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ASYMPTOTIC NORMALITY OF THE Lk-ERROR OF THE
GRENANDER ESTIMATOR

BY VLADIMIR N. KULIKOV AND HENDRIK P. LOPUHAÄ

Eurandom and Delft University of Technology

We investigate the limit behavior of the Lk-distance between a decreas-
ing density f and its nonparametric maximum likelihood estimator f̂n for
k ≥ 1. Due to the inconsistency of f̂n at zero, the case k = 2.5 turns out to be
a kind of transition point. We extend asymptotic normality of the L1-distance
to the Lk-distance for 1 ≤ k < 2.5, and obtain the analogous limiting result
for a modification of the Lk-distance for k ≥ 2.5. Since the L1-distance is
the area between f and f̂n, which is also the area between the inverse g

of f and the more tractable inverse Un of f̂n, the problem can be reduced
immediately to deriving asymptotic normality of the L1-distance between
Un and g. Although we lose this easy correspondence for k > 1, we show
that the Lk-distance between f and f̂n is asymptotically equivalent to the
Lk-distance between Un and g.

1. Introduction. Let f be a nonincreasing density with compact support.
Without loss of generality, assume this to be the interval [0,1]. The nonparamet-
ric maximum likelihood estimator f̂n of f was discovered by Grenander [2]. It is
defined as the left derivative of the least concave majorant (LCM) of the empirical
distribution function Fn constructed from a sample X1, . . . ,Xn from f . Prakasa
Rao [11] obtained the earliest result on the asymptotic pointwise behavior of the
Grenander estimator. One immediately striking feature of this result is that the rate
of convergence is of the same order as the rate of convergence of histogram es-
timators, and that the asymptotic distribution is not normal. It took much longer
to develop distributional theory for global measures of performance for this es-
timator. The first distributional result for a global measure of deviation was the
convergence to a normal distribution of the L1-error mentioned in [3] (see [4] for
a rigorous proof ). A similar result in the regression setting has been obtained by
Durot [1].

In this paper we extend the result for the L1-error to the Lk-error, for k ≥ 1.
We will follow the same approach as in [4], which, instead of comparing f̂n to f ,
compared both inverses. The corresponding L1-errors are the same, since they
represent the area between the graphs of f̂n and f and the area between the graphs
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of the inverses. Clearly, for k > 1 we no longer have such an easy correspondence
between the two Lk-errors. Nevertheless, we will show that the Lk-error between
f̂n and f can still be approximated by a scaled version of the Lk-error between the
two inverses and that this scaled version is asymptotically normal.

The main reason to do a preliminary inversion step is that we use results from [4]
on the inverse process. But apart from this, we believe that working with f̂n di-
rectly will not make life easier. For a ∈ [f (1), f (0)], the (left continuous) inverse
of f̂n is Un(a) = sup{x ∈ [0,1] : f̂n(x) ≥ a}. Since f̂n(x) is the left continuous
slope of the LCM of Fn at the point x, a simple picture shows that it has the more
useful representation

Un(a) = arg max
x∈[0,1]

{Fn(x) − ax}.(1.1)

Here the arg max function is the supremum of the times at which the maximum is
attained. Since Un(a) can be seen as the x-coordinate of the point that is touched
first when dropping a line with slope a on Fn, with probability one f̂n(x) ≤ a if
and only if Un(a) ≤ x. Asymptotic normality of the Lk-error relies on embedding
the process Fn(x) − ax into a Brownian motion with drift. The fact that the dif-
ference between Fn(x) − ax and the limit process is small directly implies that
the difference of the locations of their maxima is small. However, it does not nec-
essarily imply that the difference of the slopes of the LCMs of both processes is
small. Similarly, convergence in distribution of suitably scaled finite-dimensional
projections of Un follows immediately from distributional convergence of Fn, af-
ter suitable scaling, and an arg max type of continuous mapping theorem (see,
e.g., [6]). When working with f̂n directly, similar to Lemma 4.1 in [11], one needs
to bound the probability that the LCM of a Gaussian approximation of Fn on [0,1]
differs from the one restricted to a shrinking interval, which is somewhat technical
and tedious.

Another important difference between the case k > 1 and the case k = 1 is the
fact that, for large k, the inconsistency of f̂n at zero, as shown by Woodroofe and
Sun [13], starts to dominate the behavior of the Lk-error. By using results from [9]
on the behavior of f̂n near the boundaries of the support of f , we will show that,
for 1 ≤ k < 2.5, the Lk-error between f̂n and f is asymptotically normal. This
result can be formulated as follows. Define, for c ∈ R,

V (c) = arg max
t∈R

{W(t) − (t − c)2},(1.2)

ξ(c) = V (c) − c,(1.3)

where {W(t) :−∞ < t < ∞} denotes standard two-sided Brownian motion on R

originating from zero [i.e., W(0) = 0].



2230 V. N. KULIKOV AND H. P. LOPUHAÄ

THEOREM 1.1 (Main theorem). Let f be a decreasing density on [0,1] satis-
fying:

(A1) 0 < f (1) ≤ f (y) ≤ f (x) ≤ f (0) < ∞, for 0 ≤ x ≤ y ≤ 1;
(A2) f is twice continuously differentiable;
(A3) infx∈(0,1) |f ′(x)| > 0.

Then for 1 ≤ k < 2.5, with µk = {E|V (0)|k ∫ 1
0 (4f (x)|f ′(x)|)k/3 dx}1/k , the ran-

dom variable

n1/6
{
n1/3

(∫ 1

0
|f̂n(x) − f (x)|k dx

)1/k

− µk

}

converges in distribution to a normal random variable with zero mean and vari-
ance ∫ 1

0 f (x)(2k+1)/3|f ′(x)|(2k−2)/3 dx

k2(E|V (0)|k ∫ 1
0 (f (x)|f ′(x)|)k/3 dx)(2k−2)/k

· 8
∫ ∞

0
cov

(|ξ(0)|k, |ξ(c)|k)dc.

Note that the theorem holds under the same conditions as in [4]. For k ≥ 2.5,
Theorem 1.1 is no longer true. However, the results from [9] enable us to show that
an analogous limiting result still holds for a modification of the Lk-error.

In Section 2 we introduce a Brownian approximation of Un and derive asymp-
totic normality of a scaled version of the Lk-distance between Un and the inverse
g of f . In Section 3 we show that on segments [s, t] where the graph of f̂n does
not cross the graph of f , the difference

∣∣∣∣
∫ t

s
|f̂n(x) − f (x)|k dx −

∫ f (s)

f (t)

|Un(a) − g(a)|k
|g′(a)|k−1 da

∣∣∣∣
is of negligible order. Together with the behavior near the boundaries of the sup-
port of f , for 1 ≤ k < 2.5 we establish asymptotic normality of the Lk-distance
between f̂n and f in Section 4. In Section 5 we investigate the case k > 2.5 and
prove a result analogous to Theorem 1.1 for a modified Lk-error.

REMARK 1.1. With almost no additional effort, one can establish asymp-
totic normality of a weighted Lk-error nk/3 ∫ 1

0 |f̂n(t) − f (t)|kw(t) dt , where w is
continuously differentiable on [0,1]. This may be of interest when one wants to
use weights proportional to negative powers of the limiting standard deviation
(1

2f (t)|f ′(t)|)1/3 of f̂n(t). Moreover, when w is estimated at a sufficiently fast
rate, one may also replace w by its estimate in the above integral. Similar results
are in [8] for a weighted Lk-error.
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2. Brownian approximation. In this section we will derive asymptotic nor-
mality of the Lk-error of the inverse process of the Grenander estimator. For this
we follow the same line of reasoning as in Sections 3 and 4 in [4]. Therefore, we
only mention the main steps and transfer all proofs to the Appendix.

Let En denote the empirical process
√

n(Fn −F). For n ≥ 1, let Bn be versions
of the Brownian bridge constructed on the same probability space as the uniform
empirical process En ◦F−1 via the Hungarian embedding, and define versions Wn

of Brownian motion by

Wn(t) = Bn(t) + ξnt, t ∈ [0,1],(2.1)

where ξn is a standard normal random variable, independent of Bn. For fixed a ∈
(f (1), f (0)) and J = E,B,W , define

V J
n (a) = arg max

t

{
XJ

n (a, t) + n2/3[
F

(
g(a) + n−1/3t

)
(2.2)

− F(g(a)) − n−1/3at
]}

,

where

XE
n (a, t) = n1/6{

En

(
g(a) + n−1/3t

) − En(g(a))
}
,

XB
n (a, t) = n1/6{

Bn

(
F

(
g(a) + n−1/3t

)) − Bn(F (g(a)))
}
,(2.3)

XW
n (a, t) = n1/6{

Wn

(
F

(
g(a) + n−1/3t

)) − Wn(F(g(a)))
}
.

One can easily check that V E
n (a) = n1/3{Un(a)−g(a)}. A graphical interpretation

and basic properties of V J
n are provided in [4]. For n tending to infinity, properly

scaled versions of V J
n will behave as ξ(c) defined in (1.3).

As a first step, we prove asymptotic normality for a Brownian version of the
Lk-distance between Un and g. This is an extension of Theorem 4.1 in [4].

THEOREM 2.1. Let V W
n be defined as in (2.2) and ξ by (1.3). Then for k ≥ 1,

n1/6
∫ f (0)

f (1)

|V W
n (a)|k − E|V W

n (a)|k
|g′(a)|k−1 da

converges in distribution to a normal random variable with zero mean and vari-
ance

σ 2 = 2
∫ 1

0
(4f (x))(2k+1)/3|f ′(x)|(2k−2)/3 dx

∫ ∞
0

cov
(|ξ(0)|k, |ξ(c)|k)dc.

The next lemma shows that the limiting expectation in Theorem 2.1 is equal to

µk =
{
E|V (0)|k

∫ 1

0

(
4f (x)|f ′(x)|)k/3

dx

}1/k

.(2.4)
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LEMMA 2.1. Let V W
n be defined by (2.2) and let µk be defined by (2.4). Then

for k ≥ 1,

lim
n→∞n1/6

{∫ f (0)

f (1)

E|V W
n (a)|k

|g′(a)|k−1 da − µk
k

}
= 0.

The next step is to transfer the result of Theorem 2.1 to the Lk-error of V E
n . This

can be done by means of the following lemma.

LEMMA 2.2. For J = E,B,W , let V J
n be defined as in (2.2). Then for k ≥ 1,

we have

n1/6
∫ f (0)

f (1)

(|V B
n (a)|k − |V W

n (a)|k)da = op(1)

and ∫ f (0)

f (1)

∣∣|V E
n (a)|k − |V B

n (a)|k∣∣da = Op

(
n−1/3(logn)k+2)

.

From Theorem 2.1 and Lemmas 2.1 and 2.2, we immediately have the following
corollary.

COROLLARY 2.1. Let Un be defined by (1.1) and let µk be defined by (2.4).
Then for k ≥ 1,

n1/6
(
nk/3

∫ f (0)

f (1)

|Un(a) − g(a)|k
|g′(a)|k−1 da − µk

k

)

converges in distribution to a normal random variable with zero mean and vari-
ance σ 2 defined in Theorem 2.1.

3. Relating both Lk-errors. When k = 1, the Lk-error has an easy interpre-
tation as the area between two graphs. In that case

∫ |Un(a)− g(a)|da is the same
as

∫ |f̂n(x) − f (x)|dx, up to some boundary effects. This is precisely Corol-
lary 2.1 in [4]. In this section we show that a similar approximation holds for∫ t
s |f̂n(x) − f (x)|k dx on segments [s, t] where the graphs of f̂n and f do not in-

tersect. In order to avoid boundary problems, we will apply this approximation in
subsequent sections to a suitable cut-off version f̃n of f̂n.

LEMMA 3.1. Let f̃n be a piecewise constant left-continuous nonincreasing
function on [0,1] with a finite number of jumps. Suppose that f (1) ≤ f̃n ≤ f (0),
and define its inverse function by

Ũn(a) = sup{x ∈ [0,1] : f̃n(x) ≥ a},
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for a ∈ [f (1), f (0)]. Suppose that [s, t] ⊆ [0,1], such that one of the following
situations applies:

1. f̃n(x) ≥ f (x), for x ∈ (s, t), such that f̃n(s) = f (s) and f̃n(t+) ≤ f (t).

2. f̃n(x) ≤ f (x), for x ∈ (s, t), such that f̃n(t) = f (t) and f̃n(s) ≥ f (s).

If

sup
x∈[s,t]

|f̃n(x) − f (x)| < (infx∈[0,1] |f ′(x|)2

2 supx∈[0,1] |f ′′(x)| ,(3.1)

then for k ≥ 1,∣∣∣∣
∫ t

s
|f̃n(x) − f (x)|k dx −

∫ f (s)

f (t)

|Ũn(a) − g(a)|k
|g′(a)|k−1 da

∣∣∣∣
≤ C

∫ f (s)

f (t)

|Ũn(a) − g(a)|k+1

|g′(a)|k da,

where C > 0 depends only on f and k.

PROOF. Let us first consider case 1. Let f̃n have m points of jump on (s, t).
Denote them in increasing order by ξ1 < · · · < ξm, and write s = ξ0 and ξm+1 = t .
Denote by α1 > · · · > αm the points of jump of Ũn on the interval (f (t), f (s)) in
decreasing order, and write f (s) = α0 and αm+1 = f (t) (see Figure 1). We then
have ∫ t

s
|f̃n(x) − f (x)|k dx =

m∑
i=0

∫ ξi+1

ξi

|f̃n(ξi+1) − f (x)|k dx.

Apply a Taylor expansion to f in the point g(αi) for each term, and note that

FIG. 1. Segment [s, t] where f̃n ≥ f .
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f̃n(ξi+1) = αi . Then, if we abbreviate gi = g(αi) for i = 0,1, . . . ,m, we can write
the right-hand side as

m∑
i=0

∫ ξi+1

ξi

|f ′(gi)|k(x − gi)
k

∣∣∣∣1 + f ′′(θi)

2f ′(gi)
(x − gi)

∣∣∣∣
k

dx

for some θi between x and gi , also using the fact that gi < ξi < x ≤ ξi+1. Due to
condition (3.1) and the fact that f̃n(ξi+1) = f̃n(x), for x ∈ (ξi, ξi+1], we have that∣∣∣∣f

′′(θi)

f ′(gi)
(x − gi)

∣∣∣∣ ≤ sup |f ′′|
inf |f ′|

|f (x) − f (gi)|
inf |f ′|

(3.2)

≤ sup |f ′′|
(inf |f ′|)2 |f (x) − f̃n(x)| ≤ 1

2
.

Hence, for x ∈ (ξi, ξi+1]∣∣∣∣
∣∣∣∣1 + f ′′(θi)(x − gi)

2f ′(gi)

∣∣∣∣
k

− 1
∣∣∣∣ ≤ k

(
5

4

)k−1 sup |f ′′|
2 inf |f ′|(x − gi).

Therefore, we obtain the inequality∣∣∣∣∣
∫ t

s
|f̃n(x) − f (x)|k dx −

m∑
i=0

∫ ξi+1

ξi

|f ′(gi)|k(x − gi)
k dx

∣∣∣∣∣
≤ C1

m∑
i=0

∫ ξi+1

ξi

(x − gi)
k+1 dx,

where C1 = k sup |f ′|k(5/4)k−1(sup |f ′′|)/(2 inf |f ′|), or after integration,∣∣∣∣∣
∫ t

s
|f̃n(x) − f (x)|k dx

− 1

k + 1

m∑
i=0

|f ′(gi)|k{(ξi+1 − gi)
k+1 − (ξi − gi)

k+1}
∣∣∣∣∣(3.3)

≤ C1

k + 2

m∑
i=0

{(ξi+1 − gi)
k+2 − (ξi − gi)

k+2}.

Next consider the corresponding integral for the inverse Ũn. Since gi < x < gi+1 <

ξi+1, we can write∫ f (s)

f (t)

|Ũn(a) − g(a)|k
|g′(a)|k−1 da =

m∑
i=0

∫ αi

αi+1

|ξi+1 − g(a)|k
|g′(a)|k−1 da

=
m∑

i=0

∫ gi+1

gi

(ξi+1 − x)k|f ′(x)|k dx.
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Apply a Taylor expansion to f ′ at the point gi . Using (3.2), by means of the same
arguments as above, we get∣∣∣∣∣

∫ f (s)

f (t)

|Ũn(a) − g(a)|k
|g′(a)|k−1 da

− 1

k + 1

m∑
i=0

|f ′(gi)|k{(ξi+1 − gi)
k+1 − (ξi+1 − gi+1)

k+1}
∣∣∣∣∣

≤ C1

∫ gi+1

gi

(ξi+1 − x)k(x − gi) dx(3.4)

≤ C1(ξi+1 − gi)

∫ gi+1

gi

(ξi+1 − x)k dx

≤ C1

k + 1
{(ξi+1 − gi)

k+2 − (ξi+1 − gi+1)
k+2}.

For the third integral in the statement of the lemma, similarly as before, again
using (3.2), we can write

∫ f (s)

f (t)

|Ũn(a) − g(a)|k+1

|g′(a)|k da

=
m∑

i=0

∫ gi+1

gi

|f ′(gi)|k+1(ξi+1 − x)k+1
∣∣∣∣1 + f ′′(θ)

f ′(gi)
(x − gi)

∣∣∣∣
k+1

(3.5)

≥ C2

k + 2

m∑
i=0

{(ξi+1 − gi)
k+2 − (ξi+1 − gi+1)

k+2},

where C2 = (inf |f ′|/2)k+1.
Now let us define � as the difference between the first two integrals,

�
def=

∫ t

s
|f̃n(x) − f (x)|k dx −

∫ f (s)

f (t)

|Ũn(a) − g(a)|k
|g′(a)|k−1 da.

By (3.3) and (3.4) and the fact that ξ0 = g0 and ξm+1 = gm+1, we find that

|�| ≤ D

m∑
i=0

(ξi+1 − gi+1)
k+1∣∣|f ′(gi)|k − |f ′(gi+1)|k

∣∣
(3.6)

+ D

m∑
i=0

{(ξi+1 − gi)
k+2 − (ξi+1 − gi+1)

k+2},

where D is a positive constant that depends only on the function f and k. By
a Taylor expansion, the first term on the right-hand side of (3.6) can be bounded
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by

D

m∑
i=0

(ξi+1 − gi+1)
k+1|f ′(gi)|k

∣∣∣∣1 −
∣∣∣∣1 + f ′′(θi)(gi+1 − gi)

f ′(gi)

∣∣∣∣
k∣∣∣∣

≤ C3

m∑
i=0

(ξi+1 − gi+1)
k+1(gi+1 − gi)

≤ C3

m∑
i=0

{(ξi+1 − gi)
k+2 − (ξi+1 − gi+1)

k+2},

with C3 depending only on f and k, where we also use (3.2), the fact that
gi < gi+1 < ξi+1, and that according to (3.1), we have that (gi+1 − gi) ×
sup |f ′′|/ inf |f ′| < 1

2 . Putting things together and using (3.5), we find that

|�| ≤ C4

m∑
i=0

{(ξi+1 − gi)
k+2 − (ξi+1 − gi+1)

k+2}

≤ C5

∫ f (s)

f (t)

|Ũn(a) − g(a)|k+1

|g′(a)|k da,

where C5 depends only on f and k. This proves the lemma for case 1. For case 2
the proof is similar. �

4. Asymptotic normality of the Lk-error of f̂n. We will apply Lemma 3.1
to the following cut-off version of f̂n:

f̃n(t) =



f (0), if f̂n(x) ≥ f (0),
f̂n(x), if f (1) ≤ f̂n(x) < f (0),
f (1), if f̂n(x) < f (1).

(4.1)

The next lemma shows that f̃n satisfies condition (3.1) with probability tending to
one.

LEMMA 4.1. Define the event

An =
{

sup
x∈[0,1]

|f̃n(x) − f (x)| ≤ infx∈[0,1] |f ′(x)|2
2 supt∈[0,1] |f ′′(x)|

}
.

Then P {Ac
n} → 0.

PROOF. It is sufficient to show that sup |f̃n(x) − f (x)| tends to zero. For
this we can follow the line of reasoning in Section 5.4 of [5]. Similar to their
Lemma 5.9, we derive from our Lemma A.1 that, for each a ∈ (f (1), f (0)),

P {|Un(a) − g(a)| ≥ n−1/3 logn} ≤ C1 exp{−C2(logn)3}.
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By monotonicity of Un and the conditions of f , this means that there exists a
constant C3 > 0 such that

P

{
sup

a∈(f (1),f (0))

|Un(a) − g(a)| ≥ C3n
−1/3 logn

}
≤ C1 exp

{−1
2C2(logn)3}

.

This implies that the maximum distance between successive points of jump of f̂n

is of the order O(n−1/3 logn). Since both f̃n and f are monotone and bounded
by f (0), this also means that the maximum distance between f̃n and f is of the
order O(n−1/3 logn). �

The difference between the Lk-errors for f̂n and f̃n is bounded as∣∣∣∣
∫ 1

0
|f̂n(x) − f (x)|k dx −

∫ 1

0
|f̃n(x) − f (x)|k dx

∣∣∣∣
(4.2)

≤
∫ Un(f (0))

0
|f̂n(x) − f (x)|k dx +

∫ 1

Un(f (1))
|f̂n(x) − f (x)|k dx.

The next lemma shows that the integrals on the right-hand side are of negligible
order.

LEMMA 4.2. Let Un be defined in (1.1). Then
∫ Un(f (0))

0 |f̂n(x) − f (x)|k dx =
op(n−(2k+1)/6), and

∫ 1
Un(f (1)) |f̂n(x) − f (x)|k dx = op(n−(2k+1)/6).

PROOF. Consider the first integral, which can be bounded by

2k
∫ Un(f (0))

0
|f̂n(x) − f (0)|k dx + 2k

∫ Un(f (0))

0
|f (x) − f (0)|k dx

(4.3)

≤ 2k
∫ Un(f (0))

0
|f̂n(x) − f (0)|k dx + 2k

k + 1
sup |f ′|kUn(f (0))k+1.

Define the event Bn = {Un(f (0)) ≤ n−1/3 logn}. Then Un(f (0))k+11Bn =
op(n−(2k+1)/6). Moreover, according to Theorem 2.1 in [4], it follows that
P {Bc

n} → 0. Since for any η > 0,

P
(
n(2k+1)/6|Un(f (0))|k+11Bc

n
> η

) ≤ P {Bc
n} → 0,

this implies that the second term in (4.3) is of the order op(n−(2k+1)/6). The first
term in (4.3) can be written as

2k

(∫ Un(f (0))

0
|f̂n(x) − f (0)|k dx

)
1Bn

(4.4)

+ 2k

(∫ Un(f (0))

0
|f̂n(x) − f (0)|k dx

)
1Bc

n
,
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where the second integral is of the order op(n−(2k+1)/6) by the same reasoning as
before. To bound the first integral in (4.4), we will construct a suitable sequence
(ai)

m
i=1, such that the intervals (0, n−a1] and (n−ai , n−ai+1], for i = 1,2, . . . ,m−1,

cover the interval (0,Un(f (0))], and such that the integrals over these intervals can
be bounded appropriately. First of all let

1 > a1 > a2 > · · · > am−1 ≥ 1/3 > am,(4.5)

and let z0 = 0 and zi = n−ai , i = 1, . . . ,m, so that 0 < z1 < · · · < zm−1 ≤
n−1/3 < zm. On the event Bn, for n sufficiently large, the intervals (0, n−a1]
and (n−ai , n−ai+1] cover (0,Un(f (0))]. Hence, when we denote Ji = [zi ∧
Un(f (0)), zi+1 ∧ Un(f (0))], the first integral in (4.4) can be bounded by

m−1∑
i=0

(∫
Ji

(
f̂n(x) − f (0)

)k
dx

)
1Bn ≤

m−1∑
i=0

(zi+1 − zi)|f̂n(zi) − f (0)|k,

using that f̂n is decreasing and the fact that Ji ⊂ (0,Un(f (0))], so that f̂n(zi) −
f (0) ≥ f̂n(x) − f (0) ≥ 0, for x ∈ Ji . It remains to show that

m−1∑
i=0

(zi+1 − zi)|f̂n(zi) − f (0)|k = op

(
n−(2k+1)/6)

.(4.6)

From [13] we have that

f̂n(0) → f (0) sup
1≤j<∞

j

�j

(4.7)

in distribution, where �j are partial sums of standard exponential random vari-
ables. Therefore,

z1|f̂n(0) − f (0)|k = Op(n−a1).(4.8)

According to Theorem 3.1 in [9], for 1/3 ≤ α < 1

n(1−α)/2(
f̂n(n

−α) − f (n−α)
) → Z(4.9)

in distribution, where Z is a nondegenerate random variable. Since for any
i = 1, . . . ,m − 1 we have that 1/3 ≤ ai < 1, it follows that

|f̂n(zi) − f (0)| ≤ |f̂n(zi) − f (zi)| + sup |f ′|zi

= Op

(
n−(1−ai)/2) + Op(n−ai ) = Op

(
n−(1−ai)/2)

.

This implies that, for i = 1, . . . ,m − 1,

(zi+1 − zi)|f̂n(zi) − f (0)|k = Op

(
n−ai+1−k(1−ai)/2)

.(4.10)
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Therefore, if we can construct a sequence (ai) satisfying (4.5), as well as

a1 >
2k + 1

6
,(4.11)

ai+1 + k(1 − ai)

2
>

2k + 1

6
for all i = 1, . . . ,m − 1,(4.12)

then (4.6) follows from (4.8) and (4.10). One may take

a1 = 2k + 7

12
,

ai+1 = k(ai − 1)

2
+ 2k + 3

8
for i = 1, . . . ,m − 1.

Since k < 2.5, it immediately follows that (4.11) and (4.12) are satisfied. To show
that (4.5) holds, first note that 1 > a1 > 1/3, because k < 2.5. It remains to show
that the described sequence strictly decreases and reaches 1/3 in finitely many
steps. As long as ai > 1/3, it follows that

ai − ai+1 = 2 − k

2
ai + 2k − 3

8
.

When k = 2, this equals 1/8. For 1 ≤ k < 2, use ai > 1/3, to find that
ai − ai+1 > 1/24, and for 2 ≤ k < 2.5, use ai ≤ a1 = (2k + 1)/7, to find that
ai − ai+1 ≥ (k + 1)(2.5 − k)/12. This means that the sequence (ai) also satis-
fies (4.5), which proves (4.6). This completes the proof of the first integral in the
statement of the lemma. The proof for the second integral is similar. �

We are now able to prove our main result concerning the asymptotic normality
of the Lk-error, for 1 ≤ k < 2.5.

PROOF OF THEOREM 1.1. First consider the difference∣∣∣∣
∫ 1

0
|f̂n(x) − f (x)|k dx −

∫ f (0)

f (1)

|Un(a) − g(a)|k
|g′(a)|k−1 da

∣∣∣∣,(4.13)

which can be bounded by∣∣∣∣
∫ 1

0
|f̂n(x) − f (x)|k dx −

∫ 1

0
|f̃n(x) − f (x)|k dx

∣∣∣∣ + Rn,(4.14)

where

Rn =
∣∣∣∣
∫ 1

0
|f̃n(x) − f (x)|k dx −

∫ f (0)

f (1)

|Un(a) − g(a)|k
|g′(t)|k−1 da

∣∣∣∣.
Let An be the event defined in Lemma 4.1, so that P {Ac

n} → 0. As in the
proof of Lemma 4.2, this means that Rn1Ac

n
= op(n−(2k+1)/6). Note that on the
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event An, the function f̃n satisfies the conditions of Lemma 3.1, and that for any
a ∈ [f (1), f (0)],

Un(a) = sup{t ∈ [0,1] : f̂n(t) > a} = sup{t ∈ [0,1] : f̃n(t) > a} = Ũn(a).

Moreover, we can construct a partition [0, s1], (s1, s2], . . . , (sl,1] of [0,1] in such
a way that, on each element of the partition, f̃n satisfies either condition 1 or condi-
tion 2 of Lemma 3.1. This means that we can apply Lemma 3.1 to each element of
the partition. Putting things together, it follows that Rn1An is bounded from above
by

C

∫ f (0)

f (1)

|Un(a) − g(a)|k+1

|g′(a)|k da.

Corollary 2.1 implies that this integral is of the order Op(n−(k+1)/3), so that
Rn1An = op(n−(2k+1)/6). Finally, the first difference in (4.14) can be bounded
as in (4.2), which means that, according to Lemma 4.2, it is of the order
op(n−(2k+1)/6). Together with Corollary 2.1, this implies that

n1/6
(
nk/3

∫ 1

0
|f̂n(x) − f (x)|k dx − µk

k

)
→ N(0, σ 2),

where σ 2 is defined in Theorem 2.1. An application of the δ-method then yields
that

n1/6
(
n1/3

(∫ 1

0
|f̂n(x) − f (x)|k dx

)1/k

− µk

)

converges to a normal random variable with mean zero and variance{
1

k
(µk

k)
1/k−1

}2

σ 2 = σ 2

k2µ2k−2
k

= σ 2
k .

�

5. Asymptotic normality of a modified Lk-error for large k. For large k,
the inconsistency of f̂n at zero starts to dominate the behavior of the Lk-error. The
following lemma indicates that, for k > 2.5, the result of Theorem 1.1 does not
hold. For k > 3, the Lk-error tends to infinity, whereas for 2.5 < k ≤ 3, we are
only able to prove that the variance of the integral near zero tends to infinity. In
the latter case, it is in principle possible that the behavior of the process f̂n − f

on [0, zn] depends on the behavior of the process on [zn,1] in such a way that the
variance of the whole integral stabilizes, but this seems unlikely. The proof of this
lemma is transferred to the Appendix.

LEMMA 5.1. Let zn = 1/(2nf (0)). Then we have the following:

(i) If k > 3, then nk/3E
∫ 1

0 |f̂n(x) − f (x)|k dx → ∞.
(ii) If k > 2.5, then var(n(2k+1)/6 ∫ zn

0 |f̂n(x) − f (x)|k dx) → ∞.
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Although Lemma 5.1 indicates that, for k > 2.5, the result Theorem 1.1 will not
hold for the usual Lk-error, a similar result can be derived for a modified version.
For k ≥ 2.5, we will consider a modified Lk-error of the form

n1/6
{
n1/3

(∫ 1−n−ε

n−ε
|f̂n(x) − f (x)|k dx

)1/k

− µk

}
,(5.1)

where µk is the constant defined in Theorem 1.1. In this way, for suitable choices
of ε we avoid a region where the Grenander estimator is inconsistent in such a way
that we are still able to determine its global performance.

We first determine for what values of ε we cannot expect asymptotic normality
of (5.1). First of all, for ε > 1, similar to the proof of Lemma 5.1, it follows that

var
(
n(2k+1)/6

∫ zn

n−ε
|f̂n(x) − f (x)|k dx

)
→ ∞.

For ε < 1/6, in view of Lemma 3.1 and the Brownian approximation discussed in
Section 2, we have that the expectation of

n1/6
{
nk/3

∫ 1−n−ε

n−ε
|f̂n(x) − f (x)|k dx − µk

k

}

will behave as the expectation of

n1/6
{∫ f (1−n−ε)

f (n−ε)

nk/3|UW
n (a) − g(a)|k

|g′(a)|k−1 da − µk
k

}
,

which, according to Lemmas 2.1 and A.5, is of the order O(n1/6−ε). Hence,
we also cannot expect asymptotic normality of (5.1) for ε < 1/6. Finally, for
(k − 1)/(3k − 6) < ε < 1, a more tedious argument, in the same spirit as the proof
of Lemma 5.1, yields that

var
(
n(2k+1)/6

∫ 2n−ε

n−ε
|f̂n(x) − f (x)|k dx

)
→ ∞.

Hence, in order to obtain a proper limit distribution for (5.1) for k ≥ 2.5, we will
choose ε between 1/6 and (k − 1)/(3k − 6).

To prove a result analogous to Theorem 1.1, we define another cut-off version
of the Grenander estimator,

f ε
n (x) =




f (n−ε), if f̂n(x) ≥ f (n−ε),
f̂n(x), if f (1 − n−ε) ≤ f̂n(x) < f (n−ε),
f (1 − n−ε), if f̂n(x) < f (1 − n−ε),

and its inverse function

Uε
n(a) = sup{x ∈ [n−ε,1 − n−ε] : f̂n(x) ≥ a},(5.2)

for a ∈ [f (1 − n−ε), f (n−ε)]. The next lemma is the analogue of Lemma 4.1.
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LEMMA 5.2. Define the event

Aε
n =

{
sup

x∈[0,1]
|f ε

n (x) − f (x)| ≤ infx∈[0,1] |f ′(x)|2
2 supt∈[0,1] |f ′′(x)|

}
.

Then P {Aε
n} → 1.

PROOF. It suffices to show that supx∈[0,1] |f ε
n (x) − f (x)| → 0. Using the de-

finition of f ε
n , we can bound

sup
x∈[0,1]

|f ε
n (x) − f (x)|

(5.3)
≤ sup

x∈[0,1]
|f ε

n (x) − f̃n(x)| + sup
x∈[0,1]

|f̃n(x) − f (x)|.

The first term on the right-hand side of (5.3) is smaller than sup |f ′|n−ε , which, to-
gether with Lemma 4.1, implies that supx∈[0,1] |f ε

n (x) − f (x)| = op(n−1/6). �

Similar to (4.2), the difference between the modified Lk-errors for f̂n and f ε
n is

bounded as ∣∣∣∣
∫ 1−n−ε

n−ε
|f̂n(x) − f (x)|k dx −

∫ 1−n−ε

n−ε
|f ε

n (x) − f (x)|k dx

∣∣∣∣
≤

∫ Uε
n(f (n−ε))

n−ε
|f̂n(x) − f (x)|k dx(5.4)

+
∫ 1−n−ε

Uε
n(f (1−n−ε))

|f̂n(x) − f (x)|k dx.

The next lemma is the analogue of Lemma 4.2 and shows that both integrals on
the right-hand side are of negligible order.

LEMMA 5.3. For k ≥ 2.5 and 1/6 < ε < (k − 1)/(3k − 6), let Uε
n be defined

in (5.2). Then ∫ Uε
n(f (n−ε))

n−ε
|f̂n(x) − f (x)|k dx = op

(
n−(2k+1)/6)

and ∫ 1−n−ε

Uε
n(f (1−n−ε))

|f̂n(x) − f (x)|k dx = op

(
n−(2k+1)/6)

.

PROOF. Consider the first integral. Then similar to (4.3), we have that

2k
∫ Uε

n(f (n−ε))

n−ε
|f̂n(x) − f (n−ε)|k dx(5.5)
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+ 2k
∫ Uε

n(f (n−ε))

n−ε
|f (n−ε) − f (x)|k dx

≤ 2k
∫ Uε

n(f (n−ε))

n−ε
|f̂n(x) − f (n−ε)|k dx

+ 2k

k + 1
sup |f ′|k(Uε

n(f (n−ε)) − n−ε)k+1
.

If we define the event Bε
n = {Uε

n(f (n−ε)) − n−ε ≤ n−1/3 logn}, then by similar
reasoning as in the proof of Lemma 4.2, it follows that (Uε

n(f (n−ε)) − n−ε)k+1 =
op(n−(2k+1)/6). The first integral on the right-hand side of (5.5) can be written as(∫ Uε

n(f (n−ε))

n−ε
|f̂n(x) − f (n−ε)|k dx

)
1Bn

+
(∫ Uε

n(f (n−ε))

n−ε
|f̂n(x) − f (n−ε)|k dx

)
1Bc

n
,

where the second term is of the order op(n−(2k+1)/6) by the same reasoning as
before. To bound (∫ Uε

n(f (n−ε))

n−ε
|f̂n(x) − f (n−ε)|k dx

)
1Bn,(5.6)

we distinguish between two cases:

(i) 1/6 < ε ≤ 1/3,
(ii) 1/3 < ε < (k − 1)/(3k − 6).

In case (i), the integral (5.6) can be bounded by |f̂n(n
−ε) − f (n−ε)|kn−1/3 logn.

According to Theorem 3.1 in [9], for 0 < α < 1/3,

n1/3(
f̂n(n

−α) − f (n−α)
) → |4f (0)f ′(0)|1/3V (0)(5.7)

in distribution, where V (0) is defined in (1.2). It follows that |f̂n(n
−ε)−f (n−ε)| =

Op(n−1/3) and, therefore, (5.6) is of the order op(n−(2k+1)/6).
In case (ii), similar to Lemma 4.2, we will construct a suitable sequence (ai)

m
i=1,

such that the intervals (n−ai , n−ai+1], for i = 1,2, . . . ,m − 1, cover the interval
(n−ε,Un(f (n−ε))], and such that the integrals over these intervals can be bounded
appropriately. First of all let

ε = a1 > a2 > · · · > am−1 ≥ 1/3 > am,(5.8)

and let zi = n−ai , i = 1, . . . ,m, so that 0 < z1 < · · · < zm−1 ≤ n−1/3 < zm. Then,
similar to the proof of Lemma 4.2, we can bound (5.6) as

(∫ Uε
n(f (n−ε))

n−ε
|f̂n(x) − f (n−ε)|k dx

)
1Bn ≤

m−1∑
i=1

(zi+1 − zi)|f̂n(zi) − f (n−ε)|k.
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Since 1/3 ≤ ai ≤ ε < 1 for i = 1, . . . ,m− 1, we can apply (4.9) and conclude that
each term is of the order Op(n−ai+1−k(1−ai)/2). Therefore, it suffices to construct
a sequence (ai) satisfying (5.8), as well as

ai+1 + k(1 − ai)

2
>

2k + 1

6
for all i = 1, . . . ,m − 1.(5.9)

One may take

a1 = ε,

ai+1 = k(ai − 1)

2
+ 2k + 1

6
+ 1

8

(
k − 1

3(k − 2)
− ε

)
for i = 1, . . . ,m − 1.

Then (5.9) is satisfied and it remains to show that the described sequence strictly
decreases and reaches 1/3 in finitely many steps. This follows from the fact that
ai ≤ ε and k ≥ 2.5, since in that case

ai − ai+1 = k − 2

2

(
k − 1

3(k − 2)
− ai

)
− 1

8

(
k − 1

3(k − 2)
− ε

)

≥ 4k − 9

8

(
k − 1

3(k − 2)
− ε

)
> 0.

As in the proof of Lemma 4.2, the argument for the second integral is similar. Now
take Bε

n = {1 − n−ε −Uε
n(f (1 − n−ε)) ≤ n−1/3 logn}. The case 1/6 < ε ≤ 1/3

can be treated in the same way as before. For the case 1/3 < ε < (k − 1)/(3k − 6),
we can use the same sequence (ai) as above, but now define zi = 1 − n−ai , i =
1, . . . ,m, so that 1 > z1 > · · · > zm−1 ≥ 1 − n−1/3 > zm. Then we are left with
considering (∫ 1−n−ε

Uε
n(f (1−n−ε))

|f (1 − n−ε) − f̂n(x)|k dx

)
1Bn

≤
m−1∑
i=1

(zi − zi+1)|f (1 − n−ε) − f̂n(zi)|k.

As before, each term in the sum is of the order Op(n−ai+1−k(1−ai)/2), for
i = 1, . . . ,m − 1. The sequence chosen above satisfies (5.9) and (5.8), which im-
plies that the sum above is of the order op(n−(2k+1)/6). �

Apart from (5.4), we also need to bound the difference between integrals for Un

and its cut-off version Uε
n :∣∣∣∣

∫ f (0)

f (1)

|Un(a) − g(a)|k
|g′(a)|k−1 da −

∫ f (n−ε)

f (1−n−ε)

|Uε
n(a) − g(a)|k
|g′(a)|k−1 da

∣∣∣∣
(5.10)

≤
∫ f (0)

f̃n(n−ε)

|Un(a) − g(a)|k
|g′(a)|k−1 da +

∫ f̃n(1−n−ε)

f (1)

|Un(a) − g(a)|k
|g′(a)|k−1 da.
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The next lemma shows that both integrals on the right-hand side are of negligible
order.

LEMMA 5.4. For k ≥ 2.5, let 1/6 < ε < (k − 1)/(3k − 6). Furthermore, let
Un be defined in (1.1) and let f̃n be defined in (4.1). Then∫ f (0)

f̃n(n−ε)

|Un(a) − g(a)|k
|g′(a)|k−1 da = op

(
n−(2k+1)/6)

and ∫ f̃n(1−n−ε)

f (1)

|Un(a) − g(a)|k
|g′(a)|k−1 da = op

(
n−(2k+1)/6)

.

PROOF. Consider the first integral and define the event An = {f (0) −
f̃n(n

−ε) < n−1/6/ logn}. For 1/6 < ε ≤ 1/3, according to (5.7) we have

f (0) − f̃n(n
−ε) ≤ |f̂n(n

−ε) − f (0)|
≤ |f̂n(n

−ε) − f (n−ε)| + sup |f ′|n−ε

= Op(n−1/3) + O(n−ε)

= op(n−1/6/ logn).

This means that, if 1/6 < ε ≤ 1/3, the probability P {Ac
n} → 0. For 1/3 < ε < 1,

P {Ac
n} ≤ P {f (0) − f̃n(n

−ε) > 0}
≤ P {f̂n(n

−ε) − f (n−ε) < n−ε sup |f ′|} → 0,

since according to (4.9), f̂n(n
−ε) − f (n−ε) is of the order n−(1−ε)/2. Next write

the first integral as (∫ f (0)

f̃n(n−ε)

|Un(a) − g(a)|k
|g′(a)|k−1 da

)
1An

(5.11)

+
(∫ f (0)

f̃n(n−ε)

|Un(a) − g(a)|k
|g′(a)|k−1 da

)
1Ac

n
.

Similar to the argument used in Lemma 4.2, the second integral in (5.11) is of the
order op(n−(2k+1)/6). The expectation of the first integral is bounded by

E

∫ f (0)

f (0)−n−1/6/ logn

|Un(a) − g(a)|k
|g′(a)|k−1 da

≤ n−k/3C1

∫ f (0)

f (0)−n−1/6/ logn
E|V E

n (a)|k da

≤ C2n
(2k+1)/6/ logn,
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using Lemma A.1. The Markov inequality implies that the first term in (5.11) is of
the order op(n−(2k+1)/6). For the second integral the proof is similar. �

THEOREM 5.1. Suppose conditions (A1)–(A3) of Theorem 1.1 are satisfied.
Then for k ≥ 2.5 and for any ε such that 1/6 < ε < (k − 1)/(3k − 6),

n1/6
{
n1/3

(∫ 1−n−ε

n−ε
|f̂n(x) − f (x)|k dx

)1/k

− µk

}

converges in distribution to a normal random variable with zero mean and vari-
ance σ 2

k , where µk and σ 2
k are defined in Theorem 1.1.

PROOF. As in the proof of Theorem 1.1, it suffices to show that the difference

∣∣∣∣
∫ 1−n−ε

n−ε
|f̂n(x) − f (x)|k dx −

∫ f (0)

f (1)

|Un(a) − g(a)|k
|g′(a)|k−1 da

∣∣∣∣
is of the order op(n−(2k+1)/6). We can bound this difference by

∣∣∣∣
∫ 1−n−ε

n−ε
|f̂n(x) − f (x)|k dx −

∫ 1−n−ε

n−ε
|f ε

n (x) − f (x)|k dx

∣∣∣∣(5.12)

+
∣∣∣∣
∫ f (0)

f (1)

|Un(a) − g(a)|k
|g′(a)|k−1 da −

∫ f (n−ε)

f (1−n−ε)

|Uε
n(a) − g(a)|k
|g′(a)|k−1 da

∣∣∣∣(5.13)

+
∣∣∣∣
∫ 1−n−ε

n−ε
|f ε

n (x) − f (x)|k dx −
∫ f (n−ε)

f (1−n−ε)

|Uε
n(a) − g(a)|k
|g′(a)|k−1 da

∣∣∣∣.(5.14)

Differences (5.12) and (5.13) can be bounded as in (5.4) and (5.10), so that Lem-
mas 5.3 and 5.4 imply that these terms are of the order op(n−(2k+1)/6). Finally,
Lemma 3.1 implies that (5.14) is bounded by

∫ f (n−ε)

f (1−n−ε)

|Uε
n(a) − g(a)|k+1

|g′(a)|k da.

Write the integral as

∫ f (0)

f (1)

|Un(a) − g(a)|k+1

|g′(a)|k da

−
(∫ f (0)

f (1)

|Un(a) − g(a)|k+1

|g′(a)|k da −
∫ f (n−ε)

f (1−n−ε)

|Uε
n(a) − g(a)|k+1

|g′(a)|k da

)
.

Then Corollary 2.1 and Lemma 5.4 imply that both terms are of the or-
der op(n−(2k+1)/6). This proves the theorem. �
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APPENDIX

The proofs in Section 2 follow the same line of reasoning as in [4]. Since we
will frequently use results from this paper, we state them for easy reference. First,
the tail probabilities of V J

n have a uniform exponential upper bound.

LEMMA A.1. For J = E,B,W , let V J
n be defined by (2.2). Then there

exist constants C1, C2 > 0 depending only on f , such that for all n ≥ 1,
a ∈ (f (1), f (0)) and x > 0, P {|V J

n (a)| ≥ x} ≤ C1 exp(−C2x
3).

Properly normalized versions of V J
n (a) converge in distribution to ξ(c)

defined in (1.3). To be more precise, for a ∈ (f (1), f (0)) define φ1(a) =
|f ′(g(a))|2/3(4a)−1/3, φ2(a) = (4a)1/3|f ′(g(a))|1/3 and

V J
n,a(c) = φ1(a)V J

n

(
a − φ2(a)cn−1/3)

,(A.1)

for J = E,B,W . Then we have the following property.

LEMMA A.2. For J = E,B,W , integer d ≥ 1, a ∈ (f (1), f (0)) and
c ∈ Jn(a)d , we have joint distributional convergence of (V J

n,a(c1), . . . , V
J
n,a(cd))

to the random vector (ξ(c1), . . . , ξ(cd)).

Due to the fact that Brownian motion has independent increments, the
process V W

n is mixing.

LEMMA A.3. The process {V W
n (a) :a ∈ (f (1), f (0))} is strong mixing with

mixing function αn(d) = 12e−C3nd3
, where the constant C3 > 0 depends only

on f .

As a direct consequence of Lemma A.3 we have the following lemma, which is
a slight extension of Lemma 4.1 in [4].

LEMMA A.4. Let l and m be fixed such that l + m > 0 and let h be a contin-
uous function. Define

ch = 2
∫ 1

0
(4f (x))(2l+2m+1)/3|f ′(x)|(4−4l−4m)/3h(f (x))2 dx.

Then

var
(
n1/6

∫ f (0)

f (1)
V W

n (a)l|V W
n (a)|mh(a) da

)

→ ch

∫ ∞
0

cov
(
ξ(0)l|ξ(0)|m, ξ(c)l|ξ(c)|m)

dc

as n → ∞.
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PROOF. The proof runs along the lines of the proof of Lemma 4.1 in [4].
We first have that

var
(
n1/6

∫ f (0)

f (1)
V W

n (a)l |V W
n (a)|mh(a) da

)

= −2
∫ f (0)

f (1)

∫ n1/3φ2(a)−1(a−f (0))

0
(4a)(2l+2m+1)/3|g′(a)|(4(l+m)−1)/3

× h(a)h
(
a − φ2(a)n−1/3c

)
× cov

(
V W

n,a(0)l|V W
n,a(0)|m,V W

n,a(c)
l |V W

n,a(c)|m
)
dc da.

According to Lemma A.1, for a and c fixed, the sequence V W
n,a(c)

l|V W
n,a(c)|m is

uniformly integrable. Hence, by Lemma A.2 the moments of (V W
n,a(0)l|V W

n,a(0)|m,

V W
n,a(c)

l|V W
n,a(c)|m) converge to the corresponding moments of (ξ(0)l|ξ(0)|m,

ξ(c)l|ξ(c)|m). Again, Lemma A.1 and the fact that l + m > 0 yield that
E|V W

n,a(0)|3(l+m) and E|V W
n,a(c)|3(l+m) are bounded uniformly in n,a and c. To-

gether with Lemma A.3 and Lemma 3.2 in [4], this yields that∣∣cov
(
V W

n,a(0)l|V W
n,a(0)|m,V W

n,a(c)
l|V W

n,a(c)|m
)∣∣ ≤ D1e

−D2|c|3,

where D1 and D2 do not depend on n, a and c. The lemma now follows from
dominated convergence and stationarity of the process ξ . �

PROOF OF THEOREM 2.1. Write

Wk
n (a) = |V W

n (a)|k − E|V W
n (a)|k

|g′(a)|k−1 ,

and for d = f (0) − f (1), define Ln = dn−1/3(logn)3, Mn = dn−1/3 logn and
Nn = [d(Ln + Mn)

−1], where [x] denotes the integer part of x. We divide the
interval (f (1), f (0)) into 2Nn + 1 blocks of alternating length,

Aj = (
f (1) + (j − 1)(Ln + Mn),f (1) + (j − 1)(Ln + Mn) + Ln

]
,

Bj = (
f (1) + (j − 1)(Ln + Mn) + Ln,f (1) + j (Ln + Mn)

]
,

where j = 1, . . . ,Nn. Now write Tn,k = S′
n,k + S′′

n,k + Rn,k , where

S′
n,k = n1/6

Nn∑
j=1

∫
Aj

Wk
n (a) da, S′′

n,k = n1/6
Nn∑
j=1

∫
Bj

Wk
n (a) da,

Rn,k = n1/6
∫ f (0)

f (1)+Nn(Ln+Mn)
Wk

n (a) da.

From here on the proof is completely the same as the proof of Theorem 4.1 in [4].
Therefore, we omit all specific details and only give a brief outline of the argument.
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Lemmas A.1 and A.3 imply that all moments of Wk
n (a) are bounded uniformly in a

and that E|Wk
n (a)Wk

n (b)| ≤ D1 exp(−D2n|b − a|3). This is used to ensure that
ER2

n → 0 and that the contribution of the small blocks is negligible: E(S′′
n,k)

2 → 0.
We then only have to consider the contribution over the big blocks. When we
denote

Yj = n1/6
∫
Aj

Wk
n (a) da and σ 2

n = var

(
Nn∑
j=1

Yj

)
,

we find that∣∣∣∣∣E exp

{
iu

σn

Nn∑
j=1

Yj

}
−

Nn∏
j=1

E exp
{

iu

σn

Yj

}∣∣∣∣∣ ≤ 4(Nn − 1) exp(−C3nM3
n) → 0,

where C3 > 0 depends only on f . This means that we can apply the central limit
theorem to independent copies of Yj . Since the moments of |Wk

n (a)| are uniformly
bounded, we have that, for each ε > 0,

1

σ 2
n

Nn∑
j=1

EY 2
j 1{|Yj |>εσn} ≤ 1

εσ 3
n

Nn sup
1≤k≤Nn

E|Yj |3 = O
(
σ−3

n n−1/6(logn)6)
.

By similar computations as in the proof of Theorem 4.1 in [4], we find that
σ 2

n = var(Tn,k) + O(1), and application of Lemma A.4 yields that σ 2
n → σ 2. This

implies that the Yj ’s satisfy the Lindeberg condition, which proves the theorem.
�

In order to prove Lemma 2.1, we first prove the following lemma.

LEMMA A.5. Let V W
n be defined by (2.2) and let V (0) be defined by (1.2).

Then for k ≥ 1, and for all a such that

n1/3{
F(g(a)) ∧ (

1 − F(g(a))
)} ≥ logn,(A.2)

we have

E|V W
n (a)|k = E|V (0)|k (4a)k/3

|f ′(g(a))|2k/3 + O
(
n−1/3(logn)k+3)

,

where the term O(n−1/3(logn)k+3) is uniform in all a satisfying (A.2).

PROOF. The proof relies on the proof of Corollary 3.2 in [4]. There it is shown
that, if we define Hn(y) = n1/3{H(F(g(a)) + n−1/3y) − g(a)}, with H being the
inverse of F , and

Vn,b = sup
{
y ∈ [−n1/3F(g(a)), n1/3(

1 − F(g(a))
)]

:W(y) − by2 is maximal
}
,
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with b = |f ′(g(a))|/(2a2), then for the event An = {|V W
n (a)| ≤ logn,

|Hn(Vn,b)| ≤ logn}, one has that P {Ac
n} is of the order O(e−C(logn)3

), which then
implies that

sup
a∈(f (1),f (0))

E|V W
n (a) − Hn(Vn,b)| = O

(
n−1/3(logn)4)

.

Similarly, together with an application of the mean value theorem, this yields

sup
a∈(f (1),f (0))

E
∣∣|V W

n (a)|k − |Hn(Vn,b)|k
∣∣ = O

(
n−1/3(logn)3+k).(A.3)

Note that, by definition, the arg maxVn,b closely resembles the arg maxVb(0),
where

Vb(c) = arg max
t∈R

{W(t) − b(t − c)2}.(A.4)

Therefore, we write

E|Hn(Vn,b)|k = E|Hn(Vb(0))|k + E
(|Hn(Vn,b)|k − |Hn(Vb(0))|k).(A.5)

Since by Brownian scaling Vb(c) has the same distribution as b−2/3V (cb2/3),
where V is defined in (1.2), together with the conditions on f , we find that

E|Hn(Vb(0))|k = a−kE|Vb(0)|k + O(n−1/3)

= (4a)k/3

|f ′(g(a))|2k/3 E|V (0)|k + O(n−1/3).

As in the proof of Corollary 3.2 in [4], Vn,b can only be different from Vb(0) with
probability of the order O(e−(2/3)(logn)3

). Hence, from (A.5), we conclude that

E|Hn(Vn,b)|k = (4a)k/3

|f ′(g(a))|2k/3 E|V (0)|k + O(n−1/3).

Together with (A.3), this proves the lemma. �

PROOF OF LEMMA 2.1. The result immediately follows from Lemma A.5.
The values of a for which condition (A.2) does not hold give a contribution of the
order O(n−1/3 logn) to the integral

∫
E|V W

n (a)|k da, and finally,
∫ f (0)

f (1)

(4a)k/3

|f ′(g(a))|2k/3|g′(a)|k−1 da =
∫ 1

0
(4f (x))k/3|f ′(x)|k/3 dx. �

PROOF OF LEMMA 2.2. The proof of the first statement relies on the proof
of Corollary 3.3 in [4]. Here it is shown that, if for a belonging to the set Jn =
{a : both a and a(1 − ξnn

−1/2) ∈ (f (1), f (0))} we define

V B
n (a, ξn) = V B

n

(
a(1 − n−1/2ξn)

) + n1/3{
g
(
a(1 − n−1/2ξn)

) − g(a)
}
,
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then for the event An = {|ξn| ≤ n1/6, |V W
n (a)| ≤ logn, |V B

n (a, ξn)| ≤ logn}, one

has that P {Ac
n} is of the order O(e−C(logn)3

). This implies that∫
a∈Jn

E|V B
n (a, ξn) − V W

n (a)|da = O
(
n−1/3(logn)3)

.

Hence, by using the same method as in proof of Lemma A.5, we obtain∫
a∈Jn

E
∣∣|V B

n (a, ξn)|k − |V W
n (a)|k∣∣da = O

(
n−1/3(logn)k+2)

.

From Lemma A.1, it also follows that E|V B
n (a)|k = O(1) and E|V W

n (a)|k = O(1),
uniformly with respect to n and a ∈ (f (1), f (0)). Hence, the contribution of the
integrals over [f (1), f (0)] \ Jn is negligible, and it remains to show that

n1/6
∫
a∈Jn

{|V B
n (a, ξn)|k − |V B

n (a)|k}da = op(1).(A.6)

For k = 1 this is shown in the proof of Corollary 3.3 in [4], so we may assume that
k > 1. Completely similar to the proof in the case k = 1, we first obtain

n1/6
∫
a∈Jn

{|V B
n (a, ξn)|k − |V B

n (a)|k}da

= n1/6
∫ f (0)

f (1)
{|V B

n (a) − ag′(a)ξnn
−1/6|k − |V B

n (a)|k}da + Op(n−1/3).

Let ε > 0 and write �n(a) = ag′(a)ξnn
−1/6. Then the first term on the right-hand

side equals

n1/6
∫ f (0)

f (1)
{|V B

n (a) − �n(a)|k − |V B
n (a)|k}1[0,ε]

(|V B
n (a)|)da(A.7)

+ n1/6
∫ f (0)

f (1)
{|V B

n (a) − �n(a)|k − |V B
n (a)|k}1(ε,∞)

(|V B
n (a)|)da.(A.8)

First consider the term (A.7). When |V B
n (a)| < 2|�n(a)|, we can write∣∣|V B

n (a) − �n(a)|k − |V B
n (a)|k∣∣ ≤ 3k|�n(a)|k + 2k|�n(a)|k

≤ (3k + 2k)|ag′(a)ξn|kn−k/6.

When |V B
n (a)| ≥ 2|�n(a)|, we have∣∣|V B

n (a) − �n(a)|k − |V B
n (a)|k∣∣ = k|θ |k−1|ag′(a)ξn|n−1/6,

where θ is between |V B
n (a)| ≤ ε and |V B

n (a)−�n(a)| ≤ 3
2ε. Using that ξn and V B

n

are independent, the expectation of (A.7) is bounded from above by

C1ε
k−1E|ξn|

∫ f (0)

f (1)
|ag′(a)|P {|V B

n (a)| ≤ ε}da + Op

(
n−(k−1)/6)

,
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where C1 > 0 depends only on f and k. Hence, since k > 1, we find that

lim sup
n→∞

n1/6
∫ f (0)

f (1)
{|V B

n (a) − ag′(a)ξnn
−1/6|k − |V B

n (a)|k}
(A.9)

× 1[0,ε]
(|V B

n (a)|)da

is bounded from above by C2ε
k−1, where C2 > 0 depends only on f and k. Letting

ε ↓ 0 and using that k > 1 then yields that (A.7) tends to zero.
The term (A.8) is equal to∫ f (0)

f (1)

−2ξnag′(a)V B
n (a) + (ag′(a)ξn)

2n−1/6

|V B
n (a) − �n(a)| + |V B

n (a)|
(A.10)

× kθ(a)k−11(ε,∞)

(|V B
n (a)|)da,

where θ(a) is between |V B
n (a) − �n(a)| and |V B

n (a)|. Note that for |V B
n (a)| > ε,∣∣∣∣ 2V B

n (a)

|V B
n (a) − �n(a)| + |V B

n (a)| − V B
n (a)

|V B
n (a)|

∣∣∣∣ ≤ |ag′(a)n−1/6ξn|
ε

= Op(n−1/6)

uniformly in a ∈ (f (1), f (0)), so that (A.10) is equal to

−kξn

∫ f (0)

f (1)
ag′(a)V B

n (a)|V B
n (a)|k−21(ε,∞)

(|V B
n (a)|)da

+ kξn

∫ f (0)

f (1)
ag′(a)

V B
n (a)

|V B
n (a)|

(|V B
n (a)|k−1 − θ(a)k−1)

1(ε,∞)

(|V B
n (a)|)da

+ Op(n−1/6).

We have that

∣∣|V B
n (a)|k−1 − θ(a)k−1∣∣ ≤ |V B

n (a)|k−1
∣∣∣∣
∣∣∣∣1 − �n(a)

V B
n (a)

∣∣∣∣
k−1

− 1
∣∣∣∣ = Op(n−1/6),

where the O-term is uniform in a. This means that (A.10) is equal to

−kξn

∫ f (0)

f (1)
ag′(a)V B

n (a)|V B
n (a)|k−2 da(A.11)

+ kξn

∫ f (0)

f (1)
ag′(a) sign

(
V B

n (a)
)|V B

n (a)|k−11[0,ε)

(|V B
n (a)|)da

(A.12)
+ Op(n−1/6).

The integral in (A.12) is of the order O(εk−1), whereas Eξ2
n = 1. Since k > 1,

this means that, after letting ε ↓ 0, (A.12) tends to zero. For (A.11), let SB
n (a) =

ag′(a)V B
n (a)|V B

n (a)|k−2 and consider E(
∫

SB
n (a) da)2 = var(

∫
SB

n (a) da) +
(E

∫
SB

n (a) da)2. Then, since according to Lemma A.1 all moments of |SB
n (a)|

are bounded uniformly in a, we find by dominated convergence and Lemma A.2
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that

lim
n→∞E

∫
SB

n (a) da =
∫

a|g′(a)|
(φ1(a))k

(
Eξ(0)|ξ(0)|k−2)

da = 0,

because the distribution of ξ(0) is symmetric. Applying Lemma A.4 with l = 1,
m = k − 2 and h(a) = ag′(a), we obtain var(

∫
SB

n (a) da) = O(n−1/3). We con-
clude that (A.10) tends to zero in probability. This proves the first statement of the
lemma.

The proof of the second statement relies on the proof of Corollary 3.1 in [4].
There it is shown that, for the event An = {|V B

n (a)| < logn, |V E
n (a)| < logn} one

has that P {Ac
n} is of the order O(e−C(logn)3

). Furthermore, if Kn = {supt |En(t) −
Bn(F (t))| ≤ n−1/2(logn)2}, then P {Kn} → 1 and

E
∣∣|V E

n (a)| − |V B
n (a)|∣∣1An∩Kn = O

(
n−1/3(logn)3)

(A.13)

uniformly in a ∈ (f (1), f (0)). By the mean value theorem, together with (A.13),
we now have that

E
∣∣|V E

n (a)|k − |V B
n (a)|k∣∣1Kn

≤ k(logn)k−1E
∣∣|V E

n (a)| − |V B
n (a)|∣∣1An∩Kn + 2nk/3P {Ac

n}
= O

(
n−1/3(logn)k+2) + O

(
nk/3e−C(logn)3)

.

This proves the lemma. �

This completes the proofs needed in Section 2 to obtain a central limit theorem
for the scaled Lk-distance between Un and g (Corollary 2.1). The remainder of
this appendix is devoted to the proof of Lemma 5.1, which indicates that a central
limit theorem for the Lk-distance between f̂n and f is not possible when k > 2.5.
For this we need the following lemma.

LEMMA A.6. Let k ≥ 2.5 and zn = 1/(2nf (0)). Then there exist 0 < a1 <

b1 < a2 < b2 < ∞, such that, for i = 1,2,

lim inf
n→∞ P

{
n

∫ zn

0
|f̂n(x) − f (x)|k dx ∈ [ai, bi]

}
> 0.

PROOF. Consider the event An = {Xi ≥ zn, for all i = 1,2, . . . , n}. Then it
follows that P {An} → 1/

√
e > 1/2. Since on the event An the estimator f̂n is

constant on the interval [0, zn], for any ai > 0 we have

P

{
n

∫ zn

0
|f̂n(x) − f (x)|k dx ∈ [ai, bi]

}

≥ P

{(
n

∫ zn

0
|f̂n(0) − f (x)|k dx

)
1An ∈ [ai, bi]

}

= P

{( |f̂n(0) − f (0)|k
2f (0)

+ Rn

)
1An ∈ [ai, bi]

}
,



2254 V. N. KULIKOV AND H. P. LOPUHAÄ

where

Rn = n

∫ zn

0
kθn(x)k−1(|f̂n(0) − f (x)| − |f̂n(0) − f (0)|)dx,

with θn(x) between |f̂n(0)−f (x)| and |f̂n(0)−f (0)|. Using (4.7), we obtain that
Rn is of the order Op(n−1) and, therefore,

|f̂n(0) − f (0)|k
2f (0)

+ Rn → f (0)k−1

2

∣∣∣∣ sup
1≤j<∞

j

�j

− 1
∣∣∣∣
k

in distribution. Now choose 0 < a1 < b1 < a2 < b2 < ∞ such that, for i = 1,2,

P

{
f (0)k−1

2

∣∣∣∣ sup
1≤j<∞

j

�j

− 1
∣∣∣∣
k

∈ [ai, bi]
}

> 1 − 1/
√

e.

Then for i = 1,2 we find

P

{
n

∫ zn

0
|f̂n(x) − f (x)|k dx ∈ [ai, bi]

}

≥ P

{( |f̂n(0) − f (0)|k
2f (0)

+ Rn

)
∈ [ai, bi]

}
− P {Ac

n},
which converges to a positive value. �

PROOF OF LEMMA 5.1. Take 0 < a1 < b1 < a2 < b2 < ∞ as in Lemma A.6,
and let Ani be the event

Ani =
{
n

∫ zn

0
|f̂n(x) − f (x)|k dx ∈ [ai, bi]

}
.

Then

nk/3E

∫ 1

0
|f̂n(x) − f (x)|k dx ≥ nk/3E

∫ zn

0
|f̂n(x) − f (x)|k dx 1An1

≥ a1n
(k−3)/3P {An1}.

Since according to Lemma A.6 P {An1} tends to a positive constant, this proves (i).
For (ii), write Xn = n

∫ zn

0 |f̂n(x) − f (x)|k dx, and define Bn = {EXn ≥ (a2 +
b1)/2}. Then

var(Xn) ≥ E(Xn − EXn)
21An1∩Bn + E(Xn − EXn)

21An2∩Bc
n

≥ 1
4(a2 − b1)

2P {An1}1Bn + 1
4(a2 − b1)

2P {An2}1Bc
n

≥ 1
4(a2 − b1)

2 min(P {An1},P {An2}).
Hence, according to Lemma A.6,

lim inf
n→∞ var

(
n(2k+1)/6

∫ zn

0
|f̂n(x) − f (x)|k dx

)

≥ lim inf
n→∞ n(2k−5)/3 1

4(a2 − b1)
2 min(P {An1},P {An2}) = ∞. �
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