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We are given a set of n points that might be uniformly distributed in
the unit square [0,1]2. We wish to test whether the set, although mostly
consisting of uniformly scattered points, also contains a small fraction of
points sampled from some (a priori unknown) curve with Cα-norm bounded
by β. An asymptotic detection threshold exists in this problem; for a constant
T−(α,β) > 0, if the number of points sampled from the curve is smaller than
T−(α,β)n1/(1+α), reliable detection is not possible for large n. We describe
a multiscale significant-runs algorithm that can reliably detect concentration
of data near a smooth curve, without knowing the smoothness information
α or β in advance, provided that the number of points on the curve exceeds
T∗(α,β)n1/(1+α). This algorithm therefore has an optimal detection thresh-
old, up to a factor T∗/T−.

At the heart of our approach is an analysis of the data by counting mem-
bership in multiscale multianisotropic strips. The strips will have area 2/n

and exhibit a variety of lengths, orientations and anisotropies. The strips are
partitioned into anisotropy classes; each class is organized as a directed graph
whose vertices all are strips of the same anisotropy and whose edges link
such strips to their “good continuations.” The point-cloud data are reduced to
counts that measure membership in strips. Each anisotropy graph is reduced
to a subgraph that consist of strips with significant counts. The algorithm re-
jects H0 whenever some such subgraph contains a path that connects many
consecutive significant counts.

1. Introduction.

We cannot help but see faces and castles in clouds, monsters in ink-blots and exotic
forms in random dots. Form is so central to human perception that, I am told, it is
extremely difficult to prove something random or formless. Mae-Wan Ho [20].

Suppose we have n data points Xi ∈ [0,1]2 which at first glance seem uniformly
distributed in the unit square. On cursory visual inspection, it seems that a suspi-
ciously large number of the data points fall along a smooth curve. However, the
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curve on which these points lie has only been identified after inspection of the
data. We know that the human visual system has the ability to “hallucinate” curvi-
linear structure in truly random point clouds. We are therefore concerned about the
reliability of the perceived pattern and wish to follow an objective procedure for
testing the existence of filamentary structure: this procedure should reliably sepa-
rate filamentary structure from random scatter and be computationally tractable.

This is a prototype for various practical imaging problems that range from sur-
veillance to road and streambed tracking to particle physics [1, 31, 34]. In all cases,
the observer is looking for evidence of a filamentary structure in a background of
heavy clutter.

As a first attempt to formalize matters, consider the problem of testing

H0 :Xi
i.i.d.∼ Uniform(0,1)2,

versus

H1(α,β) :Xi
i.i.d.∼ (1 − εn)Uniform(0,1)2 + εnUniform(graph(f )),

where f ∈ Hölder(α,β) is unknown. Here, for 1 < α ≤ 2, Hölder(α,β) is the class
of functions g : [0,1] → [0,1] with continuous derivative g′ that obeys |g′(x) −
g′(y)| ≤ αβ|x − y|α−1. In words, we believe that a relatively small fraction εn of
points lie on a smooth curve in the plane.

1.1. “Connect the dots.” In our previous work [5], it was shown that when
α and β are fixed and known, there is a detector based on the principle that, un-
der H0, no Hölder(α,β) curve can pass through a very large number of points
in a random point cloud. More particularly, we know that there is a threshold
T+ = T+(α,β) such that:

• If T < T+, we have that, with probability tending to 1, there exists a
Hölder(α,β) curve that contains at least T · n1/(1+α) points (out of n).

• If T > T+, we have that, with probability tending to 1, there does not exist a
Hölder(α,β) curve that contains more than T · n1/(1+α) points (Xi)

n
i=1.

(More concretely, if we deal with Lipschitz curves with |slope| ≤ 1, we have found
empirically that for moderate n ≈ 1000, there will frequently be some Lipschitz
curve that contains

√
n data points, but rarely will there be one that contains more

than 3
√

n points.) So, if we happen to notice a curve passing through substantially
more than T+ · n1/(1+α) points, we have a strong basis to reject the null hypothesis
of pure randomness. Moreover, to within a constant factor this threshold is optimal;
no sequence of tests can be reliable for detecting substantially fewer than T− ·
n1/(1+α) points, for a certain T− > 0.

Elaborating this connect-the-dots (CTD) principle leads to a formal hypothe-
sis test based on searching for curves that contain large numbers of points. Let
Nn(A) = # {{Xi} ∩ A} denote the measure that counts how many points lie in the
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set A. Searching for a curve that contains the maximal number of points leads to
the optimization problem

N∗
n (α,β) = max{Nn(graph(f )) :f ∈ Hölder(α,β)},

which searches over all Hölder(α,β) graphs and rejects H0 for values of N∗ that
substantially exceed T+ · n1/(1+α).

The CTD approach, while very instructive, does not address the concerns of
someone who might actually be interested in performing a test on real data. Such
concerns include:

• Computational burden. The task of finding the largest number of points on
a Hölder(α,β) curve seems to us to be computationally impractical unless
α ∈ {1,2}.

• Unknown α, β . The CTD approach assumes a specific α-β combination. In-
stead, we desire an algorithm that works regardless of the specific values of
α ∈ (1,2] and β > 0.

• Fragments. The CTD approach searches only for graphs that extend all the way
across the square from x = 0 to x = 1. Instead, one wants an algorithm that
works even for short graphs.

• General planar curve. The CTD approach assumes that the underlying curve
can be parametrized as a graph. It seems important to search for general curves
rather than just graphs—for example, curves that loop around in the plane.

1.2. An adaptive multiscale approach. In this paper we describe an approach
that addresses the concerns just listed. Our proposal:

1. Works across for a wide range of (α,β), and only requires knowing a bound on
the maximum slope of the curve.

2. Detects the presence of H1 provided

εn > T∗ · n−α/(α+1)

for a constant T∗ which depends on α, β and other factors. In view of earlier
results, this is optimally sensitive to within a factor T∗/T−.

3. Runs in O(n2 · log(n)) flops.
4. Extends naturally to detect general planar curves that are not graphs.
5. Extends naturally to detect target filaments of unknown extent that, in large

samples, can be very short compared to the image extent.

The detector is based on a kind of multiscale geometric analysis of the data
set, using a multiscale dictionary of parallelogram strips that exhibit a variety of
lengths, locations, orientations and aspect ratios. The idea is to count membership
of data points in various strips, to identify strips with significantly large counts and
to search for long runs of significantly large counts in collections of strips that are
“good continuations” of each other.



ADAPTIVE MULTISCALE DETECTION OF FILAMENTARY STRUCTURES 329

The detector is adaptive to the unknown smoothness (α,β) in the sense that it
achieves near-optimal performance over a wide range: 1 < α ≤ 2, β > 0. (This
notion of adaptivity parallels the notion of adaptive near-minimaxity in nonpara-
metric smoothing, in which a single estimator, able to perform in a near-minimax
way across a whole range of different smoothness conditions, is called adaptive
to unknown smoothness [17].) Ultimately, such adaptivity flows from ideas behind
Lemma 2.2 below, which show that our class of strips has certain covering proper-
ties uniformly over each smoothness class in the range 1 < α ≤ 2.

An interesting aspect of our approach is how simply and naturally the principle
of good continuation appears and leads to a solution.

Note that here we consider only the presence of the underlying curve—a detec-
tion problem. Another question—the estimation problem—is to locate the position
of the curve accurately. The performance of our procedure for estimation will not
be addressed here.

1.3. Contents. Section 2 describes our underlying multiscale data structures.
Section 3 describes our adaptive algorithm in general terms and gives a statement
of our main result. Section 4 describes the threshold settings that underlie our algo-
rithm, while Sections 5 and 6 analyze its behavior under H0 and H1, respectively.
Section 7 finishes the paper with a discussion of related work.

2. Multiscale anisotropic strips and good continuation. Our data structures
comprise a multiscale collection of anisotropic, tilted planar regions and a se-
quence of directed graphs that organize them. We use ideas and notation common
in dyadic multiscale analysis (e.g., dyadic partitioning) [10, 14–17, 24]; in partic-
ular, we assume that n is large and find it convenient to let J = 
log2(n)� denote
its dyadic logarithm. The variable j will index dyadic scales 2−j and will range
through 0 ≤ j ≤ J .

In our construction we fix in advance S > 1 (e.g., 2 or 4); this controls the
maximum |slope| we will be able to detect.

Let R(j, k, �1, �2) be a parallelepiped with vertical sides that is w = 2−j wide
by t = 2−(J−j)+1 thick. Here j runs through our set of scale indices {0, . . . , J }.
For examples, see Figure 1. The regions in question have a midline that bisects
them vertically and will be tilted (sheared) at a variety of angles. Notice that these
regions are highly anisotropic. While the whole collection implicitly depends on n,
we suppress this in our notation. Moreover, the width w and thickness t depend
on j and n, but we also suppress this in our notation. Note that the degree of
anisotropy is the same for all regions that share a common value of j ; we generally
focus only on one anisotropy class j at a time.

The parameters k and �i, i = 1,2, control the horizontal location of the regions
and the vertical location and slope of the midline. There is an underlying assump-
tion that we are interested only in regions whose major axis has a slope bounded in
absolute value by S. The mapping between these discrete parameters is intended
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FIG. 1. An anisotropic strip R.

to insure that the regions pack together horizontally and that they are fairly closely
spaced in both vertical position and slope. Let δ1 = t/4 and δ2 = t/(4w) (these
again depend implicitly on j and n). The parallelepiped R(j, k, �1, �2) will be
centered at c = ((k + 1/2)w, �1δ1) and its midline will have slope s = �2δ2. Here
0 ≤ k < w−1, �1 runs through the set 0, . . . , δ−1

1 − 1 and �2 runs through the set
−Sδ−1

2 , . . . , Sδ−1
2 .

We gather all such regions at level (scale) j in R(j) = {R(j, k, �1, �2) :k,

�1, �2}.
To organize the regions, we define a directed graph G(j) = (V(j),E(j)),

with vertices V(j) and edges E(j). The vertices are simply the regions in
R(j) :V(j) ≡ R(j). The edges connect regions to their good continuations,
namely, regions that are horizontally adjacent, and that have altitudes and slopes
that are nearly the same—less than δ1 and δ2 apart, respectively. Formally, we have
the directed edges in E(j),

(k, �1, �2) 
→ (k + 1, �1 + �2 + u, �2 + v),

where |u| ≤ 4, |v| ≤ 4.
Figures 2 and 3 illustrate good continuation and bad continuation, respectively.
This graphical structure, while very simple, has a perhaps surprising property:

it allows us efficiently to cover the graphs of general smooth functions that exhibit
any of a range of smoothnesses. This claim is summarized in three lemmas. The
first lemma associates to each Hölder class a specific anisotropy graph.
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FIG. 2. Examples of good continuations; the midlines have about the same slope and there is a
substantial part of a side in common.

LEMMA 2.1. For each fixed (α,β) combination with 1 ≤ α ≤ 2, we have
that for all sufficiently large n there is j∗ = j∗(α,β;n) so that w = w(j∗) and
t = t (j∗) obey

2βwα ≤ t < 16βwα.(2.1)

The next result shows that regions in the anisotropy class R(j∗(α,β)) are well
adapted to cover fragments of the graphs of the associated Hölder(α,β) class.

LEMMA 2.2. Let j = j∗(α,β) and suppose f is a Hölder(α,β) function with
a domain that contains Ik = [kw, (k +1)w). Set xk = (k +1/2)w, let �1,kδ1 be the
closest multiple of δ1 to f (xk) and let �2,kδ2 be the closest multiple of δ2 to f ′(xk).
We say that the region R(j, k, �1,k, �2,k) is associated to f on Ik . This strip covers
the graph of f over their common domain:

graph(f |Ik) ⊂ R(j, k, �1,k, �2,k).(2.2)

(See Figure 4.)
The final lemma in the sequence shows that every function in the Hölder(α,β)

class corresponds to a covering sequence of regions that makes a connected path
in G(j).

LEMMA 2.3. Let j = j∗(α,β) and suppose f is a Hölder(α,β) function on
[0,1]. For each k = 0, . . . ,w−1 − 1, consider the region Rk ≡ R(j, k, �1,k, �2,k)
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FIG. 3. Examples of bad continuations; either the midlines have very different slopes or the sides
are effectively disjoint.

associated to f by the procedure mentioned in Lemma 2.2. The sequence of strips
Tj (f ) ≡ {Rk : 0 ≤ k < w−1} consists of spatially adjacent regions, making a kind
of tube. When viewed as vertices of G(j), the (Rk) are neighbors in G(j), that is,
Rk and Rk+1 can be connected using edges in E(j). Therefore, Tj (f ) corresponds
to a path in G(j).
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FIG. 4. Graph of f covered by its kth associated region Rk at scale j ; ḟk is the tangent to graph(f )

at xk and ġk is the midline of Rk .

These lemmas together show that, while the graphical structure itself is based
on very simple rules, it is able to associate paths in the graph with custom-fitting
tubes that cover the graphs of very different kinds of smooth functions. The proofs
of these lemmas are given in the Appendix. Figure 5 illustrates the idea.

3. The multiscale significant-runs algorithm. We now describe the com-
plete algorithm for analysis of point-cloud data (Xi) looking for suspected curvi-
linear structure. It depends on a counting threshold N∗ and a length threshold L∗

n,
both to be defined later. The algorithm has several steps:

1. Counting membership in anisotropic strips. For every region R, in every
anisotropy class, we count the number of data that fall into that region,

N(R) = # {i :Xi ∈ R}.
2. Identifying significant counts. We define a significance indicator, which is

nonzero when the counts exceed a threshold,

s(R) = 1{N(R)>N∗}.
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FIG. 5. Graph of f covered by its associated tube Tj (f ) at scale j .

The significance indicator may be viewed as a label on the regions R, producing
a sequence of a labeled graphs

�(j) = (
V(j),E(j), σ (j)

)
,

where σ(j) = (s(R)) gives the labels on R ∈ R(j). We call this the j th signif-
icance graph.

3. Computing longest paths. In each significance graph, we employ a depth-first
search algorithm to explore all significant paths

π = (R1,R2, . . . ,Rm),

that is, sequences of vertices that are:

(a) all significant, s(Rk) = 1;
(b) all connected, (Rk,Rk+1) ∈ E(j).

We record the maximum path length in each significance graph:

Lmax
n,j = max{length(π) : π is a significant path in �(j)},

Lmax
n = max

j
Lmax

n,j .
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4. Decision. We compare Lmax
n with a length threshold:

If Lmax
n ≤ L∗

n, accept H0; if Lmax
n > L∗

n, reject H0.

This defines the test, except for the specification of the thresholds L∗
n and N∗.

Asymptotic formulas for these thresholds will be given in Section 4.
A worked example of the multiscale significant-runs algorithm is illustrated in

Figure 6. For this example the synthetic point cloud is mostly uniformly distrib-
uted, with fraction ε ≈ 1/20 of points lying on a fixed smooth curve. The signif-
icance threshold was N∗ = 8. For this choice of threshold, we have (under H0)
P {N(R) > N∗} ≈ 0.00024.

The longest run in this example has length 5, which in this case exceeds the run-
length threshold L∗

n and leads to rejection of the null hypothesis. For this small-
sample setting, the threshold L∗

n = 3 was obtained by simulation rather than as-
ymptotic theory. (Under the null hypothesis, we conducted 1200 experiments. In
each experiment, a point cloud was generated and Lmax

n was computed. The fre-
quencies of Lmax

n = 1,2,3,4 and 5 were 302, 873, 24, 0 and 1, respectively. Based
on these results, L∗

n can be set at either 2 or 3, giving a test with empirical level
P {Lmax

n > 2} = 25/1200 or P {Lmax
n > 3} = 1/1200, resp.)

Asymptotic theory gives L∗
n ≈ 3.74, which leads to the same decision.

For comparison, Figure 7 gives a simulated example in the null case ε = 0;
the longest run has length 2 in this case. This simulation was typical; in the null
example, rarely does the longest run exceed 2. Several properties of the algorithm
are immediate:

• Complexity of strip counts. The algorithm calculates all the N(R) for all the
anisotropic strips. This takes O(n2 log(n)) flops, where n is the number of points
sampled. Indeed, since each data point can belong to order O(n log(n)) strips,
by simply calculating which R � Xi and incrementing a counter for those R, we
get all N(R).

• Complexity of longest path. The algorithm calculates the longest path in each
significance graph. This takes work comparable to O(n log(n)), based on depth-
first search [2].

• Storage requirement. The algorithm stores all of the N(R) counts and all the
significance coefficients. This requires O(n log(n)) storage.

To state our main result, we amend our notion of alternative hypothesis. For
α > 1, let Hölder(α,β,S) denote the collection of functions f ∈ Hölder(α,β) with
|f ′|∞ ≤ S. Define

H1(α,β,S, τ ) :Xi
i.i.d.∼ (1 − εn)Uniform(0,1)2 + εnUniform(graph(f )),

f in Hölder(α,β;S), εn > τ · n−α/(1+α).
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FIG. 6. A uniform random scatter contaminated by ε = 1/20 points on a curve, together with the
identified significant run (consisting of five strips); n = 1024.
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FIG. 7. A uniform random scatter, together with the identified longest run of significant strips. At
length 2 it is not a significant run; n = 1024.

THEOREM 3.1. There is a single choice of thresholds N∗ and (L∗
n)n so that

for every α ∈ (1,2] and β > 0, there is T∗(α,β,S) with, for each τ > T∗,

P {test rejects H0|H1(α,β,S, τ )} → 1 as n → ∞;
at the same time

P {test rejects H0|H0} → 0 as n → ∞.

In words, under H0 the longest significant path is overwhelmingly unlikely to be
substantially longer than L∗

n for large n, while under each indicated H1 the longest
significant path is overwhelmingly likely to be substantially longer than L∗

n. The
threshold T∗ is within a constant factor T∗/T− of the optimal detection thresh-
old; this shows that, up to constants, we can adaptively test for the existence of
fragments of Cα graphs.

4. Asymptotics of thresholds. For practical finite-sample application of the
test just described, it is of course possible to calibrate thresholds by conducting
simulation experiments. For the proof of our main result, we specify thresholds in
closed form. These thresholds are very conservative and our closed-form analysis
yields vastly overstated estimates of error probabilities, which are nevertheless
good enough for our proofs.
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4.1. Specification of N∗. Fix a probability p0 < 1. Define a counting threshold
N+(ε, λ) with the property that

P {Poisson(λ) > N+} ≤ ε,

where Poisson(λ) denotes a Poisson random variable with parameter λ. Let
Bin(n,p) denote a binomial random variable with parameters n and p. By Poisson
approximation to the binomial, we have

P {Bin(n,λ/n) > N+(ε, λ)} ≤ 2ε, n ≥ n0.

Set then N∗ = N+(p0/162,2). Our definition of N∗ gives us the key property

P {s(R) = 1|H0} = P {Bin(n,2/n) > N∗} ≤ p0/81, n ≥ n0.(4.1)

4.2. Specification of L∗
n. We use a convenient, but nonstandard, notation bor-

rowed from Arratia and Waterman [6]. For 0 < p < 1, logp denotes, in this uncon-
ventional notation, the logarithm with base 1/p. At the same time, we maintain the
original convention that if b > 1, logb means log to the base b. By this convention,
log2 is the traditional logarithm base two and log1/2 is actually the same quantity.

Define the length threshold

L∗
n = 3 logp0

(n),(4.2)

where p0 ∈ (0,1) is the same as in the specification of N∗. The underlying ratio-
nale for this choice is the Erdös–Rényi law (see [6]), which says:

In a sequence of m i.i.d. Bernoulli random variables with probability p of heads, the
length of the longest run of pure heads ∼ logp(m)(1 + oP (1)).

In effect, our definition makes L∗
n very substantially longer than the length of the

longest run of pure heads in a linear sequence of O(n1/(1+α)) coin tosses of a p0
coin.

4.3. Specification of T∗. Associated to the parameters N∗ and L∗
n will be the

threshold T∗ at which H1 becomes detectable. To define that, set p1 sufficiently
close to 1 so that, for all α ∈ (1,2] and for some n1 > 0,

logp1

(
n1/(1+α)) ≥ 2 · L∗

n, n > n1(4.3)

(p1 = p
1/18
0 works). Implicitly, this choice again refers to the Erdös–Rényi law

and, in some way, guarantees that under H1 there will be very long runs.
Define an intensity threshold �+(ε) with the property that

P {Poisson(�+(ε)) < N∗} ≤ ε.

Set λ∗ = �+((1 − p1)/2) and set

T∗(α,β,S) = 2λ∗ · β1/(1+α) ·
√

1 + S2.
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We will show that for

εn > T∗ · n−α/(1+α)(4.4)

the hypothesis H1(α,β) becomes detectable by our proposal. The central point
will be the property

n · εn · w(
j∗(α,β,n)

)
/

√
1 + S2 ≥ λ∗.(4.5)

To prove this, we inspect the proof of Lemma 2.1 in the Appendix and note that,
by definition of T∗(α,β,S) above and using notation from the Appendix,

n · εn · w(
j∗(α,β,n)

)
/

√
1 + S2

≥ n1/(1+α) · T∗ · w(
j+(α,β,n)

)
/
(
2
√

1 + S2
) = λ∗.

Incidentally, we do not claim that the algorithm fails for τ < T∗, only that we can
prove it succeeds for τ > T∗.

5. Behavior under H1. Let f be the function in Hölder(α,β) that generates
the curve that carries the fraction εn of data. From Lemmas 2.1–2.3, we let j = j∗
and consider the tube Tj (f ). For each region R in this tube,

N(R) ∼ Bin
(
n, (1 − εn)area(R) + εnγ (f,R)

)
,

where area(R) = 2/n and γ denotes the relative arc length in the graph of f ,
obeying

γ (f,R) = length(graph(f |I ))

length(graph(f ))
≥ w√

1 + S2
;

here I denotes the projection of R on the x-axis.
By Poisson approximation to the binomial,

N(R)
approx.∼ Poisson(µ),

where, using (4.5),

µ ≥ 1 + nεnw/

√
1 + S2

≥ λ∗.

Hence, for every R in this tube, we have, for all sufficiently large n > n3,

P {N(R) > N∗} ≥ p1.(5.1)

Label the sequence of strips R in this tube R0, . . . ,Rw−1−1. We want to know
the probable length of the longest run of the form

N(Rk) > N∗, . . . ,N(Rk+L) > N∗.
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Then, if Ln is the length of the longest run in this special sequence, it follows that
the longest run statistic we are computing over the entire graph can only be larger:

Lmax
n,j ≥ Ln.

To show that the test rejects H0, we will show that

P {Ln > L∗
n} → 1, n → ∞.(5.2)

If we define

Zi = 1{N(Rk)>N∗},

we note that each Zi is Bernoulli with probability pi , while

pi ≥ p1.

We let m = w−1 ≥ Const · n1/(1+α) and p = p1, and we get, by the Erdös–Rényi
law,

Ln > logp1

(
n1/(1+α))(1 + oP (1)

)
.

However, by hypothesis we have chosen p1 in such a way that

logp1

(
n1/(1+α)) ≥ 2L∗

n.

Hence (5.2) follows.

6. Behavior under H0. We need to show that, with overwhelming probability
under H0, there will be no runs in the graph that exceed L∗

n. We start by arguing
that

P {a significant path of length L starts at given R|H0} ≤ pL
0 .

Indeed, by choice of N∗, for each R,

P {s(R) = 1|H0} = P {Bin(n,2/n) > N∗} ≤ p0/81.

Now each region R has 81 neighbors in G(j), and so by Boole’s inequality,

P {s(R′) = 1 for at least one neighbor of R|H0}
≤ ∑

R′∈neighbors(R)

P {s(R′) = 1|H0}

≤ # neighbors · (p0/81)

= 81 · (p0/81) = p0.

Now if we are looking for a significant path of length greater than L, we need
that starting at some vertex, it has s(R) = 1 and is connected to a vertex with
s(R′) = 1, et cetera. For a given starting point R, the probability of this event is
bounded by pL

0 via negative correlation.
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We now note there are at most Mj = w−1 ·δ−1
1 ·δ−1

2 ·2S starting points for paths
in G(j). By Boole’s inequality,

P {there is a significant path of length L occurring in G(j)|H0}
≤ # (starting points at level j )

× P {significant path of length L starting at R|H0}
≤ Mj · pL

0 .

Take log2:

log2(Mj ) + log2(p0) · L = log2(w
−1 · δ−1

1 · δ−1
2 · 2S) + log2(p0) · L

= 2J − 2j + 3 + log2(S) + log2(p0) · L
≤ 2J + C + log2(p0) · L.

For L = L∗
n, the last expression on the right-hand side tends to −∞ as n increases.

Hence

P {there is a run of length L∗
n|H0} → 0, n → ∞.

7. Discussion. We have given only a sampling of results in a specific problem
of geometric detection; much more could be done. At the same time, our results
are closely related to many ideas in the literature of computer vision. We briefly
indicate possible variations and sketch a few such connections.

7.1. Variations on the filament model. We have only discussed a subset of
what could pass for filamentary structure in point-cloud data. Other notions of fila-
mentarity include (a) curves that have less regularity than one derivative, (b) curves
that have more regularity than two derivatives and (c) curves that are not describ-
able as simple graphs (x, y = f (x)). Our aim in this paper is to stimulate dis-
cussion; we believe that all such generalizations will be of interest in appropriate
applications areas. We make a few brief remarks.

• Curves that have regularity α ≤ 1. If we consider curves (x, f (x)), where f

is Hölder-α with α ≤ 1, we are considering curves without tangents. We thus
discard completely the notion of good continuation based on alignment of tan-
gents. In designing graph-based detectors, it is only required to use axis-oriented
rectangular regions, so that only position (not slope) matters, and in which the
rectangles are now taller than they are wide; Connectivity involves only position
(not orientation). The statistical treatment based on graphs and runs turns out to
be the same; the graphs simply have less structure because proximity does not
involve similarity of slopes.
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• Curves that have regularity α > 2. It makes sense to ask about smoothness of
higher order, for example, to consider 2 < α ≤ 3. By [5], there will continue
to be about n1/(1+α) points on some Hölder curve, even for α in this range. To
sensitively detect such higher-order smoothness would require a different set
of regions than the one discussed here—curved ones with parabolic midlines—
and a notion of good continuation based on matching of sides, and matching of
slopes and curvatures of midlines. Preliminary calculations suggest that analo-
gous “adaptivity” results hold in such a setting. Related discussion can be found
in [3, 5].

• Curves that are not graphs. The Introduction suggested that the approach de-
scribed here can be adapted to detect general plane curves, that is, curves that
are not graphs. This adapts ideas from our work on beamlet graphs [4, 16]. We
define a family of directed graphs based on regions modeled on “dyadically
thickened beamlets” with various degrees of thickening. In this directed graph
structure, strips can have all orientations, including vertical and horizontal, so
that the graph constraint is removed. Connectivity between beamlets is based
once more on good continuation principles—in this case, continuation of plane
polygons rather than polygonal graphs. Otherwise the algorithms are identical.
More details can be found in [5], where this structure is utilized to prove a the-
oretical result.

Still other variations on our model are possible. The idea that data are uniformly
sampled from a curve of zero width can be varied in several ways:

• Nonuniform sampling along filaments. A referee suggested that rather than from
a uniform density, data might arise instead from a density that is bounded away
from zero and infinity. The same methodology developed here works in that case
without change, except that the analysis under H1 seemingly becomes more
involved.

• Finite thickness. A referee also suggested that rather than from a curve of zero
thickness, the data might arise instead from a tube of finite thickness. The
methodology developed here works without change in such a case, but the
model H1 is different and the statement of results becomes different. Thus, if
the thickness of the tube is finite, but smaller than the width of the regions that
are adapted to the underlying filament, the detectability results are the same as
here. If the width is greater than that of regions adapted to the curve, then the
detection threshold becomes higher and it takes systematically larger numbers
of points near a curve to reject H0.

• Finite resolution. A referee also suggested that the data might be of finite ac-
curacy, for example, either subject to rounding or to noise. In either case, the
situation is much the same as in the immediately preceding comment. If the
inaccuracy is small compared to the width of the optimally fitted regions, its
impact is negligible. If the inaccuracy is larger than that width, then the detec-
tion threshold becomes higher and rejection of H0 requires systematically larger
numbers of points near a curve.
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We leave exploration of such issues for future work.

7.2. Beyond detection. A referee pointed out the desirability of not just
detecting the presence of filamentary structures, but also estimating the detailed
location and shape of any filaments that are detected. Of course, conceptually de-
tection and estimation are quite different tasks; moreover, unless detection is pos-
sible, estimation is impossible. Empirically, our methodology actually provides
an estimator when the filament is not just detected, but strongly detected. As the
number of points sampled from the filament increases well beyond the detection
threshold, simulations show that the longest run becomes overwhelmingly likely
to trace out a series of regions that bracket the curve tightly. It seems likely that this
effect could be proven rigorously. However, it seems rather delicate to formulate
and study an appropriate notion of asymptotically efficient estimation.

7.3. Extensions beyond the filament model. We can extend beyond the setting
of two-dimensional point clouds in at least three ways: going to higher dimensions,
observing vectors rather than points and observing pixel imagery on a grid rather
than scattered points.

7.3.1. Structures in higher dimensions. The analogous detection problem in
d-dimensional space—finding a curve or surface that contains an unexpectedly
large number of points—has been considered by the authors in [3, 5]. That work
provides nonadaptive detectors, that is, detectors that assume knowledge of the
Hölder class.

The ideas developed in this paper can be directly applied to multiscale detec-
tion of filamentary structure in d-dimensional point clouds, d > 2. A more ambi-
tious generalization—detection of codimension-k surfaces in d-dimensional point
clouds—seems possible, but also messier. For example, for d = 3 and k = 1, we
are attempting to find a surface in d-dimensional space that contains an inordi-
nately large number of points. The nodes of each anisotropy graph are planar slabs
of volume 2/n and the neighborhood structure in the graph is, while conceptually
analogous to the case considered here, far more complex to write out. The compa-
rable adaptive detection theorems hold in that setting, although we omit details.

7.3.2. Vector fields. Suppose that instead of data on points Xi , we have data on
tangent vectors, that is, on pairs (Xi, θi) that name both a position and a direction.
Experiments in perceptual psychophysics (e.g., [19, 28]) suggest that this is a much
more potent stimulus to “curve finding” than simply the display of random dots.
Biological evidence about early vision suggests that individual receptive fields fire
when both location and orientation offer matches.

As a null hypothesis, we suppose that the Xi ’s are i.i.d. uniform[0,1]2, while
the θi ’s are i.i.d. uniform[−π/2, π/2]. As an alternative hypothesis, we could posit



344 E. ARIAS-CASTRO, D. L. DONOHO AND X. HUO

that a small fraction of the Xi lie on a curve, Xi = (xi, f (xi)), and the θi specify
angles parallel to the line with slope f ′(xi).

Our paper [5] showed that such tangent vector data are substantially more pow-
erful for identifying filamentary structure than the point data discussed so far in
this paper. Namely, such data give us the ability to detect filaments that contain
much smaller fractions of data points. In fact, a reliable test for a Hölder(2,1) fila-
ment can be based on agreement with more than T n1/4 tangent vectors, rather than
T n1/3 points.

The multiscale data structures used in this paper can be applied in the tangent
vector setting, where we match (Xi, θi) to a region based not only on Xi ∈ R′,
but also on θi matching the slope of the midline of R. The resultant algorithm
can take advantage of this more stringent matching structure to speed up the
counting process, because each tangent vector will lie in only one region in a
given anisotropy class, resulting in O(log(n)) flops per data point rather than
O(n log(n)). Searching for significant paths will be significantly faster as well,
since there can only be n log(n) starting places for a path. Hence the whole al-
gorithm can run in O(n log(n)) flops. An analysis that parallels the one given
here shows that a multiscale multianisotropic significance runs algorithm can pro-
vide a detection threshold that is optimal to within a constant factor. Huo and
co-workers [23] gave more details from the computational aspect of this problem.

7.3.3. Pixel imagery. In another direction, we might consider data types used
to model digital imagery, for example, arrays (y(i1, i2) : 0 ≤ i1, i2 < n), where

yi1,i2 = ξf (i1, i2) + σz(i1, i2), 0 ≤ i1, i2 < n,

(z(i1, i2)) is a Gaussian white noise, σ is the noise level and ξf is a pixel array
with nonzero values only on pixels that intersect graph(f ). Despite appearances,
this problem is closely related to the present problem and analogous detection
theorems are true.

In effect, we form a family of anisotropic multiscale strips and sum the pix-
els that intersect those strips, producing detector statistics X(R) that can be
significance-tested in a way that parallels the counts N(R) considered in this pa-
per, only with Gaussian rather than Poisson threshold analysis. The underlying
data structures and arguments can be understood as, roughly speaking, a mixture
of the ideas of this paper and those of another paper by these authors [4]. In partic-
ular, the strips considered here were called axoids in that work. More details can
be found in [21, 22]. In the digital array setting, there is a fast beamlet transform
to rapidly compute all the required X(R) detector statistics.

7.4. On the uniform background assumption. A referee remarked that many
practical imaging problems do not involve small departures from a uniform back-
ground. This is no doubt true. However, there is an everexpanding array of imaging
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problems, and some look for changes between one image and another, for exam-
ple, in studying arterial blood flow or in change detection in scene surveillance. In
the case of no change, the background is quite literally uniform. Also, many prob-
lems with nonuniform background are transformable to uniform background; thus
edge detectors and object detectors are typically operated at so-called constant
false alarm rate. Then they give, under the null hypothesis of no object present,
roughly a constant number of events per unit area, and so the constant false alarm
rate transformation forces a uniform background under H0. Finally, the intellectu-
ally important issues explored here seem clearest in the uniform case and the data
structures developed here are known to be useful in more complex settings [4].

The main point, however, is well taken—detection of objects against nonuni-
form clutter rather than uniform scatter remains a challenging area for further
work.

7.5. Relationships to other work.

7.5.1. Parametric detection. In this paper we considered detection of points
on nonparametric curves. In certain cases, one is interested in points along lines [8]
or on parabolas [1]. For an attractive nonmultiscale approach to such detection
problems, see [11–13] and [33], Section 6.3.

In the authors’ paper [4], which was just mentioned, it was shown how to de-
velop multiscale geometric detectors for line segments in digital imagery, for para-
metric forms such as circles, rectangles and ellipses. Those ideas could be adapted
to the present setting to find situations where data have an elevated density over a
blob or along some line. In the end, the underlying computations involve dyadic
multiscale rectangles and strips, and the ideas are closely related to those in this
paper.

7.5.2. Multiscale geometric analysis. The tools described here are closely re-
lated to a variety of tools in multiscale methods; see [10, 15, 16, 18, 24, 27, 32] for
discussions of related tools applied in image analysis and in mathematical analysis.
We differ here in our use of a multiscale multianisotropy collection of analyzing
regions that is organized and exploited in a specific way and for a specific purpose.

7.5.3. Object grouping and neural architecture. In the literature of computer
vision, there is extensive discussion of object grouping in perception [7]. The
problem considered here—recognizing a curve against a background of random
points—fits in this tradition. There are even experiments in psychophysics that test
the ability of the human visual system to accomplish similar tasks [19, 25]. In
effect, what we have discussed here—(near-) optimal detection—corresponds to
what psychophysicists call “the ideal observer” [26]. In this connection, we have
exhibited a simple multiscale architecture that can provide a near-optimal detec-
tor for a very wide range of stimuli—curves of any of a wide range of degrees of
smoothness.
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In the Gestalt theory of perception, there arises the concept of good continuation
[19, 35]; experiments show that the visual system will respond better to curvilinear
stimuli that follow a good continuation of an initial pattern [30]. Here we have op-
erationalized this principle by a regular connectivity pattern in a specific graphical
structure. We have shown that with this implementation, we get a near-optimal de-
tector, thus validating the significance of such a good continuation principle. Note
well that the connectivity pattern is invariant; that is, it applies the same way at all
nodes of the graph.

This architectural simplicity is striking when compared with the vast specula-
tive literature that proposes “neural architectures” for visual perception. What we
have shown is that by starting from a large collection of elements that are sensitive
to (i.e., accumulate counts in) receptive fields at a variety of lengths, widths, ori-
entations and locations, and then connecting such elements to other elements by a
simple invariant rule, one very sensitively recognizes the existence of curvilinear
stimuli simply by the existence of long connected paths.

Perhaps this bears comparison with biological evidence. Functional magnetic
resonance imaging studies [9] suggest that there are centers in primate brains that
seem responsible for integrating local information into recognition of long curvi-
linear structures [29]. It would be interesting to know whether such integration has
any resemblance to the simple multiscale connection mechanism employed here.

APPENDIX

PROOF OF LEMMA 2.1. Extend notation so that w(j) = 2−j can have both
real and integer arguments, and t (j) = 2−(J−j)+1 as well. Let j+ = j+(α,β,n)

satisfy

2βw(j+)α = t (j+),

that is,

2β2−αj+ = 2−(J−j+)+1.

Let j∗ = 
j+� be the next larger integer, so that w(j+)/2 ≤ w(j∗) ≤ w(j+) and
t (j+) ≤ t (j∗) ≤ 2t (j+). Then because 1 ≤ α ≤ 2, 2α ≤ 4 and so

2βw(j∗)α ≤ 2βw(j+)α = t (j+) ≤ t (j∗)
≤ 2 · t (j+) = 4βw(j+)α ≤ 16βw(j∗)α.

Now let w = w(j∗) and t = t (j∗), and substitute in the last display, getting (2.1).
�

PROOF OF LEMMA 2.2. Remember that f ∈ Hölder(α,β) satisfies f : [0,

1] → [0,1] and

|f ′(x) − f ′(y)| ≤ αβ|x − y|α−1.
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We saw that this implies

|f (x) − f (y) − f ′(y)(x − y)| ≤ β|x − y|α, x, y ∈ [0,1].(A.1)

To prove (2.2), we use the notation ḟk(x) for the affine function tangent to
graph(f ) at xk . Figure 4 illustrates our notation.

Using (A.1), with Ik denoting [kw, (k + 1)w),

|f (x) − ḟk(x)| ≤ β(w/2)α ≤ t/4, x ∈ Ik.

We also note that if ġk(x) = l1δ1 + l2δ2(x − xk), then

|ḟk(x) − ġk(x)| ≤ |f (xk) − l1δ1| + |f ′(xk) − l2δ2||x − xk|
≤ δ1/2 + δ2/2 × w/2

≤ t/8 + t/16.

We conclude that

|f (x) − ġk(x)| ≤ t/2, x ∈ Ik.(A.2)

On the other hand, the region R(j, k, �1, �2) has ġk(x) as its midline and is of
half-height t/2. The desired relationship (2.2) follows. �

PROOF OF LEMMA 2.3. We use the same notation as in the proof of
Lemma 2.2, as illustrated in Figure 4.

It is enough to show that

|ġk+1(xk+1) − ġk(xk+1)| ≤ t(A.3)

and

|ġ′
k+1(xk+1) − ġ′

k(xk+1)| ≤ t/w.(A.4)

It then follows that there is an edge in E(j) that connects R(j, k, �1, �2) to R(j, k+
1, �′

1, �
′
2), where �′

1 and �′
2 are the values associated to ġk+1.

The following inequalities flow either from Hölder conditions or from simple
rounding involved in quantization:

|ġk+1(xk+1) − f (xk+1)| ≤ δ1/2 = t/8,

|f (xk+1) − ḟk(xk+1)| ≤ βwα ≤ t/2,

|ḟk(xk+1) − ġk(xk+1)| ≤ δ1/2 + δ2/2 · w = t/4.

Combining these with the triangle inequality yields (A.3). Similarly,

|ġ′
k+1(xk+1) − f ′(xk+1)| ≤ δ2/2 = t/(8w),

|f ′(xk+1) − ḟ ′
k(xk+1)| ≤ αβwα−1 ≤ t/(2w),

|ḟ ′
k(xk+1) − ġ′

k(xk+1)| ≤ δ2/2 = t/(8w);
combining these identities gives (A.4). �
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