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ON THE DESIGN-CONSISTENCY PROPERTY OF HIERARCHICAL
BAYES ESTIMATORS IN FINITE POPULATION SAMPLING

BY P. LAHIRI1 AND KANCHAN MUKHERJEE

University of Maryland, College Park and University of Liverpool

We obtain a limit of a hierarchical Bayes estimator of a finite popula-
tion mean when the sample size is large. The limit is in the sense of ordinary
calculus, where the sample observations are treated as fixed quantities. Our
result suggests a simple way to correct the hierarchical Bayes estimator to
achieve design-consistency, a well-known property in the traditional random-
ization approach to finite population sampling. We also suggest three different
measures of uncertainty of our proposed estimator.

1. Introduction. Ericson [4] put forward a subjective Bayesian approach in
finite population sampling. The subjective Bayes and the more general hierarchical
Bayes estimators have been found to be effective in combining information from a
variety of sources in conjunction with the sample survey data on the main variable
of interest; see [10]. Specific applications include small area estimation, estimation
from longitudinal surveys, and so on.

In Section 2, we obtain the mathematical limit of a general version of Eric-
son’s subjective Bayes estimator of a finite population mean when the sample size
is large. By mathematical limit, we mean the limit in the sense of ordinary cal-
culus, where observations are treated as fixed real numbers. We show that the
Bayes estimator converges to a quantity which is free of any hyperparameters,
but may depend on the sample observations, irrespective of the model used to de-
rive the Bayes estimator. This pure mathematical result can be used to examine the
design-consistency property of the subjective Bayes estimator. Design-consistency
is a desirable property in the randomization approach to finite population sam-
pling. Kott [13] advocated the use of a model-based estimator of a finite popu-
lation mean which is also design-consistent. For a formal definition of design-
consistency, see [22], page 18. We find that the subjective Bayes estimator is, in
general, not design-consistent. In other words, the subjective Bayes estimator does
not converge to the true finite population mean as the sample size becomes large.
Here the convergence is defined with respect to the sampling design, observations
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for all units of the finite population being treated as fixed nonrandom quantities.
The result, in turn, suggests a simple correction to the Bayes estimator to achieve
design-consistency.

In Section 3 we consider the case where the finite population is divided into
several strata and a sample is available from each stratum. Model-based estimation
(both empirical and hierarchical Bayes) of a stratum mean has been considered by
several authors; see Ghosh and Meeden [9], Ghosh and Lahiri [6], Battese, Harter
and Fuller [2], Datta and Ghosh [3], Prasad and Rao [19], Ghosh and Lahiri [8],
Arora, Lahiri and Mukherjee [1] and Jiang, Lahiri and Wan [12], among others.
Prasad and Rao [20] observed that these model-based estimators are typically not
design-consistent unless the sampling design is self-weighting within each stra-
tum, and they proposed a pseudo-EBLUP design-consistent estimator for the nor-
mal case; see [23] for a pseudo-hierarchical Bayes version of Prasad and Rao [20].
However, it is not clear how one can extend their approach to a general nonnormal
case, since the distribution of a linear combination of observations used in their
paper is not always analytically tractable for nonnormal cases. In Section 3 we
provide the stratified sampling extension of the result of Section 2 for a general
hierarchical Bayes estimator of the finite population mean when the hyperparame-
ters are assumed to be unknown. Again, our mathematical limit result lends itself
to a simple correction of the hierarchical Bayes estimator to achieve the design-
consistency property.

For small area problems with binary data, Folsom, Shah and Vaish [5] proposed
a method which appears to work well in their simulation work in terms of design-
consistency. However, a formal proof is needed to claim design-consistency of
their estimator. In this connection, we also mention the work of Malec, Davis and
Cao [16], who considered sample selection adjustment to their model-based proce-
dure. See [21] and [11] for further discussions of design-consistency in small area
estimation. The simple and general approach taken in this paper merely involves
finding the mathematical limit of a hierarchical Bayes estimator.

Measuring uncertainty of the proposed design-consistent model-based estimator
is an important problem. In Section 4 we first present two possible ways to measure
the uncertainty of the proposed design-consistent model-based estimator. We note
their merits and disadvantages and propose a third measure that is just a simple
average of the two. The results from a simulation study are presented in Section 5.
In our simulation experiment the proposed measures perform reasonably well and
the third measure appears to be a compromise between the first two. The technical
derivations of the results of Sections 2 and 3 are relegated to the Appendix.

2. The Bayes estimator and its limiting behavior. Let Yi be the value of
the characteristic of interest for the ith unit of a finite population (i = 1, . . . ,N ).
We assume that the finite population size N is known. In our subjective Bayesian
formulation, we assume that Yi , i = 1, . . . ,N, are independent realizations from a
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superpopulation belonging to the family of densities

f (y|θ,φ) = exp[φ−1{yθ − ψ(θ)} + ρ(y,φ)],(2.1)

where φ > 0. When φ is known, the generalized linear models characterized by the
above class of densities include the exponential family of distributions (in partic-
ular, Gaussian, Bernoulli and Poisson distributions). Thus, it includes continuous
data as well as both the categorical and count data. When φ is unknown, it includes
distributions which are not in the exponential family. Note that the function ψ is
given by

ψ(θ) = φ log
∫

exp[φ−1yθ + ρ(y,φ)]dy

and the mean of Y is ψ ′(θ); see [18], page 28. Here and throughout the paper,
α′ denotes the derivative of an arbitrary function α.

We assume that the superpopulation parameter θ has the prior distribution

h(θ) = β + u,(2.2)

where h, called the link function, is a strictly increasing function of θ , β ∈ R is
a location parameter and u ∼ N(0, r−1). Similar Bayesian models were used by
Ghosh and Meeden ([10], page 269).

A sample of fixed size n is drawn from the finite population. Let {p(s)} de-
note the sampling design. Note that p(s) is the probability of drawing a particular
sample s of size n from the universe of all possible samples S of size n. Thus,
p(s) ≥ 0 for all s ∈ S and

∑
s∈S p(s) = 1. Let πi = P(s � i) be the first-order in-

clusion probability of unit i, that is, the probability of including the population unit
i in the sample (i = 1, . . . ,N). Let ys = (Yi, i ∈ s) be the vector of observations
in the sample.

The standard Bayesian approach to finite population sampling recognizes the
importance of a good sampling design for selecting the sample, but once the sam-
ple is selected, the approach does not use the inclusion probabilities in the estima-
tion. Under the Bayesian model (2.1) and (2.2) and squared error loss, the Bayes
estimator of the finite population mean, �Y = ∑N

i=1 Yi/N, is given by

�̂Y B = E[�Y |ys] = fnȳs + (1 − fn)E[ψ ′(θ)|ys],(2.3)

where fn = n/N and ȳs = n−1 ∑
i∈s Yi is the sample mean.

In order to understand the relationship between the Bayes estimator �̂Y B and ȳs

for a large sample, we find the mathematical limit of E[ψ ′(θ)|ys] as n → ∞ as a
function of ȳs . Hence, in the following ȳs is treated as a nonrandom argument of
E[ψ ′(θ)|ys]. Consequently, let Tn be a random variable with density (as a function
of t)

exp[−nφ−1ψ(t)] exp[φ−1nȳst]
/∫

exp[−nφ−1ψ(τ)] exp[φ−1nȳsτ ]dτ.(2.4)

This leads to the following lemma.



DESIGN-CONSISTENCY OF HB ESTIMATORS 727

LEMMA 2.1. In addition to (2.1) and (2.2), assume the following regularity
conditions:

(R.1) The functions ψ ′(·) exp[−(r/2){h(·) − β}2]h′(·) and exp[−(r/2){h(·) −
β}2]h′(·) are bounded.

(R.2) The sequence of random variables {Tn} converges in probability with re-
spect to (2.4) to T as n → ∞.

Then E[ψ ′(θ)|ys] converges to C := ψ ′(T ).

REMARK 2.1. In general, T is a function of ȳs . This reveals the large-sample
behavior of E[ψ ′(θ)|ys] as a function of ȳs . In the Appendix, we verify that as-
sumptions (R.1) and (R.2) are satisfied for three well-known distributions involv-
ing Gaussian, Bernoulli and Poisson distributions, where C = ȳs .

The following theorem is a simple consequence of Lemma 2.1 and (2.3).

THEOREM 2.1. In addition to the conditions of Lemma 2.1, suppose that
fn → f for some 0 < f < 1. Then

�̂Y B → f ȳs + (1 − f )C

as n → ∞.

In the Appendix, we note that the convergence proof of Theorem 2.1 does not
use any assumptions regarding the sampling design. In general, for large n, �̂Y B is
not design-consistent, except possibly for a self-weighting sampling design. Let
ȳw be any design-consistent estimator of �Y . For example, we can choose ȳw to
be the well-known Hansen–Hurwitz or Horvitz–Thompson estimator. Then, using
Theorem 2.1, we can obtain the following design-consistent estimator of �Y based
on the Bayes estimator:

�̂Y = �̂Y B − {f ȳs + (1 − f )C − ȳw}.
For a self-weighing design, ȳw = ȳs , and so the Bayes estimator is indeed design-
consistent for the three examples given in the Appendix.

3. Hierarchical Bayes estimator and its limiting behavior. In this section
we extend the results of Section 2 and consider two important cases: case (i) φ is
known, but β and r are unknown, and case (ii) all of the hyperparameters are
unknown. To treat these two cases, we need further information on the finite pop-
ulation that allows estimation of unknown hyperparameters through an appropri-
ate hierarchical Bayes method. To this end, consider a finite population divided
into m strata. Let Yij denote the value of the j th observation in the ith stratum
(i = 1, . . . ,m; j = 1, . . . ,Ni). We consider the estimation of a particular stratum
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mean. Without loss of generality, we consider estimation of the mth stratum mean
given by �Ym = N−1

m

∑Nm

j=1 Ymj , where Nm is the known population size for the
mth stratum. We assume that the sample ys consists of ni observations from the
ith stratum, 1 ≤ i ≤ m.

In addition to (2.1) and (2.2), for each Yij (i = 1, . . . ,m; j = 1, . . . ,Ni), we
assume that β and r are independent, with β ∼ U(−∞,∞), an improper uniform
distribution over the real line, and r ∼ G(a,b), a gamma distribution with density
proportional to r(b/2)−1 exp[−(a/2)r].

Writing θ = [θ1, . . . , θm]′, we obtain the conditional density

π(θ ,β, r, φ|ys) ∝
m∏

i=1

ni∏
j=1

exp[φ−1{yij θi − ψ(θi)} + ρ(yij , φ)]

×
m∏

i=1

{
exp[−(r/2){h(θi) − β}2]h′(θi)r

1/2}
(3.1)

× exp[−ar/2]r(b/2)−1.

First, consider case (i). In this case, we show that (see the Appendix)

E[ψ ′(θm)|ys]
(3.2)

= ETnm
[ψ ′(Tnm)h′(Tnm)g(Tnm)]/ETnm

[h′(Tnm)g(Tnm)],
where the expectation in (3.2) is taken with respect to a random variable Tnm with
density (as a function of t)

exp[φ−1nm{ȳmt − ψ(t)}]
/∫

exp[φ−1nm{ȳmτ − ψ(τ)}]dτ,(3.3)

and where g is a function defined in (A.7).
This leads to the following lemma, which, in turn, proves the convergence of

the hierarchical Bayes estimator to ȳm.

LEMMA 3.1. Assume the following regularity conditions.

(R.3) The functions ψ ′(·)h′(·)g(·) and h′(·)g(·) are bounded.
(R.4) The sequence of random variables {Tnm} converges in probability [with

respect to (3.3)] to T as nm → ∞.

Then E[ψ ′(θm)|ys] converges to Cm = ψ ′(T ).

REMARK 3.1. As before, we can check that the regularity conditions (R.3)
and (R.4) are satisfied for all three examples in the Appendix and that in each case
Cm = ȳm. Verification of (R.4) is similar to that of (R.2). Verification of (R.3) may
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be facilitated by noting that

g(θm) ≤
∫ m−1∏

i=1

{
h′(θi)

ni∏
j=1

exp[φ−1{yij θi − ψ(θi)}]
}

×
[
a +

m∑
i=1

h2(θi)

]−(b+m−1)/2 m−1∏
i=1

dθi.

For example, in the case of normal distribution,

g(θm) ≤ [a + θ2
m]−(b+m−1)/2

∫ m−1∏
i=1

ni∏
j=1

exp[σ−2{yij θi − θ2
i /2}]

m−1∏
i=1

dθi < ∞.

The following theorem is an immediate consequence of Lemma 3.1. The theorem
suggests a simple adjustment to the hierarchical Bayes estimator to achieve the
design-consistency property.

THEOREM 3.1. In addition to the regularity conditions of Lemma 3.1, assume
that fnm := nm/Nm → fm for some 0 < fm < 1. Let �̂Y HB

m be the hierarchical
Bayes estimator of �Ym. Then

�̂Y HB
m → fmȳm + (1 − fm)Cm

as nm → ∞.

Let ȳmw be any design-consistent estimator of �Ym. Then �̂Ym = �̂Y HB
m −{fmȳm +

(1−fm)Cm− ȳmw} is design-consistent, based on the hierarchical Bayes estimator.
Now consider case (ii). Suppose φ, β and r are mutually independent. Further-

more, let v := 1/φ ∼ U(0,∞), β ∼ U(−∞,∞) and r ∼ G(a,b).
In this case, we will consider the normal distribution only, since φ is known for

the binomial and Poisson examples. Since h(θ) = θ , integrating (3.1) with respect
to β , r and v (in that order), we obtain

π(θ |ys)
(3.4)

∝
{

m∑
i=1

ni∑
j=1

(yij − θi)
2

}−(nT /2+1)[
a +

m∑
i=1

{θi − θ̄}2

]−(b+m−1)/2

,

where nT = ∑m
i=1 ni . In the Appendix, we show that

E[ψ ′(θm)|ys] → ȳm.(3.5)
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4. Uncertainty measures. A conventional measure of uncertainty of the hier-
archical Bayes estimator �̂Y HB

m is simply the posterior variance V (�Ym|ys). Noting

that V (�Ym|ys) = E[(�̂Y HB
m − �Ym)2|ys], we may define a measure of uncertainty

(MU) of �̂Ym as

MU(1)
m = E[(�̂Ym − �Ym)2|ys] = V (�Ym|ys) + [�̂Ym − �̂Y HB

m ]2.

Thus, in order to achieve design-consistency, we increase this measure by
[�̂Ym − �̂Y HB

m ]2. However, this apparent increase may be misleading, since this will
only happen if the assumed hierarchical model holds for all units of the finite
population, an assumption hard to justify for the unobserved units of the finite
population based on the observed units in the sample.

We now propose an alternative measure of uncertainty following the work
of Prasad and Rao [20], who considered a design-consistent pseudo-EBLUP for
a nested error regression model. Following their approach, we define the mean
squared error of �̂Ym as

MSE(�̂Ym) = E[�̂Ym − ηm]2,

where ηm = E(�Ym|θm), the expectation being taken over the first two levels of the
hierarchical model. Unlike the previous approach, this approach does not require
extensive model assumptions regarding the unobserved units of the finite popula-
tion, except for the mild assumption of the existence of a random effect θm. This
is certainly an advantage of this approach over the previous approach.

Let η̂B
m = η̂B

m(φ) be the Bayes estimator of ηm. Note that

MSE(�̂Ym) = h1m(φ) + h2m(φ),

where h1m(φ) = E[η̂B
m − ηm]2 and h2m(φ) = E[�̂Ym − η̂B

m]2. It is possible to write
down an explicit expression for h1m(φ), although it may not be in closed form.

Let φ̂ be any commonly used consistent estimator of φ. For example, in a mixed
linear normal model, we can consider the residual maximum likelihood estimators
(REML) for the variance components and weighted least squares with estimated
variance components for the regression coefficients. We can estimate h1m(φ) by
h1m(φ̂) and h2m(φ) by ĥ2m(φ̂) = [�̂Ym − η̂EB

m ]2, where η̂EB
m = η̂B

m(φ̂), an empir-
ical Bayes estimator of ηm. We propose the following as the second measure of
uncertainty of �̂Ym:

MU(2)
m = h1m(φ̂) + ĥ2m(φ̂).

Note that MU(2)
m does not incorporate the variability due to the estimation of φ.

On the other hand, MU(1)
m incorporates all sources of variability, but may be sensi-

tive to the specification of the prior distribution on φ. Thus, as a compromise, we
propose the following measure of uncertainty:

MU(3)
m = MU(1)

m + MU(2)
m

2
.
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5. A Monte Carlo simulation. In this section, we conduct a Monte Carlo
simulation study to compare the performances of MU(1),MU(2) and MU(3), pro-
posed in Section 4. In particular, we study the performances of these measures in
estimating the design-based mean squared error defined as MSEd(�̂Ym) = Ed(�̂Ym−
�Ym)2, where Ed denotes an expectation with respect to the sampling design.

We consider 100 finite populations, each of size 60. The main variable Y

is generated for each unit of the finite populations using a nested error model
Yij = µ + vi + eij , where µ is the fixed effect, vi ∼ N(0, σ 2

v ) are the random
effects and eij ∼ N(0, σ 2

e ), with the {vi}’s and the pure errors {eij }’s assumed to
be independent, 1 ≤ i ≤ 100, 1 ≤ j ≤ Ni = 60. We set µ = 50 and σv = 1 and
consider two different values of σe, namely σe = 1 and 2.

We draw a sample of size n from each finite population using a probability
proportional to size with replacement (PPSWR) sampling design. We consider
three different choices of n, namely 10, 20 and 30. The size measure is gener-
ated for each unit of the finite populations using an exponential distribution with
mean 1.

Flat priors on the hyperparameters are used to obtain the posterior mean and the
posterior variance needed to compute MU(1). We use PROC MIXED in SAS to
generate 1050 observations from the posterior distributions, but only the last 1000
observations are retained for approximating the posterior means and variances.
Essentially, PROC MIXED uses a Markov chain Monte Carlo (MCMC) technique.
PROC IML is used to obtain the required posterior means and posterior variances.
For the second measure MU(2), φ is estimated by the residual maximum likelihood
(REML) method.

The relative bias (RB) and relative root mean square error (RRMSE) for the
i-population (1 ≤ i ≤ 100) using the kth measure of uncertainty (1 ≤ k ≤ 3) are
defined as

RB(k)
i = Ed [MU(k)

i ] − MSEd(�̂Y i)

MSEd(�̂Y i)

and

RRMSE(k)
i =

√
Ed [MU(k)

i − MSEd(�̂Y i)]2

MSEd(�̂Y i)
,

respectively. Table 1 reports the average RB {ARB(k);1 ≤ k ≤ 3} and average
RRMSE {ARRMSE(k);1 ≤ k ≤ 3} for different combinations of (n, σe), the av-
erage being taken over all 100 finite populations. In terms of ARB, it appears that
the measure MU(1) has a slight tendency to overestimate the design-based MSE,
whereas MU(2) has a slight tendency to underestimate. This is probably due to
the fact that MU(1) attempts to incorporate all sources of variability, while MU(2)

does not incorporate the variability in estimating φ. It is interesting to note that
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TABLE 1
ARB and ARRMSE of the three different measures of uncertainty

n ARB ARRMSE

ARB(1) ARB(2) ARB(3) ARRMSE(1) ARRMSE(2) ARRMSE(3)

σe = 1
10 0.001 −0.051 −0.025 1.132 0.523 0.743
20 0.011 −0.004 0.004 1.340 0.673 0.891
30 0.017 0.010 0.013 1.515 0.761 1.003
σe = 2
10 0.052 −0.109 −0.029 1.266 0.726 0.935
20 0.045 −0.060 −0.007 1.471 0.821 1.051
30 0.044 −0.022 0.011 1.566 0.883 1.101

for all the measures, ARRMSE increases with the increase of n. This behavior can
be explained by the pattern of the inclusion probabilities induced by our sampling
design; see [15] for details. In terms of the ARRMSE, MU(2) is better than both
MU(1) and MU(3). Overall, the measure MU(3) is a compromise between MU(1)

and MU(2).

6. Concluding remarks. In this paper, we examine a useful asymptotic be-
havior of the hierarchical Bayes estimator of a finite population mean. This leads
to a simple method for constructing a design-consistent model-based estimator of
a finite population mean. The method is general, in that it can be easily applied
to both normal and nonnormal cases and is applicable to any complex weighting
scheme. We have also addressed the important issue of measuring uncertainty of
our proposed estimator. The simulation study reveals that our second measure suf-
fers from a slight downward design-based bias. In the future, the Taylor series or
a parametric bootstrap method as in [14] may be considered in an effort to reduce
the bias. It is conceivable that our method extends beyond the stratified sampling
design, for example, the multi-stage sampling design considered in [7] and [17],
but this needs further research.

APPENDIX

Proof of Lemma 2.1. First we compute E[ψ ′(θ)|ys]. Using (2.1), (2.2) and
the fact that if a random variable h(θ) has density d(·), then θ has density
d{h(θ)}h′(θ), we obtain the conditional density

π(θ |ys) ∝ exp[−(r/2){h(θ) − β}2]h′(θ)
(A.1)

× exp[−nφ−1ψ(θ)] × exp[φ−1nȳsθ ].
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This yields

E[ψ ′(θ)|ys]
=

{∫
ψ ′(t) exp[−(r/2){h(t) − β}2]h′(t) exp[−nφ−1ψ(t)] exp[φ−1nȳst]dt

}
÷

{∫
exp[−(r/2){h(t) − β}2]h′(t) exp[−nφ−1ψ(t)] exp[φ−1nȳst]dt

}
,

which is a function of n and ȳs .

Therefore,

E[ψ ′(θ)|ys] = {
ETn

[
ψ ′(Tn) exp[−(r/2){h(Tn) − β}2]h′(Tn)

]}
(A.2)

÷ {
ETn

[
exp[−(r/2){h(Tn) − β}2]h′(Tn)

]}
,

where the expectation in (A.2) is taken with respect to a random variable Tn with
density (2.4). The proof now follows by using the bounded convergence theorem
on both the numerator and the denominator of (A.2).

Verification of the conditions of Lemma 2.1. When φ is known in (2.1), we
verify the conditions of Lemma 2.1 for the Gaussian, Bernoulli and Poisson distri-
butions. Verification of (R.1) is trivial.

EXAMPLE 1. Suppose that conditional on θ , Y is normal with mean θ and
variance σ 2. Then equation (2.4) becomes

exp[−nt2/(2σ 2)] exp[tnȳs/σ
2]

/∫
exp[−nτ 2/(2σ 2)] exp[τnȳs/σ

2]dτ,

a normal density with mean ȳs and variance σ 2/n. Hence, T = ȳs and C = ȳs .

EXAMPLE 2. Suppose that conditional on θ , Y is Bernoulli with success prob-
ability γ = eθ/(1 + eθ ). The numerator of (2.4) becomes

etȳsn/(1 + et )n = [et/(1 + et )]nȳs [1 − et/(1 + et )]n−nȳs .

Hence, Vn := eTn/(1 + eTn) has a Beta distribution converging to ȳs . Therefore,
C = ψ ′(T ) = ȳs .

EXAMPLE 3. Suppose that conditional on θ , Y is Poisson with success rate
λ = eθ . The numerator of (2.4) becomes exp[−n(et − t ȳs)]. Hence, Vn := eTn

has the Gamma density e−nvvnȳs−1I (v > 0)/
(nȳs). Since E(Vn) = ȳs and
Var(Vn) → 0, Vn converges to ȳs . Therefore, C = ψ ′(T ) = ȳs .
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VERIFICATION OF (3.2). First, integrating (3.1) with respect to β , we obtain

π(θ , r|ys) ∝
m∏

i=1

ni∏
j=1

exp[φ−1{yij θi − ψ(θi)}]

×
m∏

i=1

{h′(θi)}rm/2 × exp[−ar/2]r(b/2)−1(A.3)

×
∫

exp

[
−(r/2)

m∑
i=1

{h(θi) − β}2

]
dβ.

Then writing
∑m

i=1{h(θi)−β}2 = ∑m
i=1{h(θi)− h̄}2 +m(β − h̄)2, the last integral

in (A.3) is proportional to r−1/2 exp[−(r/2)
∑m

i=1{h(θi) − h̄}2]. Hence,

π(θ , r|ys) ∝
m∏

i=1

ni∏
j=1

exp[φ−1{yij θi − ψ(θi)}] ×
m∏

i=1

{h′(θi)}
(A.4)

× r{(m+b−1)/2)−1} exp

{
−(r/2)

[
a +

m∑
i=1

{h(θi) − h̄}2

]}
.

Integrating (A.4) with respect to r on (0,∞) and using the formula for the gamma
integral,

π(θ |ys) ∝
m∏

i=1

ni∏
j=1

exp[φ−1{yij θi − ψ(θi)}] ×
m∏

i=1

h′(θi)

(A.5)

×
[
a +

m∑
i=1

{h(θi) − h̄}2

]−(b+m−1)/2

.

Integrating (A.5) with respect to θ1, . . . , θm−1, we obtain

π(θm|ys) ∝
nm∏
j=1

exp[φ−1{ymjθm − ψ(θm)}] × h′(θm) × g(θm),(A.6)

where

g(θm) =
∫ m−1∏

i=1

{
h′(θi)

ni∏
j=1

exp[φ−1{yij θi − ψ(θi)}]
}

(A.7)

×
[
a +

m∑
i=1

{h(θi) − h̄}2

]−(b+m−1)/2 m−1∏
i=1

dθi.
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Note that the function g does not involve nm (which will be allowed to go to
infinity). Then, from (A.6),

E[ψ ′(θm)|ys] =
∫

ψ ′(t)π(t |ys) dt

= ETnm
[ψ ′(Tnm)h′(Tnm)g(Tnm)]/ETnm

[h′(Tnm)g(Tnm)].

VERIFICATION OF (3.5). Note that

E[ψ ′(θm)|ys] =
∫

θvnm(θ |ys) dθ
/∫

vnm(θ |ys) dθ,(A.8)

where

vnm(θm|ys)

=
∫ {

m∑
i=1

ni∑
j=1

(yij − θi)
2

}−(nT /2+1){
a +

m∑
i=1

(θi − θ̄ )2

}−(b+m−1)/2

d

m−1∏
i=1

θi

=
{
nm(θm − ȳm)2 +

nm∑
j=1

(ymj − ȳm)2

}−(nm/2+1)

×
∫ [{

nm(θm − ȳm)2 +
nm∑
j=1

(ymj − ȳm)2

}(nm/2+1)

×
({

m∑
i=1

ni∑
j=1

(yij − θi)
2

}(nT /2+1)

×
{
a +

m∑
i=1

(θi − θ̄ )2

}(b+m−1)/2)−1]
d

m−1∏
i=1

θi

=
{
nm(θm − ȳm)2 +

nm∑
j=1

(ymj − ȳm)2

}−(nm/2+1)

× l(θm, ys), say.

Write hnm(θ |ys) = k(ys){nm(θm − ȳm)2 + ∑nm

j=1(ymj − ȳm)2}−(nm/2+1), where
k(ys) is such that hnm is a density. Then, from (A.8),

E[ψ ′(θm)|ys] =
∫

θl(θ, ys)hnm(θ |ys) dθ
/∫

l(θ, ys)hnm(θ |ys) dθ.(A.9)

Next, we show that hnm is the p.d.f. of a random variable that converges in prob-
ability to ȳm as nm tends to infinity. Then the result that the hierarchical Bayes
estimator converges to ȳm follows by noting the boundedness of the function
θ ⇒ θl(θ, ys).
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For simplicity, write n for nm. Note that hn is a density of the form c/{n(x −
µ)2 + d}n/2+1. Clearly, the mean is µ. To prove convergence in probability, we
next show that for any ε1 > 0,∫ ∞

ε1

(nx2 + d)−(n/2+1) dx
/∫ ∞

0
(nx2 + d)−(n/2+1) dx → 0.(A.10)

Substituting x = (d/n)1/2y, the above becomes equals
∫ ∞
n1/2ε(y

2 + 1)−(n/2+1)dy/∫ ∞
0 (y2 + 1)−(n/2+1) dy, where ε := ε1/d

1/2. The numerator is bounded above by∫ ∞
n1/2ε(n

1/2εy + 1)−(n/2+1) dy, which is O(1/{n3/2(n1/2ε)n}). The denominator is
bounded below by

∫
(2ey)−n dy = O(1/n2n). Hence, (A.10) follows.
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