, x)

(∫
up+1K(u)du

)
+ op(hp+1).

Furthermore, since〈√
nhD̃n(τ ),

√
nhD̃n(τ )

〉
= h

∫ τ

0

n∑
i=1

K2
h(Xi − x)

{−I1iqn(v) + I2i

(
1 − qn(v)

)}2

× Yi(v) exp(ψ(Xi,Zi))λ0(v) dv

= h

∫ τ

0

n∑
i=1

K2
h(Xi − x)

{
I1iq

2
n(v) + I2i

(
1 − qn(v)

)2}
× Yi(v) exp(ψ(Xi,Zi))λ0(v) dv

p→ (
p1x exp(ψ1(x))ι2(x) + p2x exp(ψ2(x))

(
1 − ι(x)

)2)
× f (x)�(τ, x)

(∫
K2(u) du

)
= κ̃(x)f (x)�(τ, x)

(∫
K2(u) du

)
� σ 2(τ, x),

a straightforward application of the martingale central limit theorem results in
√

nhDn(τ)
d→ N(0, σ 2(τ, x)).(A.17)
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From (A.13)–(A.17) and under the condition h/h1 → 0,
√

nh
(
ρ̂ − ρ − bn(τ )

) d→ N(0, σ (τ )2),

where

bn(τ ) = hp+1

(p + 1)!
(
ψ

(p+1)
2 (x) − ψ

(p+1)
1 (x)

)(∫
up+1K(u)du

)
,

σ (τ )2 = (
∫

K2(u) du)

κ̃(x)f (x)�(τ, x)
. �
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