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ESTIMATING THE NUMBER OF CLASSES

BY CHANG XUAN MAO AND BRUCE G. LINDSAY

University of California, Riverside and Pennsylvania State University

Estimating the unknown number of classes in a population has numerous
important applications. In a Poisson mixture model, the problem is reduced
to estimating the odds that a class is undetected in a sample. The disconti-
nuity of the odds prevents the existence of locally unbiased and informative
estimators and restricts confidence intervals to be one-sided. Confidence in-
tervals for the number of classes are also necessarily one-sided. A sequence
of lower bounds to the odds is developed and used to define pseudo maximum
likelihood estimators for the number of classes.

1. Introduction. The species problem has a wide variety of applications [3].
The term “species” has been endowed with many meanings such as taxa, words
known by an author and expressed genes in a tissue. Consider a population of in-
finitely many individuals belonging to c distinct classes labeled by i = 1,2, . . . , c.
In a sample of S individuals, Yi individuals belong to the ith class. The ith class is
not detected when Yi = 0. Estimating the number of classes c from those Yi > 0 is
a well-known difficult problem. For example, I. J. Good pointed out that “I don’t
believe it is usually possible to estimate the number of species, but only an appro-
priate lower bound to that number. This is because there is nearly always a good
chance that there are a very large number of extremely rare species” [3].

In the literature, Yi is usually treated as a Poisson random variable with mean λi

and the λi are assumed to follow a mixing distribution P over (0,∞). The Yi arise
as a sample from gP (y) = ∫

e−λλy/(y!) dP (λ). There are n = ∑c
i=1 I (Yi > 0) de-

tected classes in the sample. Because n ∼ binomial(c,1 − gP (0)), the maximum
likelihood estimator (MLE) of c given P is the integer part of ĉ(θ) = n(1 + θ),
where θ = gP (0)/{1 − gP (0)} is the odds that a single class is undetected in the
sample. When an estimator θ̂ for θ is substituted into ĉ(θ), we obtain a pseudo
MLE for c [11]. The problem of estimating c is thereby reduced to that of estimat-
ing θ .

The idea of the nonexistence of inferential procedures is not unfamiliar to statis-
ticians (e.g., [1, 10, 13, 17]). To make Good’s point concrete, we will show that the
odds θ is discontinuous. There are several consequences: no locally unbiased and
informative estimator for θ , no genuine two-sided confidence intervals and arbi-
trarily bad informativity when reducing bias to zero. However, because θ is lower
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semicontinuous, there exist nonparametric lower confidence limits. A sequence of
closed-form lower bounds to θ is developed. Similar results concerning inference
on the number of classes c hold. The upper confidence limits for c are often infi-
nite. The estimators for the lower bounds to θ yield estimators for lower bounds
to c.

This article is organized as follows. The mixture model will be described in
Section 2. In Section 3 the discontinuity of θ and its consequences will be inves-
tigated. In Section 4 we will demonstrate the lower semicontinuity of θ , construct
lower confidence limits and propose its lower bounds. The problem of estimating
c will be considered in Section 5. In Section 6 an epidemiological application and
a genomic application will be studied. In Section 7 extensions to related problems
will be discussed. All proofs are contained in Section 8.

2. The mixture model. Let ny = ∑c
i=1 I (Yi = y). Since the Yi arise from

gP (y), (n0, n1, . . .) follows a multinomial density. When n0, the number of classes
in the population unobserved in the sample, is replaced with c − n, this yields

p1(c,P ) = c!
(c − n)!∏∞

x=1 nx !g
c−n
P (0)

∞∏
x=1

g
nx

P (x).

This likelihood can be written as p1(c,P ) = p2(c,P )p3(n,P ), where p2(c,P ) is
the density of n and p3(n,P ) is the conditional density of (n1, n2, . . .) given n:

p2(c,P ) =
(

c

n

)
gc−n

P (0){1 − gP (0)}n,

p3(n,P ) = n!∏∞
x=1 nx !

∞∏
x=1

{
gP (x)

1 − gP (0)

}nx

.

The likelihood of n is binomial, as indicated before, and depends on both c and θ .
The conditional likelihood has no dependence on c, but contains most of the infor-
mation about P . It can be analyzed as follows. Conditioning on n, those Yi > 0 fol-
low a zero-truncated mixture gP (x)/{1−gP (0)}. Rewrite them as X1,X2, . . . ,Xn.
Let fλ(x) = λx/{x!(eλ − 1)} and fQ(x) = ∫

fλ(x) dQ(λ), where

dQ(λ) = (1 − e−λ) dP (λ)
/∫

(1 − e−λ) dP (λ).(2.1)

Because fQ(x) = gP (x)/{1 − gP (0)} for x ≥ 1, the Xi can be treated as a sample
from a mixture of zero-truncated Poisson densities. The joint density of the Xi is

f
(n)
Q (x1, x2, . . . , xn) =

n∏
i=1

fQ(xi) =
∞∏

x=1

f
nx

Q (x).

Note that Q has no mass on zero. The nonparametric mixture model refers to
F = {fQ :Q ∈ Q}, where Q contains all legitimate mixing distributions.
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LEMMA 2.1. F is identifiable in the sense that fQ = fG yields Q = G.

Finally, note that n plays a dual role as the number of detected classes and the
sample size of the Xi , and c also plays a dual role as the parameter of interest and
the “sample size” of the Yi . Our asymptotic results concerning θ -estimation will be
based on n becoming infinite, which implies that c goes to infinity as c = E(n) ×
(1 + θ), a common natural practice in the literature that deals with nonstandard
problems with integer parameters. However, our key result for c-estimation will
be finite-sample in nature, so that no asymptotics are required.

3. Discontinuity. We will show that estimating θ is difficult in several as-
pects.

We write θ = θ(fQ) because of Lemma 2.1 and the fact that θ = ∫
(eλ −

1)−1 dQ(λ). As the mass of Q at zero is nonidentifiable and mass near zero is
nearly undetectable, we have the following result.

LEMMA 3.1. θ is Hellinger discontinuous at any fQ ∈ F .

The discontinuity excludes the existence of estimators that have desirable prop-
erties in terms of unbiasedness and informativity [13].

An estimator θ̂n for θ is locally unbiased at fQ if there exists ε > 0 such that

sup{|EG(θ̂n) − θ(fG)| :fG ∈ B(fQ, ε)} = 0,

where EG(·) means taking expectation given G ∈ Q and where B(fQ, ε) is a ball,

B(fQ, ε) =
{
fG ∈ F :

∞∑
x=1

[f 1/2
Q (x) − f

1/2
G (x)]2 ≤ ε2

}
.

The estimator θ̂n is locally informative at fQ if there exists K(fQ) > 0 such that

lim sup
ε→0

sup{EG(θ̂2
n) :fG ∈ B(fQ, ε)} ≤ K(fQ).

An estimator (sequence) θ̂n for θ is locally asymptotically unbiased (l.a.-unbiased)
at fQ with the rate of convergence r(n) ≥ n−1/2 if there exists ε > 0 such that

lim
m→∞ lim sup

n→∞
sup

{∣∣∣∣EG

[
lm

(
θ̂n − θ(fG)

r(n)

)]∣∣∣∣ :fG ∈ B(fQ, εn−1/2)

}
= 0,

where lm(z) = z − sign(z)max(|z| − m,0). At fQ, θ̂n is locally asymptotically
informative (l.a.-informative) if there exist ε > 0 and K(fQ) > 0 such that

lim
m→∞ lim sup

n→∞
sup

{
EG

[
l2
m

(
θ̂n − θ(fG)

r(n)

)]
:fG ∈ B(fQ, εn−1/2)

}
≤ K(fQ).
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THEOREM 3.1. θ has no locally unbiased and locally informative estimator.

THEOREM 3.2. θ has no l.a.-unbiased and l.a.-informative estimator.

Although bias is often the main concern, the discontinuity of θ will challenge
our endeavor to reduce bias as a method for improving estimation accuracy.

THEOREM 3.3. If {θ̂n,m}∞m=1 is a sequence of estimators for θ with fixed n,
such that limm→∞ |EG(θ̂n,m) − θ(fG)| = 0 for fG in B(fQ, ε0) with ε0 > 0, then

lim
m→∞ sup{EG(θ̂2

n,m) :fG ∈ B(fQ, ε)} = ∞, ε > 0.

Our ability to construct two-sided confidence intervals is also challenged. If,
somewhere in F , a confidence interval has a finite upper confidence limit with
probability one, then, somewhere in F , its coverage probability is zero [10].

THEOREM 3.4. If [θ̂n,l, θ̂n,u] is a confidence interval, then

sup{PrQ(∞ /∈ [θ̂n,l, θ̂n,u]) :Q ∈ Q} = 1

implies that

inf
{
PrQ

(
θ(fQ) ∈ [θ̂n,l, θ̂n,u]) :Q ∈ Q

} = 0.

One can also consider the possibility that θ̂n,u is an upper confidence limit, that
is,

inf
{
PrQ

(
θ̂n,u ≥ θ(fQ)

)
:Q ∈ Q

} ≥ 1 − α, α ∈ (0,1).(3.1)

If the advertised confidence level is guaranteed, then the upper confidence limit
will be infinite with large probability.

THEOREM 3.5. inf{PrQ(θ̂n,u = ∞) :Q ∈ Q} ≥ 1 − α.

4. Lower bounds. We will construct lower bounds to θ .
Although θ is discontinuous, it admits lower bounds, because of the following.

LEMMA 4.1. θ is Kolmogorov lower semicontinuous at any fQ ∈ F .

From [10], given ε > 0 and a distribution function F0, with FQ(x) =∑x
i=1 fQ(i), the ε-lower envelope of θ at F0 is

θ(F0; ε) = inf{θ(fQ) :d(FQ,F0) ≤ ε, fQ ∈ F },(4.1)

where d(F0,F
∗
0 ) is the Kolmogorov distance of distribution functions F0 and F ∗

0 ,

d(F0,F
∗
0 ) = sup{|F0(x) − F ∗

0 (x)| :x ∈ (−∞,∞)}.
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A conservative 1 − α lower confidence limit is θ(F̂n; εn), where F̂n(x) =∑x
i=1 f̂n(i), f̂n(x) = nx/n and εn is the 1 − α quantile of the Kolmogorov dis-

tance of uniform(0,1) and the empirical distribution of n random variables from
it.

THEOREM 4.1. sup{PrQ(θ(F̂n; εn) ≤ θ(fQ)) :Q ∈ Q} ≥ 1 − α.

Calculating θ(F̂n; εn) requires the solution of the optimization problem in (4.1).
Given a grid {ξj }Jj=1 ⊂ (0,∞) with Q = ∑J

j=1 πjδ(ξj ), where δ(λ) is a degener-
ate distribution at λ, the discretized version of (4.1) is a linear program, due to the
use of the Kolmogorov distance and the linearity of θ(fQ) and FQ(x) in Q.

There are alternative lower bounds to θ . Let µ(x) = ∫
λx d�(λ) be the xth

moment of a measure � over (0,∞) with d�(λ) = (eλ − 1)−1 dQ(λ). Note that

µ(0) = θ(fQ), µ(x) = x!fQ(x), x = 1,2, . . . .

When 	k = (µ(i + j))ki,j=1 is positive definite, with ak = (µ(j))kj=1, define

θk = θk(fQ) = a′
k	

−1
k ak.(4.2)

THEOREM 4.2. Let χ(Q) be the number of support points of Q. If χ(Q) <

∞, then θ1 < · · · < θχ(Q) = θ(fQ), and θ1 < · · · < limk→∞ θk = θ(fQ) otherwise.

The approximation bias refers to θk − θ , whose absolute value decreases in k.
The inferential challenge arises because the variance in θk-estimation increases
in k.

To find the condition under which the lower bound θk is Fisher consistent, we
consider partitioning the mixture model F into “sieves” Fk = {fQ :χ(Q) = k}.

THEOREM 4.3. θk(fQ) = θ(fQ) if fQ ∈ Fk ; θk(fQ) ≤ θ(fQ) if fQ ∈⋃∞
j=k Fj .

The lower bound θk is a functional that approximates θ . A pre-existing non-
parametric estimator for c can also define an approximation functional to θ . For
example, from [6, 7, 9] one recognizes, with si(fQ) = ∑∞

x=1 xifQ(x),

θCB(fQ) = 1 − fQ(1)

1 − fQ(1)s2(fQ)/s2
1(fQ)

− 1,

θCL(fQ) = fQ(1){s2(fQ) − s1(fQ)} + s1(fQ){1 − fQ(1)}{s1(fQ) − fQ(1)}
{s1(fQ) − fQ(1)}2

− 1,

θDR(fQ) = 1

1 − fQ(1)/s1(fQ)
− 1.
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Unlike the θk , it is not easy to specify the conditions under which each one is
Fisher consistent, except that θDR = θCL = θCB = θ when Q = δ(λ).

The lower bound θk is the odds of a mixing distribution from which the derived
measure has the same first 2k + 1 moments as � derived from Q.

THEOREM 4.4. For k ≤ χ(Q), there is a mixing distribution Qk with

χ(Qk) = k, θ(fQk
) = θk, fQk

(x) = fQ(x), x = 1,2, . . . ,2k.

To estimate θk , we consider the empirical moments µ̂(x) = x!f̂n(x) and their
matrices âk = (µ̂(j))kj=1 and 	̂k = (µ̂(i + j))ki,j=1. For k ≤ χ̂n < ∞, define θ̂k =
â′
k	̂

−1
k âk , where χ̂n = max{k : |	̂j | > 0, j = 1,2, . . . , k}.

THEOREM 4.5. As n goes to infinity, χ̂n estimates χ(Q) consistently when
χ(Q) < ∞. For finite k ≤ χ(Q), as n goes to infinity, θ̂k exists almost surely and
n1/2(θ̂k − θk) converges to a zero-mean normal distribution.

Finally, an estimator for an approximation functional can also be calculated
from fQ̂ with Q̂ being the nonparametric MLE [12, 14]. Note that θ(fQ̂) =
θχ(Q̂)(fQ̂) is the most greedy one among the θk(fQ̂) in terms of approximation
bias reduction.

5. Inference on c. We turn to unconditional inference on c.
As c is identifiable given θ from p2(c,P ) and θ is identifiable, it follows that c

is identifiable.
Let ĉu be a (1 − α)-level upper confidence limit for c, that is,

Prc,P (ĉu ≥ c) ≥ 1 − α ∀c ≥ 1,∀P.(5.1)

THEOREM 5.1. For (c,P ), Prc,P (ĉu = ∞) ≥ A(c,1 − gP (0)) − α, where

A(c,�) =
c∑

x=0

min
{(

c

x

)
�x(1 − �)c−x,

e−c�(c�)x

x!
}
.

The conclusion in Theorem 5.1 is slightly weaker than that in Theorem 3.5, as
the distribution of n retains a small amount information about c from the testing
affinity (see, e.g., [10]) of binomial(c, �) and binomial(c′, �′), with � = 1−gP (0),
such that c′�′ approaches c� when c′ goes to infinity. The bound A(c,�) − α in
Theorem 5.1 depends on c and P through the functional �. From the fact that
A(c,0) ≡ 1, we can find a pair of (c, �) such that A(c,�) is arbitrarily close to
one. For a fixed c, when the probability � of a class of being detected increases,
the probability of the upper confidence limit being infinite will decrease. For an
extremely large �, one might have a negative value of A(c,�) − α. In particu-
lar, by Stirling’s formula c! ≈ (2πc)1/2(c/e)c, one has A(c,1) = e−ccc/(c!) ≈
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(2πc)−1/2. For α = 0.05, A(c,1) > α for 1 ≤ c < 64 and A(c,1) < α for c ≥ 64.
Although the testing affinity A(c,�) is a function of both c and �, for c relatively
large it will change little in c for a fixed �. There exist lower bounds for A(c,�)

that are functions of � only, for example, A(c,�) ≥ 1 − 2−1�(1 − �)−1/2 [18].
Note that ĉk = n(1 + θ̂k) is a pseudo MLE for c and is a consistent estimator

for ck = c(1 + θk)/(1 + θ) ≤ c. In particular, ĉ1 = n + n2
1/(2n2) is given in [4].

The asymptotic variance of ĉk increases in c, while that of log ĉk decreases in
c because both c−1/2(ĉk − ck) and c1/2(log ĉk − log ck) converge to zero-mean
normal distributions as c goes to infinity.

6. Applications. We consider two applications. The first (cholera) concerns
an epidemic of cholera in a village in India [2, 15]. There were households af-
fected by cholera but having no case. Note that nx is the number of households
having x cases, with n1 = 32, n2 = 16, n3 = 6 and n4 = 1 among n = 55 identi-
fied infected households with S = 85 cholera cases. The second (EST) concerns
S = 2586 expressed sequence tags (ESTs) from which n = 1825 genes were found
[14, 15]. An EST is a partial sequence identifying an mRNA and ESTs are gen-
erated by sequencing randomly selected clones in a cDNA library made from an
mRNA pool. There were expressed genes from which no EST was generated. Note
that nx is the number of expressed genes from which x ESTs were generated, with
n1 = 1434, n2 = 253, n3 = 71, n4 = 33, n5 = 11, n6 = 6, n8 = 3, nx = 2 for
x ∈ {7,10,11,16} and nx = 1 for x ∈ {9,12,13,14,23,27}.

The estimates for approximation functions are shown in Table 1, together with
the lower 5% quantiles of estimates from 400 model-based resamples, using the
nonparametric MLE Q̂. All estimates are comparable in cholera, as χ(Q̂) = 1.
The pre-existing estimates are not comparable in EST, as χ(Q̂) > 1. The lin-
ear program yields the conservative 95% nonparametric lower confidence limits:
θ(F̂n; εn) = 0.250 with n = 55 and εn = 0.180 in cholera; θ(F̂n; εn) = 1.408 with
n = 1825 and εn = 0.032 in EST. These bounds are considerably smaller than the

TABLE 1
Estimates and the lower 5% empirical quantile of resample estimates fQ̂

(cholera: 1st block, EST: 2nd block)

θDR θCL θCB θ1 θ2 θ3 θ4 θ5

f̂n 0.593 0.544 0.484 0.582
fQ̂ 0.608 0.608 0.608 0.608
5% quantile 0.407 0.410 0.407 0.412

f̂n 1.245 4.462 −1.395 2.227 2.849 3.000 3.071 3.404
fQ̂ 1.245 4.488 −1.391 2.228 3.051 3.070 3.072 3.072
5% quantile 1.120 3.222 −1.755 1.964 2.432 2.446 2.455 2.455
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resampling quantiles. If θ1(fQ̂) is used to estimate θ in cholera, then a pseudo
MLE for the number of infected households is 88. If θ2(fQ̂) is used to estimate θ

in EST, then a pseudo MLE for the number of expressed genes is 7392.
To learn something about the approximation bias, we treat Q̂ as the true distrib-

ution and read across the rows labeled fQ̂ in Table 1, with the largest value of the
θk being θ(fQ). The other pre-existing approximation functionals are not better
than the θk in EST because θDR/θ = 0.41, θCL/θ = 1.46 and θCB < 0.

7. Discussion. Conditioning on the sample size S, the Yi arise from a multino-
mial distribution with index c and probabilities pi = λi/

∑c
j=1 λj . The multino-

mial model is more cumbersome analytically as the Yi are not independent. Just
as in contingency table analysis using log-linear models, a Poisson-based analysis
usually gives quantitatively similar or identical results, even for fixed size samples.

Results similar to those developed here can be established for a multiple-
population species problem modeled by truncated mixtures of multivariate den-
sities [16]. There are also lower bounds that can be developed for the total number
of classes.

Estimating the population size by partially sampling a population is another
important and difficult problem [5]. It could be investigated by means of vari-
ous models of mixtures (e.g., binomial mixtures). Although the population size
is nonidentifiable nonparametrically, we claim that by adapting and extending the
techniques used here, we can show that confidence intervals for the population size
must be one-sided, but identifiable lower bounds to the population size exist.

8. Proofs.

PROOF OF LEMMA 2.1. Let d�(λ) = λ(eλ − 1)−1 dQ(λ). As λe−λ ≤ e−1,

{1 − gP (0)}
∫

eλt d�(λ) =
∫

λe−λ(1−t) dP (λ) ≤ (1 − t)−1e−1 ≤ 1

for t ≤ 1 − e−1. The existence of a moment generating function (m.g.f.) im-
plies that � is uniquely determined by its identifiable moments

∫
λx d�(λ) =

(x + 1)!fQ(x + 1), x ≥ 0. The measure � and the distribution Q are identifiable.
�

The total variation distance τ(ψ,φ) and the Hellinger distance h(ψ,φ) between
two densities ψ(x) and φ(x) over RK with Borel field B are given by

τ(ψ,φ) =
∫

|ψ(x) − φ(x)| = 2 sup{|Prψ(B) − Prφ(B)| :B ∈ B},
(8.1)

h(ψ,φ) =
{∫

[ψ1/2(x) − φ1/2(x)]2
}1/2

.
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Note that τ(ψ,φ) and h(ψ,φ) satisfy

h2(ψ,φ) ≤ τ(ψ,φ) ≤ 2h(ψ,φ).(8.2)

We introduce a useful single-parameter submodel of F . Let π(s) and η(s) be
two functions of s ∈ (0,1) with π(s) ∈ (0,1) and η(s) ∈ (0,∞). Given Q, define

Qs = (
1 − π(s)

)
Q + π(s)δ(η(s)).(8.3)

It is clear that

τ(fQs , fQ) =
∞∑

x=1

|fQs (x) − fQ(x)| ≤ 2π(s),(8.4)

θ(fQs ) = (
1 − π(s)

)
θ(fQ) + π(s)θ(fη(s)).(8.5)

LEMMA 8.1. Given ε > 0 and fQ ∈ F , ω(ε; θ, fQ,F ) = ∞, where

ω(ε; θ, fQ,F ) = sup{|θ(fQ) − θ(fG)| :fG ∈ B(fQ, ε)}.
PROOF OF LEMMAS 3.1 AND 8.1. If π2(s) = η(s) = s2 in (8.3), then from

(8.4) and (8.5), lims→0 θ(fQs ) = ∞ and lims→0 τ(fQs , fQ) = 0. By (8.2), one has
lims→0 h(fQs , fQ) = 0 so that Lemmas 3.1 and 8.1 hold. �

PROOF OF THEOREMS 3.1 AND 3.3. Under Lemma 8.1, Theorem 3.1 and
Theorem 3.3 hold because of Theorem 1 and Theorem 3 in [13], respectively. �

PROOF OF THEOREM 3.2. Let θ̂n be l.a.-unbiased and l.a.-informative for θ

with the rate of convergence r(n) ≥ n−1/2. Let s = 1/n, π(n−1) = ε2/(2n2) and
η(n−1) = 1/(r(n)n3) in (8.3). Let Gn = Q1/n and

Wn = θ̂n − θ(fQ)

r(n)
, Zn = θ̂n − θ(fGn)

r(n)
, dn = θ(fGn) − θ(fQ)

r(n)
.

Note that limn→∞ nπ(n−1) = 0 and limn→∞ dn = ∞, and that fGn ∈ B(fQ,

εn−1) ⊂ B(fQ, εn−1/2) because h2(fQ,fGn) ≤ τ(fQ,fGn) ≤ ε2n−2 from (8.2),
(8.4) and (8.5). By investigating the proof of Theorem 2 in [13], with

um,n = 2{EQ[l2
m(Wn)] + EGn[l2

m(Zn)] + 2EQ|lm(Wn)| · dn + d2
n},

due to the l.a.-informativeness and l.a.-unbiasedness, we have

|EQ[lm(Zn)]|/dn = 1 + o(1/dn) as n → ∞ and then m → ∞,(8.6)

|EQ[lm(Zn)]|/dn ≤ |EGn[lm(Zn)]|/dn + h
(
f

(n)
Q ,f

(n)
Gn

) · u1/2
m,n/dn.(8.7)

Because EQ|lm(Wn)| ≤ E
1/2
Q [l2

m(Wn)], by the l.a.-informativeness,

um,n/d
2
n = 2 + o(1) as n → ∞ and then m → ∞.(8.8)
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For large n, from the proof of Lemma A.1 in [10], we have

h2(
f

(n)
Q ,f

(n)
Gn

) = 2[1 − {1 − h2(fQ,fGn)/2}n]
(8.9)

≈ nh2(fQ,fGn) ≤ ε2/n.

By the l.a.-unbiasedness, from (8.7), (8.8) and (8.9), it follows that

|EQ[lm(Zn)]|/dn = o(1) as n → ∞ and then m → ∞,

which is in contradiction to (8.6). This implies that Theorem 3.2 holds. �

PROOF OF THEOREM 3.4. Given z > θ(fQ), let π(s) = s and η(s) = s/{z −
θ(fQ)} in (8.3). As lims→0 τ(fQs , fQ) = 0 and lims→0 θ(fQs ) = z from (8.4)
and (8.5), {(fQ, θ(fQ)) :fQ ∈ F } is dense in {(fQ, z) :fQ ∈ F , z ≥ θ(fQ)}. The-
orem 3.4 holds by applying Theorem 2.1 from [10]. �

PROOF OF THEOREM 3.5. Let π(s) = s and η(s) = s2 in (8.3). Because

τ 2(
f

(n)
Qs

, f
(n)
Q

)
/8 ≤ 1 − {1 − τ(fQs , fQ)/2}n

≤ 1 − (1 − s)n

from Lemma A.1 in [10] and (8.4), we conclude that lims→0 τ(f
(n)
Qs

, f
(n)
Q ) = 0.

From the condition in (3.1), the definitions in (8.1) and the fact that∣∣PrQ
(
θ̂n,u ≥ θ(fQs )

) − PrQs

(
θ̂n,u ≥ θ(fQs )

)∣∣
≤ sup{|PrQ(B) − PrQs (B)| :B ∈ B},

we have by the triangle inequality,

PrQ
(
θ̂n,u ≥ θ(fQs )

) + τ
(
f

(n)
Qs

, f
(n)
Q

)
/2 ≥ PrQs

(
θ̂n,u ≥ θ(fQs )

) ≥ 1 − α.

By letting s go to zero, PrQ(θ̂n,u = ∞) ≥ 1−α as lims→0 θ(fQs ) = ∞ from (8.5).
This inequality holds for all Q, which implies that Theorem 3.5 holds. �

PROOF OF LEMMA 4.1. Let Q and Gm be in Q with limm→∞ d(FGm,

FQ) = 0. As a function of fQ(x), x = 1, . . . , 2k, θk(fQ) is continuous, so it is
continuous in FQ on its domain. If θk(fQ) exists, then θk(fGm) will exist for suf-
ficiently large m and θk(fQ) = limm→∞ θk(fGm) ≤ lim infm→∞ θ(fGm). Because

θ(fQ) =
{

θχ(Q)(fQ) ≤ lim inf
m→∞ θ(fGm), χ(Q) < ∞,

lim
k→∞ θk(fQ) ≤ lim inf

m→∞ θ(fGm), χ(Q) = ∞,

the odds θ(fQ) is lower semicontinuous. �

PROOF OF THEOREM 4.1. This holds following application of (3.13) from
[10] and Lemma 4.1. �
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Write M > 0 if a matrix M is positive definite. Given a sequence (µ(0),

µ(1), . . .), define Hankel matrices Hk = (µ(i + j))ki,j=0 and H̄k = (µ(i + j +
1))ki,j=0 for each k. The following summarizes some results in the Stieltjes mo-
ment problem.

LEMMA 8.2. The sequence (µ(0),µ(1), . . .) of real numbers is the moment
sequence of a measure � on (0,∞) if and only if |Hk| > 0 and |H̄k| > 0 for
k < χ(�), and, when χ(�) < ∞, Hk and H̄k have rank χ(�) for k ≥ χ(�).

PROOF OF THEOREM 4.2. Write 	k+1 and 	−1
k+1 as partitioned matrices,

	k+1 =
[
	k b

b′ µ(2k + 2)

]
, 	−1

k+1 =
[(

ϒ v

v′ w

)]
,

where b = (µ(k + 2),µ(k + 3), . . . ,µ(2k + 1))′, w = (µ(2k + 2) − b′	−1
k b)−1,

v = −w ·	−1
k b and ϒ = 	−1

k +w ·	−1
k bb′	−1

k . Note that |H̄k| = (−1)k|	k|(µ(k+
1) − a′

k	
−1
k b) because H̄k can be obtained, by exchanging the rows k times, from[

µ(k + 1) b′
ak 	k

]
.

As |	k+1| = |	k|(µ(2k + 2) − b′	−1
k b), it follows that w = |	k| · |	k+1|−1. Write

θk+1 = (
a′
k,µ(k + 1)

) · 	−1
k+1 · (

a′
k,µ(k + 1)

)′
= a′

kϒak + 2µ(k + 1)a′
kv + w · µ2(k + 1)

= a′
k(	

−1
k + w · 	−1

k bb′	−1
k )ak

− 2w · µ(k + 1) · a′
k	

−1
k b + w · µ2(k + 1)

= a′
k	

−1
k ak + w · (

µ(k + 1) − a′
k	

−1
k b

)2

= θk + |	k| · |	k+1|−1 · {|H̄k|(−1)−k|	k|−1}2.

This means that if θk+1 exists, then θk+1 and θk satisfy

θk+1 = θk + |H̄k|2 · |	k|−1 · |	k+1|−1.

Note that H̄k > 0 when 	k+1 > 0 so that θk < θk+1.
When χ(Q) < ∞, write |Hχ(Q)| = |	χ(Q)| · (µ(0) − θχ(Q)). From Lemma 8.2,

|Hχ(Q)| = 0, which means that µ(0) = θχ(Q) as |	χ(Q)| > 0. When χ(Q) = ∞,
write |Hk| = |	k|(µ(0) − θk). The sequence θk is strictly increasing in k and
bounded above by µ(0) so that ξ = limk→∞ θk exists. Consider (ξ,µ(1),µ(2), . . .)

associated with Hankel matrices Hk,ξ and H̄k,ξ . Note that |H̄k,ξ | > 0 because
H̄k,ξ = H̄k , and |Hk,ξ | > 0 because θk < ξ and |Hk,ξ | = |	k|(ξ − θk). From
Lemma 8.2, (ξ,µ(1),µ(2), . . .) is a moment sequence of a measure �ξ on (0,∞)
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with χ(�ξ ) = ∞. Let d�(λ) = λd�(λ) and d�ξ (λ) = λd�ξ(λ). Note that �

and �ξ have the same moment sequence and that � has an m.g.f. from the proof
of Lemma 2.1. This implies that � = �ξ , so that � = �ξ and ξ = µ(0). �

PROOF OF THEOREM 4.3. From Lemma 8.2, it follows that for k ≤ χ(Q),
	k > 0 as 	k is identical to the Hankel matrix H̄k−1 of the moments of a measure �

with d�(λ) = λd�(λ). This observation and Theorem 4.2 imply that Theorem 4.3
holds. �

PROOF OF THEOREM 4.4. Let Hk,z be obtained from Hk with µ(0) replaced
by z ∈ R. If 	k > 0, then |Hk,z| = |	k|(z − θk). When θk exists, because 	i > 0
and θi < θk it follows that |Hi,θk

| = |	i |(θk − θi) > 0 for i = 1, . . . , k − 1. In
addition, |Hk,θk

| = 0 and H̄k−1 > 0. From [8], there exists a measure �k with
χ(�k) = k such that

∫
d�k(λ) = θk and

∫
λx d�k(λ) = µ(x), x = 1, . . . ,2k. With

�k having no mass at zero, Theorem 4.4 holds by letting Qk = (eλ − 1) d�k(λ).
�

PROOF OF THEOREM 4.5. By the strong law of large numbers, the empir-
ical moments, moment matrices and their determinants converge almost surely,
implying the consistency of χ̂n and the almost sure existence of θ̂k for k ≤ χ(Q)

as n goes to infinity. The delta method yields the asymptotic normality of θ̂k as
n1/2(f̂n,k − fQ,k) converges to a multivariate normal distribution, where fQ,k =
(fQ(1), . . . , fQ(2k))′ and f̂n,k = (f̂n(1), . . . , f̂n(2k))′. �

PROOF OF THEOREM 5.1. With κ given by (2.1) and Qs used to show The-
orem 3.5, let Q = κ(P ), Ps = κ−1(Qs) and cs be the integer part of c{1 +
θ(fQs )}/{1 + θ(fQ)}. Let τs = τ(p1(cs,Ps),p1(c,P )). It can be shown that

c · 1 + θ(fQs )

1 + θ(fQ)
∈ [cs, cs + 1),

lim
s→0

cs = ∞,

lim
s→0

cs

1 + θ(fQs )
= c

1 + θ(fQ)
,

|τs − τ(p2(cs,Ps),p2(c,P ))| ≤
c∑

n=0

τ(p3(n,Ps),p3(n,P ))p2(c,P ).

Let � = 1 − gP (0). Because the mean of p2(cs,Ps) goes to that of p2(c,P ) as s

goes to zero, p2(cs,Ps) tends to a Poisson density with mean c�,

lim
s→0

τ(p3(n,Ps),p3(n,P )) = lim
s→0

τ
(
f

(n)
Qs

, f
(n)
Q

) = 0



ESTIMATING THE NUMBER OF CLASSES 929

and lims→0 τs = lims→0 τ(p2(cs,Ps),p2(c,P )) = 2 − 2A(c,�). From the condi-
tion in (5.1) and the definitions in (8.1), and because

|Prc,P (ĉu ≥ cs) − Prcs ,Ps (ĉu ≥ cs)|
≤ sup{|Prc,P (B) − Prcs ,Ps (B)| :B ∈ B},

it follows by the triangle inequality that

Prc,P (ĉu ≥ cs) + τs/2 ≥ Prcs ,Ps (ĉu ≥ cs) ≥ 1 − α.

The proof is completed by letting s go to zero. �
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