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HIGH MOMENT PARTIAL SUM PROCESSES OF RESIDUALS IN
GARCH MODELS AND THEIR APPLICATIONS1

BY REG KULPERGER AND HAO YU

University of Western Ontario

In this paper we construct high moment partial sum processes based on
residuals of a GARCH model when the mean is known to be 0. We con-
sider partial sums of kth powers of residuals, CUSUM processes and self-
normalized partial sum processes. The kth power partial sum process con-
verges to a Brownian process plus a correction term, where the correction
term depends on the kth moment µk of the innovation sequence. If µk = 0,
then the correction term is 0 and, thus, the kth power partial sum process
converges weakly to the same Gaussian process as does the kth power partial
sum of the i.i.d. innovations sequence. In particular, since µ1 = 0, this holds
for the first moment partial sum process, but fails for the second moment
partial sum process. We also consider the CUSUM and the self-normalized
processes, that is, standardized by the residual sample variance. These be-
have as if the residuals were asymptotically i.i.d. We also study the joint
distribution of the kth and (k + 1)st self-normalized partial sum processes.
Applications to change-point problems and goodness-of-fit are considered, in
particular, CUSUM statistics for testing GARCH model structure change and
the Jarque–Bera omnibus statistic for testing normality of the unobservable
innovation distribution of a GARCH model. The use of residuals for con-
structing a kernel density function estimation of the innovation distribution is
discussed.

1. Introduction and results. In nonlinear time series and in particular econo-
metric and discrete time financial modeling, Engle’s [12] ARCH model plays a
fundamental role; see [10], or the volume edited by Rossi [20]. The ARCH model
has been generalized to GARCH by Bollerslev [5]. A GARCH(p,q) sequence
{Xt,−∞ < t < ∞} is of the form

Xt = σtεt(1.1)

and

σ 2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j ,(1.2)
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where

α0 > 0, αi ≥ 0, 1 ≤ i ≤ p, βj ≥ 0, 1 ≤ j ≤ q(1.3)

are constants, and the innovations process {εt ,−∞ < t < ∞} is a sequence of i.i.d.
random variables (r.v.’s). When ε0 has a finite kth moment, denote µk = E(εk

0). A
usual GARCH model assumption also is:

The innovations process is a sequence
(1.4)

of i.i.d. mean 0 and variance 1 r.v.’s.

Throughout this paper we assume that (1.1)–(1.4) hold, so that, by definition,
µ1 = 0 and µ2 = 1.

The existence of a unique strictly stationary solution of (1.1) and (1.2) is well es-
tablished. See [6, 7] for details. In this paper a minimal set of conditions in [6, 7] for
the existence and stationarity of the GARCH(p,q) sequence {Xt,−∞ < t < ∞}
is assumed, plus the assumption (1.4).

Estimation of the parameter θ = (α0, α1, . . . , αp,β1, . . . , βq) has been inves-
tigated by several authors. We only cite those relevant to our investigation.
Throughout this paper we assume that θ̂n is an estimator of θ based on a sam-
ple X0,X1, . . . ,Xn, and that it is

√
n consistent, that is,

√
n|θ̂n − θ | = OP (1),(1.5)

where we use | · | to denote the maximum norm of vectors or matrices. Recently
Berkes, Horváth and Kokoszka [3] studied the asymptotic properties of the quasi-
maximum likelihood estimator for θ in GARCH(p,q) models under mild con-
ditions. Berkes and Horváth [1] have shown that the quasi-maximum likelihood
estimator cannot be

√
n consistent if E|ε0|k = ∞ for some 0 < k < 4. Hall and

Yao [14] also studied inference for GARCH models under slightly stronger as-
sumptions on the parameters. To remove such limitations as the finite fourth inno-
vations moment, Berkes and Horváth [1] have used an arbitrary density function to
replace the normal function used in the quasi-maximum likelihood and obtain the
asymptotic properties (consistency and normality) under mild conditions. In partic-
ular, they show that the quasi-maximum likelihood estimator based on the standard
symmetric exponential density function is

√
n consistent only if Eε2

0 < ∞.
The main goal of this paper is to construct high moment partial sum processes

of residuals in a GARCH model. Since GARCH processes are defined in terms of
their conditional variances, it is natural to construct model diagnostics in terms of
sums or sums of squares of either the observed raw data or the driving noise
estimates (residuals). As is well known from regression and linear time series,
diagnostics based on residuals are often better tools. Sample skewness and kurto-
sis are based on sums of third and fourth powers, respectively, and thus, are also
interesting diagnostic tools.
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Usually the conditional variance σ 2
t of (1.2) is estimated by

σ̂ 2
t = α̂0 +

p∑
i=1

α̂iX
2
t−i +

q∑
j=1

β̂j σ̂
2
t−j , R = max(p, q) ≤ t ≤ n.

One problem with the above estimation is that the initial conditional vari-
ance estimates σ̂ 2

R−1, σ̂
2
R−2, . . . , σ̂

2
R−q must be given. Hall and Yao [14] give

an infinite-order moving average representation for σ 2
t under the condition that∑p

i=1 αi + ∑q
j=1 βj < 1. A recursive representation of σ 2

t is obtained by Berkes,
Horváth and Kokoszka [3] under the weaker condition (than [14]) that∑q

j=1 βj < 1, which we are already assuming for the stationarity
of {Xt,−∞ < t < ∞} under the conditions of Bougerol and Picard [6, 7]. We
use these later results of Berkes, Horváth and Kokoszka [3] to construct σ̂ 2

t , adapt
their notation and conditions and give them here in some detail.

Let u = (s, t) ∈ R
p+q+1, s = (s0, s1, . . . , sp) ∈ R

p+1 and t = (t1, . . . , tq) ∈ R
q .

Define ci(u), i = 1,2, . . . ,R = max{q,p} by: if q ≥ p, then

c0(u) = s0/
(
1 − (t1 + · · · + tq)

)
,

c1(u) = s1,

c2(u) = s2 + t1c1(u),

...

cp(u) = sp + t1cp−1(u) + · · · + tp−1c1(u),

cp+1 = t1cp(u) + · · · + tpc1(u),

...

cq(u) = t1cq−1(u) + · · · + tq−1c1(u),

and if q < p, the equations above are replaced with

c0(u) = s0/
(
1 − (t1 + · · · + tq)

)
,

c1(u) = s1,

c2(u) = s2 + t1c1(u),

...

cq+1(u) = sq+1 + t1cq(u) + · · · + tqc1(u),

...

cp(u) = sp + t1cp−1(u) + · · · + tqcp−q(u).
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For i > R, define

ci(u) = t1ci−1(u) + t2ci−2(u) + · · · + tqci−q(u).

Let 0 < u < ū, 0 < ρ0 < 1, qu < ρ0, and define the parameter space as

� = {u : t1 + · · · + tq ≤ ρ0, u ≤ min(s, t) ≤ max(s, t) ≤ ū}.
In the rest of this paper we replace (1.3) with the stronger condition

θ is in the interior of �.(1.6)

Now we are ready to give the recursive representation of the conditional vari-
ances by previous observations as given by Berkes, Horváth and Kokoszka [3].
Define

σ 2
t (u) = c0(u) +

∞∑
i=1

ci(u)X2
t−i .

Then σ 2
t (u) exists with probability one for all u ∈ �. Also, σ 2

t in (1.2) has the
representation

σ 2
t = σ 2

t (θ) = c0(θ) +
∞∑
i=1

ci(θ)X2
t−i .(1.7)

Given θ̂n, we can estimate σ 2
t (θ) by

σ̃ 2
t = σ 2

t (θ̂n) = c0(θ̂n) +
∞∑
i=1

ci(θ̂n)X
2
t−i .(1.8)

In practice, we observe only X0,X1, . . . ,Xn. Hence, we use a truncated form and
define, for 1 ≤ t ≤ n,

σ̂ 2
t = c0(θ̂n) +

t∑
i=1

ci(θ̂n)X
2
t−i .(1.9)

Thus, the residual at time t is

ε̂t = Xt

σ̂t

, 1 ≤ t ≤ n.(1.10)

The kth (k = 1,2,3,4, . . .) order moment partial sum process of residuals is de-
fined as

Ŝ(k)
n (u) =

[nu]∑
t=1

ε̂k
t , 0 ≤ u ≤ 1.(1.11)

Its counterpart based on the i.i.d. innovations is defined as

S(k)
n (u) =

[nu]∑
t=1

εk
t , 0 ≤ u ≤ 1.(1.12)
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Collectively in k, we refer to these as high moment partial sum processes.
Denote

∂ci(u) =
(

∂ci(u)

∂α0
,
∂ci(u)

∂α1
, . . . ,

∂ci(u)

∂αp

,
∂ci(u)

∂β1
, . . . ,

∂ci(u)

∂βq

)
∈ R

p+q+1,

∂ logσ 2
t (u) = ∂σ 2

t (u)

σ 2
t (u)

= ∂c0(u) + ∑∞
i=1 ∂ci(u)X2

t−i

c0(u) + ∑∞
i=1 ci(u)X2

t−i

∈ R
p+q+1

and

ψ(θ) = E
(
∂ logσ 2

0 (θ)
)
,

where ∂(·) is used as a shorthand for ∂(·)/∂u for convenience of writing.
We need two more regularity conditions in order to state our results:

ε0 is a nondegerate random variable(1.13)

and

lim
x→0

x−ζ P {|ε0| ≤ x} = 0 for some ζ > 0.(1.14)

Lemma 3.1, (1.6), (1.14) and E|ε0|δ < ∞ for some δ > 0 imply the existence
of ψ(θ).

THEOREM 1.1. Suppose (1.5), (1.6) and (1.14) hold, and let k ≥ 1 be an in-
teger. If E|ε0|k < ∞, then

sup
0≤u≤1

∣∣∣∣ 1√
n

(
Ŝ(k)

n (u) − S(k)
n (u)

) + kuµk

2

〈
ψ(θ),

√
n(θ̂n − θ)

〉∣∣∣∣ = oP (1),

where 〈x,y〉 is the inner product of the vectors x and y.

REMARK 1.1. Theorem 1.1 shows that the asymptotic properties of the high
moment partial sum process {Ŝ(k)

n (u),0 ≤ u ≤ 1} depend on the parameters of
the model unless µk = 0, which can only happen if k is an odd integer, i.e., not
if k is even. Recall that µ1 = 0 by (1.4). Thus, the ordinary partial sum process
{Ŝ(1)

n (u),0 ≤ u ≤ 1} behaves as though the residuals {ε̂t ,1 ≤ t ≤ n} were asymp-
totically the same as the unobservable innovations {εt ,1 ≤ t ≤ n}.

By Theorem 1.1, we immediately obtain the following CUSUM result, Theo-
rem 1.2. It implies that the CUSUM normalized high moment partial sum process
{Ŝ(k)

n (u) − uŜ
(k)
n (1),0 ≤ u ≤ 1} behaves as though the residuals {ε̂t ,1 ≤ t ≤ n}

were asymptotically the same as the unobservable innovations {εt ,1 ≤ t ≤ n}.
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THEOREM 1.2. Let k ≥ 1 be an integer and suppose that (1.5), (1.6) and
(1.14) hold. If E|ε0|k < ∞, then

sup
0≤u≤1

1√
n

∣∣(Ŝ(k)
n (u) − uŜ(k)

n (1)
) − (

S(k)
n (u) − uS(k)

n (1)
)∣∣ = oP (1).

Let ν2
k = E(εk

0 − µk)
2 < ∞. Then the invariance principle for partial sums for

an i.i.d. sequence {εk
t } (see, e.g., [4]) implies that

{
S

(k)
n (u) − uS

(k)
n (1)

νk

√
n

,0 ≤ u ≤ 1
}

converges weakly in the Skorokhod space D[0,1] with J1 topology to a Brownian
bridge {B0(u),0 ≤ u ≤ 1}. Note that any topology of weak convergence that yields
the invariance principle above could have been used here, but for definiteness we
state that the J1 topology is used.

The next result follows immediately from either Theorem 1.1 or Theorem 1.2.

COROLLARY 1.1. Suppose (1.5), (1.6), (1.13) and (1.14) hold. If E|ε0|2k < ∞
for some integer k ≥ 1, then

{
Ŝ

(k)
n (u) − uŜ

(k)
n (1)

νk

√
n

, 0 ≤ u ≤ 1
}

converges weakly in the Skorokhod space D[0,1] with J1 topology to a Brownian
bridge {B0(u),0 ≤ u ≤ 1}.

REMARK 1.2. To use Corollary 1.1 for CUSUM tests of structural change of
GARCH models, one needs to estimate νk . The details are left to the next section.

THEOREM 1.3. Suppose (1.5), (1.6) and (1.14) hold. If E|ε0|k < ∞ for an
integer k ≥ 1, then∣∣∣∣∣ 1√

n

n∑
t=1

|ε̂k
t − εk

t | −
k

2
ψk

(√
n(θ̂n − θ)

)∣∣∣∣∣ = oP (1),

where

ψk(u) = E|〈εk
0 ∂ logσ 2

0 (θ),u〉|, u ∈ R
p+q+1.

REMARK 1.3. The above theorem shows that the sum of the absolute devia-
tions |ε̂k

t − εk
t | depends on the parameters of the model. The existence of ψk(u)

follows from

E|〈εk
0 ∂ logσ 2

0 (θ),u〉| ≤ |u|E|ε0|kE|∂ logσ 2
0 (θ)| < ∞
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since ε0 and ∂ logσ 2
0 (θ) are independent and E|∂ logσ 2

0 (θ)| < ∞ by Lemma 3.1.
It is easy to check that ψk(u) is symmetric about 0 and is Lipschitz by

|ψk(u) − ψk(u∗)| ≤ |u − u∗|E|ε0|kE|∂ logσ 2
0 (θ)| ∀u,u∗ ∈ R

p+q+1,

where u∗ = (s∗, t∗), s∗ = (s∗
0 , s∗

1 , . . . , s∗
p) ∈ R

p+1 and t∗ = (t∗1 , . . . , t∗q ) ∈ R
q .

Before formulating the next result, we need to modify the high moment partial
sum processes of (1.11) and (1.12). The kth-order moment residual centered partial
sum process is defined as

T̂ (k)
n (u) =

[nu]∑
t=1

(ε̂t − ¯̂ε)k, 0 ≤ u ≤ 1,(1.15)

where ¯̂ε is the sample mean of the residuals. Its counterpart based on the i.i.d.
innovations is

T (k)
n (u) =

[nu]∑
t=1

(εt − ε̄)k, 0 ≤ u ≤ 1,

where ε̄ is the sample mean of innovations.
Obviously, σ̂ 2

(n) = T̂
(2)
n (1)/n is the sample moment estimator of µ2. In fact,

by (3.10) σ̂ 2
(n) → µ2 in probability under the minimal condition µ2 < ∞.

Since µ2 = 1, then σ̂ 2
(n) may seem to be an unnecessary estimator. However,

it will play an important role when it is used to self-normalize T̂
(k)
n (u). Denote

σ 2
(n) = T

(2)
n (1)/n, and note that it is the sample variance of the true innovations,

except with divisor n instead of n − 1.

THEOREM 1.4. Suppose (1.5), (1.6), (1.13) and (1.14) hold and k ≥ 1 is an
integer. If E|ε0|max{k,2} < ∞, then

sup
0≤u≤1

1√
n

∣∣∣∣ T̂
(k)
n (u)

σ̂ k
(n)

− T
(k)
n (u)

σ k
(n)

∣∣∣∣ = oP (1).

REMARK 1.4. Theorem 1.4 implies that the self-normalized (or estimated
scale normalized) high moment centered partial sum process
{T̂ (k)

n (u)/σ̂ k
(n),0 ≤ u ≤ 1} behaves as though the residuals {ε̂t ,1 ≤ t ≤ n} were

asymptotically the same as the unobservable innovations {εt ,1 ≤ t ≤ n}.

REMARK 1.5. When k = 1, it is easy to verify that

sup
0≤u≤1

∣∣T̂ (1)
n (u) − (

Ŝ(1)
n (u) − uŜ(1)

n (1)
)∣∣ ≤ |¯̂ε|.
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Hence, given Eε2
0 < ∞, Theorem 1.1 (cf. Remark 1.1) implies ¯̂ε = OP (1/

√
n )

and Corollary 1.1 implies that
{
T̂

(1)
n (u)

σ̂(n)

√
n

,0 ≤ u ≤ 1
}

converges weakly in the Skorokhod space D[0,1] to a Brownian bridge
{B0(u),0 ≤ u ≤ 1}.

Let λk = µk/µ
k/2
2 for k ≥ 1 and define λ0 = 1. For each k ≥ 1, let

{B(k)(u),0 ≤ u ≤ 1} be a zero mean Gaussian process with covariance

EB(k)(u)B(k)(v) = (λ2k − λ2
k)(u ∧ v)

+ kλk−1(kλk−1 + kλkλ3 − 2λk+1)uv(1.16)

+ kλk

(
(1 − k/4)λk + kλkλ4/4 − λk+2

)
uv

for any 0 ≤ u, v ≤ 1, where u ∧ v = min(u, v).
If µ2k < ∞, then Lemma 3.8 implies

{
1√
n

(
T

(k)
n (u)

σ k
(n)

− nuλk

)
,0 ≤ u ≤ 1

}

converges weakly to the Gaussian process {B(k)(u),0 ≤ u ≤ 1}. By Theorem 1.4,
we immediately obtain the following corollary.

COROLLARY 1.2. If (1.5), (1.6), (1.13) and (1.14) hold, then E|ε0|2k < ∞
for some integer k ≥ 1 implies that

{
1√
n

(
T̂

(k)
n (u)

σ̂ k
(n)

− nuλk

)
,0 ≤ u ≤ 1

}

converges weakly to the Gaussian process {B(k)(u),0 ≤ u ≤ 1}.

REMARK 1.6. If the innovation distribution is symmetric about 0, then the
covariance in (1.16) can be simplified. If k is odd, then

EB(k)(u)B(k)(v) = λ2k(u ∧ v) + kλk−1(kλk−1 − 2λk+1)uv

and if k is even, then

EB(k)(u)B(k)(v) = (λ2k − λ2
k)(u ∧ v) + kλk

(
(1 − k/4)λk + kλkλ4/4 − λk+2

)
uv.

REMARK 1.7. Based on the facts that λ0 = 1, λ1 = 0 and λ2 = 1,
(1.16) becomes EB(1)(u)B(1)(v) = u ∧ v − uv for any 0 ≤ u,

v ≤ 1. That is, {B(1)(u), 0 ≤ u ≤ 1} is a Brownian bridge. Hence, the result
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of Corollary 1.2 for k = 1 matches that in Remark 1.5. For k = 2, simple cal-
culations from (1.16) show that EB(2)(u)B(2)(v) = (λ4 − 1)(u ∧ v − uv) for any
0 ≤ u, v ≤ 1. Notice that ν2 = µ4 −µ2

2 = µ2
2(λ4 − 1). Thus, when k = 2, the result

of Corollary 1.2 matches that of Corollary 1.1. In general, the Gaussian process
{B(k)(u),0 ≤ u ≤ 1} for k ≥ 3 depends on the moments of the innovation distrib-
ution and cannot be identified with a specific classic process such as a Brownian
motion or Brownian bridge.

Notice that Corollary 1.2 gives the weak convergence of the self-normalized
high moment centered partial sum process {T̂ (k)

n (u)/σ̂ k
(n),0 ≤ u ≤ 1} of residuals

for a fixed k. The following result considers the joint weak convergence of two
self-normalized high moment centered partial sum processes.

THEOREM 1.5. Assume that (1.5), (1.6), (1.13) and (1.14) hold. Assume
also that k ≥ 1 is an odd number and µ3 = µk = µk+2 = µ2k+1 = 0. Then
E|ε0|2(k+1) < ∞ implies that{

1√
n

(
T̂

(k)
n (u)

σ̂ k
(n)

− nuλk,
T̂

(k+1)
n (v)

σ̂ k+1
(n)

− nuλk+1

)
,0 ≤ u, v ≤ 1

}

converges weakly, in the Skorokhod space D2[0,1] equipped with the
product J1 topology, to a two-dimensional Gaussian process
{(B(k)(u),B(k+1)(v)),0 ≤ u, v ≤ 1}, where {B(k)(u),0 ≤ u ≤ 1} and
{B(k+1)(v),0 ≤ v ≤ 1} are two independent Gaussian processes defined by (1.16).

REMARK 1.8. The conditions µ3 = µk = µk+2 = µ2k+1 = 0 can be replaced
with the stronger condition that the innovation distribution is symmetric about 0.

2. Applications. This section considers applications of the high moment
residual partial sums to a change-point problem, goodness-of-fit and the construc-
tion of a kernel density estimate of the unobservable innovation distribution.

2.1. CUSUM tests for structural change of GARCH models. In this sub-
section we consider the CUSUM normalized high moment partial sum process
{Ŝ(k)

n (u) − uŜ
(k)
n (1),0 ≤ u ≤ 1} defined in Theorem 1.2. It is related to the stan-

dard CUSUM test introduced by Brown, Durbin and Evans [9], which was one of
the first tests on structural change with unknown break point.

We first consider a structural change in the conditional mean for GARCH mod-
els. We can formulate it as the following hypothesis test. The null hypothesis is
“no-change in the conditional mean,”

H0 :




Xt = σtεt ,

σ 2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βj


 , t = 0,1, . . . , n,(2.1)
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and the alternative is “one change in the conditional mean,”

Ha :




Xt = σtεt ,

σ 2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j


 , t = 0, . . . , [nu∗],

Xt = σtεt + µ,

σ 2
t = α0 +

p∑
i=1

αi(Xt−i − µ)2 +
q∑

j=1

βjσ
2
t−j


 , t = [nu∗] + 1, . . . , n,

where µ �= 0 and 0 < u∗ < 1.
To test the above hypothesis, we use the standard CUSUM test constructed from

residuals as

CUSUM(1) = max
1≤i<n

|∑i
t=1 ε̂t − i ¯̂ε|
σ̂(n)

√
n

.

By a straightforward calculation, it is easy to verify that

CUSUM(1) = sup
0≤u≤1

|Ŝ(1)
n (u) − uŜ

(1)
n (1)|

σ̂(n)

√
n

+ oP (1),

provided that Eε2
0 < ∞. Therefore, by Corollary 1.1, under H0,

CUSUM(1) D−→ sup
0≤u≤1

|B0(u)|,

where {B0(u),0 ≤ u ≤ 1} is a Brownian bridge. Hence, we can reject the H0 in
favor of Ha if CUSUM(1) is large.

REMARK 2.1. The statistic CUSUM(1) involves the estimator
√

µ̂2 of
√

µ2.
However, according to the GARCH model setup, µ2 = 1. Thus, the term σ̂(n) can
be dropped in CUSUM(1) to obtain a related test statistic.

A second interesting structural change hypothesis concerns a change in the con-
ditional variance of a GARCH model. We use the above H0 as the null hypothesis
for “no-change in the conditional variance” against the “one change in the condi-
tional variance” alternative

Ha′ :




Xt = σtεt ,

σ 2
t =




α0 +
p∑

i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j , if t = 0, . . . , [nu∗],

α′
0 +

p∑
i=1

α′
iX

2
t−i +

q∑
j=1

β ′
j σ

2
t−j , if t = [nu∗] + 1, . . . , n,
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where

(α0, α1, . . . , αp,β1, . . . , βq) �= (α′
0, α

′
1, . . . , α

′
p,β ′

1, . . . , β
′
q)

and

0 < u∗ < 1.

In the following we propose two CUSUM statistics. The first statistic is defined as

CUSUM(2)
1 = max

1≤i<n

|∑i
t=1 ε̂2

t − i
∑n

t=1 ε̂2
t /n|

ν̂2
√

n
,

where

ν̂2
2 = 1

n

n∑
t=1

(
(ε̂t − ¯̂ε)2 − σ̂ 2

(n)

)2

is an estimator of ν2 = E(ε2
0 − µ2)

2. The statistic ν̂2 uses the fact that λ2 = 1 is
known from the definition of the GARCH process and is not estimated; see (1.4).
The second statistic is defined as

CUSUM(2)
2 = max

1≤i<n

|∑i
t=1(ε̂t − ¯̂ε)2 − iσ̂ 2

(n)|
ν̂2

√
n

,

that is, CUSUM(2)
2 is centered about the residual sample mean ¯̂ε in contrast to the

no centering CUSUM(2)
1 . Again, by straightforward calculations, it is easy to show

that

CUSUM(2)
1 = sup

0≤u≤1

|Ŝ(2)
n (u) − uŜ

(2)
n (1)|

ν̂2
√

n
+ oP (1)

and

CUSUM(2)
2 = sup

0≤u≤1

σ̂ 2
(n)

ν̂2
√

n

∣∣∣∣ T̂
(2)
n (u)

σ̂ 2
(n)

− nuλ2

∣∣∣∣ + oP (1),

provided that Eε4
0 < ∞. Therefore, by Corollaries 1.1 and 1.2 (cf. Remark 1.7),

under H0,

CUSUM(2)
i

D−→ sup
0≤u≤1

|B0(u)|, i = 1,2,

where {B0(u),0 ≤ u ≤ 1} is a Brownian bridge. Hence, we can reject the H0 in
favor of Ha′ whenever CUSUM(2)

i (i = 1,2) is large.
Preliminary empirical studies show promising results from the above proposed

test statistics. They outperform the CUSUM test constructed from the squares of
the original data by Kim, Cho and Lee [17]. Some details are given in [23]. In-
dependently, Kokoszka and Leipus [18] also study a change point for an ARCH
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TABLE 1

Size and power of CUSUM(2)
2 statistic for GARCH(1, 1)

ε0 = N(0,1) n = 500 n = 1000 n = 1500 n = 3000

θ = (0.0002,0.1,0.7) (Null) 0.0230 0.0358 0.0394 0.0412
θ ′ = (0.0003,0.1,0.7) 0.2342 0.6484 0.8752 0.9958
θ ′ = (0.0002,0.167,0.7) 0.1316 0.3908 0.5998 0.9186
θ ′ = (0.0002,0.1,0.767) 0.1792 0.5470 0.8264 0.9924
θ = (0.0002,0.1,0.8) (Null) 0.0162 0.0320 0.0370 0.0386
θ ′ = (0.0003,0.1,0.8) 0.1040 0.3922 0.6570 0.9642
θ ′ = (0.0002,0.167,0.8) 0.1840 0.6260 0.8786 0.9978
θ ′ = (0.0002,0.1,0.867) 0.1768 0.5980 0.9320 1.0000

process, again based on the original observations and not residuals. Here we list
empirical sizes and powers of the CUSUM(2)

2 test. The significance level is 5%
with 1.358 as the critical value, the break point u∗ at the alternative is 0.5, and the
number of replicates is 5000. Tables 1 and 2 show that there are size distortions
of the CUSUM(2)

2 test, but less serious with large sample size. The null and alter-
natives given in these tables are slightly different from the cases studied in [17].
Their tables use α0 as 0.2 or 0.3. When fitting GARCH models to financial stock
returns data, typically a much smaller value of α0 is found and, hence, our tables
use values of α0 such as 0.0002 and 0.0003. A simulation with α0 as 0.2 or 0.3
was also undertaken, but not reported here. In addition, we include the near in-
tegrated GARCH cases with α1 = 0.1 or 0.167 and β1 = 0.8 or 0.867 that were
shown to have poor performance in Kim, Cho and Lee’s test [17]. The CUSUM(2)

2
test outperforms Kim, Cho and Lee’s test in all instances, with both large and small
values of α0 and, in particular, it has substantial power gains when the innovation
distribution is t (8).

TABLE 2

Size and Power of CUSUM(2)
2 statistic for GARCH(1, 1)

ε0 = t (8) n = 500 n = 1000 n = 1500 n = 3000

θ = (0.0002,0.1,0.7) (Null) 0.0234 0.0302 0.0336 0.0396
θ ′ = (0.0003,0.1,0.7) 0.1524 0.4286 0.6708 0.9540
θ ′ = (0.0002,0.167,0.7) 0.0752 0.1986 0.3234 0.6620
θ ′ = (0.0002,0.1,0.767) 0.1056 0.3370 0.5542 0.9132
θ = (0.0002,0.1,0.8) (Null) 0.0188 0.0256 0.0318 0.0378
θ ′ = (0.0003,0.1,0.8) 0.0716 0.2432 0.4354 0.8126
θ ′ = (0.0002,0.167,0.8) 0.0932 0.3450 0.5758 0.9308
θ ′ = (0.0002,0.1,0.867) 0.1126 0.3770 0.7198 0.9924
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2.2. Jarque–Bera normality test. In this subsection we consider the self-
normalized high moment centered partial sum process (1.15) for k = 3 and k = 4.
They correspond to the sample skewness partial sum process as

γ̂n(u) = T̂
(3)
n (u)/n

σ̂ 3
(n)

, 0 ≤ u ≤ 1,

and the sample kurtosis process as

κ̂n(u) = T̂
(4)
n (u)/n

σ̂ 4
(n)

, 0 ≤ u ≤ 1.

The sample skewness and kurtosis of the residuals are γ̂n(1) and κ̂n(1), respec-
tively. Omnibus statistics based on sample skewness and kurtosis have been used
to test normality. Bowman and Shenton [8] and Gasser [13] give details of this
method. The basic idea is to construct the statistic

n

σ 2
γ

(
γ̂n(1) − λ3

)2 + n

σ 2
κ

(
κ̂n(1) − λ4

)2
,

where, by (1.16),

σ 2
γ = E

(
B(3)(1)

)2 = (λ6 − λ2
3) + 3(3 + 3λ2

3 − 2λ4) + 3λ3(λ3/4 + 3λ3λ4/4 − λ5)

and

σ 2
κ = E

(
B(4)(1)

)2 = (λ8 − λ2
4) + 4λ3(4λ3 + 4λ3λ4 − 2λ5) + 4λ4(λ

2
4 − λ6).

Assume that the innovation distribution is symmetric about 0. Then
by Theorem 1.5

n

σ 2
γ

(
γ̂n(1) − λ3

)2 + n

σ 2
κ

(
κ̂n(1) − λ4

)2 D−→ χ2
(2).(2.2)

In the special case where the innovation distribution is standard normal, for which
λ3 = 0, λ4 = 3, σ 2

γ = 6 and σ 2
κ = 24, then (2.2) becomes the Jarque–Bera (JB)

statistic and has a χ2
(2) limit in distribution,

JB = n

6
γ̂ 2
n (1) + n

24

(
κ̂n(1) − 3

)2 D−→ χ2
(2).(2.3)

The statistic JB in (2.3) is the Jarque–Bera normality test widely used in econo-
metrics and implemented in standard statistical packages such as S-PLUS, and
Jarque and Bera [15] show that JB is a Lagrange multiplier test statistic of nor-
mality against alternatives within the Pearson family of distributions, which in-
cludes the beta, gamma and Student’s t distributions among others. They point out
that it is asymptotically equivalent to the likelihood ratio test, implying it has the
same asymptotic power characteristics and, hence, has maximum local asymptotic
power [11]. Therefore, a test based on JB is asymptotically locally most powerful
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against the Pearson family, and (2.3) shows that JB is asymptotically distributed
as χ2(2). The hypothesis of normality is rejected for large sample size, if the com-
puted value of JB is greater than the appropriate critical value of a χ2

(2). Lu [19] has
used Monte Carlo simulation to obtain critical values for several different n. Based
on this, a finite sample size correction can also be used to improve the choice of the
critical value. Lu [19] obtained the finite sample size correction for the size 0.05
critical values of the JB test as

JB0.05 = 5.991645 − 15.17n−1/2 + 345.9n−1 − 3110.8n−3/2, n ≥ 100.

We are unaware of any other results studying the Jarque–Bera test for GARCH
residuals. Kilian and Demiroglu [16] studied the Jarque–Bera test for autoregres-
sive residuals.

2.3. Kernel density estimation of the innovation distribution. The omnibus
type statistic discussed in Section 2.2 provides a means to test a specific type of un-
observable innovation distribution, such as normal, Student-t and two-sided expo-
nential. However, in practice, the normal innovation assumption is often rejected,
as are other known types of distributions. Rather than focusing on identifying the
innovation distribution to a specific member of a family, in this subsection we turn
to a nonparametric kernel density estimation based on the residuals. This would
be needed if one wished to implement a semi-parametric bootstrap methodology
in this setting.

Assume that the innovation distribution has a uniformly continuous density
function f (x) which is unknown. Let hn be a sequence of positive numbers and K

be a probability density function (kernel) with mean 0 and variance 1. Then the
kernel density estimation of f (x) based on the residuals is defined as

f̂n(x) = 1

nhn

n∑
t=1

K

(
x − ε̂t

hn

)
, x ∈ R.

Its counterpart based on i.i.d. innovations is defined as

fn(x) = 1

nhn

n∑
t=1

K

(
x − εt

hn

)
, x ∈ R.

THEOREM 2.1. Assume that (1.5), (1.6) and (1.14) hold. In addition, we as-
sume that the following three conditions hold:

(i) hn > 0, hn → 0,
√

nh2
n → ∞;

(ii) sup|x|>b |x|K(x) → 0 as b → ∞;
(iii) K is Lipschitz, that is, there exists a constant C such that

|K(x) − K(y)| ≤ C|x − y| ∀x, y ∈ R.
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Then E|ε0| < ∞ implies that

sup
x∈R

|f̂n(x) − fn(x)| = oP (1).

The proof of Theorem 2.2 follows easily from Theorem 1.3. Given the condi-
tions in Theorem 2.2, we have (cf. [21])

sup
x∈R

|fn(x) − f (x)| = oP (1).

Thus, by Theorem 2.2,

sup
x∈R

|f̂n(x) − f (x)| = oP (1).

Notice in the above result that only the finite first innovation moment and
√

n con-
sistency of the parameter estimate are required.

3. Proofs. This section begins with a proof of Theorem 1.1. It is given in
a sketch or overview form, with the details given in a series of lemmas which are
placed in the later part of this section. The proofs of Theorems 1.3 and 1.4 rely on
the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Let

ε̃t = Xt

σ̃t

, 1 ≤ t ≤ n and S̃(k)
n (u) =

[nu]∑
t=1

ε̃k
t , 0 ≤ u ≤ 1,

where σ̃t is defined in (1.8). By (1.10) and (1.11),

ε̂t = ε̃t

(
1 + σ̃t − σ̂t

σ̂t

)

and, hence,

Ŝ(k)
n (u) = S̃(k)

n (u) +
k∑

i=1

(
k

i

) [nu]∑
t=1

ε̃k
t

(
σ̃t − σ̂t

σ̂t

)i

.

Thus, Theorem 1.1 follows if

sup
0≤u≤1

∣∣∣∣ 1√
n

(
S̃(k)

n (u) − S(k)
n (u)

) + kuµk

2

〈
ψ(θ),

√
n(θ̂n − θ)

〉∣∣∣∣ = oP (1)(3.1)

and
n∑

t=1

|ε̃t |k
∣∣∣∣ σ̃t − σ̂t

σ̂t

∣∣∣∣
i

= OP (1), 1 ≤ i ≤ k.(3.2)

The sample conditional standard deviation estimates σ̂t are uniformly bounded
away from 0 in probability. This is argued as follows. Since θ is

√
n-consistent,
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there exists an open ball in the interior of � such that, for any small η > 0, then
θ belongs to this open ball with probability ≥ 1 − η as n → ∞. Therefore, σ̂ 2

t ≥
α̂0 > 1

2α0 > 0 with probability ≥ 1 − η. A stronger result than (3.2) is given in
Lemma 3.5.

Let

gt (u) =
√

n(σ 2
t (θ + n−1/2u) − σ 2

t (θ))

σ 2
t (θ)

, u ∈ R
p+q+1,(3.3)

and

εt (u) = εt√
1 + n−1/2gt (u)

.(3.4)

Though gt (u) depends on n, we omit it for convenience of notation.
Using (1.1), (1.7), (1.8), (3.3) and (3.4), we can rewrite ε̃t as

ε̃t = εt

(√
n(θ̂n − θ)

)
, 1 ≤ t ≤ n,

that is, ε̃t = εt (u) with u = √
n(θ̂n − θ).

Hence, by (1.5), (1.11) and (1.12), we can prove (3.1) if, for any b > 0,

sup
|u|≤b

sup
0≤u≤1

∣∣∣∣∣ 1√
n

[nu]∑
t=1

(
εk
t (u) − εk

t

) + kuµk

2
〈ψ(θ),u〉

∣∣∣∣∣ = oP (1).

This last part follows by

sup
|u|≤b

1√
n

n∑
t=1

∣∣∣∣εk
t (u) − εk

t

(
1 − k

2
√

n
〈∂ logσ 2

t (θ),u〉
)∣∣∣∣ = oP (1)(3.5)

and

sup
|u|≤b

sup
0≤u≤1

∣∣∣∣∣1

n

[nu]∑
t=1

εk
t 〈∂ logσ 2

t (θ),u〉 − uµk〈ψ(θ),u〉
∣∣∣∣∣ = oP (1).(3.6)

The proof of (3.6) follows by taking sup|u|≤b into the inner product first, then ap-
plying Lemma 3.6 and noting that 〈∂ logσ 2

t (θ),u〉 = h(εt−1, εt−2, . . .) for an ap-
propriate function h. We also use the fact that εt and ∂ logσ 2

t (θ) are independent,
and that, by Lemma 3.1, E(|∂ logσ 2

t (θ)|) < ∞.
The main idea to prove (3.5) is to have a proper approximation

of 1/

√
1 + n−1/2gt (u) so that

1√
1 + n−1/2gt (u)

= 1 − gt (u)

2
√

n
+ oP

(
1√
n

)

= 1 − 〈∂ logσ 2
t (θ),u〉

2
√

n
+ oP

(
1√
n

)
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uniformly in |u| ≤ b and 1 ≤ t ≤ n. Lemmas 3.1–3.4 are devoted to showing that
this approximation holds.

We divide the proof of (3.5) into two parts. By (3.4), equation (3.5) will follow
if

sup
|u|≤b

1√
n

n∑
t=1

|εt |k
∣∣∣∣
(

1√
1 + n−1/2gt (u)

)k

−
(

1 − 〈∂ logσ 2
t (θ),u〉

2
√

n

)k∣∣∣∣ = oP (1)

and

sup
|u|≤b

1√
n

n∑
t=1

|εt |k
∣∣∣∣
(

1 − 〈∂ logσ 2
t (θ),u〉

2
√

n

)k

(3.7)

−
(

1 − k〈∂ logσ 2
t (θ),u〉

2
√

n

)∣∣∣∣ = oP (1).

These are proven in Lemma 3.7. This completes the proof of Theorem 1.1. �

As a consequence of Theorem 1.1, we can obtain the consistency result
µ̂k = T̂

(k)
n (1)/n → µk for k ≥ 2, where T̂

(k)
n is given in (1.15). First, for any

1 ≤ i ≤ k, Theorem 1.1 implies

1

n

n∑
t=1

ε̂i
t = 1

n

n∑
t=1

εi
t − iµi

2
√

n

〈
ψ(θ),

√
n(θ̂n − θ)

〉 + oP

(
1√
n

)
.(3.8)

In particular, since µ1 = 0, we obtain

| ¯̂ε − ε̄| = oP

(
1√
n

)
.(3.9)

Since θ̂n is
√

n consistent, then for k ≥ 2 and E|ε0|k < ∞, equation (3.8) implies
that ∣∣∣∣ T̂

(k)
n (1)

n
− T

(k)
n (1)

n

∣∣∣∣ = OP

(
1√
n

)
.(3.10)

PROOF OF THEOREM 1.3. Equation (3.5) implies that, for any b > 0 and an
integer k ≥ 1,

sup
|u|≤b

n∑
t=1

∣∣∣∣ε
k
t (u) − εk

t√
n

+ kεk
t

2n
〈∂ logσ 2

t (θ),u〉
∣∣∣∣ = oP (1).(3.11)

By the inequality ||a| − |b|| ≤ |a − b|, (3.11) yields

sup
|u|≤b

∣∣∣∣∣ 1√
n

n∑
t=1

|εk
t (u) − εk

t | −
k

2n

n∑
t=1

|εk
t 〈∂ logσ 2

t (θ),u〉|
∣∣∣∣∣ = oP (1).
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Using ergodicity, we have, for each u ∈ R
p+q+1,

ψ
(n)
k (u) = 1

n

n∑
t=1

|εk
t 〈∂ logσ 2

t (θ),u〉| → ψk(u) a.s.

In Remark 1.3 it is argued that ψk(u) is Lipschitz. With this method we obtain that
ψ

(n)
k (u) is also Lipschitz a.s. uniformly in n. Hence, one can obtain

sup
|u|≤b

∣∣ψ(n)
k (u) − ψk(u)

∣∣ = oP (1).

Thus,

sup
|u|≤b

∣∣∣∣∣ 1√
n

n∑
t=1

|εk
t (u) − εk

t | −
k

2
ψk(u)

∣∣∣∣∣ = oP (1).

Theorem 1.3 now follows standard arguments. This completes the proof of Theo-
rem 1.3. �

PROOF OF THEOREM 1.4. When k = 1, we have

1√
n

∣∣∣∣ T̂
(1)
n (u)

σ̂(n)

− T
(1)
n (u)

σ(n)

∣∣∣∣ ≤ 1√
n

|T̂ (1)
n (u) − T

(1)
n (u)|

σ̂(n)

+ |T (1)
n (u)|√

n

∣∣∣∣ 1

σ̂(n)

− 1

σ(n)

∣∣∣∣.
Since Eε2

0 < ∞, the invariance principle for i.i.d. partial sums and (3.10) imply
that

sup
0≤u≤1

|T (1)
n (u)|√

n

∣∣∣∣ 1

σ̂(n)

− 1

σ(n)

∣∣∣∣ = oP (1).

Hence, we can prove Theorem 1.4 for the case k = 1 if

sup
0≤u≤1

|T̂ (1)
n (u) − T

(1)
n (u)|√

n
= oP (1),

which follows immediately by

sup
0≤u≤1

∣∣T̂ (1)
n (u) − T (1)

n (u)
∣∣

≤ sup
0≤u≤1

∣∣(Ŝ(1)
n (u) − uŜ(1)

n (1)
) − (

S(1)
n (u) − uS(1)

n (1)
)∣∣ + |¯̂ε − ε̄|

and by Theorem 1.2 and (3.9).
Next we consider the case k ≥ 2. Let

L̂n(u) = √
n

(
1

n

[nu]∑
t=1

T̂ (k)
n (u) − uλkσ̂

k
(n)

)
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and

Ln(u) = √
n

(
1

n

[nu]∑
t=1

T (k)
n (u) − uλkσ

k
(n)

)
.

Then

sup
0≤u≤1

1√
n

∣∣∣∣ T̂
(k)
n (u)

σ̂ k
(n)

− T
(k)
n (u)

σ k
(n)

∣∣∣∣
≤ sup0≤u≤1 |L̂n(u) − Ln(u)|

σ̂ k
(n)

+ sup
0≤u≤1

|Ln(u)|
∣∣∣∣ 1

σ̂ k
(n)

− 1

σk
(n)

∣∣∣∣.
Notice that (3.10) implies ∣∣∣∣ 1

σ̂ k
(n)

− 1

σk
(n)

∣∣∣∣ = OP

(
1√
n

)
.

Therefore, we can prove Theorem 1.4 if

sup
0≤u≤1

|L̂n(u) − Ln(u)| = oP (1)(3.12)

and

sup
0≤u≤1

|Ln(u)|√
n

= oP (1).(3.13)

By the facts that ε̄ = OP (1/
√

n ) and σ 2
(n) = µ2 + oP (1), (3.13) holds if

sup
0≤u≤1

∣∣∣∣∣1

n

[nu]∑
t=1

εk
t − uµk

∣∣∣∣∣ = oP (1),

which is true by Lemma 3.6.
To prove (3.12), we need a finer representation of σ̂ k

(n) in terms of σk
(n). By (3.8)

and (3.9) we obtain

σ̂ 2
(n) = σ 2

(n) − µ2√
n

〈
ψ(θ),

√
n(θ̂n − θ)

〉 + oP

(
1√
n

)
.

By a first-order Taylor approximation with remainder we obtain

σ̂ k
(n) =

(
σ 2

(n) − µ2√
n

〈
ψ(θ),

√
n(θ̂n − θ)

〉 + oP

(
1√
n

))k/2

=
(
σ 2

(n) − µ2√
n

〈
ψ(θ),

√
n(θ̂n − θ)

〉)k/2

+ oP

(
1√
n

)
(3.14)

= σk
(n) − kσ k−2

(n)

2
√

n
µ2

〈
ψ(θ),

√
n(θ̂n − θ)

〉 + oP

(
1√
n

)
.
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On the other hand, by (3.8) and (3.9), and the facts that ¯̂ε = OP (1/
√

n ) and
ε̄ = OP (1/

√
n ), we obtain

1√
n
T̂ (k)

n (u) = 1√
n

[nu]∑
t=1

ε̂k
t − k ¯̂ε√

n

[nu]∑
t=1

ε̂k−1
t + oP (1)

= 1√
n

[nu]∑
t=1

εk
t − kuµk

2

〈
ψ(θ),

√
n(θ̂n − θ)

〉 − kε̄√
n

[nu]∑
t=1

εk−1
t + oP (1)

= 1√
n
T (k)

n (u) − kuµk

2

〈
ψ(θ),

√
n(θ̂n − θ)

〉 + oP (1)

uniformly in 0 ≤ u ≤ 1. Substituting the above expression and (3.14) into (3.12)
yields

L̂n(u) = 1√
n
T (k)

n (u) − kuµk

2

〈
ψ(θ),

√
n(θ̂n − θ)

〉

−uλk

(√
nσk

(n) − kµ
k/2
2

2

〈
ψ(θ),

√
n(θ̂n − θ)

〉) + oP (1)

= L(u) + oP (1)

uniformly in 0 ≤ u ≤ 1. This concludes the proof of (3.12) and, hence, Theo-
rem 1.4. �

The remainder of this section gives the various lemmas needed in the proofs
above, plus the proof of Theorem 1.5.

By the mean value theorem for the multivariate function σ 2
t (u) there is a ζ

satisfying |ζ − θ | ≤ |u|/√n so that (3.3) yields

|gt (u)| = |u| |∂σ 2
t (ζ )|

σ 2
t (θ)

= |u| |∂σ 2
t (ζ )|

σ 2
t (ζ )

σ 2
t (ξ)

σ 2
t (θ)

.

Also, by a second-order term Taylor expansion there exists ξ satisfying
|ξ − θ | ≤ |u|/√n so that

gt (u) = 〈∂ logσ 2
t (θ),u〉 + 1

2
√

n
u
∂2σ 2

t (ξ)

σ 2
t (θ)

uτ ,

where uτ is the transpose of the vector u, and ∂2σ 2
t (u) is the matrix of the second-

order partial derivatives of σ 2
t (u) (the Hessian matrix). Therefore,

sup
|u|≤b

|gt (u) − 〈∂ logσ 2
t (θ),u〉| ≤ b2

2
√

n
sup

|ξ−θ |≤b/
√

n

|∂2σ 2
t (ξ)|

σ 2
t (ξ)

σ 2
t (ξ)

σ 2
t (θ)

.

Thus, to show that gt (u) has a finite moment and can be approximated
by 〈∂ logσ 2

t (θ),u〉 in the neighborhood of |u| ≤ b for some b > 0, we need the
following two lemmas.
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LEMMA 3.1. If (1.6) and (1.4) hold, then E|ε0|δ < ∞ for some δ > 0 implies
that

E

(
sup
u∈�

|∂ logσ 2
t (u)|

)κ∗
= E

(
sup
u∈�

|∂σ 2
t (u)|

σ 2
t (u)

)κ∗
< ∞

and

E

(
sup
u∈�

|∂2σ 2
t (u)|

σ 2
t (u)

)κ∗
< ∞

for any κ∗ > 0.

PROOF. See the proof of Lemma 5.6 of [3]. �

LEMMA 3.2. If (1.6) and (1.14) hold, then E|ε0|δ < ∞ for some δ > 0 im-
plies that, for any b > 0 and κ∗ > 0, there exists an integer N such that

sup
n≥N

E

(
sup
|u|≤b

σ 2
t (θ + n−1/2u)

σ 2
t (θ)

)κ∗
< ∞.

PROOF. By Lemma 3.1 of [3], when n is large enough (so that
θ + n−1/2u ∈ �), we have

0 ≤ ci(θ + n−1/2u) ≤ C1

(
max

1≤j≤q

βj + n−1/2|tj |
βj

)i

ci(θ) ≤ C1ρ
i
nci(θ),

0 ≤ i < ∞,

where C1 is a constant and 1 < ρn = 1+n−1/2b/u, where u is defined above (1.6).
Thus, Lemma 3.2 will be proven if we can show that

E

( ∑∞
i=1 ρi

Nci(θ)X2
t−i

1 + ∑∞
i=1 ci(θ)X2

t−i

)κ∗
< ∞.

Since ρN can be close enough to 1 if N is large enough, the above inequality
follows from the same proof of Lemma 3.7 of [2]. For completeness, we give
a detailed proof here.

By Lemma 3.1 of [3], there are constants C2 and 0 < ρ < 1 such that

|ci(u)| ≤ C2ρ
i for all u ∈ � and all i.

Then for any M ≥ 1, we have∑∞
i=1 ρi

Nci(θ)X2
t−i

1 + ∑∞
i=1 ci(θ)X2

t−i

≤ ρM
N +

∞∑
i=M+1

ρi
Nci(θ)X2

t−i

≤ ρM
N + C2

∞∑
i=M+1

(ρNρ)iX2
t−i .
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By Lemma 2.3 of [3],

there exists δ∗ > 0 such that E|X0|δ∗
< ∞.(3.15)

Notice that, for N sufficiently large, ρNρ < 1. By Markov’s inequality, we have,
for x > ρ2

N ,

P

{ ∞∑
i=M+1

(ρNρ)iX2
t−i > x/2

}

≤
∞∑

i=M+1

P
{
X2

t−i > (x/2)(ρNρ)−i(1 − (ρNρ)1/2)
(ρNρ)i/2}

=
∞∑

i=M+1

P
{|Xt−i |δ∗

> (x/2)δ
∗/2(

1 − (ρNρ)1/2)δ∗/2
(ρNρ)−iδ∗/4}

≤ E|X0|δ∗
(x/2)−δ∗/2(

1 − (ρNρ)1/2)−δ∗/2(
1 − (ρNρ)δ

∗/4)−1
(ρNρ)Mδ∗/4.

Choosing M = log(C2x/2)/ logρN , we have, for any κ∗ > 0,

P

{ ∑∞
i=1 ρi

Nci(θ)X2
t−i

1 + ∑∞
i=1 ci(θ)X2

t−i

> C2x

}

≤ P

{ ∞∑
i=M+1

(ρNρ)iX2
t−i > x/2

}

≤ C3 exp
(−(δ∗/4)(1 + logρ−1/ logρN) log(x/2)

)
≤ C4x

−2κ∗

if ρN > 1 is close enough to 1 (when N is sufficiently large), and where C3, C4
are constants that may depend on N . �

Using Lemmas 3.1 and 3.2 and Hölder’s inequality, we immediate arrive at the
following result.

LEMMA 3.3. If (1.6) and (1.14) hold, then E|ε0|δ < ∞ for some δ > 0 im-
plies that, for any b > 0 and κ∗ > 0, there exists an integer N such that

sup
n≥N

E

(
sup
|u|≤b

|gt (u)|
)κ∗

< ∞

and

sup
n≥N

E

(
sup
|u|≤b

√
n|gt (u) − 〈∂ logσ 2

t (θ),u〉|
)κ∗

< ∞.
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LEMMA 3.4. Suppose that (1.6) and (1.14) hold and E|ε0|δ < ∞ for some
δ > 0. Then for any b > 0,

max
1≤t≤n

sup
|u|≤b

∣∣∣∣ 1√
1 + n−1/2gt (u)

−
(

1 − 〈∂ logσ 2
t (θ),u〉

2
√

n

)∣∣∣∣ = oP

(
1√
n

)
.

PROOF. First we state a well-known result that if {Yn,n ≥ 0} is a sequence of
identically distributed r.v.’s with E|Y0|κ∗

< ∞ for some κ∗ > 0, then

max
1≤t≤n

|Yt | = oP (n1/κ∗
).(3.16)

Thus, by Lemma 3.3 for κ∗ > 2, and noting that by construction gt (u) has the
same marginal distribution for each t , we have

n−1/2 max
1≤t≤n

sup
|u|≤b

|gt (u)| = oP (n1/κ∗−1/2).

This, together with the inequality that |1/
√

1 + x − 1 + x/2| ≤ 3x2 for |x| ≤ 1/2,
implies that

max
1≤t≤n

sup
|u|≤b

∣∣∣∣ 1√
1 + n−1/2gt (u)

−
(

1 − gt (u)

2
√

n

)∣∣∣∣ = (
oP (n1/κ∗−1/2)

)2 = oP (n2/κ∗−1).

By Lemma 3.3 and (3.16),

max
1≤t≤n

sup
|u|≤b

√
n|gt (u) − 〈∂ logσ 2

t (θ),u〉| = oP (n1/κ∗
).

Choosing κ∗ > 4 completes the proof of Lemma 3.4. �

LEMMA 3.5. Suppose that (1.6) and (1.14) hold and that E(|ε0|δ) < ∞ for
some δ > 0. Then for any integers k, � ≥ 1,

n∑
t=1

|ε̃t |k|σ̃t − σ̂t |� = OP (1).

PROOF. By (1.6) and (1.5), for any small η > 0 there exist a set with proba-
bility > 1 − η and a constant C5 such that

σ̃t ≥ C5 and σ̂t ≥ C5 for all t ≥ 1.

Thus, by (1.7), (1.8) and (1.9), there is a constant C6 such that

|ε̃t |k|σ̃t − σ̂t |� ≤ (2C5)
−�|εt |k sup

u∈�

(
σt (θ)

σt (u)

)k
(

sup
u∈�

∞∑
i=t+1

ci(u)X2
t−i

)�

≤ (2C5)
−�|εt |k sup

u∈�

(
σ 2

t (θ)

σ 2
t (u)

)k/2
(
C6

∞∑
i=t+1

ρiX2
t−i

)�

.
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By Lemma 5.1 of [3], taking 0 < ν = δ/4 < δ/2 in their lemma,

E

(
sup
u∈�

σ 2
t (θ)

σ 2
t (u)

)δ/4

< ∞.

By (3.15), and taking δ∗/2 ≤ 1,

E

[( ∞∑
i=t+1

ρiX2
t−i

)δ∗/2]
≤

∞∑
i=t+1

ρiδ∗/2E|Xt−i |δ∗

≤ E|X0|δ∗ ρtδ∗/2

1 − ρδ∗/2 .

Hence, by Hölder’s inequality

E

(
n∑

t=1

|ε̃t |k|σ̃t − σ̂t |�
)δ∗∗

≤ E

( ∞∑
t=1

|ε̃t |k|σ̃t − σ̂t |�
)δ∗∗

< ∞

for sufficiently small δ∗∗ > 0. Thus, Lemma 3.5 is now proven. �

LEMMA 3.6. Let Yt = h(εt , εt−1, . . .) and suppose that E|Y0| < ∞. Then

sup
0≤u≤1

∣∣∣∣∣1

n

[nu]∑
t=1

Yt − uEY0

∣∣∣∣∣ = oP (1).

PROOF. For any 0 < ξ < 1 and for large n,

sup
0≤u≤1

∣∣∣∣∣1

n

[nu]∑
t=1

Yt − uEY0

∣∣∣∣∣ ≤ 1

n

[nξ ]∑
t=1

|Yt | + ξE|Y0|

+ sup
ξ≤u≤1

∣∣∣∣∣1

n

[nu]∑
t=1

Yt − uEY0

∣∣∣∣∣ ≤
∣∣∣∣∣1

n

[nξ ]∑
t=1

(|Yt | − E|Y0|)
∣∣∣∣∣

+ 3ξE|Y0| + sup
j≥[nξ ]

∣∣∣∣∣1

j

j∑
t=1

(Yt − EY0)

∣∣∣∣∣.
Since Yt = h(εt , εt−1, . . .), by Theorem 3.5.8 of [22] {Yt } is stationary and ergodic.
Thus, as n → ∞,

1

[nξ ]
[nξ ]∑
t=1

(|Yt | − E|Y0|) = oP (1)

and

sup
j≥[nξ ]

∣∣∣∣∣1

j

j∑
t=1

(Yt − EY0)

∣∣∣∣∣ = oP (1).
�
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LEMMA 3.7. Suppose that (1.6) and (1.14) hold. Then, for any b > 0 and an
integer k ≥ 1, E|ε0|k < ∞ implies:

(i) sup
|u|≤b

n∑
t=1

|εt |k
∣∣∣∣
(

1 − 〈∂ logσ 2
t (θ),u〉

2
√

n

)k

−
(

1 − k〈∂ logσ 2
t (θ),u〉

2
√

n

)∣∣∣∣ = OP (1)

and

(ii) sup
|u|≤b

1√
n

n∑
t=1

|εt |k
∣∣∣∣
(

1√
1 + n−1/2gt (u)

)k

−
(

1− 〈∂ logσ 2
t (θ),u〉

2
√

n

)k∣∣∣∣ = oP (1).

PROOF. Part (i), case k = 1 is trivial. Part (ii), case k = 1 follows directly
from Lemma 3.4.

It is easy to see from Lemma 3.1 that

E sup
|u|≤b

|〈∂ logσ 2
t (θ),u〉|k < ∞.

Now consider k ≥ 2. Thus, using the fact that εt and ∂ logσ 2
t (θ) are indepen-

dent, we have, for 2 ≤ i ≤ k,

E

(
sup
|u|≤b

1

n

n∑
t=1

|εt |k|〈∂ logσ 2
t (θ),u〉|i

)

≤ 1

n

n∑
t=1

E|εt |kE sup
|u|≤b

|〈∂ logσ 2
t (θ),u〉|i

= O(1).

This, together with the binomial formula, implies Lemma 3.7(i).
Now consider part (ii) and k ≥ 2. By Lemma 3.4 we have

1√
1 + n−1/2gt (u)

= 1 − 〈∂ logσ 2
t (θ),u〉

2
√

n
+ oP

(
1√
n

)

uniformly in |u| ≤ b and 1 ≤ t ≤ n. Thus, using the inequality

|(x + �)k − xk| ≤ k2k−1|�|(|x|k−1 + |�|k−1),

we have ∣∣∣∣
(

1√
1 + n−1/2gt (u)

)k

−
(

1 − 〈∂ logσ 2
t (θ),u〉

2
√

n

)k∣∣∣∣

≤ oP

(
1√
n

)(∣∣∣∣1 − 〈∂ logσ 2
t (θ),u〉

2
√

n

∣∣∣∣
k−1

+ oP

(
1√
n

))

uniformly in |u| ≤ b and 1 ≤ t ≤ n. Finally, using the fact that εt and ∂ logσ 2
t (θ)

are independent and E sup|u|≤b |〈∂ logσ 2
t (θ),u〉|k < ∞, the proof of Lemma 3.7(ii)

is immediate. �
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LEMMA 3.8. If Eε2k
0 < ∞ for an integer k ≥ 2, then

{
1√
n

(
T

(k)
n (u)

σ k
(n)

− nuλk

)
,0 ≤ u ≤ 1

}

converges weakly to the Gaussian process {B(k)(u),0 ≤ u ≤ 1} with covariance
defined by (1.16).

PROOF. Using the standard GARCH scaling assumption µ2 = 1, we have
λk = µk . Similar to the proof of Lemma 3.7, by Lemma 3.6 and ε̄ = OP (1/

√
n )

we have

1

n

[nu]∑
t=1

(εt − ε̄)k = 1

n

[nu]∑
t=1

εk
t − k

n

[nu]∑
t=1

εk−1
t ε̄ + oP

(
1√
n

)

= 1

n

[nu]∑
t=1

(εk
t − µk) − ukµk−1ε̄ + uµk + oP

(
1√
n

)

uniformly in 0 ≤ u ≤ 1. On the other hand, by ε̄2 = OP (1/n) we have(
1

n

n∑
t=1

(εt − ε̄)2

)k/2

=
(

1 + 1

n

n∑
t=1

(ε2
t − 1)

)k/2

+ oP

(
1√
n

)

= 1 + k

2n

n∑
t=1

(ε2
t − 1) + oP

(
1√
n

)
.

Therefore,

1√
n

(
T

(k)
n (u)

σ k
(n)

− nuλk

)

= 1

σk
(n)

√
n

([nu]∑
t=1

(εk
t − µk) − uk

2

n∑
t=1

(
µk(ε

2
t − 1) + 2µk−1εt

)) + oP (1)

= 1

σk
(n)

M(k)
n (u) + oP (1)

uniformly in 0 ≤ u ≤ 1. Since σ̂ k
(n) → 1 in probability, we can prove

Lemma 3.8 if {M(k)
n (u),0 ≤ u ≤ 1} converges weakly to the Gaussian

process {B(k)(u),0 ≤ u ≤ 1}. According to the invariance principle
for i.i.d. partial sums, {n−1/2 ∑[nu]

t=1 (εk
t −µk),0 ≤ u ≤ 1} and {n−1/2u

∑n
t=1(µk(ε

2
t −

1) + 2µk−1εt ),0 ≤ u ≤ 1} are tight (in fact, they converge weakly to Gaussian
processes) and, hence, so is the process {M(k)

n (u),0 ≤ u ≤ 1}. Using the form
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of M
(k)
n (u) and relatively easy but lengthy covariance computations, we ob-

tain (1.16). These straightforward details are omitted. This completes the proof
of Lemma 3.8. �

PROOF OF THEOREM 1.5. Using the form of M
(k)
n (u) from the proof of

Lemma 3.8, we just need to show that, for any 0 ≤ u, v ≤ 1, as n → ∞,

EM(k)
n (u)M(k+1)

n (v) → 0.

This computation is straightforward but lengthy. The details are omitted. �
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