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We describe an algorithm for the sequential sampling of entries in multi-
way contingency tables with given constraints. The algorithm can be used for
computations in exact conditional inference. To justify the algorithm, a theory
relates sampling values at each step to properties of the associated toric ideal
using computational commutative algebra. In particular, the property of inter-
val cell counts at each step is related to exponents on lead indeterminates of
a lexicographic Gröbner basis. Also, the approximation of integer program-
ming by linear programming for sampling is related to initial terms of a toric
ideal. We apply the algorithm to examples of contingency tables which ap-
pear in the social and medical sciences. The numerical results demonstrate
that the theory is applicable and that the algorithm performs well.

1. Introduction. Sampling from multiway contingency tables with given
constraints can be used to compute exact Monte Carlo p-values of goodness-of-fit
and parameter significance for conditional inference. This is desirable when the
tables of interest are numerous but have entries that raise doubts about the valid-
ity of asymptotic methods. A classical application is testing for Hardy–Weinberg
equilibrium with multiple alleles, where some alleles may be quite rare and result
in sparse tables [20]. Other applications are described in [2, 6, 13]. A more general
problem is sampling from nonnegative integer lattice points. This includes contin-
gency tables, and further applications such as Monte Carlo EM algorithms with
incomplete data [31] and Bayesian computation of posterior distributions [30].

Markov chain Monte Carlo (MCMC) has been a popular technique for gen-
erating random samples from tables with given constraints. It is usually easy to
program, does not require a lot of memory, and has wide applicability. Diaconis
and Sturmfels [14] gave algebraic characterizations of the moves necessary to run
such a Markov chain. However, for some loglinear models the constraints from suf-
ficient statistics on multiway tables make it difficult to design irreducible Markov
chains. Diaconis and Sturmfels [14] gave a method to produce Markov moves
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that connect all tables with given constraints, but in some practical cases, such as
large logistic regression examples, the moves cannot be computed. It is sometimes
possible to do computations with a smaller collection of moves by letting some
entries in the space of tables go negative. This idea is used in [4, 7]. The cost is a
longer running time for the Markov chain. In general, the running times of these
Markov chains are very difficult to judge. Therefore, Markov chains have three
disadvantages: (1) they can be hard to design, (2) they can take a long time to run
to stationarity, and (3) the time to run to stationarity may not be clear.

Sequential importance sampling (SIS) avoids these disadvantages of Markov
chains because it is relatively easy to implement and there is no issue of converg-
ing to a stationary distribution. Chen et al. [6] introduced an SIS procedure for
simulating two-way zero–one and contingency tables with fixed marginal sums,
which compares favorably with other existing Monte Carlo-based algorithms. Sim-
ilar techniques have also been applied to a logistic regression problem in [7]. This
paper shows that SIS can be implemented efficiently for many multiway contin-
gency table problems that have been studied mostly with Markov chains.

The idea behind SIS is to sample cell entries in the contingency table one after
the other so that the final joint distribution (i.e., the proposal distribution) is close
to the target distribution. SIS does not have the same disadvantages as a Markov
chain, because the method terminates at the last cell and generates i.i.d. samples
from the proposal distribution. However, SIS raises a new set of implementation
issues. The main problems are approximating the support of the marginal distri-
bution of each cell quickly, and then approximating the marginal distribution on
the support set with a proposal distribution. We show how properties of the sam-
pling set at each step can be deduced from algebraic conditions on a collection of
Markov moves. The results of this paper extend the applicability of SIS from two-
way tables [6] to a wider range of multiway tables and allow further comparison
with Markov chain methods.

The target distribution on the collection of tables may be hypergeometric, which
arises in conditional inference with multinomial sampling, or it may be another re-
lated distribution such as the one for Hardy–Weinberg proportions. SIS can yield
an approximate count of constrained tables very quickly when the target distribu-
tion is uniform. This application has been carried out in [6], where SIS was shown
to be more efficient than Markov chains for counting and testing two-way tables.
Combinatorists are interested in counting tables with given constraints [11]. Count-
ing tables is also related to conditional volume tests [13]. In our multiway exam-
ples, we found approximate counts of tables without difficulty. The exact counting
software LattE [11] confirmed the counts on the two smaller examples. The uni-
form target distribution is also useful for Bayesian applications where a uniform
prior on probabilities leads to equally likely tables, and for the conditional volume
test [13].

The paper is organized as follows. In Section 2 we introduce essential ideas
of SIS. The algebraic conditions for efficient sampling are formulated in Sections



SIS FOR MULTIWAY TABLES 525

3 and 4. Many of the algebraic ideas of Markov chains on lattice points are used.
Section 3 treats the basic case where properties of polynomials generating the toric
ideal are related to SIS. Section 4 is more technical and develops stronger methods
for subsets of the Markov basis. These results can apply when the observed mar-
gins imply conditions of positivity on the tables constrained by the margin values.

Section 5 is about the relationship between linear programming (LP) and integer
programming (IP). When the support of the marginal cell distribution is an inter-
val of integers [l, u], a situation established under conditions in Sections 3 and 4
and which occurs often in practice, one needs the values of the upper and lower
bounds. Knowing then that LP and IP give nearly the same answer is important,
because using an IP algorithm at each step in the procedure would be much slower
than using LP. A precise algebraic relationship between LP and IP is developed
in [22], which gives an algorithm for finding the maximum difference between the
two over all conceivable data sets. The results here may be easier to apply in some
examples. In practice it is not essential that LP and IP be identical. Section 6 dis-
cusses sampling distributions for different target distributions. In Section 7 we give
a range of examples to show how well SIS can work in real problems. Section 8
provides concluding remarks.

2. Elements of SIS. Let � denote the set of all contingency tables with given
constraints. Assume � is nonempty. The p-value for conditional inference on con-
tingency tables can often be written as

µ = Epf (n) = ∑
n∈�

f (n)p(n),(1)

where p(n) is the underlying distribution on �, which is usually uniform or hy-
pergeometric and only known up to a normalizing constant, and f (n) is a function
of the test statistic. For example, if we let

f (n) = 1{p(n)≤p(n0)},(2)

where n0 is the observed table, formula (1) gives the p-value of the exact test [20].
In many cases sampling from p(n) directly is difficult. The importance sampling
approach is to simulate a table n ∈ � from a different distribution q(·), where
q(n) > 0 for all n ∈ �, and estimate µ by

µ̂ =
∑N

i=1 f (ni )p(ni )/q(ni )∑N
i=1 p(ni )/q(ni)

,(3)

where n1, . . . ,nN are i.i.d. samples from q(n). We can also estimate the total num-
ber of tables in � by

|̂�| = 1

N

N∑
i=1

1{ni∈�}
q(ni )

,(4)
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because |�| = ∑
n∈�

1
q(n)

q(n). The underlying distribution on � corresponding to
this case is uniform.

In order to evaluate the efficiency of an importance sampling algorithm, we can
look at the number of i.i.d. samples from the target distribution that are needed to
give the same standard error for µ̂ as N importance samples. A rough approxima-
tion for this number is the effective sample size [24]

ESS = N

1 + cv2 ,(5)

where the coefficient of variation (cv) is defined as

cv2 = varq{p(n)/q(n)}
E2

q{p(n)/q(n)} .(6)

Accurate estimation generally requires a low cv2, that is, q(n) must be sufficiently
close to p(n). We will use cv2 as a measure of efficiency for an importance sam-
pling scheme. In practice, the theoretical value of cv2 is unknown, so its sample
counterpart is used to estimate cv2. The standard error of µ̂ or |̂�| can be simply
estimated by further repeated sampling [6].

SIS as it applies to multiway tables fills in the entries of a table cell by cell,
in a way that guarantees that every table in � can be produced. More precisely,
we stack all entries of the table into a long vector n, and start by sampling the
first cell count n1 of the vector n with a proposal distribution q(n1). Conditional
on the realization of the first cell, we sample the second cell count n2 with a pro-
posal distribution q(n2|n1), and then move forward sequentially until all the cells
are sampled. Denoting the cell counts of n by n1, . . . , nd , we can write the joint
proposal distribution q as

q((n1, . . . , nd)) = q(n1)q(n2|n1)q(n3|n2, n1) · · ·q(nd |nd−1, . . . , n1).

Ideally, one would like to sample a cell value from the marginal distribution of
a cell entry, conditional on the entries that have already been sampled. However,
these marginal distributions are quite difficult to compute explicitly except in very
small examples. SIS then raises some problems if it is to be used effectively:
(1) When and how can the support of the marginal distribution ni |(ni−1, . . . , n1)

be quickly determined or approximated? (2) How can the support of the marginal
distribution be sampled with a proposal distribution q that is close to the true un-
derlying distribution p? We address these questions in the following sections of
the paper.

3. Sequential intervals and algebra. When they apply SIS to the problem
of sampling two-way contingency tables with fixed marginal sums, Chen et al. [6]
notice that the support of the marginal distribution ni |(ni−1, . . . , n1) is an interval
of integers [here n = (n1, . . . , nd) is the table in a vector format]. Therefore, they
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can sample a value from the interval at each step and always produce a table in �,
that is, every table satisfies the constraints. This saves a lot of computing time com-
pared to rejection sampling. Another advantage of having this interval property is
that one can find a good proposal distribution q(ni |ni−1, . . . , n1) more easily than
in the situation where there are gaps in the support set.

SIS tends to perform better when the sequential interval property holds, but for
general constraints on multiway tables, it is not always true that one can fill in
entries in sequence and expect the range of feasible values to be an interval of
integers. Examples where the sequential interval property does not hold are very
sparse logistic regression [7], many 3-way tables with certain margin constraints
(see [12] for the full range of difficulties with 3-way tables) and some triangular
tables of genotype data when cells are sampled in certain orders. Typically, there
may be a problem if the moves of a Markov basis involve changes in some entry
that are of size ±2 or larger. A precise condition is more complicated and weaker
than “no moves of size greater than 1,” and may depend on the margin values and
the order of the sequential sampling. In this section we give the basic theorems that
are not related to the actual values of the margin constraints. In the next section we
strengthen the results.

Now we introduce notation for lattice points and the algebra of polynomials
that will be used in our study of SIS. Let A be an r × d matrix of nonnegative
integers, denoted Z+. In applications d is the number of cells in the table, and r is
the number of parameters (not necessarily free) in an exponential family model. A

is often referred to as the constraint matrix and r is the total number of constraints.
We assume that a sum of some nonempty subset of the rows of A is a strictly
positive vector. In applications with multinomial sampling, this will be immediate
because the sample size is fixed, so the constant vector of ones is a row or is in the
row space of A. For t ∈ Zr+, let

A−1[t] := {n ∈ Zd+ :An = t}.
This is a collection of tables with linear constraints, that is, the set of nonnegative
integer points inside a polytope. The linear constraint value t will sometimes infor-
mally be called a margin constraint. The value of t will typically be the sufficient
statistics for a loglinear model. Our primary goal is to sample from A−1[t].

Let us first recall the notion of a Markov move on A−1[t]. If m ∈ kerZ(A)

(the null space of A in the integers), then m is a Markov move. With a collection
of such moves, one can define a symmetric Markov chain on A−1[t] by starting at
an initial state n ∈ A−1[t], and then uniformly choosing one of the moves m and
a sign on the move, and then moving to the new state n ± m if this new vector
is nonnegative (i.e., every entry is nonnegative). A Markov basis MA for A is a
subset of kerZ(A) such that, for each pair of vectors u,v ∈ Zd+ with Au = Av,
there is a sequence of vectors mi ∈ MA, i = 1, . . . , l, such that

u = v +
l∑

i=1

mi ,
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0 ≤ v +
j∑

i=1

mi , j = 1, . . . , l.

That is, two nonnegative vectors with the same linear constraints can be connected
with a sequence of increments from MA while always maintaining the linear con-
straints and the nonnegativity.

Define the polynomial ring Q[x1, . . . , xd ] in indeterminates (polynomial vari-
ables) x1, . . . , xd , one for each cell. Define the toric ideal

IA := 〈xn − xm :An = Am〉,
where xn := x

n1
1 x

n2
2 · · ·xnd

d is the usual monomial notation for a nonnegative in-
teger vector of exponents n = (n1, . . . , nd). The way to go between Markov
moves and polynomials is simple: order and number the cells in the table, cre-
ate an indeterminate (polynomial variable) for each cell in the table, and put
the positive Markov move cell values on one monomial, put the negative values
on another monomial, then form the difference. For example, the Markov move
(1,−1,−1,1)′ can be denoted as x1x4 − x2x3. The choice of cell ordering can be
important, as in Example 7.5.

There are two fundamental algebraic ideas related to Markov bases. For
m ∈ Zd , define m+ = max{0,m}, m− = max{0,−m}, so m = m+ − m−. The
first fundamental result, shown by Diaconis and Sturmfels ([14], Theorem 3.1), is
that a finite generating set of binomials {xm+

i − xm−
i , i = 1, . . . , g} for IA defines

Markov moves ±(m+
i − m−

i ), i = 1, . . . , g, that are a Markov basis in that they
connect all of A−1[t] when chosen randomly as vector increments, regardless of
the actual value of t. In other words, a Markov basis always exists independently
of the actual values of the linear constraints. The second fundamental result ([29],
Theorem 8.14) is that a collection of moves will connect two tables n and m if
xn − xm ∈ I , where I is the ideal generated by the collection of moves. This is
used to show connectivity for subcollections of the full Markov basis for particular
values of t in Section 4.

DEFINITION 3.1. Define the projection operator π1 :Zd → Z by π1(z1, . . . ,

zd) = z1.

LEMMA 3.1. Suppose a Markov basis MA satisfies π1(MA) ⊂ {−1,0,+1}.
Then π1(A

−1[t]) is an interval of integers [l1, u1].
PROOF. One can connect tables m,n ∈ A−1[t] with values m1 and n1 in the

first coordinate by changing the first coordinate only ±1 at each step, so the gap
between possible values cannot be greater than 1. �

If the columns of A are a1, . . . ,ad , let Ai = (ai ,ai+1, . . . ,ad) be the matrix that
deletes the first i − 1 columns and keeps the last d − i + 1 columns of A.
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DEFINITION 3.2. The polytope A−1[t] has the sequential interval property
if π1(A

−1[t]) is an interval of integers [l1, u1], and for i = 1, . . . , d − 1: if ni ∈
π1(A

−1
i [t − n1a1 − · · · − ni−1ai−1]), then π1(A

−1
i+1[t − n1a1 − · · · − ni−1ai−1 −

niai]) is also an interval of integers [li+1, ui+1].

The next result is the most basic connection between the sequential interval
property and the exponents of a lex basis for the toric ideal. An important point
is that the condition does not require that all exponents in the Markov basis have
magnitude at most 1. Rather, it requires that the exponent be at most 1 on the
indeterminate xi (square-free in xi ) on the moves that involve only the present
and future cells i, i + 1, . . . , d in the lex basis. This point is important for many
examples, including 3 × 3 × 3 tables with no-3-way interaction (Example 7.4).

With a particular cell order, the indeterminates are typically ordered x1 > x2 >

· · · > xd , and then one can introduce term orders. We primarily use the lexico-
graphic term order (lex order), which totally orders monomials (or, equivalently,
their vector exponents corresponding to tables) by declaring xn > xm if and only
if the first entry from the left in n − m is positive (or n is after m in the dictio-
nary sense). Cox, Little and O’Shea ([10], page 52) explain term orders, including
the grevlex order that we use in Section 5 where the indeterminates are taken in
reverse order xd > xd−1 > · · · > x1.

In the following, we use the term “Gröbner basis,” which is a special generating
set for an ideal ([10], page 74). Lex Gröbner basis (or lex basis) will mean Gröbner
basis with respect to lexicographic term order ([10], page 54) and reduced Gröbner
basis is a unique representation ([10], page 90).

PROPOSITION 3.1. Suppose a Markov basis MA = {±m1, . . . ,±mg} has

the property that G := {xm+
i − xm−

i , i = 1, . . . , g} is a lex Gröbner basis with
ordering x1 > x2 > · · · > xd on indeterminates and suppose the elements of
G∩Q[xi, . . . , xd ] are square-free in xi for each i. Then A−1[t] has the sequential
interval property for all t.

PROOF. By the elimination theorem ([10], page 113), the lex basis G has the
property that G ∩ Q[xi, . . . , xd ] is a Gröbner basis for the ideal IAi

= 〈xm − xn,

Aim = Ain〉. Hence, by Theorem 3.1 of Diaconis and Sturmfels [14], the differ-
ence of the exponents (together with signs ±) of elements in G ∩ Q[xi, . . . , xd ] is
a Markov basis with 0 in coordinates 1,2, . . . , i − 1. An application of Lemma 3.1
to the matrix Ai with first coordinate ni completes the proof. �

When using this result, some orders on the cells may have the square-free prop-
erty and others may not, so it can be used to find good orderings on the cells. The
sensitivity to cell ordering shows up in many examples, including logistic regres-
sion and Hardy–Weinberg testing with genotype data (Example 7.5).
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In fact, the converse to Proposition 3.1 is also true, in the sense that matrices A,
such that A−1[t] has the sequential interval property regardless of t, are character-
ized by their lex Gröbner bases.

PROPOSITION 3.2. Let A be a nonnegative integer matrix such that A−1[t]
has the sequential interval property for all t. Then the reduced lex Gröbner basis G

for IA with ordering x1 > x2 > · · · > xd has G∩Q[xi, . . . xd ] square-free in xi for
all i.

PROOF. It suffices to prove the claim on the first cell, the rest following by
induction. Let G := {xm+

i − xm−
i } be the reduced lex Gröbner basis. In particular,

none of the monomials xm+
i is divisible by the leading monomial of any other

binomial in IA. Suppose there is some xm+ − xm− ∈ G with π1(m+) = a > 1. Let
t = Am+. Since A−1[t] has the sequential interval property and π1(m−) = 0, there
exists n ∈ A−1[t] with π1(n) = a − 1. Then the binomial x−a+1

1 (xm+ − xn) ∈ IA

is not equal to xm+ − xm−
, and has leading term x−a+1

1 xm+
which divides xm+

.
This is a contradiction and xm+ − xm−

is not in the reduced Gröbner basis G. �

4. Markov subbases. In this section we give results that can be used when
the full Markov basis does not have the required properties to guarantee sequen-
tial intervals. Situations where this occurs include logistic regression [7] and Ex-
ample 7.3, where the lex bases for the toric ideals do not have the conditions of
Proposition 3.1.

The results in this section use the particular values of the margin constraints,
which may allow a smaller and simpler connecting set that we call a Markov sub-
basis. An existing method to study connectivity properties of subsets of a Markov
basis is the primary decomposition ([10], page 208). While useful in some ex-
amples, it is usually quite difficult to compute. The methods in this section use
computational tools that are more easily applied in many cases.

To motivate some of the ideas that follow, recall that in some contingency ta-
bles it is possible to easily identify a reasonable collection of Markov moves that
preserve the required constraints and are a basis in the linear algebra sense for the
kernel of the constraint matrix. However, a basis in the linear algebra sense does
not always give a Markov basis—the Markov basis allows you to connect all ta-
bles while remaining nonnegative, a condition not guaranteed by the linear algebra
basis. The smaller collection, while not a Markov basis, may connect tables with
certain margin values while remaining nonnegative. The linear algebra basis can
be enlarged to a Markov basis by a process called saturation discussed below, and
the result can be much more complicated than the original collection of moves.

A lex basis for the toric ideal IA for a constraint matrix A is quite special in
that the Markov moves that involve cells i, i + 1, . . . , d are a lex basis for the toric
ideal for IAi

. This is a consequence of the elimination theorem, and means that
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one lex basis calculation gives sequential sampling information about all the cells
in sequence. With a collection of moves smaller than a lex basis for IA, the theory
is more difficult.

A Markov subbasis MA,t for t ∈ Zr+ and integer matrix A is a finite subset of
kerZ(A) such that, for each pair of vectors u,v ∈ A−1[t], there is a sequence of
vectors mi ∈ MA,t, i = 1, . . . , l, such that

u = v +
l∑

i=1

mi ,

0 ≤ v +
j∑

i=1

mi , j = 1, . . . , l.

The connectivity through nonnegative lattice points only is required to hold for
this specific t.

LEMMA 4.1. Suppose a Markov subbasis MA,t satisfies π1(MA,t) ⊂ {−1,

0,+1}. Then π1(A
−1[t]) is an interval of integers [l1, u1].

PROOF. One can connect tables with feasible values n1 and m1 in the first co-
ordinate by changing the first coordinate only ±1 at each step, so the gap between
possible values cannot be greater than 1. �

The following proposition is used in Examples 7.3 and 7.4, where Proposi-
tion 3.1 cannot be used. Recall that a lex basis for a toric ideal has the property
that each elimination ideal ([10], page 113) is also a lex basis for a remaining toric
ideal, so applying Lemma 4.1 in sequence is immediate. With a subbasis, how-
ever, one must add a technical condition involving saturation to get the sequential
application of Lemma 4.1.

Saturation (see [28], page 113 or [25], page 215) is an algebraic procedure
that enlarges an ideal. In our case the ideal will correspond to a collection of
Markov moves possibly less than a full Markov basis. If I is an ideal in the
ring Q[x1, . . . , xd ] and f is a polynomial, then the saturation of I by f (de-
noted I :f ∞) is defined by

I :f ∞ := {g ∈ Q[x1, . . . , xd ] :f k · g ∈ I for some k ≥ 0},
which is also an ideal. For the indeterminate xi , I :x∞

i is the collection of polyno-
mials g such that xk

i g is in the ideal I for some choice of the exponent k.

PROPOSITION 4.1. Suppose MA,t is a Markov subbasis, let MA,t = {±m1,

. . . ,±mg} and let G := {xm+
i − xm−

i , i = 1, . . . , g}. Suppose G has the following
three properties: (1) G is a lex Gröbner basis for the generated ideal IMA,t with
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order x1 > x2 > · · · > xd on indeterminates; (2) G ∩ Q[xi, . . . , xd ] are square-
free in xi for each i; and (3) (IMA,t :x∞

i ) ∩ Q[xi+1, . . . , xd ] ⊂ IMA,t for each
i = 1,2, . . . , d − 1. Then the polytope A−1[t] has the sequential interval property.

PROOF. By Lemma 4.1, π1(A
−1[t]) is an interval. We must show that two

tables in A−1[t] with a common entry in coordinate 1 can be connected with moves
in MA,t without touching coordinate 1. To see this, suppose tables u′,v′ ∈ A−1[t]
have common first coordinate u1 = v1 = c.

Let u = (0, u2, u3, . . . , ud), v = (0, v2, v3, . . . , vd). We must show that xu −
xv ∈ 〈G ∩ Q[x2, . . . , xd ]〉 to be able to connect them with moves in G that only
involve changing the second coordinate (by only ±1 at each step). Since G is a lex
basis, 〈G ∩ Q[x2, . . . , xd ]〉 = IMA,t ∩ Q[x2, . . . , xd ], and it is enough to show that
xu − xv ∈ IMA,t . We have that xu − xv ∈ IA.

Since xc
1(x

u − xv) = xu′ − xv′ ∈ IMA,t , the binomial xu − xv ∈ (IMA,t :x∞
1 ) ∩

Q[x2, . . . , xd ]. Under the assumption (IMA,t :x∞
1 ) ∩ Q[x2, . . . , xd ] ⊂ IMA,t , the

first step is proven.
Suppose now that two tables u′,v′ ∈ A−1[t] have common first two co-

ordinates u1 = v1 = c1, u2 = v2 = c2. Let u = (0,0, u3, u4, . . . , ud), v =
(0,0, v3, v4, . . . , vd). We must show that xu − xv ∈ 〈G ∩ Q[x3, . . . , xd ]〉 to be
able to connect them with moves in G that only involve changing the third
coordinate (by only ±1 at each step). By the argument above, we have that
x

c2
2 xu − x

c2
2 xv ∈ IMA,t . Then by the saturation condition on x2, xu − xv ∈

(IMA,t :x∞
2 ) ∩ Q[x3, . . . , xd ] ⊂ MA,t.

The argument continues likewise for each cell in the order 1,2, . . . , d . �

To use Proposition 4.1, one must have in hand a Markov subbasis, which re-
quires knowing some connectivity properties. These can be established sometimes
with ad hoc arguments or with the primary decomposition of the ideal IMA,t .
Lemma 4.2 below is a new method to verify a Markov subbasis, and we use it
in Example 7.3. The quotient “:” operation is defined by I :f := {g :f ·g ∈ I }, the
result of one step of the saturation procedure defined above.

LEMMA 4.2. Let M ⊂ kerZ(A) be Markov moves with ideal IM . Suppose
each element n ∈ A−1[t] satisfies ns > 0 for all s ∈ S ⊂ {1, . . . , d}, and sup-
pose that (IM :

∏
s∈S xs) = IA, the toric ideal. Then the moves in M connect all

of A−1[t] and are therefore a Markov subbasis.

PROOF. Let u,v ∈ A−1[t], and let u′ = u − IS , v′ = v − IS , where IS is the
vector with 1 in the coordinates that are in the set S, and 0 elsewhere. Clearly,
xu′ − xv′ ∈ IA, so by the saturation assumption (xu′ − xv′

)
∏

s∈S xs ∈ IM . The
fundamental result of Diaconis and Sturmfels ([14], Theorem 3.1) says that the
moves in M connect u = u′ + IS with v = v′ + IS through the nonnegative tables.

�
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5. Bounds on cell entries. When the conditions for sequential interval prop-
erty are met, the next question is how to quickly determine or approximate the up-
per and lower bounds of the interval [l, u]. In very special cases one can use known
formulas for the interval, such as the Fréchet bounds. This works in two-way ta-
bles and some decomposable graphical models [6]. For general multiway tables,
usually no simple formula is available to compute the bounds. Three general ways
to determine or approximate the upper and lower bounds of the interval [l, u] are
integer programming (IP), linear programming (LP) and the shuttle algorithm. IP
always gives the exact integer bounds l and u, but it is much slower than the other
two methods.

LP in the rational numbers can dynamically find bounds on the interval at each
step in the sampling. LP is much faster than IP, and under conditions that hold in
many examples, LP gives the same answer as IP. The conditions we formulate are
concrete algebraic conditions that can be checked with a preliminary calculation.
Hosten and Sturmfels [22] study the difference between LP and IP from a different
point of view. They give the largest possible difference over all constraint values,
whereas our results use the particular constraint values of the data set.

The numerical implementation of LP to determine an interval [l, u] must be
done carefully. LP sometimes gives wider intervals than the true interval because
LP considers solutions in a larger space. Roundoff of numerical approximations
that come from floating point operations or interior point methods can result in
sampling a number out of the feasible range [l, u] or into a strict subset of the
feasible range which can lead to errors. The program that we embedded into the
sampling code and that worked well is lpSolve [1].

A third way to approximate the intervals is the shuttle algorithm, described in [5]
and [16]. This is an iterative method that usually does not give exact IP results, but
it has two advantages in special cases: it is fast and easy to program, and it can
be implemented without explicitly constructing a constraint matrix, a task which
may be impossible for very large problems with millions of cells. In our numerical
examples LP works better than the shuttle algorithm, in some cases much better.

Consider the IP and LP problems

uj (b) := max{nj :Aj n = b,n ∈ Zd+},
lj (b) := min{nj :Aj n = b,n ∈ Zd+},

Uj (b) := max{qj :Aj q = b,q ∈ Qd+},
Lj (b) := min{qj :Aj q = b,q ∈ Qd+},

where Z+,Q+ are the nonnegative integers and nonnegative rational numbers,
respectively. We are interested in bounding the nonnegative quantities Uj − uj

and lj − Lj .
In Propositions 5.1 and 5.2 that follow, we use the relationship between lower

and upper IP bounds and normal forms with respect to lex and grevlex term orders
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explained in [9] and stated in Algorithm 5.6 of [28], page 43. For the following
proposition, let A−1

Q [t] := {q ∈ Qd+ :Aq = t}, the set of nonnegative rational vec-
tors with constraints t.

PROPOSITION 5.1. Suppose a Markov subbasis MA,t = {±m1, . . . ,±mg}
has the property that G := {xm+

i − xm−
i , i = 1, . . . , g} is a lex Gröbner basis

with ordering x1 > x2 > · · · > xd on indeterminates for the generated ideal IMA,t .
Also, suppose IMA,t :

∏
s∈ISQ

xs = IA, where SQ is the collection of coordinates

which are always positive for elements in A−1
Q [t], and suppose IMA,t :x∞

i ∩
Q[xi+1, . . . , xd ] ⊂ IMA,t for each i = 1,2, . . . , d − 1.

If the coordinate values of all m+
i (i = 1, . . . , g) are in {0,1}, then lj (tj ) =

Lj(tj ) for all j = 1,2, . . . , d and all tj given by t1 = t, tj = t − a1n1 − a2n2 −
· · · − aj−1nj−1, j = 2, . . . , d .

PROOF. We show first the result that l1 ≤ L1. Let m ∈ A−1[t].
Use long division to compute the normal form of xm with respect to IMA,t . Let

the normal form be the monomial xn�
. It is nearly immediate that n�

1 ≥ l1, since
the first coordinate of the normal form when dividing by a Gröbner basis for the
full ideal IA is l1.

Let q� solve L1 = min{q1 :Aq = t,q ∈ Qd+}. We show that q�
1 ≥ n�

1, which
together with n�

1 ≥ l1 will prove the result L1 = l1.
Suppose by way of contradiction that n�

1 > q�
1 . Since q� is rational, an integer

multiple, say λq�, is integral. Then A(λq�) = A(λn�), so xλn� − xλq� ∈ IA. Fur-
thermore, by the assumption of positivity of coordinates SQ on elements in A−1

Q [t],
it follows that q�

s ,n�
s > 0 for s ∈ SQ. Then xλn� − xλq� ∈ IMA,t by the assumption

IMA,t :
∏

s∈ISQ
xs = IA.

Since G is a Gröbner basis for this ideal, one of the lead terms of the basis must
divide the lead monomial xλn�

. This means that the indices of positive coordi-
nates of the exponents m+

i of the lead monomial must be included in the positive
coordinates of n�. Since the corresponding coordinate values are 0 or 1, the di-
visor must also divide n�. This contradicts its construction above as the normal
form without divisors. Hence, it cannot be the case that n�

1 > q�
1 . This proves that

l1 ≤ n�
1 ≤ q�

1 = L1.
We show next the result that l2 ≤ L2. Let m ∈ A−1[t].
Use long division to compute the normal form of xm with respect to G2 :=

G ∩ Q[x2, x3, . . . , xd ], the elements of the subbasis that only involve coordi-
nates 2,3, . . . , d . Let the normal form be the monomial xn�

, where n�
1 = m1, which

has not changed in the division. It is nearly immediate that n�
2 ≥ l2, since the first

coordinate of the normal form when dividing x
m2
2 · · ·xmd

d by a Gröbner basis for
the full ideal IA2 is l2.

Let q� solve L2 = min{q2 :Aq = t, q1 = m1,q ∈ Qd+}. We show that q�
2 ≥ n�

2,
which together with n�

2 ≥ l2 will prove the result L2 = l2.
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Suppose by way of contradiction that n�
2 > q�

2 . Since q� is rational, an inte-
ger multiple, say λq�, is integral. Then A(λq�) = A(λn�), so xλn� − xλq� ∈ IA.
Furthermore, by the assumption of positivity of coordinates SQ on elements
in A−1

Q [t], it follows that q�
s ,n�

s > 0 for s ∈ SQ. Then xλn� − xλq� ∈ IMA,t ,

since IMA,t :
∏

s∈ISQ
xs = IA. Also, xλ(0,n�

2,...,n
�
d ) − xλ(0,q�

2 ,...,q�
d ) ∈ IMA,t :x∞

1 ∩
Q[x2, . . . , xd ]. By the assumption on IMA,t :x∞

i it follows that xλ(0,n�
2,...,n

�
d ) −

xλ(0,q�
2 ,...,q�

d ) ∈ IMA,t .
Since G2 is a lex Gröbner basis for the ideal IMA,t ∩ Q[x2, . . . , xd ] by the elim-

ination theorem, one of the lead terms of the basis G2 must divide the lead mono-
mial xλ(0,n�

2,...,n
�
d ), since we have just shown that this is the lead monomial in a

binomial that belongs to IMA,t ∩ Q[x2, . . . , xd ]. This means that the indices of
positive coordinates of the exponents m+

i of the lead monomial must be included
in the positive coordinates of n�. Since the corresponding coordinate values are
0 or 1, the divisor must also divide n�. This contradicts its construction above as
the normal form without divisors. Hence, it cannot be the case that n�

2 > q�
2 . This

proves that l2 ≤ n�
2 ≤ q�

2 = L2.
The remaining coordinates are proved similarly. �

There is a corresponding result for the upper bounds. Whereas the lex basis re-
lates IP minimization to the normal form of a monomial, it is the grevlex basis that
relates IP maximization to the normal form. We state the result below only for the
first entry, since it must be applied repeatedly. Using the result requires recomput-
ing a grevlex basis for each of the matrices Ai (containing columns i, i + 1, . . . , d

from A) and rechecking the condition, because we cannot simply apply an elimi-
nation theorem on a single lex basis as before.

PROPOSITION 5.2. Suppose a Markov subbasis MA,t = {±m1, . . . ,±mg}
has the property that G := {xm+

i − xm−
i , i = 1, . . . , g} is a grevlex Gröbner ba-

sis with ordering xd > xd−1 > · · · > x1 on indeterminates for the generated
ideal IMA,t . Also, suppose IMA,t :

∏
s∈ISQ

xs = IA, where SQ is the collection of

coordinates which are always positive for elements in A−1
Q [t]. If the coordinate

values of m+
i are in {0,1}, then u1(t) = U1(t).

PROOF. We show that U1 ≤ u1. Let m ∈ A−1[t].
Use long division to compute the normal form of xm with respect to the grevlex

basis IMA,t . Let the normal form be the monomial xn�
. It is nearly immediate that

n�
1 ≤ u1, since the exponent on x1 of the normal form when dividing by a grevlex

Gröbner basis with reversed indeterminate order for the full ideal IA is u1.
Let q� solve U1 = max{q1 :Aq = t,q ∈ Qd+}. We show that q�

1 ≤ n�
1, which

together with n�
1 ≤ u1 will prove the result U1 ≤ u1.
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Suppose by way of contradiction that q�
1 > n�

1. Since q� is rational, an integer
multiple, say λq�, is integral. Then A(λq�) = A(λn�), so xλn� − xλq� ∈ IA. Fur-
thermore, by the assumption of positivity of coordinates SQ on elements in A−1

Q [t],
it follows that q�

s ,n�
s > 0 for s ∈ SQ. Then xλn� − xλq� ∈ IMA,t by the assumption

IMA,t :
∏

s∈ISQ
xs = IA.

Since G is a Gröbner basis for this ideal, one of the lead terms of the basis must
divide the lead monomial xλn�

. This means that the indices of positive coordi-
nates of the exponents m+

i of the lead monomial must be included in the positive
coordinates of n�. Since the corresponding coordinate values are 0 or 1, the di-
visor must also divide n�. This contradicts its construction above as the normal
form without divisors. Hence it cannot be the case that q�

1 > n�
1. This proves that

U1 = q�
1 ≤ n�

1 ≤ u1. �

The corollary below, combining Propositions 5.1 and 5.2, applies directly to
Examples 7.1, 7.2 and 7.4.

COROLLARY 5.1. If a lex Gröbner basis for IA has square-free exponents on
the lead monomials, then lj = Lj for all j = 1, . . . , d . If each grevlex Gröbner
basis for IAj

, j = 1, . . . , d , and indeterminate ordering xd > xd−1 > · · · > x1 has
square-free exponents on the lead monomials, then uj = Uj for all j = 1, . . . , d .

PROOF. The assumptions of Proposition 5.1 hold if IMA,t = IA, so the lower
bounds from LP and IP are equal. For the upper bounds, the statement is a restate-
ment of Proposition 5.2 for each step in the sequential sampling. �

6. Sampling distributions. Assume that the sequential interval property
holds for a multiway table with given constraints, and that the intervals can be
approximated by LP. The next question is how to sample from these intervals.
Ideally, we want to sample a cell value from the true marginal distribution of a cell
entry conditional on the entries that have already been sampled. However, these
marginal distributions are quite difficult to compute explicitly except in very small
examples. SIS samples from a simple proposal distribution (rather than the true
distribution) on the set of all possible marginal values.

For a target uniform distribution, which is useful for counting the total number
of tables and some Bayesian applications, we propose a uniform distribution on
the available interval for each cell, that is, p(x) = 1/(u − l + 1) on integers in the
interval [l, u]. We call this the “uniform sampling method.” With the length of the
proposed sampling interval, the importance weights can be computed exactly for
reweighting at the end. This strategy gives low cv2 (≤ 5 for all examples we have
tested) and works very well on the examples in Section 7.

For a target hypergeometric distribution, which arises in conditional inference
with multinomial sampling, we propose to sample a cell value from the hyper-
geometric distribution p(x) = (u

x

)( u
l+u−x

)
/
( 2u
l+u

)
on the interval of available inte-

gers [l, u]. We call this the “hypergeometric sampling method,” which is usually
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(but not always, see Example 7.4) better than the uniform sampling method when
the target distribution is hypergeometric. This hypergeometric proposal does not
give the exact hypergeometric target in the end. It is just a reasonable marginal
approximation. This method gives satisfactory results for examples in Section 7,
although the cv2 is not consistently small. For sparse tables, approximating the
marginal mass function of the count in a single cell can be difficult.

7. Examples. In the examples that follow, we sample sequentially from in-
tervals computed with the LP approximation. The LP approximation is very close
to or exactly equal to the IP range in all examples. In Example 7.1 one can ap-
ply known results on Markov bases to avoid algebraic calculations, and the most
basic results of Section 3 apply. In Example 7.2 one must do explicit algebraic
calculations to verify the conditions of Section 3. We did a detailed numerical
comparison with the Markov chain on Example 7.2. Example 7.3 (6-way Czech
autoworker data) is one that requires the full theory of Markov subbases of Sec-
tion 4 and consideration of the specific margin values to get sequential intervals
under one model. We also study a second model for which we could not compute
the Markov basis, and we see that SIS still works well. The no-3-way interaction
model of Example 7.4 is a well-known example where the Gröbner basis involves
moves of size 2, and yet the sequential theory applies perfectly. Example 7.5 is
a classic triangular genotype table, and it brings out the importance of checking
different cell orders. In some orders the sequential interval property holds, and in
other quite natural orders it does not, and this can be seen in the lex basis. Finally,
Example 7.6 is an important application of sampling on lattice points that are not
strictly speaking contingency tables. The work of Rapallo [27] on Markov bases
and structural zeros may be useful for other examples.

The starting point to verify the conditions of Sections 3, 4 and 5 for a particular
example is to attempt to compute the toric ideal IA. For this we have used the
toric library toric.lib in the free software Singular [19] and the groebner
command in 4t i2 [21]. The software 4t i2 was used to construct constraint matrices
for several examples. The operations of saturation and quotient (“:”) that figure in
the results of Sections 4 and 5 were done quickly in Singular.

In the following examples, all results are based on 1000 random samples using
either the uniform sampling method or the hypergeometric sampling method. The
code was written in R [26] and the software lpSolve was called from R. The run-
ning times range from several seconds to a few minutes on a 2.0 GHz computer.
When IP is used instead of LP, a computation typically takes hours, and sometimes
it will not terminate in a reasonable amount of time.

EXAMPLE 7.1. Consider the 3-way case/control data (Table 1) in the 4×4×2
table from the Ille-et-Verlaine cancer study of the age 35–44 group ([3], Appen-
dix I). The factors are Alcohol level (A), Tobacco level (T) and Response R, where
R = 0 is a control measurement and R = 1 is a case.
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TABLE 1
Age 35–44 data on oesophageal cancer from [3]

A

1 2 3 4

R = 0 T 1 60 35 11 1
2 13 20 6 3
3 7 13 2 2
4 8 8 1 0

R = 1 T 1 0 0 0 2
2 1 3 0 0
3 0 1 0 2
4 0 0 0 0

The “case” outcomes are sampled with a multinomial distribution with proba-
bilities p(a, t |1) on the Alcohol and Tobacco covariates. The “control” outcomes
are also sampled with a multinomial distribution with probabilities p(a, t |0). With
a retrospective model p(a, t |1)/p(a, t |0) = eαa+βt of eight parameters, the ap-
propriate margins to fix for conditional inference [treating p(a, t |0) as unknown
nuisance parameters] are [A, T] (sum over case/control counts at each level),
[A, R] and [T, R] (sums over other factor at each response level). The constraints
imply that the Graver basis ([28], page 55) for the independence model on T and R
is a Markov basis, and the Graver basis is equivalent to the collection of square-free
circuit moves on one level of the Response factor. Thus, the results of Section 3
and Corollary 5.1 imply the property of sequential intervals and LP will give the
exact integral interval bounds at each step.

The simulation with LP gave 100% good tables. When the underlying distribu-
tion is uniform, the uniform sampling method gave cv2 of 0.24 and estimated the
total number of tables to be 25, a number confirmed by LattE in a total elapsed time
of 7 seconds on a 2.8 GHz desktop. When the underlying distribution is hyperge-
ometric, the hypergeometric sampling method gave cv2 of 0.5, and the estimated
p-value for the exact goodness-of-fit test [defined by equations (1) and (2)] is 0.04.

EXAMPLE 7.2. Consider the 4-way abortion opinion data (Table 2) from [8],
page 129. The observations are classified according to race, sex, age and opinion.
There are three different opinions: yes means supporting legalized abortion, no
means opposing legalized abortion, and the last one is undecided.

Christensen fits the log-linear model for the expected cell counts with all three-
way interactions and all lower order terms. A shorthand notation for this model
is to list its highest-order interaction terms: [RSO], [RSA], [ROA] and [SOA].
The conditional goodness-of-fit test for this model requires fixing all 3-way mar-
gins, [R, S, O], [R, S, A], [R, O, A] and [S, O, A]. The lex basis of 165 elements
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TABLE 2
4-way abortion opinion data from [8]

Race Sex Opinion 18–25 26–35 36–45 46–55 56–65 66+
White Male Yes 96 138 117 75 72 83

No 44 64 56 48 49 60
Undec. 1 2 6 5 6 8

Female Yes 140 171 152 101 102 111
No 43 65 58 51 58 67

Undec. 1 4 9 9 10 16
Nonwhite Male Yes 24 18 16 12 6 4

No 5 7 7 6 8 10
Undec. 2 1 3 4 3 4

Female Yes 21 25 20 17 14 13
No 4 6 5 5 5 5

Undec. 1 2 1 1 1 1

is square-free in the lead monomials, so the sequential interval property holds by
Section 3 and the IP and LP lower bounds are identical. A more detailed calcu-
lation to verify the conditions of Corollary 5.1 requires computing a grevlex ba-
sis for each of the submatrices of Ai , defined in Section 3 as the matrix that has
columns i, i + 1, . . . , d from A. This can be done and the condition is verified,
proving that LP and IP upper bounds are always the same.

The LP method for finding the interval bounds gave 100% good tables in prac-
tice. When the underlying distribution is uniform, the uniform sampling method
gave cv2 of 2.92 and estimated the total number of tables to be 9.1 × 107. When
the underlying distribution is hypergeometric, the value of cv2 using the hyper-
geometric sampling method was around 102.9, and the estimated p-value for the
exact goodness-of-fit test [defined by (1) and (2)] is 0.85 with standard error 0.1,
based on 1000 tables which took about 5 minutes in R on a 2.0 GHz computer. The
MCMC algorithm generated 1000 samples (with 1,000,000 samples as burn-in) in
224 minutes and estimated the p-value to be 0.84 with standard error 0.05. Thus,
SIS is about 11 times faster than the MCMC algorithm for this example.

The algebraic conditions for SIS with some models on this data are difficult to
verify. For example, 4t i2 runs for an hour on a 2.8 GHz Linux desktop with 1 GB
of memory without completing the Markov basis calculation on the model [RS],
[RA], [RO], [SO], [SA], [OA].

EXAMPLE 7.3. Consider the 6-way binary Czech autoworker data in Table 3
from a prospective study of probable risk factors for coronary thrombosis [18].
There are 1,841 men in a car factory involved in the study. Here A, B, C, D, E
and F indicate different risk factors. One reasonable model is given by [ACDEF],
[ABDEF], [ABCDE], [BCDF], [ABCF], [BCEF] [17]. The conditional goodness-
of-fit test for this model requires fixing the three 5-way and the three 4-way
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TABLE 3
6-way Czech autoworker data from [18]

B no yes

F E D C A no yes no yes

Negative <3 <140 no 44 40 112 67
yes 129 145 12 23

≥140 no 35 12 80 33
yes 109 67 7 9

≥3 <140 no 23 32 70 66
yes 50 80 (0) 7 13

≥140 no 24 25 73 57
yes 51 63 7 16

Positive <3 <140 no 5 7 21 9
yes (0) 9 17 (0) 1 (0) 4

≥140 no (0) 4 3 11 8
yes 14 17 5 (0) 2

≥3 <140 no 7 (0) 3 14 14
yes 9 16 (0) 2 (0) 3

≥140 no (0) 4 (0) 0 13 11
yes (0) 5 14 (0) 4 4

margins in the above model representation. Implementing SIS for this example
requires techniques beyond the basic methods of Section 3, because the lex basis
does not have square-free lead exponents.

In Table 3 (0) indicates that the LP lower bound for that cell entry is 0 with the
constraints from the model above; the others are strictly positive. Identifying these
cells is relevant when we apply Propositions 4.1, 5.1 and 5.2, as the (0) cells form
the complement of the set SQ (defined in Proposition 5.1).

The lex basis for the toric ideal with lex order in indeterminates yields 20 ele-
ments, the first of which has an exponent of 2 on the lead indeterminate x111111.
Therefore, Proposition 3.1 cannot be applied directly. However, the ideal gener-
ated by the other 19 polynomials saturates in one step with respect to the mono-
mial

∏
s∈S xs , where S is the set of 41 coordinates that must be positive. Hence, by

Lemma 4.2 these 19 moves are a Markov subbasis. They are a lex Gröbner basis for
themselves, and they have the saturation property required in Proposition 4.1, so
the sequential interval property holds. Furthermore, Proposition 5.1 shows that the
IP and LP lower bounds are always the same [which also implies that the (0) cells
in the rationals are the same cells as those that could be 0 in the integers]. Corol-
lary 5.1 does not apply to show that the LP and IP upper bounds are the same,
because exponents of 2 appear in the grevlex bases. We can use Proposition 5.2 on
successive cells to show that LP and IP are the same after a few initial cells.
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If the cells are filled in across rows and then down, the order is 111111,211111,

121111, . . . (the order from 4t i2). The sequential interval property holds in this
order as well.

For this model, using LP for interval bounds gave 100% good tables. The shut-
tle algorithm gave 99% good tables with one iteration and 99.5% with two itera-
tions. When the underlying distribution is uniform, the uniform sampling method
gave cv2 of 1.09 and estimated the total number of tables to be 841. The quan-
tity cv2 when targeting the hypergeometric distribution using the hypergeometric
sampling method was 50.7, and the estimated p-value for the exact goodness-of-
fit test [defined by (1) and (2)] is 0.27. Fitting this model in R using the loglin
command gives a χ2 statistic of 5.8 on 4 degrees of freedom, for a p-value of
approximately 0.21.

Consider the model of all 15 four-element constraints like [A, B, C, D], that is,
all 4-way margins. We could not obtain the Markov basis for this model, but SIS
still works well with cv2 = 5.0 when the target distribution is uniform. LP gave
100% good tables, whereas the shuttle algorithm gave only 2% good tables after
10 iterations.

EXAMPLE 7.4. Consider the 3×3×3 example (Table 4) from [14], page 379,
with a model of no-3-way interaction. The conditional goodness-of-fit test for this
model requires fixing all “line sums.”

When ordered left to right across rows, Proposition 3.1 implies sequential inter-
vals and Corollary 5.1 gives an IP/LP gap of 0 at every step. In simulation LP gave
100% good tables, and the shuttle algorithm also gave 100% good tables after one
iteration.

When the underlying distribution is uniform, the uniform sampling method
gave cv2 of 2.08 and estimated the total number of tables to be 1.9 × 1012. This
is consistent with the number 1,919,899,782,953 from LattE, computed in a total
elapsed real time of 45 seconds on a 2.8 GHz desktop computer. When target-
ing the hypergeometric distribution, the hypergeometric sampling method gave
cv2 = 180.7.

EXAMPLE 7.5. Consider data in Table 5 of genotype pairs from [20]. The
constraints for conditional goodness-of-fit test of Hardy–Weinberg proportions are
the nine allele counts, which are nine linear functions that count twice the diagonal

TABLE 4
3 × 3 × 3 table from [14]

9 16 41 8 8 46 11 14 38
85 52 105 35 29 54 47 35 115
77 30 38 37 15 22 25 21 42
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TABLE 5
Rhesus data from [20]

B1 1236
B2 120 3
B3 18 0 0
B4 982 55 7 249
B5 32 1 0 12 0
B6 2582 132 20 1162 29 1312
B7 6 0 0 4 0 4 0
B8 2 0 0 0 0 0 0 0
B9 115 5 2 53 1 149 0 0 4

B1 B2 B3 B4 B5 B6 B7 B8 B9

entry, so the A matrix has entries 0, 1 and 2. For sequential sampling, the order of
cells given by Table 6 leads to sequential intervals by Proposition 3.1. In general,
for the genotype problem sampling across rows will not give intervals.

The lead monomials in a lex basis have exponents that are all 0 or 1, so LP
gives the exact lower bounds by Proposition 5.1. For the upper bound, the grevlex
condition of Proposition 5.2 does not hold from the first cell, but it does hold
after a few cells, so IP and LP give the same bounds after some initial cells. The
simulation with LP produced 100% good tables. See [23] for a direct sampling
strategy and some further discussion of this example.

EXAMPLE 7.6. Consider a constraint matrix A of the form A = (A0|I ) with
0 or 1 entries. Here I is the e×e identity matrix and A0 is size e×f with columns
a1, . . . ,af . This occurs in a tomography problem introduced by Vardi [31], where
A is a routing matrix for which routes between adjacent vertices use the connecting
edge, and the edge counts are put last as slack variables. The integer data y = Ax,
where x are traffic counts between ordered pairs of nodes on a graph and y is the
aggregate traffic across links. The sampling method of Tebaldi and West [30] for
Bayesian computation of the posterior distribution is closely related to sequential
sampling. Dinwoodie [15] shows how fast sampling can be used in a Monte Carlo
EM algorithm for estimating traffic rates.

TABLE 6
Order of cells

1
10 2
11 18 3
12 19 25 4
13 20 26 31 5
14 21 27 32 36 6
15 22 28 33 37 40 7
16 23 29 34 38 41 43 8
17 24 30 35 39 42 44 45 9
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The property of sequential intervals holds for the entries of x under the con-
straint Ax = y in the order of the columns. With indeterminates w1, . . . ,wf for
the first f columns and z1, . . . , ze for the last e slack variables, a lex Gröbner basis
in Q[w1, . . . ,wf , z1, . . . , ze] consists of the f binomials wi − zai .

Linear programming will give the exact interval bounds at each step because
of the square-free lead monomials. The shuttle algorithm will also give the exact
intervals in one step. The interval for the first cell is exactly [0,min{i : ai,1>0,1≤i≤f }
{yi}] and the same type of problem recurs at each step 1, . . . , f .

It is possible to establish properties of SIS for some classes of examples, or,
in other words, for some types of contingency tables with certain constraints and
margin values. This is an area of ongoing work, but at this time we can make
some statements. Logistic regression tables with one integer covariate and positive
column sums (at least one measurement at each level of the covariate) have the
sequential interval property. This is proved in [7]. The subbasis that corresponds to
differences of adjacent minors satisfies the conditions of Proposition 4.1. However,
the IP/LP gap may not be zero.

Also, two-way tables with structural zeros and fixed row and column sums have
sequential intervals. The same algebraic technology also shows that case/control
data with two factors, such as Example 7.1, has the sequential interval property.
We conjecture that decomposable graphical models will have the sequential inter-
val property under some order on the cells, but at this time a careful proof is not
complete.

8. Conclusion. We have described an efficient sequential importance sam-
pling method for sampling multiway tables with given constraints. It can be used
to approximate exact conditional inference on contingency tables. SIS sequentially
builds up the proposal distribution by sampling table entries one by one. We have
presented a theory that relates algebraic properties of collections of Markov moves
to certain geometric properties of contingency tables. The geometric properties of
“sequential intervals” and the relationship of IP to LP are important for the perfor-
mance of sequential sampling. Many real examples show that the theory is applica-
ble and useful, and can be used in some examples when a Markov basis cannot be
found.

In practice, one may try sequential sampling even if the sequential interval prop-
erty does not hold or if the algebraic conditions are not satisfied or not checked.
If one can find rough bounds for each entry and design the proposal distribution
carefully, so that the fraction of valid tables is high and the cv2 is low, SIS may
still give satisfactory results.

Further work is required to formulate a method to design the proposal distribu-
tion at each step. We have seen that the uniform sampling method works very well
when the underlying distribution is uniform. However, when the target distribution
is hypergeometric, the hypergeometric sampling method could be improved.
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